
Semidefinite optimization and (robust) reoptimization via

projective cutting planes

Daniel Porumbel

August 9, 2023

Abstract

Contents

1 Introduction 1

2 Linear models used to solve the SDP program 2

3 The projection sub-problem 3

4 Finding a feasible solution 6
4.1 Relaxing and strengthening the feasible area . 6
4.2 A restricted subset of the feasible area based on λmax(A+B) ≤ λmax(A) + λmax(B) 7

4.2.1 Valid inequalities using Weyl’s inequalities . 7

5 Projective Cutting Planes in DD restricted-relaxed spaces 8
5.1 No longer useful because α is replaced by δ α-DD means SDP with regards to α-dominant

vectors . 10

6 Computational aspects and matrix libraries 10

7 Three main stages 12
7.1 How to implement it . 14

7.1.1 A modified instance to try to move to n = 1000, after identifying the bottleneck in the
above fully-dimensional case . 14

1 Introduction

We focus on solving the following SDP.

(SDPC)


max b>y

s.t A>y � C
a>y ≤ ca ∀(a, ca) ∈ C

y ∈ Rk,

(1.1a)

(1.1b)

(1.1c)

(1.1d)

where A>y stands for
∑k
i=1Aiyi and A1, A2, . . . , Ak ∈ Rn×n; C ∈ Rn×n. Constraints (1.1c) could be

incorporated into (1.1b) by enlarging the matrices A1, A2, . . . , Ak and C; yet, this is a theoretical property
that will not be used in practice because it would introduce slow down all algorithms (unless C is very small).

These constraints (1.1b) can simply impose non-negativities yi ≥ 0, for various i ∈ [1..n]
The set of linear constraints C can be empty, reasonably sized or prohibitively large. In the latter case,

we may impose some of these constraints from the very beginning, but they are are too numerous to be all

1

enumerated in practice. We will add them one by one on the fly, i.e., using constraint generation scheme.
We will also allow column generation as follows: we may increase k so that A>y becomes for

∑k+1
i=1 Aiyi,

but without touching on the fly to (1.1c) by column generation.
In fact, for now, we will only illustrate the constraint generation scheme in a robust optimization setting:

given a number of nominal constraints, we will make each one become a set of constraints by allowing the
coefficients to vary according to some robust rules (and an uncertainty budget).

The dual is:

(DSDPC)


min C ·X +

∑
(a,ca)∈C caxi

s.t. Ai ·X +
∑

(a,ca)∈C aixi = bi ∀i ∈ [1..k]

X � 0,x ≥ 0

(1.2a)

(1.2b)

(1.2c)

“= bi” becomes “≥ bi” if you add yi ≥ 0 to (1.1c)

If C contain some (a, ca) so that ca = 0, ai = −1 and aj = 0 ∀j ∈ [1..k], j 6= i for a fixed i, then a>y ≤ ca
reduces to yi ≥ 0. The sum in (1.2b) will contain a corresponding term −xi. Since xi ≥ 0 in (1.2c), this
means that the equality (1.2b) becomes an inequality. This explain the arrow pointing to the equality sign
in (1.2b). In the rest of this paper, we will write our models using an equality constraint, which can be seen
as an inequality one if the sum in (1.2b) does not cover the above (a, ca). If the some does cover it, the
inequality is implicit.

Strong duality is not a must in this work; we focus on (SDP).

2 Linear models used to solve the SDP program

It is more convenient to isolate the SDP features in (1.1) and reformulate (SDP) as follows (also omitting
superfluous y ∈ Rn):

(SDP2C)



max b>y

s.t S = C −A>y

a>y ≤ ca ∀(a, ca) ∈ C

S � 0 ⇐⇒ S·dd> ≥ 0 ∀d ∈ Rn

(2.1a)

(2.1b)

(2.1c)

(2.1d)

Given the equivalence from the last constraint, this model can be seen as an LP with prohibitively many
constraints; the last constraint makes it a semi-infinite LP.

A relaxation of this last program is obtained by replacing d ∈ Rn in the last constraint (2.1d) with
d ∈ D , for some D (Rn. Thus, (SDP2) is relaxed into its relaxed version:

(SDP2C ,D)



max b>y

s.t S = C −A>y

a>y ≤ ca ∀(a, ca) ∈ C

S·dd> ≥ 0 ∀d ∈ D

(2.2a)

(2.2b)

(2.2c)

(2.2d)

We can now write the dual of this program using LP duality, using a variable λd for each d ∈ D . We
strengthen the feasible area of (1.2) obtaining (DSDP2C ,D).

(DSDP2C ,D)



min C ·X +
∑

(a,ca)∈C caxi

s.t. Ai ·X +
∑

(a,ca)∈C aixi = bi ∀i ∈ [1..k]

X =
∑
d∈D

λddd>

x ≥ 0, λd ≥ 0 ∀d ∈ D

(2.3a)

(2.3b)

(2.3c)

(2.3d)

Given a fixed D obtained from the saturated constraints in the dual, you obtain some feasible X. Keeping
fixed the null part of X (meaning the eigenvectors u associated to null eigenvalues), you can still solve
(DSDP–S) by forgetting that X has to stay SDP (and maybe keeping the other variables xi fixed). You

2

obtain an optimal X ′ with the same null space like X. You project X → X ′ and you obtain new eigenvectors
that become constraints on y.

You may not necessarily keep x fixed. You still get an optimal (X,x) and shooting toward that direction
is ok. The end point (X ′,x′) is feasible w.r.t. all constraints except X � 0. If the projection X → X ′ return
some t ∈ [0, 1], this means (X + t(X ′ −X),x + t(x′ − x)) is feasible. Then eigendecompose the resulting X
and use the eigenvectors as new cuts in the y program.

Whenever you compute a relaxation, we have to keep some initial constraints that replace the constraint
that S or resp (X) is SDP.

You may have S ·X = 0 (equiv. SX = 0) but X is SDP feasible while S is not SDP (except at optimality
of the y primal).

You will play with (DSDP2C ,D) and (SDP2C ,D), alternating between them and projecting in both
(primal and dual spaces), using threads. Optimizing the dual may be a computational bottleneck because it

has a huge size, X has n2 variables. Since all Sit will be infeasible as outer solutions, think of using infeasible
interior point algorithms.

Keep in mind that we also allow increasing k by adding on the fly constraints on X like Ak+1 ·X = bk+1.
Such constraints do not will not interfere with C , i.e., we consider ak+1 = 1 ∀(a, ca) ∈ C . The only impact
in (SDP2C ,D) will be that for each d ∈ D associated to (2.2d), (C − A>y)·dd> ≥ 0 is turned into
(C − A>y − Ai+1)·dd> ≥ 0. Updating all these constraints in the linear models is not too hard; it is
even possible to keep the old constraints (with yk+1 = 0) and add a new one. In the implementation you
may define some k′ to represent the maximum number of columns to be added on the fly. All constraints
you send to the LP solver before these columns are added will simply put zeros from position k to position
k + k′. The C constraints have all the right to do this; the SDP linear cuts can be updated later when the
on-the-fly columns are inserted (you update them as described above).

3 The projection sub-problem

Sometimes you may know from the start that Xd = X ′d = 0 for some set of vectors d. The advantage of
projecting this way is that you are sure you can at least advance some ε towards X ′, which means improving
the current sol Xit. Anyway, you have to impose X ′ ·dd> ≥ 0 when you search for a new X whenever the
initial one satisfies Xd = 0. Only this way you can be sure you will be able to advance towards X ′ at least
some ε. You have to do this with regards to all d in the null space of X (or to a basis of them), but, even
better and more difficult, with regards to the whole space generated by such D, which means that you have
an SDP constraint only with regards to a subspace.

But you will have to do the same when you solve the outer program in variables y, ensuring S′ ·dd> ≥ 0
for any d in the null space of the starting S.

Property 3.1. We will first project X → D under the hypothesis Xd = 0 =⇒ Dd = 0. The null space of
X is included in the null space of D.

The proof relies on the notion of congruent matrices. We say X and X ′ are congruent if there is some
non-singular M such that X ′ = MXM>. We write X ≡ X ′. Two congruent matrices have the same SDP
status (see, for example, [?, Prop 1.2.3.]), i.e., X � 0 ⇐⇒ X ′ � 0.

Definition 3.2. (congruent expansion) We say that X ′ ∈ Rn′×n′
with n′ > n is a congruent expansion of

X ∈ Rn×n if and only if we can write X ′ = MXM>, for some M ∈ Rn′×n of full rank n.

We prove in two steps that X has the same SDP status as its extended congruent X ′.

1. X � 0 =⇒ X ′ � 0. Assume for the sake of contradiction this is not the case: ∃v′ ∈ Rn′
such that

v′>X ′v′ < 0. This implies v′>MXM>v′ < 0 or X � 0, contradiction.

2. X ′ � 0 =⇒ X � 0 Assume for the sake of contradiction this is not the case: ∃v ∈ Rn such
v>Xv < 0. But we can surely write v> = v′>M for some v′ ∈ Rn′

because M has full rank. This
means v′>MXM>v′ < 0 or v′>X ′v′ < 0, contradiction.

To find the first-hit cuts, you will have to take take some d ∈ Rn such that X ·dd> = 0 and extend d
to a null vector d′ of X ′ so that X ′ ·d′d′> = 0. Since M has full rank R, there exists some M∗ ∈ Rn

′×n so
that M>∗ M = In. We can prove

3

D·X = (M∗DM
>
∗)·(MXM>)

To prove the above, do not forget D ·X = tr(DX) = tr(DM>∗ MX) = tr(DM>∗ MXM>M∗), where
we for the last development we used M>M∗ = In, which is the transposed of M>∗ M = In. Now, we know
tr(AB) = tr(BA) and we jump M∗ from the end to the beginning of the last term, obtaining the desired
result: tr(M∗DM

>
∗ MXM>).1 Using this proof, you do not really need to have a left term D̄ = M∗DM

>
∗ .

You only need some D̄ so that M>D̄M = D. Indeed

D·X = tr(DX) = tr(M>D̄MX) = tr(D̄MXM>) = D̄·(MXM>)

To get a D̄ you do not need to compute any M∗, but simply solve D = M>D̄M in variables D̄. If M is a
triangular matrix coming from a Cholesky decomposition, you do back substitution. Otherwise, if it comes
from an eigen decomposition, you compute its partial inverse by using the orthogonal vectors of M as rows
in M>∗ .

A)

Property 3.3. The case X � 0 is included Prop 3.1

We want to find
max {t : X + tD � 0} (3.1)

We apply the Cholesky decomposition on X, obtaining a unique non-singular K so that X = KK>.2 We
then solve D = KD′K> by back substitution in O(n3) (you first solve in variables Y the equation D = KY
which can be done in O(n3) by backsubstitution because K is triangular). Thus, (3.1) can be written as:

max
{
t : KInK

> + tKD′K> � 0
}
, (3.2)

equivalent (by congruence) to

max {t : In + tD′ � 0} . (3.3)

And the maximum value of t is here: − 1
λmin(D′) .

You can do the same with the eigendecomposition. Let X =
∑n
i=1 λiviv

>
i and construct matrix V from

the n columns
√
λivi. You get X = V IV >, given that λi > 0 ∀i ∈ [1..n] when X � 0. Like in the Cholesky

approach above, you now solve D = V D′V >. But you can use that V is almost orthonormal. The inverse
of V has as rows the elements 1√

λi
v>.

B)
Now let’s suppose X � 0, but Prop. 1 still holds. Take any Cholesky decomposition X = KK> and we

can prove D = KD′K> can still be solved. Take full rank submatrix Kr of K, so that Kr, K and X all
have rank r. We define matrix Mr by extracting rows and columns J ⊂ [1..n] out of M for any M ∈ Rn×n.
We than solve by back substitution Dr = KrD

′
rK
>
r . This system has full rank in the world of r×r matrices.

Now X can be written X = RXrR
> where R ∈ Rn×r is an expansion full-rank matrix. If we restrict R

to J we obtain Ir. The rest of the rows of R indicate how the remaining n − r rows of X (and columns,
by symmetry) are determined as a linear combination of the rows J of X (of Xr). You have to fully check:
for X � 0, Xd = 0 =⇒ K>d = 0 and R>d is also zero. This means that D = RDrR

> and given
Dr = KrD

′
rK
>
r (as solved above by back substitution) we have D = RKrD

′
rK
>
r R
>. We obtain that (3.1)

reduces to

max
{
t : RKrIrK

>
r R
> + tRKrD

′
rK
>
r R
> � 0

}
, (3.4)

1(if you only care for the zeros of the above, you can easily see D ·X = 0 =⇒ DX = 0 =⇒ M∗DXM> = 0 =⇒
(M∗DM>∗)(MXM>) = 0 =⇒ (M∗DM>∗)·(MXM>) = 0)

2You can do the trick using the eigendecomposition: X =
∑n
i=1 λiviv

>
i . Construct V by putting as columns all n vectors√

λivi and you get X = V InV >. Such V is almost orthonormal and easy to compute an inverse. Basically, the inverse has a
rows 1√

λi
v>i

4

If the above Z ′ = RKrIrK
>
r R
> + tRKrD

′
rK
>
r R
> is SDP for some t, then Z = Ir + tD′r is also SDP for

that t, because Z ′ is a congruent expansion of Z (since RKr has full rank r). It is thus enough to compute
D′r and t∗ is − 1

λmin(D′
r)

or ∞ if D′r � 0.

C)
I think we can generalize the above discussion if D has the form D = D + NEN> where Dd = 0∀d ∈

null(X) and all columns of N ∈ Rn×r are a basis for the null space of X (so that XN = 0). If λmin(E) < 0,
you can not even advance a step length of ε along X → D and stay SDP (because: take any r ∈ Rr such
that r>Er < 0 and solve r = N>x and 0 = Dx in variables x ∈ Rn. This system with n equations and n
unknowns has to be feasible because N completes the vectors of the eigendecomposition of D associated to
non-zero eigenvalues).

Else, if E � 0, you can show the first hit constraint does not belong to N . In this case, it is enough to
shoot towards D instead of D. Why? Let v + d be the first hit constraint, where d belongs to the null space
of X and v to the row space of X. We compute (v + d)>(D+NEN>)(v + d); since Dd = 0 and N>v = 0,
this value is vDv + d>NENd ≥ vDv = v>(D +NEN>)v. This means v is at least as good as v + d and
it also has to be a first-hit cut. And since N>v = 0, you can only project towards D to find such v

Now we go a bit beyond Prop. 3.1. We consider some D = D+NEN>, where N contains as columns a
basis of the null space of X.

If you can decompose D = D+NEN> where Dd = 0∀d ∈ null(X), you’ll end up with two choices: (1)
λmin(E) < 0 and in this case you have t∗ = 0 or (2) E � 0 and in this case it is enough to solve X → D.

If such decomposition exists, then any v in the row image of X satisfies v>Dd = 0∀d ∈ null(X), which
is equivalent to XDd = 0. This is a necessary condition and we will show it is sufficient. Let us consider
the eigendecomposition of X =

∑r
i=1 λiviv

>
i . We now construct matrix V ∈ Rn×r by putting together

the elements
√
λivi. We construct N ∈ Rn×(n−r) by collecting the n − r eigenvectors of X associated zero

eigenvalues. We obtain that [V N] is non-singular in Rn and the dot product of any two columns is 0 (the
matrix is almost orthogonal). We have by construction

X =
[
V N

]︸ ︷︷ ︸
r+(n−r)

[
Ir 0
0 0

] [
V >

N>

]
and we can also compute

D =
[
V N

]︸ ︷︷ ︸
r+(n−r)

[
F G>

G E

] [
V >

N>

]
= V FV > +NEN> + V G>N> +NGV >

(3.5)

(3.6)

(3.7)

Suppose for the sake of contradiction that G 6= 0. We can compute v>Dd = v>V G>N>d. Since v has rank
r, we can make v>V be any (transposed) element v of Rr (because otherwise V can not have rank r since
the possible v considered here can actually span all the useful part of Rn since there is no use in covering
anything that contain some portions of null(X)). Similarly, N>d can cover any element d of Rn−r. As such,
if G ∈ Rr×(n−r) is not null, we can make v>Gd 6= 0. This is a contradiction of v>Dd = 0 for any v in the
row image of X and any d ∈ null(X). And this last condition would be implied by XDd = 0∀d ∈ null(X)
because v> = Xv′ does have a solution in variables v′.

We now obtain that X + tD is congruent to
[
Ir+tF 0

0 tE

]
. If λmin(E) < 0, we clearly have t∗ = 0. Else, t∗

is − 1
λmin(F) or ∞ if λmin(F) ≥ 0.

This means that, beyond being able to project under the conditions of Prop. 3.1, you can also project
under the following conditions.

Property 3.4. We can project in reasonable time if Xd = 0 =⇒ XDd = 0.

It is not so hard computationally to determine F and E in (3.7). if
[
V >

N>

]
It is not so hard because it

take O(n2) to compute the inverse of [V N] since this matrix is almost orthogonal. This case (C) can even
represent concurrence to case (B). You essentially use the eigendecomposition instead of Cholesky.

D)

5

If all above conditions fail, consider (from the eigendecomposition of X) a basis N for the null space of
X. We are in this case because DN 6= 0. But we do not know the value of D ·dd> for the various columns
of N . To answer this question, we check the SDP status of D with regards to null(X). For this, it is enough
to check if N>DN is SDP or not in the world of matrices of order n− r. I see two cases:

1. if the answer is negative we return t∗ = 0. Let v ∈ Rn−r the eigenvector of minimum eigenvalue for
N>DN . We have v>N>DNv. Thus, Nv is the first-hit constraint returned by the projection X → D.
We surely have X̂ = X + εD � 0 for however small an ε.

• Particular case: if null(X) contains only one vector d, this case can be detected faster (not SDP
status check) by testing that D ·vv> is less than 0.

2. Otherwise, we can surely take a small enough ε so that X̂ = X + εD � 0. The first-hit constraint
of X → D will not belong to null(X) and t∗ > 0. You can project from X̂ towards D and we have
the property X̂d = 0 =⇒ Dd = 0. You first try a small ε and if X + εD � 0, you decrease it,
up to the moment when you get some X + εD � 0. But before you decrease it, take the eigenvector
of X + εD of minimum negative eigenvalue and add it to the pool of SDP cuts to return. And now
you can apply the approach from point (B) or (C). Using this infinitesimal step, you are sure that any
d ∈ null(X) \ null(D) gets out of null(X ′). Still, are you sure you do not to increase the null space
of X when advancing this infinitesimal step? Can X + εD produce by happenstance a new null vector
d̄ such that Xd̄ 6= 0 but X̂d̄ = 0? To defend against such problem, it is enough to take all eigenvectors
d̄ associated to a zero eigenvalue of X + εD and check if they are (still) orthogonal to the image of X?

• If this is the case, we surely have null(X + εD) (null(X). We can’t have equality because we
said there are some d ∈ null(X) such that Dd 6= 0 and such d will not belong to null(X + εD).

• If this is not the case, you have X · d̄d̄> > 0 and (X + εD)· d̄d̄> = 0. You can not move any
further beyond ε because the last equality above will become an inequality. This means t∗ = ε
and d̄ is a first-hit cut.

Heuristic projection
There may be many numerical problems if some eigenvalues of X are too small, especially when projecting

from X + εD. In such case we may resort to a heuristic projection that essentially projects from some
X̂ = X +

∑
αiviv

>
i , where the sum is carried over all eigenvectors v that have a very small (or null)

eigenvalue. This may be better than using X̂ = X + εD as above, because this last matrix will have
infinitesimal eigenvalues.

4 Finding a feasible solution

4.1 Relaxing and strengthening the feasible area

Finding linear subsets of the feasible area is an important endeavour because we can thus generate feasible
solutions.

You can somehow always strengthen and relax an LP area.

|-----------LP--------------| <-strengthened this way

^ |--------SDP-------------------|

|

|

|

+---------- relaxed this way.

If you apply SDP cutting planes when optimizing over LP, you can be sure the relaxed part (at left in
above figures) is separated.

6

4.2 A restricted subset of the feasible area based on λmax(A + B) ≤ λmax(A) +
λmax(B)

We need a constraint that would imply A>y−C ≤ 0. This desired property is a consequence of λmax(A>y−
C) ≤ 0 and this later stuff is surely true if λmax(A>y) + λmax(−C) ≤ 0. Using λmax(−C) = −λmin(C) and
after splitting A>y considering y ≥ 0, the following implies the desired property.∑

λmax(Ai)yi ≤ λmin(C)

Or ∑
λmax(P>AiP)yi ≤ λmin(P>CP)

The whole idea of the initial development above is to try to make (P>CP) become a diagonal with equal
elements, because we hope it is better.

If λmin(C) > 0, you choose the P so that P>CP = In and you obtain∑
λmax(P>AiP)yi ≤ 1 (4.2.1)

If λmin(C) ≤ 0 and you are obsessed to having In on the rhs, then consider C ′ = λmin(C)In − εIn
as a sort of lower bottom of C. And we can say C = C ′ + D The main SDP constraint is equivalent to
A>y − C ′ −D � 0 with D � 0. You can actually take any C ′ that makes D strictly SDP, for instance you
can take C ′ =

∑
(λi − ε)vv>, summing over all negative eigenvalues λi.

Based on the eigendecomposition of any D, we can write it D = PInP
>, where the columns of P are

obtained by multiplying each column of P̄ from the original eigendecomposition D = P̄ diag(λ)P̄> by
√
λi.

Then, the main SDP constraint becomes

λmax(
∑

P>AiPyi − P>C ′P − In) ≤ 0

or
λmax(

∑
P>AiPyi − P>C ′P) ≤ 1

If y ≥ 0, we can strengthen this into
∑
λmax(P>AiP)yi +λmax(−P>C ′P) ≤ 1 based on Weyl’s inequal-

ities. This reduces to (4.2.1) if C ′ = 0, i.e., if C � 0. If you find a solution y to this, this y is a feasible
solution of the original problem.

If y � 0, you can define variable y so that yi ≥ λmax(P>AiP)yi and yi ≥ λmin(P>AiP)yi. These
two conditions will make sure that yi ≥ λmax(P>AiPyi). The function yi → yi is piecewise convex, like a
module. The main SDP constraint is strengthen into

∑
yi + λmax(−P>CP) ≤ 1.

4.2.1 Valid inequalities using Weyl’s inequalities

For y ≥ 0, the following hold and has to stay subzero.

λmax(A>y − C) ≥
∑

λmin(Ai)yi + λmin(−C)

or, in a stronger version using Weyl

λmax(A>y − C) ≥
∑

λmin(Ai)yi + λmax(−C)

or you can replace any λmin in the first equality by a λmax. Moving C to left, the subzero constraint becomes

λmin(C) ≥
∑

λmin(Ai)yi

So: ∑
λmin(Ai)yi ≤ λmin(C) relaxes the feasible area∑
λmax(Ai)yi ≤ λmin(C) from (4.2.1) restricts it

And you can then apply this for any principal minor of all these matrices!

7

I think the most general is to define λi(C) as the ihighest eigenvalue of C. And you can state

λmax(A>y − C) ≥ λp0(−C) +

k∑
i=1

λpi(Ai)yi

holds for any p0, p1, . . . pk so that
∑k
i=0 pi ≥ k ∗ n + 1. The second inequality above corresponds to p0 = 1

and pi = n ∀i ∈ [1..n]. A different choice is p0 = p+ 1, pi = n ∀i ∈ [1..n] \ {j} and pj = n− p. You may get

λp+1
min (C) ≥

∑
i 6=j

λmin(Ai)yi + λp+1
min (Aj)yj

You can determine more valid inequalities by increasing p in various ways, but also by considering
various minors of the n × n matrices. If you left multiply with P> and right multiply with P so that you
have P>CP = In, then you have interest to increase p to n− 1. The above inequality will become:

1 ≥
∑
i 6=j

λmin(P>AiP)yi + λmax(P>AjP)yj

You can do cutting planes, but maybe it is enough to do the above for each k ∈ [1..n].
If you insist on cutting planes, Given y at current iteration, take as a good j, the one associated to the

highest yj . And then you can continue like in a maze, increasing p up to n − 1. If you left-multiply by
P> and right multiply by P so that C = I, you can have a fixed value on the left part of above. I do not
find cutting planes here revolutionary; because the p − 1 up steps can only reduce a limited thing in the
coefficients. But what if you go beyond p− 1 in illegal waters? I mean you may cut of some feasible S.

I find it hard to move to non-negative y. But if you can consider y ≥ −∆, you can recast A>y−C � 0
using non-negative variables so that y = ȳ−∆ where ∆ is a vector having the same value ∆ at each position,
leading to

A>ȳ − C −A>∆ � 0

You then get back to the original question only working with an updated C = C −A>∆.

5 Projective Cutting Planes in DD restricted-relaxed spaces

5.1 A DD approach with σn additional variables

For large n being DD is too strong a condition. Instead of Sii >
∑
j 6=i |Sij | (and do not forget S = C−A>y

or we can use even S = PCP> −
∑
PAiP

>yi for some rang n matrix P), we propose

Sii >
∑

j∈smart
|Sij|,

where smart can be all positions j that are within a distance δ to i, i.e., |i− j| ≤ δ.
You choose above an P that will make the most SDP matrix diagonal with ones as positive values on

the diagonal. It is easier to satisfy a DD constraint when all elements on the diagonal are positive. After
reordering the elements you will have Im in the top-left corner. You post and pre multiply all Ai by P . Then
you perform the same thing focusing only on the most SDP matrix with regards the bottom-part matrix of
size (n−m)× (n−m). You obtain P ′ to make that matrix with as many as possible ones on its diagonal.
P ′ will have size (n −m) × (n −m). The final P will be (this is a constructive heuristic to be followed
by LS)

P

[
Im 0
0 P ′

]
It is important to strive for an S with S11 = S22 = S33 · · · = Snn, because if you take δ = 1, then the

2-local matrices are full (SDP). There is no SDP matrix with some Sij > Sii = Sjj . And optimizing over
2-local DD with cut planes can only be useful, you can not converge to some point that is not SDP as long
as you work with matrices S produced by an y that yield an equal diagonal. Then you push δ a bit and
hope for the best. This is surely much better for feasibility search than looking from some In. And if you do

8

have an interior point you can always use projective cutting planes and produce SDP cuts and more interior
points as you increase σ. So you have two cases in which the LP over σ-local DD matrices can not have a
non-SDP optimal solution:

• δ = n− 1, because you stay on DD SDP matrices

• δ = 1 and equal diagonal

From some σ values on, your interior point will no longer be σ−DD, but you only have to push σ as high
as you can. But you need an interior point and you add at worst a penalty param. In fact, you get the most
SDP matrix Ai, back and left multiply with P> and you get Im in the top left corner. You add a second
matrix with In−m in the bottom right corner.

You have to check that such a (δ-locally) DD matrix is SDP with regards to all vectors that contain
non-null values only on the smart positions around each possible i ∈ [1..n]. When δ = 1, (δ-locally) DD
means that each diagonal element of S is larger than (the module of) its immediate neighbour in S. We ask
for each 2 × 2 matrix that can be seen along the diagonal to be SDP because if S11, S22 ≥ |S12| in a 2 × 2
matrix S than S is SDP in the 2× 2 world. But this linear condition is much easier to test than asking for
the matrices along the diagonal to be SDP because that would involve a quadratic stuff S11 · S22 ≥ |S12|2.

We have locally(DD) ⊂ locally(SDP) and fully(SDP) ⊂
locally(SDP). We can solve something over locally(DD) and
add a few cutting planes, giving the figure below. The cutting
planes you will add will be non-local. So instead of trying to
generate all necessary SDP cuts, local or non-local, you generate
only the non-local one. This is the advantage w.r.t., the standard
method. If it is not very hard to generate all non-local cuts but it
is hard to generate the local one, you may have at second image
below a far easier problem. After enough non-local cuts you will
end up inside fully(SDP).

I think this can be useful when S has almost a block diagonal
structure. If it is fully composed of diagonal block, we only need
local SDP cuts. But since it is almost diagonal block, we may
need a few non-local SDP cuts. In such case, the approach from
this section will be much faster in finding a feasible solution. In
a second stage, you go fully SDP. This sounds like a cool project:
work with almost-block-diagonal matrices. In a first step you
only have DD LPs with a few non-local SDP cuts. You get a
feasible point and then you do ProjCutPlanes. This is a case in
which the DD feasibility finder makes much sense!

Locally SDP

 Full SDP

Locally DD

Locally SDP

 Full SDP

Locally DD
+SDP cuts

And after adding some SDP cuts

Full DD

Full DD

Img(Ai,C)

Img(Ai,C)

Img2(Ai,C)

Img2(Ai,C)

5.2 A DD approach with O(n2) additional variables

AN EVEN BETTER local DD notion Let zj ≥ Sij ,−Sij . We reduce Sii ≥
∑
zj to the following using

the epigraph formulation.

Sii ≥ δq +
∑

z+i ,where

z+ ≥ 0, z+i ≥ zi − q, z
+
i ≥ −zi − q,

or, more exactly, for each i you have:

Sii ≥ δqi +
∑
j 6=i

z+ij ,where

z+ ≥ 0, z+ij ≥ Qij − qi, z
+
ij ≥ −Qij − qi,

With this formulation, local δ-DD matrix is SDP with regards to any vector with δ non-zero values.
By first optimizing over δ-local DD matrices as discussed above you make the solver replace all SDP cuts

coming from vectors with at most δ non-zero values with the δ-local DD LP cuts. This should be easier,

9

unless we have too many zij . The figure is good; a part of the circle becomes a square. Once you find a
feasible solution in the δ local DD matrices, you should increase δ, to go towards the fully SDP cone (you
are inside if δ = 1). Once you find the highest δ with a δ−local DD solution, you start optimizing via cut
planes, because you still have no feasible solution. However, you can do the above stuff even if you do have
a feasible solution. In case you are given a feasible SDP matrix, multiply A>y � C left and right with the
matrix of eigenvectors, to a have a DD matrix.

The approach can work even if that initial matrix is almost SDP. The last line of the instance should
give an ȳ so that A>ȳ is a purely SDP as possible. As long as you do not have a feasible solution you are
condemned to simple Cutting Planes. As long as you have it, you will be smarter with Projective Cutting
Planes. For both phases (with δ-local DD matrices or not), Proj Cut Planes should be better.

In this section we restricted the DD condition Sii >
∑
j 6=i |Sij | to a weaker one. A similar idea is followed

in Section 5.1 by restricting it using an α. You can combine the two approaches or try them both.
You should first not use these ideas, but implement the simplified approach (with no α 6= 1 from Sec-

tion 5.1 or δ 6= n, namely let the user provide an ȳ such that A>y � 0, as a last optional line in the instance
file.

5.3 No longer useful because α is replaced by δ α-DD means SDP with regards
to α-dominant vectors

A strengthening idea. Take any Ai that is strictly SDP or SDN. Write eigendecomposition Ai = PDP>.

Then replace A
>
y ≥ C with replace P>(A

>
y)P ≥ P>CP and solve it using pure LP in the DD sense.

You will have a strictly feasible solution with yi > 0 if Ai is SDN or yi < 0 if Ai is strictly SDN. In such
case, you really have no need of introducing a penalizing term like Ak+1 = In with a huge bk+1. The if
you relax the DD concept to have Sii > 0.9

∑
|Aij |, you obtain 0.9-DD. If S is 0.9-DD, this means S is

SDP with regards to all eigenvectors v such that the maximum element of v is more than 0.9· any other
element. You say S is α − DD with α = 0.9. If you start with α = 0, you basically want S to have only
positive stuff on the diagonal. This will fail. You take an eigenvector v that shows the failing and get a
new α = maxElemInModule(v)/secondMaxModule(v). In the initial feasibility search stage, you increase
the value of α. But you may also add cuts like in the rest of the project to remove S with eigenvectors
that do not satisfy α = maxElemInModule(v)/secondMaxModule(v). At first α = 0 simply means that
Sii > 0 for all i. As you progressively increase α, you will eventually make your S enter the SDP cone (if
it is possible to find an S that is DD). Otherwise, you stop and be happy with an S that is something like
0.7-DD. This operation should give you some feasible S, at worst by penalizing using term Ak+1 = In. But
in the very beginning, be sure to give him some matrices a linear combination ȳ provided by so that Aȳ � 0.
We will eigendecompose PA>ȳP> and apply the above trick with matrix P , so that P>(A>ȳ)P − P>CP
is DD (more exactly minus that stuff is DD). Keep only one matrix in y in the Matlab version. It may also
be almost SDP, for instance with one Aijj not being DD, but you may hope to cover it using other matrices.
You can try this with all Ai and then focus on the one that leads to a feasible solution with the highest α.
If α = 1, the matrix is surely SDP, but a matrix with α < 1 may still be sometimes SDP and then have a
better objective. A DD matrix may by too far inside the SDP cone. But then you can project and obtain a
better one. You do not disclose the α idea before but you simply allow an optional line in the instance file
where you provide ȳ. This does not mean you give a interior solution, because you do solve a DD LP and
you never know what that solution will be. You know there will be one!

6 Computational aspects and matrix libraries

We list here the critique routines (potential bottlenecks) in reversed order of their complexity. Our goal is to
tackle SDP programs with n = 1000. The discussion in terms of timing does not aim at being complete and
accurate. It is still enough to discover some approximate rules of thumb or approximate guidelines. Exact
or strictly accurate findings are not necessary for our objectives. We will express all computational costs in
milliseconds (ms). Generally speaking, we pay a few ms for quadratic complexity operations (like copying a
matrix or multiplying it by a number)

There are half-dozen critical routines that require more than O(n2).
The eigendecomposition can be done in 60ms using matlab. Cholesky is 10-20 times less expensive in

matlab so we prefer to avoid eigendecomposition. This is consistent with all theory.. Eigen needs 1500ms.

10

Lapcack needs 600ms.
The minimum eigenvalue of a random matrix of size 1000 × 1000 costs 30-40ms using spectra and

maybe 10% less using matlab. Matlab can produce the eigendecomposition of such matrix in 65 ms. Julia
is at 500ms for min eigenvalue. Eigen is at 1500ms as above, as it only knows computing the full eigende-
composition. Lapack is at 600ms as above, as it only knows computing the full eigendecomposition.

Cholesky Matlab requires 4ms for above matrix (+10000In to become SDP). Julia needs 13ms for the
same. C++ Lapack needs 38ms and the naive C++ code is at 150ms. Eigen needs 32ms. If you want Matlab
Cholesky, you may need 10-20ms to retrieve a unique vector. You can not retrieve the whole matrix, so the
whole useful approach is one in which you never retrieve a whole vector of size n, but only values of y. All
interior points in the primal can be written as linear combinations of vectors y.

matrix multiplication can take 15-20ms in Matlab. Eigen may need 100-150ms if an eigendecomposi-
tion was requested before or 900ms if called only once. Maybe it is ok to perform Mv for vector v.

back substitution is quadratic which should be a few ms. A bit related, Eigen can call lldtOfA(A).solve(b)
to solve Ax = b using Cholesky. You want S = KK =⇒ find D′ so that D = KD′K. But lldtOfA(A) has
nice features to permute the rows so as to put the zeros in the bottom-right part. We will be able to solve
D = KD′K only in the upper part. And then check that the rest of the matrix can be extended so that
D = KD′K hold everywhere.

Get the null space of S Maybe not actually required if you check the steps below, maybe except if
you use point 2.(a).

In C++, you may need 1.2ms to scan a 1000 × 1000 array and perform a division and an addition per
element (or even to copy the matrix). But if you move to float you get 0.3ms. On the other hand, a O(n2)
manipulation like the following may take 16ms in Matlab or 1ms in C + +.

for (int i = 0 ; i < n ; i++)
for (int j = 0 ; j <n ; j++)

i f (b [i] [j]>0)
s +=1.2/b [i] [j] ;

else
s−=300.11312;

cout<<” s=”<<s e t p r e c i s i o n (9)<<s<<endl ;

You will distribute several version of the software, depending on how critical matrix routines are imple-
mented. At least one version will contain only pure C++ code. You can then move to a version with Lapack
(very popular) and then one linking it to Julia (at least free) Matlab (licence not free, but you can distribute
the Matlab code that users can turn into an executable).

There are countless libraries that could be used for various O(n3) operations. I would like:

1. Eigen with C + + for general manipulations

2. Spectra for min eigenvalue (almost faster than matlab)

3. Matlab for Cholesky (6 times faster than Eigen) and full eigendecomposition (seem faster than all else)

Before that, you write a first Matlab prototype. You will compare with C++ (or even Julia if you really
have time) on that prototype. Only after that you think how you continue. You only apply teps below. And
some initial cuts and that’s all. If you really have time, you first solve the SDP primal in the space of DD
matrices. If, e.g., A1 + A2 + A3 = In, the primal does have a solution that is strictly interior. Better first
solve problems for which it is not difficult to find strictly interior points.

STEPS:

1. Decompose S = KK> and solve D = KD′K> in variables D′. If this is possible and we get either
case (A) if K is full rank or (B) otherwise. Case (B) is the same as (A) but you project from a strictly
interior point with regards to the relative interior of the orthogonal space of the null space of S (the
row image of S)

2. If above fails, test the SDP status of S + εD or 1
ε · S + D. If S has a very small non-zero eigenvalue

with eigenvector v you can test the SDP status of 1
ε · S + D + 1

ε′ ·
∑

vv>, where the sum is carried
out over all such v. If the resulting matrix is not SDP, you have t∗ = 0 because there is a d in the null
space of S such that D ·dd> < 0.

11

(a) You can also solve the same problem by testing the SDP status of N>DN , where N contains the
null space of S as columns. I have a feeling this may be more expensive than one of the above
approaches that essentially only perform addition (supposing that computing vv> is much less
expensive than matrix multiplication and supposing that getting such vectors with the eigende-
composition is not too expensive either).

3. If you get here, you have t∗ > 0. You are in case (D) and you move first to S′ = S + εD and project
using cases (A) or (B) from S′ towards D.

You first do in C++ the first two above points, using Eigen for Cholesky. The next step is to use Matlab
for Cholesky. If you ever need eigendecomposition (later, hopefully) you use Matlab. If you need matrix
multiplication a better solution than eigen would be useful.

If you ever send matrices from one solver to the other, you only send the factors of the decompositions,
like A>y, by only sending y. You actually use a class ProjMat . Since you only have one class, declare
it either: ProjMat n (native), ProjMat m (matlab), ProjMat e (eigen), ProjMat l (lapack), or ProjMat m1

(mix1 a mix of multiple choices of libraries). The Makefile offers multiple compilation targets, one for each
datatype above. The user will know: I could compile that or that version.

This matrix class has to redefine many operators, read data, load external matrices, load external vectors.
Some operators can be written in clear text (like M + t ·N + In), very rarely. Such a method can perform
the calculation twice, once inside to compute a real S inside. But also outside, for instance in Matlab. This
way, you will not have to send huge matrices to Matlab; Matlab will compute internally S = S + t∗D.

You only rarely have to return a full matrix so you only rarely write M = M + t ·N + In. In the primal
program in y you never touch a matrix in the main C + + code. Other operators have to be written with a
method name like M.S gets S plus t D().

%https://stackoverflow.com/questions/55379347/finding-k-smallest-eigen-values-and-its-corresponding-eigen-vector-for-large-mat

%cica Lanczos e very effective.

%https://github.com/mrcdr/lambda-lanczos

%https://rcc.fsu.edu/software/arpack

%https://stackoverflow.com/questions/11064670/c-eigenvalue-vector-decomposition-only-need-first-n-vectors-fast

%UPDATE: I managed to do it with ARPACK. I managed to compile it for windows, and even to use it. The results look promising, an illustration can be seen in this toy example:

%Spectra is a redesign of the ARPACK library using the C++ language.

%https://stackoverflow.com/questions/24468537/largest-eigenvalues-and-corresponding-eigenvectors-in-c

%http://eigen.tuxfamily.org/index.php?title=Main_Page

%https://github.com/yixuan/spectra/tree/master

% - cica trebe numai header inclusion, including for eigen. maybe BEST

% NO: 100 slower then eig or eigs of matlab

% YES: when using -O3 is as good as matlab

% - nu uita lapack

%maybe you install eigen, it contains some Arpack method that do work well for sym mats

%even if I am afraid I do need Arpack libraries

%https://scicomp.stackexchange.com/questions/26786/eigen-max-and-minimum-eigenvalues-of-a-sparse-matrix

%https://www.quora.com/What-is-the-C-program-to-find-eigenvalues-and-eigenvectors

%power method simple: https://www.codesansar.com/numerical-methods/power-method-using-cpp-output.htm

7 Three main stages

1. Get the most SDP matrix in the inner LP using heuristics.

(a) You try the heuristic from Section 4.2. If success, maybe exit. Else remember the best SDP
matrix of max val(S).

(b) Guessing You define a set of directions, first starting with the n directions of the form yi = 1
and yj = 0 if i 6= j for all i ∈ [1..n]. You can enrich the set of directions by solving the inner LP
towards random objective functions. For each direction y you compute the SDP value of S(y) as
val(S):

• sum of negative eigenvalues is these exists, or

12

• nbOfStrictlyPositiveEigV als (which is < n) if the minimum eigenvalue if zero.

• n+minEigenV al if minEigenV al > 0

I think in this heuristic stage we only maximize this val(S).

From among all above matrices plus the optional ȳ submitted by the user, you take the most SDP
one, of highest val(S). Call it Sbst.

(c) Constructive heuristic

You left and right multiply C − A>y � 0 with P> and resp P , where P is the columns of the
eigendecompositionof Sbst, after you modify P to transform that matrix into one with an equal
diagonal. The DD cuts are more relevant on matrices with a more or less equal diagonal. You can
even update P during the major stage 2 below before to make that stage work with more equal
diagonals. It’s easier to satisfy a DD cut if the data in the matrix is more or less uniform noisy
when the matrix has a more or less an equal diagonal.

Apply the constructive heuristic as described when you search key word constructive heuristic,
i.e., you increase if you can the SDP dimension of P>(C − A>ȳ)P , i.e., the number of ones on
the diagonal of this diagonal matrix. You repeat this as long as possible. P will be useful during
stage 2.

(d) Local Search Then you move to an LS steps. You take random directions and you optimize the
LP. For each direction hope to improve the SDP status of matrices like S = S + step ∗ direction.
You perform a number of steps in a simulated annealing manner, maximizing val(S).

(e) n−m penalizing matrices Let Sbst be the matrix of maximum val ever found above. Compute
a P for it so that P>SbstP

> is a diagonal matrix with some negative values on some diagonal
positions and only ones as positive values on the diagonal. After left-multiplying A>y − C with
P> and right multiplying with P , you will be able to construct a matrix that has m ones on the
diagonal, but not everywhere. For each of the n − m positions you consider a matrix that has
zeros everywhere except one the diagonal element. These matrices are inserted in A>y with huge
penalties in the objective.

2. Optimize over σ-local SDP matrices, with decreasing the value of σ. Optimizing LPs over such sets
will give you outer solutions. You project from the solution returned by Stage 1 to each outer solution.
Optimize by Projective Cutting Planes the program associated with the best σ. The lower we make σ,
the more cut planes work we have to do but the more chances there are to finish with a non-penalized
SDP matrix. (when σ is too large, the σ-local DD LP area excludes too much of the SDP cone).

• if σ = n − 2 a σ-DD matrix has very high chances to be SDP. When you optimize over σ−DD
matrices, you only need to add cutting planes associated with vectors with more than σ + 1 non
zero elements (σ-DD means you cover all vectors with something on diagonal Sii larger than the
sum of the σ highest value on row i of S), meaning at least σ + 2 = n non zero elements. When
implementing check if the resulting vectors do not always have a very low value somewhere.

• if σ = 0.1, you have very very few SDP matrices that are not σ-DD.

When σ is as low as 1 and you also impose an equal diagonal constraint, you have a particular
phenomenon: the σ-local DD constraints cut nothing of the SDP cone. On the other hand, the equal
diagonal constraint does cut a part of the SDP cone. When σ is large and you perform cut planes, you
may end up with no non-penalized solution (see image 2 of Ai and C in the figure). For each sigma
(but, most importantly, for σ = 1) you also try the equal diagonal constraint to see if you get a better
matrix. But do not forget you can always project from the interior solution towards it. If you apply
this stage with no feasible interior solution known, do not forget you can project towards it from an
SDP solution that does not satisfy the whole inner LP, and maybe you get something.

You will eventually reach σ = 0, which means you are at stage 3 below.

Note: It is only here that you can think of using n× n variables (S or something else).

3. Full Proj Cut Planes, starting from the best interior point discovered above, and keeping all cut planes.
But it is very useful to use above stuff because starting with a virgin set of SDP cuts is really not a
good idea. This actually corresponds to σ = 0. If you have σ = 0.1, this means that Sii ≥ 0.1× the
highest value among Sij with j 6= i.

13

Again, with σ = 0 you include all the inner LP, the intersection of the SDP cone with image of Ai and C.
But the resulting outer approximation that you have to cut with cutting planes is huge (ai mult de cioplit).
As you increase σ (or as equal diagonal), you decrease that huge outer approximation, but you also lose
some of the feasible area. Ai mai putin de cioplit (less to cutting planes work), but you are no longer sure
to find a feasible solution. Still, you may find useful very global cuts. It would be shame to spend time with
very local cuts during a bang-bang chaotic period in the beginning. Astea cizeleaza la sfarsit. When σ is
high, the σ-local SDP cuts should be satisfied.

I think you should always maximize the original objective function because this way you will search the
current feasible are of good solutions so that the generated cuts become relevant. It is true that a different
function may push you towards the inner LP, but you can now do that using projections. Yet, since you are
desperate for a feasible solution, you can try at stage 2 to optimize a different function from time to time.

7.1 How to implement it

The implementation is done in reversed order of the main steps, first testing C = In and random matrices
with all elements in [0, 1], maybe with higher values on the diagonal. When you go back along the steps, you
search for more particular matrices that may suit the objectives of stages 1 or 2. You also use larger arrays
of variables to suit all you need, more and more.

Still, it is easy to implement 1.(a). You can even put some yi ≥ 2 and still find an interior solution with
1.(a). Because you do not want to say you start with y = 0; the stuff may work even if y is not feasible.

When you work with random matrices, you can only project only using case (A) or a bit case (D).
Impose yi ≥ 0∀i to use valid inequalities For this case you use Section 4.2.1. At the end of that section,
you will see how you can generalize this for any y. However, to make these things bring any result in practice
you may need the Ai to have only positive eigenvalues. And these valid inequalities are of higher quality
if the eigenvalues of each Ai are very grouped close together. Do not forget that Section 4.2 can be used
both for strengthening and for relaxing the main feasible area. If necessary, try to obtain the relaxation
as described in the last line of 4.2.1. Using y ≥ 0 makes you not require linearizing the module with new
variables ȳ in the strengthening part.

• Think of using strengthening-relaxing (or restricting-relaxing approach) using this instead of doing
that with costly DD matrices at main stage 2.

This, including the valid inequalities is the first implementation, in Matlab and C + + asking Matlab
from time to time to provide a Cholesky. You work only with all full-dimensionally matrices.

The instance below seems interesting for the method that generates valid inequalities.

7.1.1 A modified instance to try to move to n = 1000, after identifying the bottleneck in the
above fully-dimensional case

We will mainly work with Cholesky that is fast for n = 1000 Back-substitution is fast in matlabl (and in
theory it has O(n2) serial complexity and O(n) in for the parallel version), when solving something like
Av = v′

In a second stage of the implementation, you start to compute minimum eigenvalues ideally like in case
(B) on a matrix D′r of a smaller order.

Imagine how this may work well when all matrices C and Ai have a large common null space. Or if
at least one of them Ai does not have it, but you have to set yi = 0 because of a huge negative objective
coefficient bi. You can start with a problem with y ≥ 0 and make it so the optimal solution is y1 = 15, y2 =
0, y3 = 0, . . . , yk = 0. Maybe you need a unique projection (because the LP logic will not search to increase
any other yi). Start with the following with some random v2,v3, . . .vk.

max{1000 · y1 − 1000

k∑
i=2

yi : yiI +

k∑
i=2

yiviv
>
i � 9In,y ≥ 0}

During the cutting-planes you only need computing the min eigenvalue (of D′) and not the whole eigen-
decomposition to find t∗ using Lanczos.

You can naturally start from y = 0 and project towards b if y is free. If you have y ≥ 0 you project
towards b1, b2, . . . bn where bi = bi if bi ≥ 0 or bi = 0 otherwise. For above program, you would start towards
the good direction b1, b2, . . . bn = 1000, 0, 0, . . . , 0.

14

	Introduction
	Linear models used to solve the SDP program
	The projection sub-problem
	Finding a feasible solution
	Relaxing and strengthening the feasible area
	A restricted subset of the feasible area based on max(A+B)max(A)+max(B)
	Valid inequalities using Weyl's inequalities

	Projective Cutting Planes in DD restricted-relaxed spaces
	No longer useful because is replaced by -DD means SDP with regards to -dominant vectors

	Computational aspects and matrix libraries
	Three main stages
	How to implement it
	A modified instance to try to move to n=1000, after identifying the bottleneck in the above fully-dimensional case

