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Abstract The challenge of maximizing the diversity of a collection of points arises in a
variety of settings, including the setting of search methods for hard optimization problems.
One version of this problem, called the Maximum Diversity Problem (MDP), produces a
quadratic binary optimization problem subject to a cardinality constraint, and has been the
subject of numerous studies. This study is focused on the Maximum Minimum Diversity
Problem (MMDP) but we also introduce a new formulation using MDP as a secondary
objective. We propose a fast local search based on separate add and drop operations and on
simple tabu mechanisms. Compared to previous local search approaches, the complexity of
searching for the best move at each iteration is reduced from quadratic to linear; only certain
streamlining calculations might (rarely) require quadratic time per iteration. Furthermore,
the strong tabu rules of the drop strategy ensure a powerful diversification capacity. Despite
its simplicity, the approach proves superior to most of the more advanced methods from the
literature, yielding optimally-proved solutions for many problems in a matter of seconds and
even attaining a new lower bound.

Keywords Maximum diversity · MaxMin diversity · Tabu search

1 Introduction

Let Z be a finite collection of points (elements), and let Z(k) = {X ⊂ Z : |X| = k}, the set
of all k element subsets of Z, where 2 ≤ k ≤ |Z| − 1. Associated with each pair of points
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x, y ∈ Z is a real number d(x, y) (= d(y, x)) called a distance. (In our formulation, d(x, y)

does not have to satisfy the properties of a customary distance metric and may even be
negative.) For simplicity, when referring to d(x, y) we understand that x �= y. The classical
Maximum Diversity Problem (MDP) requires identifying a set X∗ ∈ Z(k) that maximizes
the sum of the distances d(x, y) over all distinct pairs x, y ∈ X∗. More precisely, the problem
may be expressed as:

MDP : FindX∗ = arg max

( ∑
x,y∈X

d(x, y) : X ∈ Z(k)

)
.

A number of computational studies of MDP have been performed, including those of Kuo
et al. (1993), Ghosh (1996), Glover et al. (1998), Silva et al. (2004), Andrade et al. (2005),
Duarte and Marti (2007), Gallego et al. (2009), Palubeckis (2007), Aringhieri et al. (2008),
Santos et al. (2008), Wang et al. (2009) and Aringhieri and Cordone (2011). As observed
in Kuo et al. (1993) the maximum diversity problem has applications in plant breeding, so-
cial problems, ecological preservation, pollution control, product design, capital investment,
workforce management, curriculum design and genetic engineering.

In certain contexts, however, a more useful definition of diversity involves the goal of
finding a set X∗ in Z(k) that maximizes the minimum distance between the points x, y ∈ X∗
instead of the sum of the distances between these points. This “MaxMin” form of diversity
has application to achieving diversification goals for metaheuristics, as noted in Glover and
Laguna (1997), and is relevant to the area of simulation optimization (see, e.g., April et al.
2003). To capture this form of diversity, the classical definition of the MaxMin Diversity
Problem (MMDP) may be expressed as:

MMDP : FindX∗ = arg max
(

Min
x,y∈X

(d(x, y) : X ∈ Z(k))
)
.

Methods for the MMDP problem, both heuristic and exact, have been proposed and inves-
tigated by several authors, including Erkut (1990), Kincaid (1992) and Ghosh (1996) and
Della Croce et al. (2009). A comprehensive survey of previous work can be found in Re-
sende et al. (2010).

In terms of practical results for MMDP, there are two very recent studies that achieved
very high performances, thus providing a solid comparison base for benchmarking new al-
gorithms. Resende et al. (2010) presented a refined GRASP (with Path Relinking) approach,
as well as extensive comparisons with previous algorithms (e.g. Erkut 1990; Kincaid 1992;
Ghosh 1996). Della Croce et al. (2009) described an algorithm which uses a powerful clique
heuristic (i.e., Grosso et al. 2008) as an internal component in a dichotomic search. This
algorithm reached very competitive bounds—including several that the authors proved op-
timal using an exact clique solver Östergård (2002).

The objective of this paper is to present a simple and effective approach to diversity prob-
lems, using a new MMDP formulation based on both MMDP and MDP (Sect. 2.1). To deal
with this problem, we first apply a constructive heuristic (Sect. 2.2), and then we place a
special emphasis on a new tabu search algorithm based on separate drop and add opera-
tions (Sect. 2.3). The proposed search approach aims at meeting two essential challenges in
heuristic algorithm design. First, in order to render the search process as fast as possible,
the computational complexity of the neighborhood exploration is reduced to linear and all
calculations are effectively streamlined. Secondly, the search process can not get stuck by
keeping certain elements of a solution assignment in the selected set X for an indefinite du-
ration, because each selected element is systematically dropped after a determined number
of iterations.
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The paper is organized as follows. Section 2 is devoted to a detailed presentation of the
constructive stage and of the new search algorithm based on drop and add moves. Numerical
results are presented in Sect. 3, followed by conclusions in Sect. 4. The Appendix provides
detailed instance-by-instance comparisons between our approach and state-of-the-art algo-
rithms.

2 The proposed approach

The main component of our approach is a simple tabu search algorithm that is very fast
(the iteration complexity is reduced to minimum) and that exhibits strong diversification
qualities. While several search methods for MMDP or MDP are already available in the
literature (see Introduction), they typically use a neighborhood of quadratic cost based on
swap moves, i.e., a neighbor is obtained by replacing a selected element with a non-selected
one. A novelty of our search strategy is that such swap moves are executed as a succession
of two separate steps: drop and add. These two steps have linear complexity; furthermore,
all calculations are effectively streamlined, and so, the total iteration computational cost
becomes considerably less expensive than in other approaches. The drop operation always
removes the “oldest” selected element: each selected point is replaced with a different one
after exactly k iterations. This simple policy, which represents an elementary instance of
a short-term tabu search rule, proves very effective in helping the search process to avoid
looping and ensure diversity.

2.1 Problem formulation

We are interested in going beyond the classical formulation of MMDP to give a more general
formulation that includes the objective of MDP as a secondary objective, i.e., we seek first
to maximize the minimum distance between points in the chosen set X∗ and subject to this
also seek to maximize the sum of the distances between these points. The inclusion of this
secondary objective is motivated by the fact that there may be a number of solutions that
qualify as optimal when the MMDP objective is considered solely by itself, and therefore
it is useful to have a meaningful way to differentiate among these “tied optimal” solutions,
particularly by means of a criterion such as that of MDP which has also been found of
interest in the literature. This formulation is also motivated by observations of Glover et al.
(1998) that it can be important to differentiate among solutions that are equally valued by
reference to the classical objective.

Formally, define Zo(k) = {Xo = arg max(Minx,y ∈ X(d(x, y) : X ∈ Z(k))}. Then we
may write the more general form of MMDP, denoted MMDPo as

MMDPo: FindX∗ = arg max

( ∑
x,y∈Xo

d(x, y) : Xo ∈ Zo(k)

)
. (1)

Alternatively, we may also state MMDPo by referring to a small positive number ε (chosen
so that the maximization of the summed distances is subordinate to the maximization of the
min distance) and writing

X∗ = arg max

(
Minx,y∈X

(
d(x, y) + ε

∑
x,y∈X

d(x, y) : X ∈ Z(k)

))
. (2)
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We will call the objective function of MMDPo, variously expressed in the form of (1) or (2)
as the MMDPo criterion. Clearly a solution that is optimal for MMDPo will also be optimal
for MMDP, though the converse is not true.

2.2 Constructive procedure for MMDPo

The first stage (see Algorithm 1 below) of our framework consists of an elementary con-
structive algorithm to create a set X in Z(k) that constitutes a first candidate for an optimal
solution.

Algorithm 1 (Constructive Algorithm)
Choose an initial point x∗ ∈ Z and set X(1) = {x∗}.
Set h = 1.
While h < k:

Set h := h + 1 and choose a point x∗ ∈ Z − X(h − 1) such that
x∗ = arg max(Min(d(x, y) : x ∈ Z − X(h − 1), y ∈ X(h − 1))),

where ties for x∗ are broken by selecting a point that maximizes
∑

d(x, y).
Set X(h) = X(h − 1) ∪ {x∗}.

Endwhile
Identify the first candidate for an optimal MMDPo solution by X∗ = X(k).

The initial point x∗ to include in X(1) = {x∗} is obtained by selecting a point x∗ that
maximizes the sum of distances towards the other points. The algorithm, which depends
importantly on this initial x∗, is a greedy algorithm for passing from X(h − 1) to X(h) by
reference to the MMDP objective, subject to breaking ties relative to the MDP objective.

The set X∗ = X(k) produced at the final stage of this constructive stage is then modified
by the Drop-Add search described next.

2.3 Simple tabu search algorithm based on drop and add moves

Both the constructive and the search algorithms make use of an iteration counter, denoted
by iter, that progresses from 1 through k as the successive steps of the Constructive Algo-
rithm are executed, and continues to be incremented by 1 at each subsequent iteration of
the Drop-Add Simple Tabu Search Algorithm that follows. For each point x that belongs to
a current set X(k), we let iter(x) denote the iteration at which x was added to X(k). The
local search also drops elements from X(k), and for each x that is dropped, we likewise let
iter(x) identify the iteration at which x was removed from X(k). (Initially, iter(x) = 0 for
all x ∈ Z.) Hence, more precisely, iter(x) denotes the latest iteration at which x was either
added to or dropped from X(k).

We refer to a subset AddX(k) of the current set of points Z − X(k) that consists of
eligible add points, that is, those eligible to be considered for being added to X(k). We define
AddX(k) as Z −X(k), and so, all points outside of X(k) are eligible to be added. Similarly,
we also refer to a subset of eligible drop points DropX(k): this set employs an exceedingly
simple tabu rule by always containing only the “oldest” point in X(k), i.e., the point x# =
arg min(iter(x) : x ∈ X(k)). By this definition, the value of iter(x#) can be identified as
iter(x#) = iter− (k −1), where iter denotes the current value of the iteration counter. Hence,
at the end of the Constructive Algorithm, iter = k and iter(x#) = 1, identifying x# as the first
point added to X(k).
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Algorithm 2 below presents the algorithmic template of the proposed local search. The
first step simply drops the “oldest selected point”, i.e., the selected point x# ∈ X(k) that
verifies iter(x#) = iter − (k − 1). This operation temporarily produces a set X(k − 1); af-
terwards, Step 2 chooses the point x∗ from AddX(k) by the same criterion used in the
Constructive Algorithm, i.e., x∗ is chosen to maximize the minimum distance from x∗ to
any point in X(k − 1), and, subject to this, to maximize the sum of the distances to the
points in X(k − 1). Step 3 updates the value of X∗ if X(k) is better than the best visited so-
lution so far. Finally, iter(x#) and iter(x∗) are updated; the iteration counter is incremented
in the last instruction.

Algorithm 2 (Drop-Add Simple Tabu Search)
While a termination condition is not satisfied:

1. From the current set X(k), select the point x# ∈ DropX(k) to produce the set
X(k − 1) = X(k) − {x#}.

2. Choose a point x∗ ∈ AddX(k) = Z − X(k) such that
x∗ = arg max(Min(d(x, y) : x ∈ AddX(k), y ∈ X(k − 1))),

breaking ties for x∗ by selecting a point that maximizes (
∑

d(x, y) : y ∈ X(k − 1))

Set X(k) = X(k − 1) ∪ {x∗}.
3. If X(k) improves on the best set X∗ by the MMDPo criterion Then

Record X(k) as the new X∗
End If

4. Set iter(x#) = iter(x∗) = iter; Set iter := iter + 1.

End While

The method stops when no improvement according to the MMDPo criterion is made in
X∗ for a number of iterations, denoted as maxNoGain in Sect. 3.

2.4 Streamlining the calculations

An important objective of the proposed search strategy is to avoid performing iterations
of quadratic complexity. Since Step 2 of Algorithm 2 requires going through all points of
AddX(k) = Z − X, it is important to be able to access certain information in O(1)—e.g.,
the minimum distance from each point x ∈ Z −X to points from X (denoted by MinDist(x)

below). For this purpose, we maintain and update the following three records for each x ∈ Z

after each add or drop operation:

• MinDist(x) = Min{d(x, y) : y ∈ X},
• SumDist(x) = (

∑
d(x, y): y ∈ X),

• MinDistCount(x) = |{y ∈ X : d(x, y) = minDist(x)}|, i.e., the number of elements hav-
ing x as the closest point.

Each of these records refers to distances from a given point x to points within X, whether or
not x lies in X. As indicated, we use minDist(x) + εSumDist(x) as the criterion to evaluate
a point x ∈ Z − X to be added to X, by selecting a point that minimizes this criterion. Thus,
the ability to quickly update the value of MinDist(x) and SumDist(x) without always having
to do the full calculations indicated in their preceding definitions saves significant effort. We
show next how to establish a complexity bound for the streamlining calculations of O(|Z|)
in the average case (the worst case complexity is O(|Z| · |X|), but it is not reached for most
iterations).
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After adding a point x∗, it is necessary to examine all x ∈ Z − {x∗} and: (i) update
MinDist(x) and initialize MinDistCount(x) to 1 if d(x, x∗) < MinDist(x), or (ii) update
only MinDistCount(x) if d(x, x∗) = MinDist(x), or (iii) do not modify MinDist(x) or
MinDistCount(x) if d(x, x∗) > MinDist(x). In addition, SumDist(x) is always increased
by d(x, x∗); the records of x∗ do not require any change. All these calculations can always
be performed in O(|Z|) using Algorithm 3 below.

Algorithm 3 (Calculation streamlining after adding an element x∗)
For Each x ∈ Z − {x∗}

SumDist(x) = SumDist(x) + d(x, x∗)
If (d(x, x∗) = MinDist(x)) Then

MinDistCount(x) = MinDistCount(x) + 1
Else If (d(x, x∗) < MinDist(x))

MinDistCount(x) = 1
MinDist(x) = d(x, x∗)

End If
End For Each

The update after dropping point x# requires going through all x ∈ Z − {x#} and, for
each x, one of the following situations may arise:

(1) do not modify MinDist(x) or MinDistCount(x), if d(x, x#) > MinDist(x);
(2) decrement MinDistCount(x), if MinDistCount(x) > 1 and d(x, x#) = MinDist(x);
(3) recalculate MinDist(x), if MinDistCount(x) = 1 and d(x, x#) = MinDist(x).

Notice that the records of x# do not require any modification. Algorithm 4 below presents
all update calculations that are executed after dropping x#.

Algorithm 4 (Update calculations after dropping an element x#)
For Each x ∈ Z − {x#}

SumDist(x) = SumDist(x) − d(x, x#)

If (d(x, x#) = MinDist(x)) Then
If (MinDistCount(x) > 1) Then

MinDistCount(x) = MinDistCount(x) − 1 (case (2))
Else

Re-calculate MinDist(x) and MinDistCount(x) (case (3))
Endif

End If
End For Each

From all three situations above, case (3) is the most problematic one because it requires
recalculating MinDist(x). Such an update can be performed in linear time for any particu-
lar x. In the worst case, all elements x ∈ Z−{x#} would require such a recalculation, leading
to a quadratic time complexity for the whole Algorithm 4. However, even this theoretically
quadratic cost can only reach O(|Z| · |X|) at maximum, less computationally expensive
than O(|Z|2).

Furthermore, in practical terms, the impact of this quadratic worst-case complexity is
limited. Indeed, the above O(|Z| · |X|) recalculations are not required at each iteration, be-
cause case (3) can not arise systematically. Furthermore, even for the iterations that do re-
quire these recalculations, the O(|Z| · |X|) complexity can be reached only if O(|Z|) points
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from Z would require updating MinDist(x) and MinDistCount(x). Such a situation could
only arise if x# would be the unique closest point to most of the other points from Z. This
condition is quite strong, and consequently, such a high complexity is not often reached in
practice. In most of the cases, there is only a bounded number of points x ∈ Z having x#

as the unique closest point, and so, we observe that the average complexity of the update
operation (over all iterations) is O(|Z|).

Finally, since k = |X| is often significantly smaller than n = |Z| (e.g., in our standard
instances, k is either 0.1 · n or 0.3 · n), the implementation should avoid going through all
elements of Z when one only needs to iterate through the elements of X. As such, a state-
ment of the form “For each x ∈ Z, if selected[x] then” should be avoided because it has
complexity O(|Z|) > O(|X|). For this purpose, it is important to record X both as a simple
0–1 array and as a linked list that can be processed in O(|X|) time with the appropriate data
structures.

2.5 Complexity remarks compared with classical approaches

To compute the total iteration complexity, we first observe that Step 1 of Algorithm 2 re-
quires O(1) time. Selecting the best x∗ in Step 2 requires going through all elements of
AddX(k) in O(|Z − X|) < O(|Z|) time (for each x, the values Min(d(x, y) : y ∈ X(k − 1))

and
∑

d(x, y) : y ∈ X(k − 1) are stored in two vectors that are updated by the streamlining
routines). Furthermore, the above section showed that the streamlining calculations require
O(|Z|) time for most iterations, or O(|Z| · |X|) time in the worst case. As such, the total
worst case iteration complexity is O(|Z| · |X|), less than O(|Z|2) in other local search meth-
ods. However, compared to previous approaches, the complexity improvement is even more
pronounced in the average case, i.e., O(|Z|) compared to O(|Z|2).

Indeed, most previous local search methods from the literature (see e.g., Erkut 1990
or Ghosh 1996) consider a quadratic neighborhood, commonly defined as the set of all
potential solutions that can be reached by applying a swap on the current solution, i.e., a
neighborhood transition consists of swapping an element a ∈ X(k) with an element b ∈
Z − X(k). The evaluation of such a neighborhood requires quadratic time in the worst case
as well as in the average case. In contrast, most iterations of our algorithm do not require
more than O(|Z|)—i.e., only the streamlining routines could require O(|Z| · |X|) and only
when the current potential solution verifies certain strong conditions (see Sect. 2.4).

Besides a faster evaluation of a smaller neighborhood, our approach provides easier pro-
cedures for ensuring diversification, taking advantage from the tabu mechanism underlying
drop moves. (There is obviously no virtue in using a simpler neighborhood if this is not ac-
companied by procedures that ultimately compensate for potential loss of information that
would otherwise be processed at each iteration.) The elementary type of tabu search rule,
which defines DropX(k) to contain only the “oldest” selected point in X(k), causes each se-
lected point to stay selected for exactly k iterations. A useful feature of this approach is that,
after removing point x#, the algorithm can not immediately add x# back because it needs to
add a point x∗ from AddX(k) = Z−X(k). If x# would be added back in the future, it would
be added into a configuration that will have changed in the meantime, and looping would
be thus avoided. We also tried using larger sets DropX(k), but our experiments showed no
significant or conclusive improvement. Indeed, this simple approach appears rather robust
relative to the chosen size of AddX and DropX.

Furthermore, we also tested more complex techniques such as interleaving Constructive
and local search methods, as well as more advanced local search algorithms, e.g., using
larger neighborhoods and more complex evaluations of points to add or to drop. While it is
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always possible to refine and achieve a certain improvement using such techniques, the goal
of this paper is only to present a simple, effective and very practical algorithm: aside from
the termination condition (i.e., maxNoGain), one does not even need any parameter tuning.

3 Computational experiments

This section is devoted to computational assessments,1 as well as to comparisons with the
most recent and best performing MMDP approaches: DCGL from Della Croce et al. (2009)
and RMGD from Resende et al. (2010). The DCGL approach starts out by sorting the dis-
tance values. Each distance value � has an associated clique problem that can only be solved
if the MMDP optimum is lower than �. Based on a powerful clique algorithm, DCGL ap-
plies a dichotomic search to rapidly find distance values for which the clique problem can
be solved. RMGD proposes a completely different approach based on exploiting existing
constructive and local search methods, combined with powerful new techniques based on
GRASP (with new local improvement operators), Path-relinking and Evolutionary Path Re-
linking.

Following the experimental protocol from the DCGL and RMGD papers, we consider
120 MMDP instances,2 belonging to two classes: Geo and Ran. Each of these two classes
contains 60 instances that can be further classified into three groups, according to the car-
dinal of Z : n = |Z| = 100, n = 250 or n = 500. Each group contains 20 instances, half of
them with k = 0.1 · n, and half with k = 0.3 · n.

We will first present the results as summary tables (see Tables 1–5), using the format
from the RMGD paper. To be specific, we provide the following three indicators for each
group of 20 instances:

Deviation (%) the average deviation from the best MMDP lower bound from the literature
(representing the best solution ever obtained by other researchers). For instance, given an
instance with a best known lower bound value of 100, a solution of 80 has a deviation of
20%; the average deviation over all instances is reported.

#Best the number of instances for which the best known lower bound is reached.
TimeAvg the average time spent by the algorithm in seconds. The reported CPU times are

obtained on a 2.8 GHz Xeon processor using the C++ programming language compiled
with the –O2 optimization option (gcc version 4.1.2 under Linux).

Besides these summaries, we also provide (in Appendix) detailed results, as well as
instance-by-instance comparisons with DCGL and RMGD. For supplementary information,
we also provide the objective value according to MDP criterion.

The stopping condition is to terminate upon reaching a maximum number of iterations
(maxNoGain) with no improvement of the best value of the MMDPo objective function. We
present results with three stopping conditions: maxNoGain = 5 ·n, maxNoGain = 10000 ·n,
and maxNoGain = 2000000 ·n. Comparing to other papers from the MMDP literature, these
conditions respectively correspond to: very short execution times (<1 second), moderate
execution times (several tens of seconds at maximum) and high execution times (one to
several hours). It is worth reiterating that maxNoGain is the only parameter required by our
algorithm.

1The source code of our algorithm and the solutions for the largest instances with n = 500 are available at:
http://www.info.univ-angers.fr/pub/hao/mmdp/.
2Available at http://www.uv.es/rmarti/paper/mdp.html.

http://www.info.univ-angers.fr/pub/hao/mmdp/
http://www.uv.es/rmarti/paper/mdp.html
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Table 1 Summary results of the
constructive algorithm Instance group Deviation #Best Avg. Time (sec)

Geo 100 6.41% 0 <0.1

Geo 250 4.10% 0 <0.1

Geo 500 6.11% 0 <0.1

Ran 100 6.17% 0 <0.1

Ran 250 4.56% 0 <0.1

Ran 500 21.40% 0 <0.1

All 120 instances 8.13% 0 <0.1

Table 2 Drop-Add Search
summary results for
maxNoGain = 5 · n

Instance group Deviation #Best Avg. Time (sec)

Geo 100 1.64% 2 <0.1

Geo 250 1.70% 0 <0.1

Geo 500 2.59% 0 <0.1

Ran 100 3.55% 4 <0.1

Ran 250 2.84% 0 <0.1

Ran 500 11.50% 0 <0.1

All 120 instances 3.97% 6 <0.1

3.1 Results of the constructive algorithm

We first present (Table 1) the summarized results of the constructive algorithm described in
Sect. 2.2. This constructive stage stops as soon as k elements are selected.

While this constructive heuristic does not yield solutions of impressive quality compared
to those obtained by methods that run for longer durations, the quality is nevertheless note-
worthy in view of the amount of time invested in reaching these solutions.

3.2 Results of the Drop-Add search algorithm

The Drop-Add search algorithm is launched from an initial solution provided by the con-
structive stage. The summarized results, group by group, are presented in Tables 2–4; each
table corresponds respectively to one of the three stopping conditions mentioned above.

The first table from these summaries (Table 2) shows that our algorithm can reach quite
competitive performances in less than 0.1 seconds. More precisely, given the very low run-
ning times associated to the first stopping condition (i.e., maxNoGain = 5 · n), a deviation
from the optimum of less than 4% is somewhat surprising, representing a value that might
be considered acceptable in many applications.

Table 3 presents the results associated with an intermediate stopping condition
(maxNoGain = 10000 · n); our algorithm manages to reach a large proportion (97 over 120)
of the best known lower bounds within a moderately short time. For illustration, the Drop-
Add search algorithm can solve in 2–3 seconds all benchmark instances with n = 100—
i.e., Geo 100 and Ran 100 (the optimality of these bounds is proved in the DCGL pa-
per). In slightly more than 10 seconds, the algorithm also reaches all proved optima of all
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Table 3 Drop-Add Search
summary results for
maxNoGain = 10000 · n

Instance group Deviation #Best Avg. Time (sec)

Geo 100 0.00% 20 2

Geo 250 0.10% 15 13.5

Geo 500 0.31% 8 77.9

Ran 100 0.00% 20 2

Ran 250 0.00% 20 12.3

Ran 500 0.53% 14 58.7

All 120 instances 0.15% 97 27.7

Table 4 Drop-Add Search
summary results for
maxNoGain = 2000000 · n

Instance group Deviation #Best Avg. Time (sec)

Geo 100 0.00% 20 449.7

Geo 250 0.06% 17 2737

Geo 500 0.11% 16 14093

Ran 100 0.00% 20 454.4

Ran 250 0.00% 20 2499

Ran 500 0.08% 19 12034

All 120 instances 0.04% 112 5378

Ran instances with n = 250 with k = 25. By allowing longer running times (i.e., using
maxNoGain = 2000000 · n), our algorithm reaches 112 best lower bounds out of 120, see
Table 4. The average deviation from the best value of MMDP objective function becomes
0.04%, almost negligible.

3.3 Comparison with related heuristics

In order to better evaluate the impact of the proposed ideas, we compare our approach with
two related local search methods and a population-based heuristic:

− Swap-LS: A basic local search using a swap-based neighborhood of quadratic size. Es-
sentially, an iteration of this algorithm consists of searching the best swap between a
selected and a non-selected element, hence the quadratic complexity of an iteration.

− GhoC+BLS: An algorithm using the GhoC constructive method due to Ghosh (1996),
followed by the local search BLS studied in Erkut (1990) and Ghosh (1996). This local
search algorithm also utilizes a swap-based quadratic neighborhood.

− Grasp+EvPR: Evolutionary Path-relinking combined with a GRASP algorithm based on
a classical constructive method and a significantly improved local search (Resende et al.
2010).

The implementation of Swap-LS is derived by extending the code of our Drop-Add
search algorithm. Regarding GhoC+BLS and Grasp+EvPR, we make use of the results
provided by the RMGD paper—the detailed results from the RGMD paper are publicly
available on-line at heur.uv.es/optsicom/mmdp/. However, we needed to recalculate the sum-
maries using the updated bounds provided by the DCGL paper.

http://heur.uv.es/optsicom/mmdp/
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Table 5 Comparison between Drop-Add Search (using maxNoGain = 10000 · n, as in Table 3) and three
other heuristics using local search

Instance group Drop-Add Search Swap-LS GhoC+BLS Grasp+EvPR

Dev #Best Time Dev #Best Time Dev #Best Time Dev #Best Time

[%] [s] [%] [s] [%] [s] [%] [s]

Geo 100 0 20 2 0.95 4 2 0.75 10 2 0.09 17 4

Geo 250 0.1 15 13.5 1.29 0 16.05 1.30 0 30 0.47 4 66

Geo 500 0.31 8 77.9 1.4 0 91.6 3.17 0 282 0.88 0 1465

Ran 100 0 20 2 4.42 1 2 1.71 4 1 0.49 15 7

Ran 250 0 20 12.3 3.66 0 12.7 3.26 0 16 1.53 6 271

Ran 500 0.53 14 58.7 21.3 0 66.65 13.52 0 93 11.34 0 6349

All 120 instances 0.15 97 27.7 5.51 5 31.83 3.95 14 71 2.47 42 1360

Table 5 presents the actual comparison between our Drop-Add search algorithm and these
three algorithms. The same indicators as in Sect. 3.2 are used: the average deviation from
the optimum (Dev [%]), the number of best-known bounds reached (#Best) and the time in
seconds (Time [s]). The Drop-Add search algorithm used a very moderate computing time
compared to the other three algorithms.

Although the results from Table 5 are not all obtained in the same technical en-
vironment (i.e., the first two and the last two algorithms were implemented by dif-
ferent authors on different platforms), they do offer some indications as to the rela-
tive performance of the algorithms. Comparing to a quadratic swap-based local search
(see Swap-LS, as well as GhoC+BLS), our Drop-Add Search algorithm obtains clearly
improved results using a similar or smaller amount of time. Even compared to more
complex heuristics based on Evolutionary Path-relinking (hybridized with an enhanced
local search), our approach is highly competitive and is able to rapidly reach estab-
lished bounds in numerous cases (see also the instance-by-instance comparisons in
Sect. 3.4).

Notice that in this comparison, the Drop-Add Search is not given an advantage com-
pared to Swap-LS, either in terms of computing time, or in terms of equivalent evaluation
counts. Indeed, Table 5 shows that Swap-LS always uses more time than Drop-Add Search
(compare columns 7 and 4). This is due to the fact that the stopping condition is more per-
missive in Swap-LS: while the Drop-Add Search uses maxNoGain = 10000 · n, Swap-LS
stops after maxNoGain = 15000 · n swap evaluations. Since an iteration of Swap-LS con-
sists of searching for the best swap between a selected and an unselected element, such an
iteration evaluates a quadratic number of swaps. Consequently, the computational effort of
one iteration of our Add-Drop algorithm is roughly equivalent to a single swap evaluation,
rather than to a complete (quadratic complexity) Swap-LS iteration. Furthermore, we con-
firm that the number of swap evaluations always exceeds or is comparable to the number of
Drop-Add iterations. Given the difficulty of comparing different methods, the comparisons
shown above are provided for indicative purposes and should be interpreted with a word of
caution.

3.4 Detailed comparisons and instance-by-instance results

Additional instance-by-instance outcomes are reported in Tables 6 and 7 (Appendix), fol-
lowing the format from the DCGL paper. In both tables we used the intermediate stopping
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condition maxNoGain = 10000 · n, as in Tables 3 and 5. The total computing time (tens of
seconds, at maximum) can be considered reasonably moderate compared to other methods
from the literature. Indeed, our algorithm required an average time of 31.17 seconds for the
Geo instances and an average time of 24.35 seconds for the Ran instances. The best methods
among those tested by the RMGD paper required hundreds of seconds; the DCGL algorithm
required average times of tens of seconds as well.

Table 6 shows that the Drop-Add search algorithm achieves a level of performance on
a par with that of the DCGL approach—although DCGL utilizes as an internal compo-
nent a more complex and refined max-clique algorithm presented in Grosso, Locatelli and
Pullan (2008). Furthermore, Table 7 presents an instance-by-instance comparison with the
best bounds reported by the RMGD paper (also, individual results of two algorithms from
RMGD are summarized Table 5). Besides the fact that our algorithm is very fast,3 it always
reaches the best RMGD bounds and even improves upon these best bounds in more than 60
instances.

4 Conclusions

We have presented a simple approach for MMDP that nevertheless proves surprisingly ef-
fective. For example, the proposed Drop-Add Simple Tabu Search finds within several sec-
onds all optimally-proved solutions for all standard benchmark instances with n = 100, as
well as for certain instances with n = 250. The algorithm is competitive with more refined
approaches from the literature, and even outperforms several methods tested in Resende
et al. (2010), e.g., methods that refer to Simulated Annealing, Tabu Search (based on a
different foundation, using classical swap-based quadratic neighborhoods), GRASP with
path-relinking, GRASP with evolutionary path-relinking, etc. By allowing reasonably larger
amounts of time, our approach reached almost all best-known lower bounds—reported by
the algorithm of Della Croce et al. (2009). We also report a solution better than the previous
best known solution to the benchmark instance “Ran 500 3”, establishing a new MMDP
lower bound of 56 (the previous best-known bound was 55).

As detailed in Sect. 2.5, the effectiveness of the new approach, which utilizes an ex-
tremely simple type of tabu search rule, derives from a low iteration complexity and from
strong diversification qualities of the search process. Indeed, apart from the streamlining cal-
culations that rarely require more than linear time, the complexity of an iteration is O(|Z|)—
computationally less expensive than O(|Z|2) in other local search-based algorithms. Besides
such speed benefits, important diversification properties arise from the fact that the simple
tabu rule causes each selected element to be systematically dropped after a fixed period of
time.

Acknowledgements We are grateful to the reviewers of the paper for their helpful comments and sugges-
tions. This work was partially supported by the Region of “Pays de la Loire” (France) within the Radapop
(2009-2012) and LigeRO (2010-2013) Projects.

3We do not claim that such speed comparisons are absolute. Recall our reported CPU times are obtained on
a 2.8 GHz Xeon processor using the C++ programming language compiled with the -O2 optimization flag
(gcc version 4.1.2 under Linux). RMGD and DCGL used Pentium IV processors running at 3–3.2 GHz.
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Appendix

Table 6 Objective function values reached by our local search algorithm (i.e. using maxNoGain = 10.000 ·n,
see Sect. 3.2), compared to those reported by the DCGL algorithm proposed by Della Croce et al. (2009).
Our values of the MMDP objective function (Column 4) are marked in bold (in case of equality) or in bold
and underlined (if strictly better bounds are reached). Seven columns are reported: (1) the instance; (2) n,
the number of vertices; (3) k, the number of elements to be selected; (4) our value of the MMDP objective
function; (5) our value of the MDP objective function; (6) the time in seconds; (7) the best bound from the
DCGL paper

Instance n k MMDP MDP Time [s] DCGL bound

Geo 100 1 100 10 89.37 5216.44 2 89.37

Geo 100 2 100 10 96.66 5333.46 2 96.66

Geo 100 3 100 10 76.45 4792.48 2 76.45

Geo 100 4 100 10 103.01 5756.19 2 103.01

Geo 100 5 100 10 119.72 6449.07 2 119.72

Geo 100 6 100 10 36.52 3179.37 2 36.52

Geo 100 7 100 10 189.21 9481.21 2 189.21

Geo 100 8 100 10 110.02 6058.5 2 110.02

Geo 100 9 100 10 141.24 7419.54 2 141.24

Geo 100 10 100 10 163.68 8479.88 2 163.68

Geo 100 11 100 30 102.19 62515.3 2 102.19

Geo 100 12 100 30 117.48 68037.1 2 117.48

Geo 100 13 100 30 29.83 31830.6 2 29.83

Geo 100 14 100 30 54.08 43874.4 2 54.08

Geo 100 15 100 30 144.48 81089.8 2 144.48

Geo 100 16 100 30 122.38 72309.5 2 122.38

Geo 100 17 100 30 130.35 75325.3 2 130.35

Geo 100 18 100 30 109.87 66688.4 2 109.87

Geo 100 19 100 30 152.21 83503.3 2 152.21

Geo 100 20 100 30 140.605a 78442.9 2 140.6

Geo 250 1 250 25 171.01 61780.7 12 171.01

Geo 250 2 250 25 20 17769.9 13 20.03

Geo 250 3 250 25 137.75 51211.5 12 137.75

Geo 250 4 250 25 171.96 61719 12 171.96

Geo 250 5 250 25 148.76 55424.7 12 148.76

Geo 250 6 250 25 100.38 40922.5 12 100.38

Geo 250 7 250 25 175.71 63348.9 12 175.71

Geo 250 8 250 25 164.51 58745.7 12 164.51

Geo 250 9 250 25 179.18 64817.5 12 179.18

Geo 250 10 250 25 102.23 42373.5 12 102.23

Geo 250 11 250 75 31.37 239167 13 31.72

Geo 250 12 250 75 93.91 407763 16 93.91

Geo 250 13 250 75 145.13 539513 14 145.22

Geo 250 14 250 75 70.32 344550 25 70.7

Geo 250 15 250 75 142.54 537908 17 142.54
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Table 6 (Continued)

Instance n k MMDP MDP Time [s] DCGL bound

Geo 250 16 250 75 108.05 453951 13 108.05

Geo 250 17 250 75 124.42 486532 13 124.63

Geo 250 18 250 75 148.76 553873 13 148.76

Geo 250 19 250 75 134.74 517918 13 134.74

Geo 250 20 250 75 147.83 552305 13 147.83

Geo 500 1 500 50 124.79 206631 65 124.79

Geo 500 2 500 50 13.56 70268.6 65 13.79

Geo 500 3 500 50 164.91 252796 56 165.04

Geo 500 4 500 50 132.5 215553 56 132.5

Geo 500 5 500 50 28.18 93069.6 83 28.55

Geo 500 6 500 50 28.18 92420.5 123 28.6

Geo 500 7 500 50 132.51 215393 69 132.51

Geo 500 8 500 50 113.586 193055 81 113.6

Geo 500 9 500 50 168.96 257865 63 168.96

Geo 500 10 500 50 159.98 248663 69 159.98

Geo 500 11 500 150 93.66 1.71314e+06 118 93.97

Geo 500 12 500 150 71.26 1.46952e+06 72 71.46

Geo 500 13 500 150 134.37 2.1535e+06 80 134.47

Geo 500 14 500 150 111.43 1.90051e+06 69 111.63

Geo 500 15 500 150 35.97 1.0717e+06 71 36.18

Geo 500 16 500 150 132.58 2.12167e+06 112 132.58

Geo 500 17 500 150 129.3 2.09709e+06 74 129.49

Geo 500 18 500 150 72.49 1.48543e+06 66 72.65

Geo 500 19 500 150 123.99 2.03106e+06 74 123.99

Geo 500 20 500 150 123.43 2.02141e+06 93 123.43

Ran 100 1 100 10 73 3957 2 73

Ran 100 2 100 10 75 3910 2 75

Ran 100 3 100 10 74 3975 2 74

Ran 100 4 100 10 74 3962 2 74

Ran 100 5 100 10 74 3858 2 74

Ran 100 6 100 10 74 4000 2 74

Ran 100 7 100 10 75 3914 2 75

Ran 100 8 100 10 74 3969 2 74

Ran 100 9 100 10 74 3969 2 74

Ran 100 10 100 10 75 3968 2 75

Ran 100 11 100 30 54 34740 2 54

Ran 100 12 100 30 55 34625 2 55

Ran 100 13 100 30 55 34319 2 55

Ran 100 14 100 30 55 34455 2 55

Ran 100 15 100 30 55 34799 2 55

Ran 100 16 100 30 55 34064 2 55

Ran 100 17 100 30 55 34218 2 55

Ran 100 18 100 30 55 34089 2 55

Ran 100 19 100 30 55 34654 2 55
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Table 6 (Continued)

Instance n k MMDP MDP Time [s] DCGL bound

Ran 100 20 100 30 55 34326 2 55

Ran 250 1 250 25 61 24486 12 61

Ran 250 2 250 25 61 24464 13 61

Ran 250 3 250 25 61 24686 12 61

Ran 250 4 250 25 61 24108 13 61

Ran 250 5 250 25 61 24528 12 61

Ran 250 6 250 25 61 24553 12 61

Ran 250 7 250 25 61 24246 12 61

Ran 250 8 250 25 61 24337 12 61

Ran 250 9 250 25 61 24087 14 61

Ran 250 10 250 25 61 24295 12 61

Ran 250 11 250 75 52 213848 12 52

Ran 250 12 250 75 52 213534 13 52

Ran 250 13 250 75 52 214402 12 52

Ran 250 14 250 75 52 213365 12 52

Ran 250 15 250 75 52 213545 13 52

Ran 250 16 250 75 52 214506 12 52

Ran 250 17 250 75 52 213992 12 52

Ran 250 18 250 75 52 214225 12 52

Ran 250 19 250 75 52 213496 13 52

Ran 250 20 250 75 52 214591 12 52

Ran 500 1 500 50 55 97889 54 55

Ran 500 2 500 50 55 97992 53 56

Ran 500 3 500 50 55 97865 53 55

Ran 500 4 500 50 55 97869 53 56

Ran 500 5 500 50 55 97890 53 56

Ran 500 6 500 50 55 97912 54 55

Ran 500 7 500 50 56 96797 64 56

Ran 500 8 500 50 55 97543 53 56

Ran 500 9 500 50 55 98196 53 56

Ran 500 10 500 50 55 98049 53 56

Ran 500 11 500 150 5 1.16892e+06 63 5

Ran 500 12 500 150 5 1.17127e+06 65 5

Ran 500 13 500 150 5 1.17047e+06 63 5

Ran 500 14 500 150 5 1.17303e+06 63 5

Ran 500 15 500 150 5 1.17401e+06 63 5

Ran 500 16 500 150 5 1.17475e+06 62 5

Ran 500 17 500 150 5 1.1768e+06 63 5

Ran 500 18 500 150 5 1.17857e+06 63 5

Ran 500 19 500 150 5 1.17798e+06 63 5

Ran 500 20 500 150 5 1.1832e+06 63 5

aIn this case, the difference from the previous best-known bound is less than 0.005. We consider that such
differences are rather due to the precision of the floating-point calculations (a recurrent issue in such a context)
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Table 7 Objective function values reached by our local search algorithm (i.e. maxNoGain = 10.000 · n, see
Sect. 3.2), compared to the best bounds reported by the RMGD paper Resende et al. (2010). These RMGD
bounds were always reached, and so, all values from Column 4 are marked in bold. Our approach reaches
better bounds for more than 60 instances—see that our objective function value is underlined when it is larger
than the one from Column 7. Our MMDP bounds are the same as those from Table 6 and those summarized
in Table 3

Instance n k MMDP MDP Time [s] RMGD bound

Geo 100 1 100 10 89.37 5216.44 2 89.37

Geo 100 2 100 10 96.66 5333.46 2 96.66

Geo 100 3 100 10 76.45 4792.48 2 76.45

Geo 100 4 100 10 103.01 5756.19 2 103.01

Geo 100 5 100 10 119.72 6449.07 2 119.72

Geo 100 6 100 10 36.52 3179.37 2 36.52

Geo 100 7 100 10 189.21 9481.21 2 189.21

Geo 100 8 100 10 110.02 6058.5 2 110.02

Geo 100 9 100 10 141.24 7419.54 2 141.24

Geo 100 10 100 10 163.68 8479.88 2 163.68

Geo 100 11 100 30 102.19 62515.3 2 102.19

Geo 100 12 100 30 117.48 68037.1 2 117.48

Geo 100 13 100 30 29.83 31830.6 2 29.83

Geo 100 14 100 30 54.08 43874.4 2 54.08

Geo 100 15 100 30 144.48 81089.8 2 144.48

Geo 100 16 100 30 122.38 72309.5 2 122.38

Geo 100 17 100 30 130.35 75325.3 2 130.35

Geo 100 18 100 30 109.87 66688.4 2 109.87

Geo 100 19 100 30 152.21 83503.3 2 152.21

Geo 100 20 100 30 140.605 78442.9 2 140.6

Geo 250 1 250 25 171.01 61780.7 12 171.01

Geo 250 2 250 25 20.0023 17769.9 13 19.7

Geo 250 3 250 25 137.75 51211.5 12 137.75

Geo 250 4 250 25 171.961 61719 12 171.21

Geo 250 5 250 25 148.76 55424.7 12 148.72

Geo 250 6 250 25 100.377 40922.5 12 99.8

Geo 250 7 250 25 175.71 63348.9 12 175.71

Geo 250 8 250 25 164.513 58745.7 12 164.03

Geo 250 9 250 25 179.178 64817.5 12 179.16

Geo 250 10 250 25 102.227 42373.5 12 102.19

Geo 250 11 250 75 31.37 239167 13 31.37

Geo 250 12 250 75 93.9123 407763 16 93.84

Geo 250 13 250 75 145.133 539513 14 145.06

Geo 250 14 250 75 70.3202 344550 25 70.12

Geo 250 15 250 75 142.544 537908 17 142.5

Geo 250 16 250 75 108.05 453951 13 108.05

Geo 250 17 250 75 124.422 486532 13 124.25
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Table 7 (Continued)

Instance n k MMDP MDP Time [s] RMGD bound

Geo 250 18 250 75 148.762 553873 13 148.63

Geo 250 19 250 75 134.736 517918 13 133.87

Geo 250 20 250 75 147.83 552305 13 147.83

Geo 500 1 500 50 124.789 206631 65 123.74

Geo 500 2 500 50 13.5627 70268.6 65 13.4

Geo 500 3 500 50 164.909 252796 56 164.13

Geo 500 4 500 50 132.501 215553 56 131.62

Geo 500 5 500 50 28.1795 93069.6 83 28.07

Geo 500 6 500 50 28.1815 92420.5 123 27.8

Geo 500 7 500 50 132.514 215393 69 131.34

Geo 500 8 500 50 113.586 193055 81 112.68

Geo 500 9 500 50 168.959 257865 63 168.24

Geo 500 10 500 50 159.976 248663 69 159.68

Geo 500 11 500 150 93.6574 1.71314e+06 118 93.49

Geo 500 12 500 150 71.2575 1.46952e+06 72 71.12

Geo 500 13 500 150 134.37 2.1535e+06 80 133.99

Geo 500 14 500 150 111.43 1.90051e+06 69 111.04

Geo 500 15 500 150 35.9653 1.0717e+06 71 35.71

Geo 500 16 500 150 132.577 2.12167e+06 112 132.43

Geo 500 17 500 150 129.3 2.09709e+06 74 129.04

Geo 500 18 500 150 72.4858 1.48543e+06 66 71.85

Geo 500 19 500 150 123.986 2.03106e+06 74 123.95

Geo 500 20 500 150 123.429 2.02141e+06 93 123.14

Ran 100 1 100 10 73 3957 2 73

Ran 100 2 100 10 75 3910 2 75

Ran 100 3 100 10 74 3975 2 74

Ran 100 4 100 10 74 3962 2 74

Ran 100 5 100 10 74 3858 2 74

Ran 100 6 100 10 74 4000 2 74

Ran 100 7 100 10 75 3914 2 75

Ran 100 8 100 10 74 3969 2 74

Ran 100 9 100 10 74 3969 2 74

Ran 100 10 100 10 75 3968 2 75

Ran 100 11 100 30 54 34740 2 54

Ran 100 12 100 30 55 34625 2 55

Ran 100 13 100 30 55 34319 2 55

Ran 100 14 100 30 55 34455 2 55

Ran 100 15 100 30 55 34799 2 55

Ran 100 16 100 30 55 34064 2 55

Ran 100 17 100 30 55 34218 2 55

Ran 100 18 100 30 55 34089 2 55
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Table 7 (Continued)

Instance n k MMDP MDP Time [s] RMGD bound

Ran 100 19 100 30 55 34654 2 55

Ran 100 20 100 30 55 34326 2 55

Ran 250 1 250 25 61 24486 12 59

Ran 250 2 250 25 61 24464 13 60

Ran 250 3 250 25 61 24686 12 60

Ran 250 4 250 25 61 24108 13 59

Ran 250 5 250 25 61 24528 12 60

Ran 250 6 250 25 61 24553 12 60

Ran 250 7 250 25 61 24246 12 60

Ran 250 8 250 25 61 24337 12 60

Ran 250 9 250 25 61 24087 14 60

Ran 250 10 250 25 61 24295 12 60

Ran 250 11 250 75 52 213848 12 52

Ran 250 12 250 75 52 213534 13 51

Ran 250 13 250 75 52 214402 12 52

Ran 250 14 250 75 52 213365 12 52

Ran 250 15 250 75 52 213545 13 51

Ran 250 16 250 75 52 214506 12 52

Ran 250 17 250 75 52 213992 12 52

Ran 250 18 250 75 52 214225 12 52

Ran 250 19 250 75 52 213496 13 52

Ran 250 20 250 75 52 214591 12 51

Ran 500 1 500 50 55 97889 54 54

Ran 500 2 500 50 55 97992 53 55

Ran 500 3 500 50 55 97865 53 55

Ran 500 4 500 50 55 97869 53 55

Ran 500 5 500 50 55 97890 53 54

Ran 500 6 500 50 55 97912 54 54

Ran 500 7 500 50 56 96797 64 54

Ran 500 8 500 50 55 97543 53 55

Ran 500 9 500 50 55 98196 53 55

Ran 500 10 500 50 55 98049 53 54

Ran 500 11 500 150 5 1.16892e+06 63 4

Ran 500 12 500 150 5 1.17127e+06 65 4

Ran 500 13 500 150 5 1.17047e+06 63 4

Ran 500 14 500 150 5 1.17303e+06 63 4

Ran 500 15 500 150 5 1.17401e+06 63 4

Ran 500 16 500 150 5 1.17475e+06 62 4

Ran 500 17 500 150 5 1.1768e+06 63 4

Ran 500 18 500 150 5 1.17857e+06 63 4

Ran 500 19 500 150 5 1.17798e+06 63 4

Ran 500 20 500 150 5 1.1832e+06 63 4
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