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Abstract

We present a search space analysis and its application in improving local search
algorithms for the graph coloring problem. Using a classical distance measure be-
tween colorings, we introduce the following clustering hypothesis: the high quality
solutions are not randomly scattered in the search space, but rather grouped in
clusters within spheres of specific diameter. We first provide intuitive evidence for
this hypothesis by presenting a projection of a large set of local minima in the
3D space. An experimental confirmation is also presented: we introduce two al-
gorithms that exploit the hypothesis by guiding an underlying Tabu Search (TS)
process. The first algorithm (TS-Div) uses a learning process to guide the basic
TS process toward as-yet-unvisited spheres. The second algorithm (TS-Int) makes
deep investigations within a bounded region by organizing it as a tree-like struc-
ture of connected spheres. We experimentally demonstrate that if such a region
contains a global optimum, TS-Int does not fail in eventually finding it. This pair
of algorithms significantly outperforms the underlying basic TS algorithm; it can
even improve some of the best-known solutions ever reported in the literature (e.g.
for dsjc1000.9).
Key words: graph coloring, local optima distribution, search by learning.

1 Introduction

The graph coloring problem (COL) is a well-known problem in Combinatorial Optimiza-
tion. It is one of the 21 fundamental problems proved to be NP-Complete by Richard
Karp in 1972 [31]. Given a graph G, COL asks to find the minimum number of colors
(the chromatic number χ(G)) necessary to color the vertices of G such that no two ad-
jacent vertices share the same color. Due to its simplicity and generality, many practical
applications have been modeled using coloring problems: timetabling [6, 13], schedul-
ing [20, 33, 34], register allocation in compilers [7, 34], frequency assignment in cellular
networks [24], air traffic flow management [2], supply chain management [35], etc.

The first algorithms for graph coloring were developed in the 1960s [5, 10, 41]. Since
then, a considerable number of new methods have been developed and important progress
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has been made. The second DIMACS Implementation Challenge [30] collected a large
set of graphs that was used extensively since 1996 for benchmarking coloring algorithms.

Existing heuristic and metaheuristic coloring algorithms belong to three main solution
approaches: sequential construction (algorithms like Dsatur [4], Iterated Greedy IG [12],
RLX and XRLF [29]—very fast methods but not particularly efficient), local search (Tabu
Search [3, 15–17, 28], Simulated Annealing [8, 29], Iterated Local Search [9, 38], Variable
Neighborhood Search [1,27,40]) and evolutionary hybrid or population based search [14,
16,17,19,36]. A recent survey, especially for the local search methods, is provided in [18].

We note that, very recently, two less-traditional local search algorithms proved sur-
prisingly competitive [3, 27] and they matched many of the best results found so far in
two decades. These local search algorithms focus on local level improvements—i.e. more
powerful neighborhood relations [27] or alternative solution encodings [3]. Generally
speaking, there are numerous local-level techniques that can enhance the performance of
any local search heuristic.

However, local searches are also often substantially limited by the fact that they do
not exploit enough global information about the search process. In most combinato-
rial optimization problems, local search methods are not typically very concerned about
the relations between potential solutions (configurations) visited at different stages of
the search. Moreover, most studies that analyze the search space structure (for exam-
ple [11, 25, 26] for graph coloring) focus more on providing theoretical information than
on effectively using such information to improve an algorithm.

Given any local search process searching through a search space, some important
questions might be:

• what does the exploration path look like ?

• which regions is the process more likely to explore?

• can we be sure the search process does not explore only a limited number of regions?

• what is the spatial distribution of high quality solutions?

• are they randomly scattered or are they grouped in structures?

Our study consists in an exploration of these issues. The paper can be divided in two
parts: the first one deals with search space analysis, and the second one effectively exploits
the information from this analysis for the purpose of developing two new algorithms.

We analyze the spatial distribution of the high quality configurations (local optima)
discovered by a classical Tabu Search (TS) algorithm for graph coloring (Tabucol) in a
given period. The high quality configurations are compared with a distance measure—
computed with a fast algorithm—and the resulting distance matrix is embedded in IR3

(see Section 3.1) with a Multidimensional Scaling (MDS) procedure [32]. In the 3D
representation, points represent colorings and the basic Euclidean distance between these
points is an approximation of the computed distance between the associated colorings.
The representations show that the high quality configurations are not randomly scattered
in the space, but they form clusters that can be covered by spheres of specific diameter.

In the second part of the paper, we develop two algorithms that use a sphere-based
search space organization. The first (TS-Div) is a classical Tabu Search (TS) algorithm
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that keeps track of all the visited configurations by recording all visited spheres (Section
4). It also uses an additional learning process that guides the underlying Tabu Search
process toward as–yet–unexplored spheres. TS-Int (Section 5) is a second-stage algorithm
that performs in-depth explorations in the proximity of the high quality colorings provided
by TS-Div.

The next section briefly outlines the formal details of the problem formulation, the
local search algorithm (Tabu Search) and the test graphs. Section 3 presents the formal
analysis of the spatial distribution of high quality colorings in the search space. Next, in
Section 4 and Section 5, we present the two algorithms: TS-Div (assuring diversification)
and TS-Int (assuring intensification). Numerical results and discussions are presented in
Section 6, followed by conclusions in the last section.

2 Preliminary definitions and the general setting

2.1 Problem formulation and coloring representation

Let G = (V,E) be a graph with vertex set V and edge set E. The general graph coloring
problem is to determine the chromatic number χ(G) of G, i.e. the minimum value of k
for which there is k-coloring (i.e. a function c : V → {1, 2, · · · , k}) with no conflicts (i.e.
with no {i, j} ∈ E such that c(i) = c(j)).

In this study, we directly deal with the k-coloring problem: given a number of colors k,
decide if G has a k-coloring with no conflicts. We start with a very large k (e.g. k = |V |)
and we decrease k each time the corresponding k-coloring problem is solved. We recall
the following definitions.

Definition 1 (Array coloring representation) Given G and k, a coloring function c :
V → {1, 2, · · · , k} is encoded as an array C = [c(1) ,c(2), . . . , c(|V |)].

Moreover, C is said to be a legal coloring if and only if c(i) 6= c(j), ∀{i, j} ∈ E. A legal
coloring represents a solution to the k-coloring problem. All colorings, both proper and
improper, form the search space Ω of the problem.

Definition 2 (Partition representation) A k-coloring C = [c(1) ,c(2), . . . , c(|V |)] of G
is denoted as a partition {C1, C2, . . . , Ck} of V (i.e. a set of k disjoint subsets of V
covering V ) such that ∀x, y ∈ V , x, y ∈ Ci ⇔ c(x) = c(y) = i.

We say that Ci is the class color i induced by the coloring C, i.e. the set of vertices having
color i in C. This partition definition is particularly relevant to avoid symmetry issues
arising from the color based encoding. It is consistent with the set-theoretic partition
distance (see Section 4.2).

Definition 3 (Objective function) Given a configuration C, we call conflict (or conflict-
ing edge) any edge having both ends of the same color in C. The number of conflicts (or
the conflict number of C) represent the objective (or fitness) function f for the k-coloring
problem (G, k).

A (G, k) problem is considered solved if and only if the algorithm finds a coloring such
that f(C) = 0. A conflicting vertex is any v ∈ V , that has a neighbor of the same color.
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2.2 Tabu Search for Graph Coloring

The search space analysis and the resolution methods from this paper are based on
Tabucol [28], a classical Tabu Search for graph coloring [22]. Basically, Tabucol just
passes from one configuration to another by modifying the color of a conflicting vertex,
but it imposes the condition that each color change has to be not-Tabu, i.e. not performed
in the near past. The general description of our TS version is presented in Algorithm
1; the stopping condition is to find a legal coloring or to reach a maximum number
of iterations. The most important details that need to be filled are the neighborhood
relation N and the Tabu list management.

Algorithm 1 Pseudocode General Tabu Search
Input: graph G, color number k, (optional) the start configuration Cst

Return value: f(C∗) (i.e. 0 if a legal coloring is found)
C: the current coloring; C∗: the best coloring ever found
Begin

1. C:=Cst (choose C = random configuration if Cst is not specified.)

2. while a stopping condition is not met

(a) find the best C′ ∈ N(C) so that move C
<i,i′>
−→ C′ is not Tabu

(b) C = C′ (i.e. perform move < i, i′ >; C(i) := i′)

(c) if (f(C) < f(C∗))

• C∗ = C

(d) make the pair (i, i′) Tabu for Tℓ iterations

End

Neighborhood N Given a coloring problem (G(V,E),k), the search space Ω consists
of all possible colorings of G; thus |Ω| = |V |k. A simple neighborhood function N :
Ω → 2Ω − {∅} can be defined as follows. For any configuration C ∈ Ω, a neighbor C ′ is
obtained by changing the color of a single conflicting vertex in C.

Definition 4 (Plateau) We say subset P ⊂ Ω is a plateau of Ω if and only if: (i)
all configurations in P have the same conflict number and (ii) for any Ca, Cb ∈ P ,
there exist configurations C1, C2, . . . , Cn ∈ P such that: C1 ∈ N(Ca), C2 ∈ N(C1), . . .,
Cn ∈ N(Cn−1) and Cb ∈ N(Cn).

Tabu list management Tabu list is a structure used to record forbidden moves that
have been performed in the recent past. For our problem, a move is characterized by a
couple < i, i′ > meaning that the color c(i) of a conflicting vertex i is changed to a new
color i′. Each time a move < i, i′ > is realized, i is forbidden to receive again the color
c(i) for the next Tℓ (Tabu tenure) iterations.

In our case, the Tabu tenure Tℓ is dynamically adjusted by a function depending on the
conflict number (f) (like in [14,15,17]), but also on the number m of the last consecutive

moves that have not changed f . More precisely, Tℓ = random(A) + α ∗ f(C) +
⌊

m
mmax

⌋

where α and A are two parameters whose values are taken from [17] (i.e. α = 0.6
and A = 10). The last term is introduced only to change Tℓ when the algorithm is
completely blocked looping on a plateau, or more exactly when f does not change for
mmax moves. Each series of consecutive mmax (mmax = 1000) moves with no conflict
number variation triggers the increment of all subsequent values of Tℓ (until f changes
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again). This additional term prevents the search process from getting blocked looping on
a plateau while not affecting its behavior outside plateaus.

2.3 The benchmark graphs

In this article, experimental studies are carried out on a variety of difficult problems from
the well-established DIMACS Challenge Benchmark [30]: (i) dsjcX.Y —a series of classi-
cal random graphs [29] with unknown chromatic numbers (X denotes |V | and Y denotes
the density); (ii) le450.25c and le450.25d—the most difficult ”Leighton graphs” [33] with
χ = 25 (they have at least one clique of size χ); (iii) flat300.28 and flat1000.76—the most
difficult ”flat” graphs [12] with χ denoted by the last number (generated by partitioning
the vertex set in χ classes, and by distributing the edges only between vertices of different
classes); (iv) R1000.1—a geometric graph generated by picking random points (nodes) in
the plane and by linking the points situated within a certain geometrical distance.

3 Cartography of the Graph Coloring Search Space

In this section, we explore the spatial distribution of the best configurations visited by
TS in a given period of a single run. We consider these configurations as a set of points in
the search space Ω (a |V |-dimensional space), and we measure the distance between each
two points with the set-theoretic partition distance (see Section 4.2) that is a meaningful
metric for graph coloring [17,21]. First, we provide 3D visualizations: the points from the
|V |-dimensional space Ω are mapped into the 3D Euclidean space such that a distance
distortion is minimized. This is achieved with a classical Multidimensional Scaling (MDS)
procedure. Then, we analyze the values of distances between all points and we provide
evidence that they are grouped in clusters in the search space Ω. We make an estimate
of the cluster diameter. Surprisingly, we observed that it does not closely depend on the
graph type, but mainly on |V |. Our assumption is that many of these clusters can be
confined in spheres of radius 1

10
|V |.

3.1 Multidimensional Scaling

Multidimensional Scaling (MDS) is a common procedure in data visualization for rep-
resenting similarities or dissimilarities in data. It takes as input a matrix of distances
(or dissimilarities between pairs of items) and maps them to a set of locations in the
Euclidean space (IR2 or IR3) such that a loss function (i.e. Kruskall stress in our case) is
minimized. In our implementation, the MDS procedure has three steps: data collection,
data mapping, and model verification.

Step 1: The matrix of distances in the real search space Given a sample of
k-colorings {C1, C2, . . . Cp} ⊂ Ω, the procedure first constructs the matrix Dp×p where
each element Dij = d(Ci, Cj) is the distance between Ci and Cj. We define the distance
as the minimum number of color changes required to transform Ci in Cj. This distance
was used by most other graph coloring studies (e.g. [17,21]); it is very suitable for the TS
algorithm because it also represents the minimal number of moves TS needs to perform
to arrive from Ci to Cj. It can be expressed as a generic set-theoretic partition distance
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taking values between 0 and |V |; its computation can be done in O(|V |) time—we refer
to Section 4.2 for more details.

Step 2: Generating IR3 coordinates To obtain the corresponding locations in IR3,
we use the classical cmdscale algorithm for metric (classical) multidimensional scaling
as implemented in the well-known R programming language for statistical data analysis.
The provided IR3 locations are used to plot the 3D scatter graph and also to calculate
the Euclidean distance matrix dp×p between the points. The distances in the 3D repre-
sentation assess the spatial distribution of the real configurations in the Ω space.

Step 3: Quality assessment Since the isometry between the Euclidean distance
matrix (dp×p) and the initial distance matrix Dp×p can not be exactly satisfied, the quality
of the embedding is measured with a goodness-of-fit indicator; we chose to use the classical
stress [32]:

s =

√

∑

1≤i,j≤p(Dij − dij)2

∑

1≤i,j≤p D2
ij

The guideline provided by Kruskal in his seminal MDS paper [32] states that the rep-
resentation is: a) poor if s > 0.2, b) fair if s ≤ 0.1, c) good if s ≤ 0.05, d) excellent if
s ≤ 0.025 and e) perfect if s = 0. In this paper, even if the total number of points is very
high, we present no ’poor’ (i.e. s > 0.2) representations.

3.2 Spatial distribution of configurations visited in limited-time

runs

In this section we examine the sequence of colorings visited by (quite) short TS processes,
more exactly we investigate the arrangement of high-quality configurations:

Definition 5 (High-quality configuration) We say that configuration C ∈ Ω is a high-
quality configuration (i.e. it is deep, or hard–to–find) if and only if f(C) ≤ Bf , where Bf

is a fitness boundary. Otherwise, we say that C is a low-quality configuration.

Given a problem instance (G, k) and an initial high-quality coloring C0, we apply the
TS algorithm starting from C0. TS visits a series of neighboring colorings and let C0 ,C1,
C2, . . . denote the high-quality configurations, those satisfying f(Ci) ≤ f(C0)—i.e. we
consider the fitness boundary Bf = f(C0). In all our tests, the number of high-quality
configurations represents only a very small fraction of the total number of colorings visited
along the search; we ignore the colorings worse than C0 because they can be easily found.

We show in Figure 1 the MDS representations of the colorings resulting from this
experiment. Two instances are considered: (a) random graph dsjc1000.1 starting from
a 4-conflict coloring and (b) Leighton graph le450.25c starting from a 1-conflict coloring.
In order to limit the number of points (and the reliability of the MDS representation),
we divide the TS exploration path in series of 100 and plot only the first coloring of each
series. More exactly, if the search visits the following high-quality configurations in this
order: C0, C1, C2, . . ., we graphically depict only C0, C100, C200, . . ..

These 3D representations provide a good intuitive image of the exploration path.
In the left graph, the exploration process starts from the front-bottom-left corner and
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Figure 1: The high-quality colorings (with f(C) ≤ 4) visited during 60000 iterations by
TS for G = dsjc1000.1, k = 20 (left) and the high-quality colorings (with f(C) ≤ 1)
visited during 25000 iterations by TS for G = le450.25.c, k = 25 (right). The stress value
is s = 0.19 and s = 0.15, respectively.

passes from cluster to cluster until it reaches the right side; most colorings visited in-
between do not appear in the graph because they have worse fitness values (low quality
configurations). In the right graph, the exploration path is even more clear (it starts
from the front-bottom-left corner and ends toward the front-bottom-right corner) but the
clusters are closer—for le450.25c, the distances between clusters are between 15%|V | = 67
and 22%|V | = 99 (see also Figure 2, bottom right graph) because the Leighton graphs
have a peculiar structure as we discuss in Section 6.3.3.

3.3 Spatial distribution of colorings visited in long runs

Now, we present a more formal analysis of longer series of high-quality colorings visited
by TS on all graph classes (Figure 2). We used a similar scenario as for Figure 1, but we
examined much more configurations: indeed, all the high-quality colorings C0, C1, . . . , Cn

(i.e. satisfying f(Ci) < f(C0) ∀i ∈ [1..n], where n = 40.000) visited by TS are now
considered for analysis (instead of the several hundreds of samples C100, C200, C200, . . .
considered in the previous representations). We compute all distances1 d(Ci, Cj) and,
with a distance histogram, we show how many pairs (Ci, Cj) correspond to each distance
value.

Figure 2 shows bimodal distance distributions, with either very small or very long
distances between the Ci’s: this confirms the existence of some well separated regions
with high densities of Ci’s (clusters). If we denote a ”cluster diameter” by cd, we observe
that cd varies from 7%|V | to 10%|V | depending on the graph, such that: (i) there are
numerous pairs (i, j) such that d(Ci, Cj) < cd, (ii) there are very few (less than 1%) pairs
(i, j) such that cd < d(Ci, Cj) < 2cd and, (iii) there are numerous occurrences of some

1Considering n = 40000 colorings, the number of distances to compute is not extremely large, we
computed all n × n = 1.600.000.000 distances in several hours.
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Figure 2: Histograms of the distances between each two of the C0, C1, C2, . . . , C40000

(high-quality) configurations visited by TS; f(Ci) is limited by: a) f(C0) = 4 for (G =
flat300.28, k = 30), b) f(C0) = 3 for (G = dsjc250.5, k = 28), c) f(C0) = 4 for
(G = dsjc1000.1, k = 20) and d) f(C0) = 1 for (G = le450.25c, k = 25).

larger distance values. This distribution of the Ci’s mainly reflects the path of the search
process through the search space—and not the arrangement of all existing high quality
configurations. However, regarding the colorings visited by TS, it is important to note
that any two Ci’s distanced by more than 1

10
|V | (the largest possible value of cd) belong

to different clusters of high-quality configurations. We keep this estimation in the rest of
the paper and we use it to propose new search space exploration methods.

4 TS-Div—Tabu Search algorithm with diversifica-

tion guarantee

While there are many well-studied methods to help a local search to escape a single
basin of attraction, it seems more difficult to prevent it from looping between a limited
number of basins of attraction. This is one of the main reasons for which, after a certain
threshold, an increase of the execution time might not always improve the performance.

We present in this section a TS algorithm (call it TS-Div) that integrates a learning
process for avoiding looping between already-visited areas. TS-Div employs an extended
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Tabu list length if it detects that it comes upon configurations that are too close, according
to the distance function, to other previously-visited configurations, i.e. while it passes
through an already-explored cluster. This strategy prevents the algorithm from revisiting
such regions by the reinforced diversification phase associated with the extended Tabu
list.

4.1 Formal TS-Div description

The TS-Div algorithm (see Algorithm 2) is based on two central processes: (i) a basic TS
exploring process (Tabucol), (ii) a reactive learning process that guides the first process
by investigating the positions of the visited colorings. The orientation in space is achieved
using the partition distance defined in Section 4.2 (basically, the distance between two
colorings can be interpreted as the shortest path of TS steps between them).

Definition 6 (Sphere) Given a (center) configuration C ∈ Ω and a radius R ∈ IN , the
R-sphere S(C) is the set of configurations C ′ ∈ Ω such that d(C,C ′) ≤ R.

Since we assume the clustering hypothesis (Section 3), we deal only with R-spheres of
radius R = 1

10
|V | in the rest of the paper. Two colorings Ca and Cb satisfying d(Ca, Cb) ≤

R = 1
10
|V | are called close or related ; otherwise they are R-distinct or R-distanced. If

d(Ca, Cb) > |V |
2

, we say that Ca and Cb are completely different.
The first task of the learning component is to investigate the TS exploration path

by recording the centers of all visited spheres. While configuration C, at the current
iteration, stays in the sphere of the last recorded center Cp, we consider that the search
process is ”pivoting” around Cp. And while it remains in the same sphere of Cp, TS-Div
explores the search space in the same way as the basic TS would do.

As soon as the search leaves the current sphere, the learning component concentrates
on the guiding task. It first compares C to the archive of all previously recorded configu-
rations (procedure Already-Visited in Algorithm 2) to check whether it is entering
in a previously-explored sphere or not. If C is not in the sphere of any recorded config-
uration, it goes on only by changing the pivot—i.e. it replaces Cp with C and records it
in the archive. Otherwise, if the search process is re-entering the sphere of a previously
recorded configuration, the learning process intervene in the search process: a diversifi-
cation phase is needed. For this purpose, we extend the Tabu tenure Tℓ with a Tc factor
as explained in the next section.

Diversification using the Tabu tenure Indeed, the Tabu list length (or Tabu tenure)
provides a very simple mechanism to control diversification. Using longer Tabu lists makes
configuration changes more diverse because TS never repeats the moves performed during
the last Tℓ + Tc iterations. Therefore, the greater the Tc value, the more diversification
there is. A suitable control of Tc guarantees that TS-Div keeps discovering new regions;
in fact, it can even guarantee that the process can never get stuck looping through
already-visited spheres. The longer the time TS-Div spends only running into previously-
visited spheres, the more it increments Tc—and Tc is only decremented (to 0) when the
search process finds a new sphere. As such, the Tabu list increases continuously until a
sufficiently high value of Tl is guaranteed to break any looping between already-visited
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Algorithm 2 Pseudocode TS-Div
PROCEDURE ALREADY-VISITED
Input: current configuration C
Return value: TRUE or FALSE

1. Forall recorded configurations Crec:

• If d(C, Crec) ≤ R

– Return TRUE

2. Return FALSE

ALGORITHM POSITION-GUIDED TABU SEARCH
Input: the search space Ω
Return value: the best configuration Cbest ever visited
C: the current configuration

1. Choose randomly an initial configuration C ∈ Ω

2. Cp = C (the pivot, i.e. the last recorded configuration)

3. Tc = 0 (the value by which it extends the Tabu tenure Tℓ)

4. While a stopping condition is not met

(a) Set (next) C = the best non-Tabu neighbor in N(C)

(b) If d(C, Cp) > R

• Cp = C

• If ALREADY-VISITED(Cp)

– Then Increment Tc

• Else
– Tc = 0
– Record Cp

(c) Mark C as Tabu for Tℓ + Tc iterations

(d) If (f(C) < f(Cbest))

• Cbest = C

(e) If (f(C) < f(Cp))

• Replace Cp with C in the archive

• Cp = C (i.e. ‘‘recentering’’ the current sphere)

5. return Cbest

spheres (sooner or later). As such, TS-Div can discover new regions at all stages of the
exploration, even in the very long run.

4.2 Distance definition and a fast computation method

The distance computation time is a crucial factor for TS-Div because, if this computation
is too slow, it risks compromising the running speed of the algorithm. Fortunately, the
set-theoretic partition distance fits well our purpose. Using the partition representation
(see Definition 2), the distance between coloring Ca and Cb is the minimal number of
vertices that need to be transferred from one class to another in Ca so that the resulting
partition is equal to Cb (equivalent to the minimal number of moves needed by TS to
arrive from Ca to Cb). There exists a well-studied distance computation method using
an O(|V |+k3) Hungarian algorithm—see [23] for a general set-theoretic approach or [21]
for the graph coloring application. However, in some conditions [39], the distance can be
determined in O(|V |) time with a special method.

Basically, the distance is calculated with the formula d(Ca, Cb) = |V | − s(Ca, Cb),
where s is a measure of similarity defined as follows. Using the definitions from Section 2,
s(Ca, Cb) is maxσ∈Π

∑

1≤i≤k Mi,σ(i), where Π is the set of all bijections from {1, 2, . . . k} to

{1, 2, . . . k} and M is a matrix with elements Mij = |Ci
a ∩Cj

b | [21,23]. This similarity can
be calculated by solving an assignment problem with the Hungarian algorithm. However,
we applied the complete Hungarian algorithm only very rarely (less than 5% of all cases)
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because the calculation can be simplified by taking into account some problem particu-
larities. Matrix M has at most |V | non-zero elements and, as also stated in [23, §2], they
can be filled in O(|V |) with the appropriate data structure. Indeed, the non-zero elements
of M are situated at positions MCa(x),Cb(x) (with x ∈ V ) and our algorithm works only
with these elements. Furthermore, we do not require here a precise distance value but
we only have to decide if d(Ca, Cb) > R—i.e. s(Ca, Cb) < |V | − R. Since s(Ca, Cb) is
always less than s′(Ca, Cb) =

∑

1≤i≤k maxj Mij (because Mi,σ(i) ≤ maxj Mij,∀σ ∈ Π), in
many cases it was enough to check s′(Ca, Cb) < |V | − R to decide s(Ca, Cb) < |V | − R.
All maximums maxj Mij can be identified by going through the non-zero elements of M ,
and so, s′(Ca, Cb) can be computed in O(|V |). More conditions in which the problem can
be solved in O(|V |) are available in [39].

As such, a distance computation requires (in average) approximately the same com-
putation time as a TS iteration. The next section describes a method to keep the number
of iterations and the number of distance computations in the same order of magnitude
during long TS-Div executions. Thus, our distance computation procedure guarantees
that the slowdown introduced by the learning component stays in acceptable limits.

4.3 Running time of TS-Div

The most critical issue of TS-Div concerns its running speed, more exactly the slowdown
introduced by the distance computations of the learning component. Our objective is to
keep the time spent on distance computations in the same order of magnitude as the time
spent on the exploring component. The most numerous distances are computed when
TS-Div needs to check the distance from the current coloring to all colorings from the
archive—see Algorithm 2, the Already-Visited procedure (Forall Loop in Step 1).

However, the archive processing time can be controlled if we focus the learning compo-
nent only on the deep layers of search space, i.e. on the high quality configurations (with
maximum Bf conflicts, see Definition 5). The fitness boundary Bf is automatically set
by TS-Div in order to control the learning process overhead. More exactly, Bf directly
controls the number of distance computations because, the whole learning component
(Step 4.(b)) is now executed only if f(C) < Bf .

In all our experiments, TS-Div always sets Bf to a value so as to keep the number of
distance computations in the same order of magnitude as the number of iterations. This
proved to be a good ”thumb rule” for obtaining an acceptable slowdown. In practice, we
observed that Bf varies from 5 conflicts to 20 conflicts. The number of distance compu-
tations can be further reduced in many ways. For example, the distance computation in
Step 4.(b) is not always needed: if d(Cp, C) < R, then TS needs at least R − d(Cp, C)
moves to get out of the sphere of Cp. As such, after each distance calculation in this step,
TS-Div can safely skip it for the next R − d(Cp, C) iterations.

5 TS-Int—A tree traversal of the search space

A typical issue of classical local search algorithms can be described as follows: the search
process arrives in a local minimum situated in the sphere of a solution, and it needs to
choose the next moves. In the fortunate case, the search process chooses moves on the
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Algorithm 3 Pseudocode TS-Int
Input: the starting configuration Cs
Return value: the best configuration ever visited
Q = Cs

While Q is not empty

1. Cs =FRONT(Q)

2. Launch TS starting from Cs

• Stop TS at the first high quality coloring C such that d(C, Cs) > 10%|V |

– If d(C, Ci) > 10%|V | forall Ci ∈ Q

∗ PUSH(C,Q) (insert it at the correct position as Q is sorted)

• Stop TS if it gets too far from Cs

3. If a stopping condition is met (i.e. enough processes launched from Cs)

• POP(Q)

direction of the solution and, thus, the solution is soon discovered. But, there might exist
millions of possible moves to escape from the local minimum; most of them might lead
to different directions and the algorithm makes no distinction between them. Moreover,
especially for TS-Div, if it chooses a move on a different direction and gets out of the
sphere, it may never return again to it. To cope with this issue, TS–Int is introduced to
methodically explore the proximity of a given starting coloring Cs.

First, TS-Int investigates the sphere S(Cs) by launching from Cs a number of TS
processes that explore only the proximity of Cs. The configurations discovered at the
end of these processes constitute new starting points for the next exploration stages of
TS-Int. All these new discovered starting points are kept ordered in a sorted queue Q
(by their quality) and TS-Int processes them one by one (we say it performs a sphere
exploration stage for each starting point). At each exploration stage, TS-Int takes the
first configuration Cs in Q and launches a number of TS processes from Cs. Each such
process is stopped if it finds a configuration C such that C /∈ S(Cs) and C is high quality
(i.e. f(C) ≤ Bf , where Bf takes the value typically set by TS-Div, see Definition 5).

Figure 3: MDS representation (stress 0.05) of a TS-Int evolution for (le450.25,25). All
points represent R-distanced 1-conflict colorings. They were discovered in the order of
their numbers: 1 is the starting point, configurations 2, 3, . . . , 7 are discovered by the TS
processes launched from point 1, etc.
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When this condition is verified, we say that a new high quality configuration is dis-
covered and, if there is no close configuration already in Q (i.e. if there is no Ci ∈ Q
such that d(C,Ci) ≤ 10%|V |), C is inserted into Q. We note that a TS process can also
be stopped when it arrives too far from the center (i.e. if d(C,Cs) > 20%|V |) without
finding any high quality solution. After performing enough runs from one starting point,
TS-Int takes the next configuration in Q and repeats (see Algorithm 3).

We can say that TS–Int organizes the search space in spheres that are processed in
a methodical tree-traversal manner. Cs is the root of the tree and its edges link it to all
new sphere centers discovered by TS processes started from Cs—recall that all sphere
centers in Q are pairwise R-distanced. Similarly, each new discovered sphere center Cc

constitutes a new tree vertex linked to the configuration from which Cc was reached.
The degree of Cs corresponds to the number of pairwise R-distanced new sphere centers
reached from Cs. Basically, TS-Int launches TS processes from Cs as long as there are
chances to discover new configurations, R-distanced from all other configurations in Q.

Figure 3 illustrates a simplified TS-execution. Here, the solution, situated at distance
23%|V | from the root vertex 1, is reached after an exploration of depth 3 (i.e. the
tree on Figure 3 expanded on three levels). From experiments, the average degree of
this exploration tree for this instance is actually 20. Consequently, the solution can be
obtained by TS-Int after visiting at most 203 = 8000 vertices. Indeed, we experimentally
remarked that TS-Int always finds the solution in 10 runs out of 10 if it starts from a
point within a distance of 1

4
|V | from the solution (see more discussions in Section 6.3.2).

6 Results and Discussions

In this section, we present empirical results and discussions regarding both the search
space structure and the two new algorithms. While TS-Div is a classical ”stand-alone”
algorithm, TS-Int is a second stage algorithm that can be used only to improve some
existing configurations (typically provided by TS-Div).

6.1 Experimental procedures

First, we need to point out that TS-Div is equivalent to TS in the beginning of the
exploration, while the archive is almost empty. The learning component intervenes in the
exploration process only after a number of iterations, as soon as the exploration process
stagnates. As such, if the basic TS can quickly find a solution, TS-Div does not find it
more rapidly. The objective of TS-Div is visible in the long run, i.e. it only helps TS on
the difficult instances where the basic TS fails.

To effectively test TS-Div, we perform 10 independent executions, each with a time
limit of 50 hours. Within this time limit, TS-Div re-initializes its search with a random
k-coloring each time it reaches 40 million iterations. Those restarts of TS-Div share the
same archive of spheres. The statistics of the results are based on these 10 independent
executions. Similarly, TS-Int is tested in the same experimental conditions, i.e. using 10
independent executions, each with a time limit of 50 hours. In Section 6.3.1, we will give
some comments on the issue of running time with respect to the common practice of the
literature.
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Instance TS-Div Algorithm
Graph χ, k∗ k successes

executions
Iterations [×106] Time [hours]

dscj250.5 ?,28 28 10/10 4 < 1
dsjc500.1 ?,12 12 10/10 42 < 1
dsjc500.5 ?,48 48 2/10 7409 35
dsjc500.9 ?,126 126 10/10 473 2
dsjc1000.1 ?,20 20 2/10 2200 9
dsjc1000.5 ?,83 87 5/10 2464 28
dsjc1000.9 ?,224 224 8/10 1630 24
flat300 28 0 28,28 29 7/10 1186 8
flat1000 76 0 76,82 86 3/10 3020 33
le450 25c 25,25 25 4/10 765 11
le450 25d 25,25 25 2/10 1180 19
r1000.1c ?,98 98 10/10 47 < 1

Table 1: The results of TS-Div for a time limit of 50 hours. Columns 1, 2 and 3 denote
the instance, the success rate (Column 4) is the number of successful executions out of
10; Column 5 and 6 show the average number of iterations and the average time needed
to find a solution.

Regarding TS-Int, recall that it requires an input configuration Cs from which TS-Int
starts searching for a solution (only a proximity of Cs is explored). As such, the success-
fulness of TS-Int depends entirely on the distance from Cs to the solution. Typically,
if TS-Div fails on an instance, our procedure collects the best colorings ever visited and
tries to improve them with TS-Int. We usually filter these colorings so as to keep only
completely different colorings as starting points for TS-Int; we present the results on the
best input colorings.

6.2 Numerical results

Table 1 reports the detailed results of TS-Div for several difficult instances (G, k)—
especially those not easily solved by the basic TS. Columns 1–3 describe the instance, i.e.
Column 1 is the graph, Column 2 shows χ (the chromatic number, or ”?” if unknown)
and k∗ (the best known k); Column 3 denotes the k for which we apply our algorithm.
Columns 4–6 present the results of the algorithm, i.e. the success rate (the number of
executions that solve the problem in 50 hours or less) in Column 4, the average number of
iterations and the average time required to find a solution in Column 5 and 6, respectively.

Table 2 presents the results of TS-Int on several starting configurations whose prox-
imity is explored. Columns 1–3 have the same meaning as for Table 1, Column 4 shows
the amplitude of the improvement (the number of conflicts of the start and the end—or
best visited—configuration), Column 5 presents the success rate of achieving this im-
provement and Columns 6 and 7 denote the average computing effort (in iterations and
in CPU hours, respectively).

TS-Int can find the solution with 100% success rate (see Column 5 of Table 2) when
it starts from an appropriate coloring (i.e. not too far from a solution, see also Section
Section 6.3.2). Remarkably, it finds a new legal coloring with 223 colors for the large graph
dsjc1000.9. While TS-Div assures diversification, TS-Int is an intensification algorithm
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Instance Improvement Success rate Iterations [×106] Time [hours]
G χ, k∗ k fstart −→ fend

successes
runs

dsjc1000.1 ?, 20 20 1 → 0 10/10 3774 12
dsjc1000.5 ?, 83 86 2 → 0 10/10 623 19

85 80∗(k+1) → 0 2/10 1453 39
dsjc1000.9 ?, 223 223 1 → 0 10/10 23 4
le450.25c 25, 25 25 1 → 0 10/10 3410 10
le450.25d 25, 25 25 1 → 0 10/10 6466 25
flat300.28 28, 28 28 150∗(k+2) → 0 10/10 < 1 < 1
flat1000.76 76, 83 85 74∗(k+1) → 0 10/10 1655 36

Table 2: Instances for which colorings are improved by TS-Int using a time limit of 50
hours. The input colorings are typically provided by TS-Div; however, the cells marked
∗ indicate that TS-Int finds a legal k-coloring only starting from a legal (k + 1) or (k +
2)−coloring.

that can be systematically executed after TS-Div in order to (try to) improve its best
colorings.

6.3 Discussion

6.3.1 Running time of TS-Div and TS-Int

In our experimentations, TS-Div and TS-Int were allowed to run 50 hours per execution
for a given coloring instance. We see that within this maximum time, TS-Div and TS-Int
are able to reach very competitive results for the set of difficult graphs. Moreover, not
all solutions required the maximum 50 hours computation time.

Let us mention that in the literature on graph coloring, it is a common practice to
run a coloring algorithm several hours to several days to (try to) solve a hard coloring
instance. For example, some of the most recent coloring algorithms [3, 27] use running
times of 10 hours for the largest instances. Now if we compare the number of iterations,
the values required by TS-Div are even more comparable with respect to other local
search algorithms. Indeed, the maximum iterations of TS-Div are in the order of billions
(between 109 and 8× 109) while the best local searches in the literature report the same
order of magnitude (e.g. 2 × 109 iterations [3, Table 6] or 3 × 109 [27, Table 5]).

Now let us insist on a more important point of TS-Div concerning the running time.
One understands that, by its very nature, TS-Div will continually explore new regions
if it is given more computation time. Consequently, TS-Div will be able to find new or
better solutions with the additional computation resources.

Notice that this is a desirable characteristic which is not verified by many existing
algorithms. Very often, running them beyond some time (or iteration) threshold will
not lead to better results simply because either the algorithms are trapped in deep local
optima or because they re-explore again and again the same regions. TS-Div provides
a simple, yet effective solution to this delicate issue because it is forced to discover new
spheres at all stages of its execution. The same comment applies to TS-Int for which more
computation time means more intensified exploitation of more spheres. Consequently,
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better results can naturally be expected.

6.3.2 TS-Int—finding the global optimum from an approximate location

TS-Int can be quite useful even in combination with other algorithms, especially when
one could provide (by any means) an approximate location of the solution. In our main
experimentation procedure, we consider that the configurations with lower conflict num-
bers have more chances to be close to a solution; thus, TS-Int always processes the
spheres in the order of their conflict number. However, another possible ”guess” of the
solution location is obtained by considering that a legal k-coloring might be close to a
legal (k + 1)-coloring or even to a (k + 2)-coloring.

This assumption worked perfectly well for the flat300.28 graph for which TS-Int finds
a legal coloring with χ = 28 colors starting from a legal coloring with χ + 2 colors (the
colors greater than χ are replaced with color 1). The graphs in this family are generated
by adding edges only between the χ independent sets of an initial χ−partition of V [12].
A large proportion of the 30 classes of the legal 30-coloring are very close to some of the
initial 28 independent sets and, thus, TS-Int can easily reconstruct the rest of the coloring;
the distance between the legal 30-coloring and the legal 28-coloring is only 7%|V |.

We experimentally observed that, if we provide a starting point within 1
4
|V | distance

from a solution, TS-Int finds the solution with a 100% success rate. These facts were
observed on several graphs and for different initial colorings within 1

4
|V | distance from a

known solution. Searching a solution within 1
4
|V | = 25%|V | distance (around the start

configuration) typically requires a complete exploration of a tree on 3 levels because each
edge corresponds to a distance of 10%|V | in the search space. The number of levels that
can be processed in a certain time limit depends on the exploration speed and on the
average tree degree. Since TS-Int is also highly amenable to parallelization, one could
speed up the algorithm by an order of magnitude by launching all processes from Cs in
parallel. The required 1

4
|V | precision of the solution location could thus be extended to

40%|V | and even |V |
2

if sufficient computation time is allowed.

6.3.3 Search space structure specificities for each graph family

We observed that, even if the number of legal k-colorings is always small (for a difficult
problem), the number of 1-conflict colorings can greatly vary. In the random graph case,
before discovering a legal coloring, TS usually visits between 3 and 20 1-conflict colorings.
For the flat300.28 flat graph, TS-Div always directly descends to the legal 30-coloring
from a coloring with 4 or 5 conflicts; as such, it can discover a solution even without
visiting any 1-conflict coloring at all. At the other extreme, for the Leighton graphs we
found more than 1 million 1-conflict colorings for several 0-conflict colorings (this is why
it seems easier to solve this problem by first finding a 1-conflict coloring with TS-Div and
by applying TS-Int on it).

The explanation of these landscape differences lays in the structure of the graph to
be colored. The Leighton graphs have a built-in 25-vertex clique [33], and numerous 1-
conflict colorings might share a common conflict on this clique while being very different
outside it. They form very large plateaus in which it is difficult to find the coloring that
correctly colors the 25 vertices of the clique. This is also confirmed by the search space
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analysis: the distances between the clusters of 1-conflict colorings (sequentially visited
by TS, see Figure 2, Section 3) are significantly smaller than for the other cases.

The flat graphs are constructed from a χ-partition of V such that a legal coloring has
to assign a different color to each set of vertices from the initial partition. Any 1-conflict
coloring has already identified much of this partition and the transition to the solution
is trivial; the descent to the solution is always very steep. For the random graphs, the
numbers of 1-conflict and 0-conflict configurations visited by TS-Div differs by an order
of magnitude.

7 Conclusions

We have performed an empirical space search analysis that shows that the local minima
of the coloring problem are grouped in clusters covered by spheres of 1

10
|V | diameter.

We have devised a fast method to record the spheres of local minima visited by a local
search process. The TS-Div algorithm records its exploration path (only by recording
the spheres) and uses an additional learning process to discourage it from returning
to already-explored spheres. Moreover, the TS-Div algorithm does not introduce any
auxiliary user-provided parameters.

Graph χ, k∗ Div/Int VSS PCol ACol MOR GH MMT
[27] [3] [19] [37] [17] [36]

2008 2008 2008 1993 1999 2008

dsjc250.5 ?, 28 28 − − 28 28 28 28
dsjc500.1 ?, 12 12 12 12 12 12 − 12
dsjc500.5 ?, 48 48 48 49 48 49 48 48
dsjc500.9 ?, 126 126 127 126 126 126 − 127
dsjc1000.1 ?, 20 20 20 20 20 21 20 20
dsjc1000.5 ?, 83 85 87 88 84 88 83 83
dsjc1000.9 ?, 224 223 224 225 224 226 224 225
le450.25c 25, 25 25 26 25 26 25 26 25
le450.25d 25, 25 25 26 25 26 25 26 25
flat300.28 28, 32 28 28 28 31 31 31 31
flat1000.76 76, 82 85 86 87 84 89 83 82

r1000.1c ?, 98 98 − 98 − 98 − 98

Table 3: Comparison between TS–Div/TS–Int and the best results of the state-of-the art
algorithms. All the reported colorings are available on the Internet for further research
use: www.info.univ-angers.fr/pub/porumbel/graphs/tsdivint/

The main objective of TS-Div is the global diversification of the search process: unlike
the basic TS, TS-Div does not risk redundant explorations in the long run. As such, TS-
Div is much more effective than the basic TS and it competes well even with the best
algorithms from the literature. The search capacity of TS-Div is reinforced by TS-Int,
which is an intensification-oriented algorithm used to better explore the proximity of the
most promising configurations. It is able to systematically find a solution if the solution
is situated within a certain distance from the starting configuration. TS-Int organizes the
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search space as a tree of connected spheres and applies a classical tree traversal algorithm
to methodically explore all spheres one by one.

To summarize, we devised a pair of algorithms that assures both the diversification
and the intensification tasks by guiding underlying search processes. Table 3 presents
a comparison between the best results obtained in this study and the best results from
the literature. Four papers in this table are very recent (year 2008) as we took into
account only the best algorithms; moreover, some of these cited papers present in fact
more than one algorithm version—but Table 3 shows the best k reported by any version.
The population-based heuristics (last four columns) are traditionally the most effective
and, on some instances, they all find better results than all local searches. However, our
method is also very effective comparing with all state-of-the-art algorithms and it even
finds a new legal coloring for a very hard DIMACS instance (dsjc1000.9).

The principles behind TS-Int and TS-Div can be applied to any combinatorial opti-
mization problem because they are both extensions of the Tabu Search algorithm. The
necessary condition to achieve this is to find a search space distance measure that: (i)
has low computation complexity (comparing to a TS iteration) and (ii) is in accordance
with the proximity from the perspective of the TS process (i.e. the distance should be
equivalent to the number of TS steps between configurations).
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