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Abstract

We present a diversity-oriented hybrid evolutionary approach for the graph col-
oring problem. This approach is based on both generally applicable strategies and
specifically tailored techniques. Particular attention is paid to ensuring popula-
tion diversity by carefully controlling spacing among individuals. Using a distance
measure between potential solutions, the general population management strategy
decides whether an offspring should be accepted in the population, which individ-
ual needs to be replaced and when mutation is applied. Furthermore, we introduce
a special grouping-based multi-parent crossover operator which relies on several
relevant features to identify meaningful building blocks for offspring construction.
The proposed approach can be generally characterized as “well-informed”, in the
sense that the design of each component is based on the most pertinent informa-
tion which is identified by both experimental observation and careful analysis of
the given problem. The resulting algorithm proves to be highly competitive when
it is applied on the whole set of the DIMACS benchmark graphs.

Keywords : Graph coloring, diversity control, population management, multi-parent crossover,
memetic and hybrid algorithm.

1 Introduction

The graph coloring problem was one of the first problems proved to be NP-complete at
the beginning of computational complexity studies [27]. In practical terms, graph coloring
has widespread applications in areas such as timetabling, scheduling, register allocation
in compilers, frequency assignment in cellular networks, and many others—see also the
introduction of [30] or [2]. The first coloring algorithms date back to the 1960s [6,43] and,
since then, important progress has been made. Nowadays, the literature contains a great
number of heuristic algorithms that belong to three main solution approaches: sequential
construction (very fast methods but not particularly efficient), local search heuristics
(tabu search [2, 11, 13, 15, 24, 35], simulated annealing [3, 25], iterated local search [4, 5],
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variable neighborhood search [1,23,41]) and population-based methods [10,13,15,17,28,
30]. A comprehensive survey of the main methods can be found in [16,32].

From an experimental point of view, the second DIMACS Implementation chal-
lenge [26] introduced a set of graphs that become a standard benchmark for graph color-
ing. The best results are achieved by some highly refined local search and, more often, by
hybrid evolutionary algorithms. Indeed, evolutionary search represents the most promi-
nent and powerful approach, and so, we take it as our starting point and develop new
strategies that go beyond the state of the art. To this end, we present new methods to
address two fundamental issues governing the performance of evolutionary algorithms in
general: population diversity management and crossover operator design.

A long-acknowledged challenge in evolutionary computing concerns the population
diversity, which is particularly critical when small size populations are used. We intro-
duce a distance measure in the search space and we show how to use it to permanently
ensure a healthy spacing among individuals. In addition to imposing a minimum distance
between any two individuals, this distance-based population management also ensures a
high general dispersion (see Section 4). This strategy helps the algorithm to avoid prema-
ture convergence, while not sacrificing population quality. Additionally, our population
management also reduces another important risk specific for small populations, i.e. the
risk of failing to adequately cover the search space [37].

Another key aspect in evolutionary algorithms is to design a dedicated crossover that
is meaningful for the given problem, i.e. that promotes good features (genes, groups) via
inheritance and disrupt the bad ones [36]. For graph coloring, it is essential to view a
coloring as a partition of the vertex set into a set of non-overlapping color classes [11,
15]. Indeed, most effective recombination schemes for graph coloring use color classes as
building blocks and assemble different classes from parent colorings to build offspring [11,
15, 17, 22, 28, 30, 31]. In fact, this is in accordance with the principle of grouping genetic
algorithms in which promising groups (or classes) are transferred from parents to offspring
by inheritance [12]. An essential issue is then to correctly choose the most appropriate
classes to be used for offspring construction. We introduce a refined class scoring measure
determining the classes to be passed to offspring (see Section 3).

Along the paper, we also take care in determining and exploiting relevant information
that can make each component of the algorithm “well-informed” and “well-founded”.
This concerns not only the design of the multi-parent crossover operator, but also the
optimal number of parents (see Section 3.2), the optimal threshold of minimum spacing
(see Section 4.3.1) imposed by the population management (see Section 4), and the
moment to trigger an application of the mutation operator (see Section 4.3.2).

The resulting algorithm, hereafter called Evo–Div, proves to be highly competitive on
the whole set of the DIMACS benchmark graphs. Indeed, Evo–Div is able to consistently
match most of the best-known upper bounds and also to find a new solution for the
largest DIMACS graph (see Section 5.2). The impact of each of the major components
or techniques of the Evo–Div algorithm is also assessed (Section 5.3).
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2 Hybrid Evolutionary Algorithm Design

The graph coloring problem has a very simple formulation: label the vertices of a graph
with the minimum number of colors (the chromatic number) such that no two adjacent
vertices share the same color. Graph k-coloring is a closely related problem: given a
connected graph G(V,E) and k different colors represented by numbers {1, 2, . . . , k},
determine whether or not there is a k-coloring (a coloring using k colors) without conflicts,
i.e. without edges with both ends of the same color. Such a conflict-free coloring is called
a legal k-coloring; if there is at least one conflict, the coloring is illegal or conflicting.

A possible approach to the graph coloring (optimization) problem consists of solving
it through a series of k-coloring decision problems. In this context, one starts with a
sufficiently large k (e.g. k = |V |) and iteratively decrements k each time a legal k-
coloring is found. This process stops when the algorithm can no longer find k-colorings
without conflicts. Following this approach, we consider for each fixed k the associated
k-coloring decision problem and we solve it as an optimization problem (see below).

2.1 Basic Algorithm Components

Encoding and search space For a given k-coloring instance defined by G and k,
an individual I (chromosome) corresponds to a (legal or illegal) k-coloring which is a
partition of V into k disjoint groups or color classes {I1, I2, . . . , Ik} such that each Ic

(c ∈ {1, 2, . . . , k}) contains all the vertices that are colored with color c. The search space
Ω comprises all these possible k-colorings.

Notice that this group (class) oriented representation is particularly useful to avoid
symmetry issues that arise if a k-coloring is encoded as an array of colors—i.e. more
chromosomes can encode the same coloring. In addition, this class-based encoding con-
stitutes the basis for designing a dedicated coloring crossover operator (see Section 3)
and for defining a meaningful distance between colorings (see Section 4.2).

Fitness function Given an individual I (k-coloring), we call conflict (or conflicting
edge) any edge having both ends in the same color class. The set of conflicts induced by
I is denoted by Cfl(I); any vertex v ∈ V , for which there exists an edge {v, u} in Cfl(I)
is a conflicting vertex. Then the fitness function f(I) counts the number of conflicts of
I, also referred to as the conflict number of I. Consequently, I is a legal (conflict-free)
coloring or a solution if and only if f(I)=0.

Crossover Our crossover operator is specially designed for the k-coloring problem and
aims to inherit good features (genes) from n parents (n ≥ 2) to the offspring. Essentially,
the crossover operator selects the “best” color classes from n parents and assembles them
in the offspring solution. The color classes are seen as the “building blocks” of the inher-
itance process; the quality of each candidate color class is assessed by a “well-informed”
scoring procedure that ensures that the most meaningful information is transferred to
offspring (see Section 3).

Mutation The purpose of mutation in our Evo–Div algorithm is to diversify the search.
To apply a mutation, one basically moves some vertices from their initial color classes to
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new classes according to a greedy procedure (see Section 4.3.2). The number of affected
vertices is set according to the “needs” of our Evo–Div algorithm. While the mutation
operator itself is quite straightforward, it is more important to make the evolutionary
process “recognize” the most appropriate moments when mutations should be used. This
issue is discussed in Section 4.3.2 about the reactive population dispersion.

Population Spacing Management Population spacing management is one of the
key features of our Evo–Div algorithm. Its goal is to maintain a healthy diversity of
the population all along the search process and to avoid premature convergence. As
discussed in detail in Section 4, this is achieved by controlling the spacing with a rejection
procedure (Section 4.3) and with a replacement operator (Section 4.4). A minimum
spacing threshold is determined by observing the clustering of high-quality individuals
(Section 4.3.1). One notices that our population spacing strategy is generally-applicable
whenever a problem-specific distance is available.

2.2 Evolutionary Algorithm Template

The skeleton of Evo–Div (see Algorithm 1) shares certain ideas with previous similar
hybrid or memetic algorithms [7, 10, 13, 15, 17, 28, 30, 34], but it also brings new features:
strategies to control population spacing, new ways of using mutation, and well-informed
crossover operator with multiple parents. In this section, we show the general Evo–Div
procedure; its most important ingredients are detailed in the following sections.

Evo–Div begins with an initial population Pop of random individuals. For each gen-
eration, it selects randomly and uniformly n parents (RandomParents) whose color
classes are recombined with a dedicated crossover operator (WIPX-Crossover) to gen-
erate an offspring O. This offspring is improved by the local search procedure. In order
to ensure a minimum population diversity, the resulting individual is accepted into the
population only if it fits the spacing criterion (acceptOffspring). Mutations are
triggered only when the natural reproduction process can no longer produce sufficiently-
spaced individuals through a number of tries (i.e. maxRejects). Evo–Div stops when
it finds a legal coloring or reaches a predefined time limit (Stopping-Condition).

In addition to offspring rejection (acceptOffspring) and mutations (Mutation),
Evo–Div also assures diversity by carefully choosing the individuals IR that are eliminated
from the population (ReplacedIndiv). Since the “survival of the fittest” selection
pressure is only on the replacement operator, routine ReplacedIndiv becomes essential
for both diversity and quality. To complete the algorithm description, the rest of the
paper describes in detail the key black-box components from Algorithm 1: see Section 4
for the population management routines and Section 3 for the crossover operator. The
local search procedure LocalSearch is independent of the evolutionary scheme and it
is described below.

2.3 Local Search

The LocalSearch routine implements an improved version of Tabucol [24], a classical
tabu search [19] algorithm for graph coloring. Numerous variants of Tabucol can be
found in the literature, the reader can refer to [16] for a comprehensive survey. Our tabu
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Algorithm 1 Evo–Div: Evolutionary Hybrid Algorithm with Diversity Strategy

Input: a graph G = (V,E) and a positive integer k
Result: the best fitness value ever reached

1. Initialize (randomly) parent population Pop = {I1, I2, . . . , I|Pop|}
2. While Stopping-Condition is not met Do

A. rejections= 0
B. Repeat

1. (I1, I2, . . . , In)=RandomParents(Pop, n) /* n ≥ 2 */
2. O =WIPX-Crossover(I1, I2, . . . In)
3. If rejections≥maxRejects
a. O =Mutation(O)

4. O =LocalSearch(O,maxIter)
5. rejections=rejections+1

Until AcceptOffspring(Pop,O)
C. IR = ReplacedIndiv(Pop)
D. Pop = Pop− {IR}+ {O}

search algorithm is characterized by a refined tabu list management and a new evaluation
function.

Moves and tabu tenure management Basically, the local search algorithm itera-
tively moves from one coloring to another by modifying the color of a conflicting ver-
tex until either a legal coloring is found, or a predefined number of iterations (i.e.
maxIter = 100000) is reached. Each performed move (i.e. each new color assignment) is
marked tabu for a number of iterations, i.e. the tabu list length T`. Hence, Tabucol can
not re-execute a move that has already been performed during the last T` iterations.

The most important particularities of our tabu search algorithm are related to the
tabu list inspired by [15] and to the introduction of a new evaluation function. More

precisely, T` = α · f(I) + random(A) +
⌊

L
Lmax

⌋
, where α is a value in [0, 1], random(A)

is a function giving a random value in {1, 2 . . . , A}, and L is the number of the last
consecutive moves that kept the number of conflicts constant. The last term is a reactive
component only introduced to increment T` after each series of Lmax iterations with no
fitness variation. This situation typically appears when the search process is completely
blocked looping on a plateau; a longer tabu list can more easily trigger the search process
diversification that is needed in this case [2]. Notice that our algorithm finally returns a
random local optimum from all visited local optima having the best quality.

Well-informed evaluation function At each iteration, the tabu search algorithm
has to choose a non-tabu move that leads to a coloring with the minimum number of
conflicts. If there are several possible choices, the traditional approach breaks ties by
making a random choice. However, we observed that it is possible to use additional
information to differentiate between colorings with the same conflict number. For this
purpose, we introduce the following evaluation function f̃eval:
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f̃eval(I) =
∑

{u,v}∈Cfl(I)

(
1− 1

2|E|δu
− 1

2|E|δv

)
,

where δ denotes the vertex degree (that is non-zero, recall G is connected) and Cfl(I)

is the set of conflicting edges (see Section 2.1). f̃eval(I) can also be written as f(I) −
1

2|E|
∑
{u,v}∈Cfl(I)(

1
δu

+ 1
δv

), and, using f(I) = |Cfl(I)| =
∑
{u,v}∈Cfl(I) 1, one can check that

f(I)− 1 < f̃eval(I) ≤ f(I). Using this function, the algorithm continues to choose moves
leading to the best conflict number, but the random choice is based on this function,
i.e. the lower the f̃eval value of a coloring, the more chances it has to be chosen as the
next coloring. Furthermore, f̃eval does not introduce a significant computational overhead
because it is also computed as a sum of weights of the edges in conflict—the weight of

each edge {u, v} is
(

1− 1
2|E|δu −

1
2|E|δv

)
.

The basic principle behind this evaluation function is that an edge in conflict is more
difficult to solve if the end vertices have higher degrees [30, 34]. If the algorithm has to
choose between two 1-conflict colorings, it prefers the one with a more isolated edge in
conflict, i.e. with the two conflicting vertices of lower degree, involving fewer constraints.
This principle is also used in other components of the algorithm; for example, in the
recombination operator we exploit such information about the degrees so as to better
distinguish color classes. In Section 5.3, we will show that this principle is useful for
certain graphs with a very high degree variation.

3 Well-Informed Partition Crossover (WIPX)

3.1 Rationale and Crossover Procedure

As defined in Section 2.1, a k-coloring is a partition of the vertex set of the graph. This
partition interpretation of a k-coloring appears to be very useful for crossover design on
this problem. A similar approach can in fact be employed for any grouping problem [12],
as, for instance, bin packing and graph partitioning. In this context, the recombination
consists of selecting pertinent color classes (groups) from the parents and then assembling
them for constructing the offspring. The goal is to make the offspring inherit the best
k color classes, i.e. those that bring the highest contribution on quality. For example, if
one can select k conflict-free classes (independent sets) that cover V , then one can use
them to construct a legal coloring. Unfortunately, such an extremely favorable situation
does not usually occur. Consequently, an essential question needs to be addressed here:
how to select the best k color classes from parents. Furthermore, instead of considering
exactly two parents, we use a generalized framework that determines the appropriate
number of parents for each instance.

In order to establish a meaningful class ranking, our first concern is to design a well-
informed scoring function for classes. We propose to use three assessment criteria for
this function: (i) the number of conflicts inside the class (conflicts); (ii) the number
of vertices in the class (classSize); and (iii) the sum of the degrees of the class vertices
(degreeCls). With these notations, the class scoring function can be formally written
as conflicts− 1

|V |(classSize + degreeCls
|E|×|V | ) (see Step 2.A.5 of Algorithm 2), and we
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Algorithm 2 The Well Informed Partition crossover WIPX

Input: parents I1, I2, . . . , In
Result: offspring O

1. O =empty, i.e. start with no vertex color assigned

2. For currentColor= 1 To k

A. Foreach parent Ii ∈ {I1, I2, . . . , In}
Foreach color class Ici in Ii
1. Remove from Ici all vertices already colored in O

2. conflicts = |{(v1, v2) ∈ Ici × Ici : (v1, v2) ∈ E}|
3. classSize = |Ici |
4. degreeCls =

∑
v∈Ic

i

δv /*δv=degree of v*/

5. score[Ici ] = conflicts− 1
|V |(classSize + degreeCls

|E|×|V | )

B. Set (i∗, c∗) = arg min
(i,c)

score[Ici ]

C. Foreach v ∈ Ic∗i∗
O[v] =currentColor

3. Foreach unassigned v ∈ O
O[v] = k

argue that the best classes are associated with lower values of this function.
The first scoring criterion is essential for the offspring quality and it actually states

that it is preferable to inherit classes with fewer conflicts than classes with more conflicts.
Furthermore, if more classes have the same number of conflicts, they can be differentiated
with the second criterion: a larger class is more valuable than a smaller one (assuming
equal numbers of conflicts). Finally, there are situations where the color class sizes are
quite homogeneous and a third criterion is needed for further discrimination: the sum
of the degrees of the class vertices. The idea behind this third criterion is that a vertex
of lower degree is more isolated and easier to color (see also Section 2.3); therefore, it is
preferable to choose to inherit a colored class with higher degree vertices, leaving easier
vertices uncolored.

Formally, the crossover operator, hereafter called Well-Informed Partition Crossover
(WIPX), is specified in Algorithm 2. It first searches (Steps 2.A and 2.B) in all parents
(n ≥ 2) for the class with the best (minimal) score. After assigning it to the offspring
(Step 2.C), it chooses the next best class and repeats. At each step, all class scores are
calculated by ignoring the vertices that have already received a color in the offspring (see
Step 2.A.1). WIPX stops when k colors classes are assigned; any remaining unassigned
vertex receives color k (Step 3). Experiments show that the crossover operation is much
less computationally expensive than the local search operator.

A potential risk of this crossover is to allow the offspring to inherit most classes
only from one parent, especially if there is a (very fit) parent whose classes “eclipse”
the others. However, the similarity between the offspring and the parents is implicitly
checked afterwards by the diversity control procedure that rejects the offspring if it is too
similar to any existing individual.
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3.2 The Best Inheritable Features and the Number of Parents

An important principle in crossover design for grouping problems like graph coloring is
to conserve “good features” through inheritance, and to disrupt the “bad” ones [12].
Our goal is then to identify what features are “good” and how to promote them in the
inheritance process. Importantly, the number n of parents determines the number of
classes (i.e. n · k) from which WIPX has to select the “best” k classes (see Algorithm
2). It also determines the fragmentation of the class blending (mixture, or epistasis, see
below) from each parent. By using a higher n, fewer classes would be selected from each
parent (i.e. k

n
classes are selected from each parent—on average); and this implies a higher

fragmentation/disruption of the existing class blending from each parent.
The quality of very fit colorings can reside in individual classes (genes) of high quality

(e.g. independent sets), but also in their blending, or mixture. We can say that the
quality can be due to excellent individual genes but also to high epistasis—e.g. productive
interaction between genes. Indeed, certain instances require solutions with numerous very
small classes—e.g. 4 vertices (on average) for an instance with |V | = 1000 and k = 223.
Individual independent sets of this size do not constitute “good features”: quality can
only come from a productive blending of numerous small classes. This situation typically
appears for dense graphs, for which one needs a large number of colors k and the average
class size (i.e. |V |

k
) becomes very low. For small classes, it is better to use two parents so

as to avoid excessive disruption of the existing blending of color classes.
At the other extreme, there are the sparse graphs for which one needs fewer colors and

large class sizes, i.e. 50 vertices (on average) for instances with |V | = 1000 and k = 20.
In this example, the quality of very fit colorings resides rather in large independent
sets (excellent genes) than in their blending. Consequently, it is preferable to use more
parents because: (i) this does not disrupt good features (independent sets), and (ii) a
larger number of input classes for WIPX to choose from (e.g. n · k with n = 4) increases
the probability of selecting and inheriting very good individual classes (for the previous
case with k = 223, 4 × k ≈ 1000 input classes would have been excessive, making the
result too chaotic).

In sum, our generic rule is to use two parents for instances with small classes, three
for instances with average classes, or four for very large classes. To be specific, the rule
employed in Evo–Div is the following one: i) n = 2 if |V |

k
< 5, ii) n = 4 if |V |

k
> 15, and

iii) n = 3 otherwise.

3.3 Related Research

Algorithm 2 provides a general framework for designing recombination in coloring prob-
lems, and, more generally, in grouping or partitioning problems. In fact, by modifying
the class scoring function (step 2.A.5), one can generate other crossovers. For example,
to obtain a version of the Greedy Partition Crossover (GPX) from [15], one basically
needs to score each class with the class size (i.e. score = −classSize in step 2.A.5) and to
set n = 2. The first three crossovers from [31] can also be replicated in this manner. The
recombination from [22] uses a different framework and it is used to construct offspring
only from independent sets. A similar version can be obtained by setting score to ∞ if
the class has conflicts, or to −classSize otherwise. It seems that the idea of constructing
offspring only with independent sets has a positive influence on certain particular graphs;
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see also Section 5.3. The approach in [17] uses a different architecture, taking classes
from a central memory (and not from parents), but the class scoring function is based
on the number of class vertices not yet assigned to offspring. Finally, WIPX differs from
the Adaptive Multi-Parent Crossover (AMPaX) crossover of [28] in two aspects. First,
like GPX of [15], AMPaX scores each class based uniquely on the class size. Second, the
number of parents (ranging from 2 to 6) is determined at random with AMPaX.

In most of these methods, after inserting the k classes in the offspring, certain prob-
lematic vertices usually remain uncolored. To handle these vertices, a random or greedy
procedure is commonly used to eventually assign them a color. However, this operation
has a risk in disturbing good color classes because new conflicts may be introduced. We
prefer to assign to all these problematic vertices the same color k (Step 3), and so, only
the last color class is disturbed with new conflicts. The task of improving this assignment
is thus left to the subsequent local search steps.

Note that there are also other types of crossover operators in the literature, based on
color-oriented coloring encodings [13,31], on unifying pairs of conflict-free sub-classes [10];
additional ideas are available in [31].

4 Maintaining and Creating Population Diversity

4.1 Spacing Among Individuals

Our population diversity strategy has two objectives. The first one is to maintain an ap-
propriate minimum spacing between individuals in order to avoid premature convergence.
However, this is not enough to guarantee that the algorithm is able to create useful diver-
sity, i.e. to continually discover new promising search areas. For this reason, our second
objective is to make the population distribution evolve along time, so as to continually
move from old already-visited areas to new ones. In this manner, even a small population
can cover numerous areas over the time, assuring relevant diversification. Since we deal
with memetic algorithms, the intensified exploitation of each new area is assured by the
local search operator. There are many different means to measure diversity, but in this
study we use a distance-based indicator, that is, the spacing S defined as the average
distance between two individuals. In addition, the minimum spacing Smin refers to the
minimum distance in the population. The two objectives of the spacing strategy can be
formally expressed as follows:

• keep Smin above a specific minimum spacing threshold R;

• maximize the average spacing S.

Basically, the first point is addressed by the offspring rejection procedure (Section 4.3)
and the second by the replacement operator (Section 4.4). They correspond to routines
AcceptOffspring and ReplacedIndiv in Algorithm 1.

4.2 Search Space Distance Measure

As indicated in Section 2.1, a k-coloring is a partition of the set of vertices into k color
classes. To measure the distance between two colorings (partitions), we use the well-
known set-theoretic partition distance (call it d): the minimum number of elements that
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need to be moved between classes of the first partition IA so that it becomes equal to
the second partition IB. More formally, the distance d(IA, IB) is determined using the
formula d(IA, IB) = |V | − s(IA, IB), where s is a similarity function defined as follows.
Using the definitions from Section 2.1, s(Ia, Ib) is defined by maxσ∈Π

∑
1≤i≤kMi,σ(i), where

Π is the set of all permutations of {1, 2, . . . , k} and M is a matrix with elements Mij =
|I iA∩I

j
B| [18,21]. This similarity can be calculated by solving an assignment problem with

the Hungarian algorithm of complexity O(k3) in the worst case. However, in our practical
application, there are very few situations requiring this worst-case time complexity.

The similarity s(IA, IB) denotes the maximum number of elements in IA that do not
need to change their class in order to transform IA into IB. It also reflects a structural
similarity: the better the IA classes can be associated with the IB classes, the higher the
value of s(IA, IB) becomes; in case IA is identical to IB, one obtains s(IA, IB) = |V |. Both
the distance and the similarity take values between 0 and |V | and this is why we usually
report them in terms of percentages of |V |. Importantly, the distance between IA and
IB is equivalent to the minimum number of local search steps (color changes) required to

go from IA to IB. For illustration, if d(IA, IB) = |V |
2

, our tabu search procedure needs at

least |V |
2

steps to go from one coloring to the other.

4.3 Offspring Rejection

Since the first objective of the diversity strategy is to maintain a target minimum spacing
R, we insert an offspring in the population only if its distance to each existing individual
in the population is greater than R. Consequently, if an offspring solution O is situated
at a distance of less than R from an existing individual I, the rejection procedure detects
this issue (routine AcceptOffspring returns false in Algorithm 1) and performs
one of the following actions:

1. if f(O) > f(I), simply reject O (O is not better than I);

2. if f(O) ≤ f(I), replace I with O, see also Section 4.4.1.

In both cases, since O is situated at a distance of less than R from an individual I in
the population, we consider that O is not a satisfactorily diversified offspring. For this
reason, Evo–Div does not pass to the next generation (Algorithm 1 does not pass to the
next iteration of the While loop, rather it just keeps trying the crossover operation in the
inner Repeat-Until loop) until a distanced-enough offspring solution is discovered. If
it is not possible to reach such offspring after a high number of attempts of reproduction
applications (i.e. maxRejects in Algorithm 1), a forced diversification using mutations
is triggered (see Section 4.3.2).

4.3.1 How to fix the minimum spacing threshold R

A delicate issue in the above procedure is to determine a suitable spacing threshold R. Let
us denote by SR(I) the closed sphere of radius R centered at I, i.e. the set of individuals
I ′ ∈ Ω such that d(I, I ′) ≤ R. If I is a high quality individual, an appropriate value of
R should imply that all other high quality individuals from SR(I) share important color
classes with I, i.e. they would bring no new information into the population (or they
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are structurally related to I). We have to determine the “border” value of R such that
all high quality individuals, that are structurally different from I, are situated outside
SR(I).

Since all individuals in the population are local minima obtained with tabu search, we
can determine R by investigating the trajectory of this local search algorithm. Previous
research has shown evidence that the local optima visited by tabu search are distributed
in distant groups of close points (clusters) that can be confined in spheres of radius
10%|V | [35]. To determine a suitable R value, it is enough to note that any two individuals
situated at a distance of more than 10%|V | are not in the same cluster because (ideally)
they have certain different essential color classes. We presume that this observation holds
on all sequences of colorings visited by tabu search and we set the value of R to 10%|V |.
We say that two individuals distanced by less than 10%|V | are “too close”; otherwise
they are “R-distanced” or “distanced-enough”.

4.3.2 Reactive dispersion via mutations and increased R

Applying mutations Ideally and very often, the diversity among individuals of the
population can be assured only by the natural reproduction process, i.e. through crossover
and local search. One of the principles of our spacing policy is to ensure diversity without
sacrificing quality, and so, Evo–Div applies “artificial” mutations as rarely as possible only
as a last-resort tool. The mutation itself consists of changing the color of a certain number
(mutation strength) of randomly chosen vertices. To be specific, all colors of these vertices
are first erased and new colors are sequentially assigned, using a greedy criterion that
minimizes the number of generated conflicts. The mutation strength is initially fixed
equal to R (i.e. R vertices are perturbed), but, if the offspring solution resulting after
local search is still rejected, the strength is doubled at the next Mutation call (of the
Repeat-Until loop of Algorithm 1). The mutation strength can be gradually increased
(i.e. R, 2R, 3R . . . ) until a sufficiently high strength (at most |V |) enables the local
search to produce a distanced offspring solution.

Recall (Algorithm 1) that the mutation is triggered only after maxRejects tries that
failed to produce offspring solutions distanced-enough from existing individuals. By using
a very high value of maxRejects, Evo–Div ensures a very low overall number of mutations
throughout the search (see Section 5.1.2). However, mutations can become more frequent
in certain special situations where stronger diversification is necessary, i.e. when the search
process is blocked looping on particular search space structures. We next show how to
make an evolutionary search to get out of such stagnation by triggering more mutations.

Detecting stagnation and dispersion mechanism A stagnation example is given
by a stable state of the population in which: (i) the average spacing in the population
is less than 2R (see Section 4.1) and (ii) all individuals have the same fitness value (the
best-ever so far). In this situation, a large part of the population can be confined in a
sphere of radius 2R that contains many R-distanced local optima. This can be due to
some particular search space structures, i.e. numerous plateaus confined in a deep “well”.
To overcome this difficulty, we propose a reactive dispersion mechanism that triggers
numerous mutations in the subsequent generations so as to help the population to leave
this problematic 2R-sphere. This mechanism also resorts to the minimum spacing R

11



that is essential in the diversification/intensification balance. By doubling its value in
this situation, most subsequent offspring solutions from the 2R-sphere will be rejected.
The dispersion mechanism also reduces considerably maxRejects and resets rejections
to 0—as such, much fewer tries of natural offspring birth are allowed, resulting in more
frequent mutations and more diversification.

4.4 Dispersion-Oriented Replacement Strategy

At each generation, an existing individual is chosen by the ReplacedIndiv routine in
Algorithm 1 to release a slot for the offspring solution. While the offspring birth process
is essential for discovering new promising areas to be explored, this replacement is also
very important since it determines search areas to be abandoned.

4.4.1 Direct replacement

However, individual replacement is not carried out uniquely with the ReplacedIndiv
routine. If the offspring solution is not distanced-enough from existing individuals, we
consider that the population distribution is stagnant and Evo–Div does not pass to the
next generation. As detailed in Section 4.3, if O is of better quality than I, and if the
population contains an individual I “too close” to offspring O (i.e. d(I, O) ≤ R), then I is
directly replaced by O. When such direct replacement occurs, the population distribution
does not actually evolve toward new areas, but it rather intensifies the search in the R-
sphere that contains O and I. Since this R-sphere contains two high-quality individuals
reached independently, we consider the R-sphere is promising enough to deserve more
intensification.

This direct replacement can also result in violating the constraints of target minimum
spacing, e.g. if there are I1 and I2 such that d(I1, I2) > R, d(O, I1) < R, and d(O, I2) < R,
directly replacing I1 with O would lead to a minimum spacing of d(O, I2) < R. However,
this is an anomaly that is solved at the next call of ReplacedIndiv. Indeed, this
routine first finds the closest individuals Ia and Ib, and, if d(Ia, Ib) < R, the less fit of
them is eliminated. In this case, out of the three initial close colorings O, I1 and I2, only
one will eventually survive, assuring that a population slot is always set free for offspring
individuals exploring new areas. Consequently, population stagnation is avoided.

4.4.2 Standard replacement

In standard cases where d(Ia, Ib) > R, ∀Ia, Ib ∈ Pop, the main objective of the
ReplacedIndiv routine is to increase the average spacing and, for this, it needs to
get rid of small distances between existing individuals. In addition, it should also respect
the “survival of the fittest” principle. Since the parent selection is uniformly random, the
replacement stage is essential for both spacing and quality.

Generally speaking, the standard elimination procedure (see Algorithm 3 below) se-
lects two very close individuals that are candidates for elimination and only the less fit of
them is eliminated. The first candidate C1 is chosen by a random function using certain
fitness-based guidelines (via the AcceptCandidate function). The second candidate
C2 is chosen by introducing the following spacing criterion: C2 is the closest individual
to C1 respecting the same fitness-based guidelines as C1.
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Algorithm 3 The replacement (elimination) function

Input: population Pop = (I1, I2, . . . , I|Pop|)
Result: the individual to be eliminated

1. Repeat

C1 = RandomIndividual(Pop)

Until AcceptCandidate(C1) (fitness-based acceptance)

2. minDist = maximum possible integer

3. Foreach I ∈ Pop− {C1}
If d(I, C1) <minDist

If AcceptCandidate(I)
• minDist = d(I, C1)
• C2 = I

4. If f(C1) < f(C2)
Return C2

Else

Return C1

The AcceptCandidate function separates the first half of the population from the
second half—with respect to the median fitness value; additionally, the best individuals
are also treated separately. As such, this function always accepts a candidate Ci for
elimination if Ci belongs to the second half, but it accepts Ci only with 50% probability
if Ci belongs to the first half. Only the best individual is fully protected; it can never
become a candidate for elimination—unless there are too many best individuals (more
than half of the population) in which case any individual can be eliminated. As such,
the role of the first half of the population is to permanently keep a sample of the best
individuals ever discovered. The first half of the population stays quite stable compared
to the second half that is a diversity-oriented sub-population, changing very rapidly.
This might recall the principles of scatter search, a population-based heuristic using an
intensification set and a diversification set—see [22] for a graph coloring application.

4.5 Related Research and Ideas

There are many methods to deal with diversity in the literature. However, the idea of
explicit population spacing control using distance measures, seems (to a certain extent)
overlooked in hybrid evolutionary algorithms for combinatorial optimization. Compared
to other studies, a novelty of our approach is that we do not “sacrifice quality for diver-
sity”, and that we insist on ensuring diversity via a “natural” reproduction process, with
as few mutations as possible. Furthermore, we do not only conserve existing diversity,
but we insist on creating new useful diversity.

In memetic algorithms, it is a common strategy to (try to) construct offspring “differ-
ent enough” from its parents. Since local search is used, there is indeed a high risk that
the recombination of two very fit and close parents leads to similar solutions. A policy to
deal with an offspring solution “not different enough” consists of directly applying a mu-
tation on it [39]. Another good idea is to always mate distant parents, or to take care to
generate the offspring solution at equal distances from each parent. For illustration, col-
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oring crossovers in [15,40] impose inheriting a similar number of genes/features from each
parent; other distance-preserving crossovers are quite common for many problems [14].

In diversity-guided or diversity-controlling genetic algorithms one uses an indicator of
overall population diversity to choose the genetic operators and their application proba-
bility [42]. In this research thread, one does not really need a distance measure between
individuals, but only a general diversity indicator. In [42], a measure of statistical dis-
persion is used for this purpose.

Finally, one finds several interesting ideas and connections to other evolutionary com-
puting areas. In the context of multi-objective optimization, the crowding distance (intro-
duced in [9]) is often used for solution ranking. However, the resulting diversity concepts
are quite different as the crowding distance is measured in the objective function space.
In multi-modal continuous optimization, distances are often used in the context of fitness
sharing and crowding selection [8, 20, 29, 33, 38]. Evo–Div does not use fitness sharing,
as it does not change fitness values according to distances. A difference between our ap-
proach and the crowding selection schemes is that our replacement operator is completely
separated from the offspring acceptance phase, i.e. the offspring is not taken into consid-
eration when selecting the replaced individual. Unlike in crowding, Evo–Div does not aim
at forcing offspring solutions to “replace individuals that are similar genomically” [38]

5 Experiments and Results

5.1 Experimental Conditions

5.1.1 The DIMACS benchmark

The complete DIMACS competition benchmark [26] comprises 46 graphs from the follow-
ing families: (i) random graphs dsjcX.Y with X vertices and density Y; (ii) two families
of random geometrical graphs generated by picking points uniformly at random in the
unit square and by joining any 2 points distanced by less than a threshold—dsjrX.Y
and rX.Y, where X = |V | and Y is the threshold (an additional suffix “c” denotes the
complementary graph); (iii) Leighton graphs leX.Y with X=450 vertices and with known
chromatic number Y (they have a clique of size Y); (iv) flat graphs flatX.Y generated
by joining vertices only between kp predefined classes of vertices (X= |V | and Y is the
chromatic number kp); (v) class scheduling graphs (school1, school1.nsh) and a latin
square graph (latin square); (vi) very large random graphs (C2000.5 and C4000.5) with
up to 4 million edges.

For each of the 28 DIMACS graphs in Table 1, the indicated number of colors k∗

represents the best upper bound that we know of. For these graphs, Evo–Div reaches a
legal coloring of value k∗ in a time of seconds or minutes. Numerous other algorithms
can find legal colorings for the same value of k∗. The optimality of k∗ was never proved
(except for Leighton and flat graphs), but we have no information about any solution
with k∗− 1 colors. In what follows, we concentrate only on the remaining 18 graphs (see
Tables 3–6), as most recent coloring papers do.

Notice that there exists a benchmark for comparing the performances of different
computers on coloring instances.1 Our machine reported a user time of 6.37s on r500.5.b.

1Technical details about the benchmark are available at http://mat.gsia.cmu.edu/COLOR03/, see
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G k∗ G k∗ G k∗ G k∗

dsjc125.1 5 r125.1 5 le450.5a 5 flat300.20 20
dsjc125.5 17 r125.5 36 le450.5b 5 flat300.26 26
dsjc125.9 44 r125.1c 46 le450.5c 5 flat1000.50 50
dsjc250.1 8 r250.1 8 le450.5d 5 flat1000.60 60
dsjc250.5 28 r1000.1 20 le450.15a 15 school1 14
dsjc250.9 72 dsjr500.1 12 le450.15b 15 school1.nsh 14

le450.15c 15
le450.15d 15
le450.25a 25
le450.25b 25

Table 1: Easy DIMACS k-coloring instances (i.e. pairs (G, k∗)). Notice that k∗ is the
best known upper bound for G, but not necessarily the optimum.

5.1.2 Parameters

Parameter setting is not particularly difficult for Evo–Div; each parameter can be assigned
an appropriate value only by following explicit theoretical guidelines. By searching a
perfect optimal value for each parameter, one could skew the results slightly more in
Evo–Div’s favor, but not enough to upset our main conclusions. Table 2 summarizes
the main parameters and we recall below certain design considerations that provide all
needed values.

General genetic parameters: (i) population size is |POP |=20 (like most reported
hybrid evolutionary algorithms), (ii) the number of parents n is self-tuned between 2 and
4 (Section 3.2), and (iii) minimum spacing threshold is R = 10%|V | (Section 4.3.1).

Parameters Section Role Values
|Pop| Algo. 1 Population Size 20
n §3.2 Nr. of parents (automatically tuned) 2–4
R §4.3.1 Target minimum spacing 10%|V |
maxIter Algo. 1 Nr. of local search iterations 100.000
maxRejects §4.3.2 Nr. of rejections before using mutations 50

Table 2: Summary of evolutionary parameters.

Local search parameters The number of iterations is set to maxIter = 100000 and
the internal parameters have been set to: A = 10, α = 0.6, and Lmax = 1000, following
previous work on tabu search (see also Section 2.3).

Special case parameters: (i) maxRejects—the maximum number of rejected off-
spring before resorting to mutations, and (ii) mutation strength. By using maxRejects =
50, we are sure to respect the principle of preserving diversity without sacrificing quality
because quality-deteriorating mutations are performed very rarely (i.e. in less than 0.1%
of generations for any instance). Notice that the average of “rejections per generation” is
less than 1.25 for all but three graphs, as indicated by crossovers–generations

generations
in Table 3. Only

during the dispersion phase, we divide maxRejects by 10 to allow mutations more easily.
The mutation strength is set so as to perturb R vertices (e.g. 10% of |V |), enough to pro-
duce a mutated coloring outside the R-sphere of the initial coloring. Another guideline

also [32].
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is to use a gradually-increasing strength—i.e. if the first offspring produced via mutation
is rejected, the next one perturbs 2R, and then 3R, 4R, etc (see also Section 4.3.2).

5.2 Computational Results

5.2.1 Standard results with a time limit of 300 minutes

Table 3 presents the standard results of Evo–Div on 18 difficult instances with a time limit
of 300 minutes (5 hours). Columns 1 and 2 denote the instance, i.e. the graph and the
number of colors k (we show results only for the lowest k for which Evo–Div finds at least
a solution). For each instance, this table reports the success rate over 10 independent runs
(Column 3), the average number of generations required to find a solution (Column 4),
the average number of crossovers (Column 5) and the average CPU time in minutes (last
column). All averages take into consideration only successful runs. The total number of
local search iterations is in close relation with the number of crossovers because the local
search procedure (with maxIter = 100000) is applied once after each crossover.

Graph (k∗) k Successes/Runs Generations Crossovers Time[m]
dsjc500.1 (12) 12 10/10 301 428 1
dsjc500.5 (48) 48 10/10 370 373 7
dsjc500.9 (126) 126 8/10 1987 2157 63
dsjc1000.1 (20) 20 10/10 1658 2454 29
dsjc1000.5 (83) 83 9/10 2148 2439 136
dsjc1000.9 (223) 223 2/10 2872 3296 245
dsjr500.1c (85) 85 9/10 562 4156 93
dsjr500.5 (122) 122 8/10 1028 2230 36
r250.5 (65) 65 9/10 3175 6423 48
r1000.1c (98) 98 10/10 593 2240 98
r1000.5 (234) 238 9/10 953 1785 99
le450.25c (25) 25 10/10 10029 14648 90
le450.25d (25) 25 10/10 5316 7115 45
flat300.28.0 (28) 31 10/10 46 50 0
flat1000.76.0 (82) 82 10/10 1646 1884 110
latin square (98) 100 1/10 585 973 42
C2000.5 (150[148]a) 148 4/10 5051 8953 2148
C4000.5 (280[272]b) 271 1/10 5960 29709 32142

Table 3: Detailed results of Evo–Div with a CPU time limit of 300 minutes on the set
of 18 DIMACS hard instances. The algorithm reaches most of the best known results
(k∗) with a very high success rate (see Column 3). The minimal value of k for which a
solution has ever been reported (i.e. k∗) is given in Column 1, in parenthesis.

aFor this large graph, we used a time limit of 3 days; however, even 24 hours were enough for Evo-Div
to find a first solution. Notice that the 148-coloring was only reported very recently and independently
in [28] within a time limit of 5 days.

bFor this exceptional large graph and for this very low k, we used a time limit of 30 days; however,
legal 272-colorings can be reached in less than 10 days. Notice that the 272-coloring was only reported
very recently in [28] within a time limit of 5 days.

Even if a time limit of 5 hours is not very high for graph coloring, Evo–Div finds
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most of the best-known solutions from the literature, see also a comparison with other
algorithms in Table 6. If we consider the complete DIMACS benchmark from Section
5.1.1, Evo–Div matches the previously best-known results for 42 graphs out of 46 and
finds an improved coloring for one graph (C4000.5); it is below the best-known level only
for three problematic instances. However, for one of these three instances (latin square),
Evo–Div can actually reach the best known upper bound by intensifying the search with
a longer TS chain—see Section 5.3.

We chose a time limit as the stopping condition because, in our case, machine-
independent indicators are less meaningful and they can be easily misinterpreted. For
example, a fixed limit on the number of generations would not take into account the
computational overhead introduced by a varying number of offspring rejections and dis-
tance calculations. Furthermore, the theoretical complexity of an iteration, generation,
or crossover can be different from algorithm to algorithm. The comparison of such in-
dicators could also be biased, and so, most recent algorithms [2, 23, 30, 35] also use time
stopping conditions. Our reported CPU times are obtained on a 2.8GHz Xeon processor
using the C++ programming language compiled with the -O2 optimization option (gcc
version 4.1.2 under Linux).

5.2.2 Results with shorter and longer time limits

We now show results with other time limits so as to better evaluate the algorithm. Table
4 presents the results using a time limit of 30 minutes (Columns 2-6) and 12 hours,
respectively (Columns 7-11). The columns from this table have the same meaning as in
the previous table: the interpretation of Columns 2-6 (and Columns 7-11, respectively)
is the same as for Columns 2-6 in Table 3.

Some interesting conclusions can be drawn from Table 4. Evo–Div can still find
many best-known solutions within only 30 minutes, which seems remarkable. Indeed, to
the best of our knowledge, the smallest previous time limit giving globally competitive
results is one hour (see the results in Tables 1-4 in [2] and Tables 1-3 in [23], two articles
published in 2008). Evo–Div finds in 30 minutes many solutions not reached by these
two algorithms from any of these tables: (dsjc1000.5, k = 85), (flat1000.76, k = 83),
(le450.25c, k = 25) and (le450.25d, k = 25). This demonstrates the effectiveness of the
crossover operator, as the diversity policy is less active in a short run, e.g. the percentage
of rejected offspring solutions (i.e. #cross−#gen

#gen
) is often very low.

The results on the long run (12 hours in Table 4) show both clear improvements of
the success rates and better colorings (on five very hard graphs). These results offer thus
evidence that Evo–Div is capable of assuring extensive search space coverage. Actually,
a search algorithm can get blocked on plateaus or loop between certain areas such that
new areas of the search space can not be explored. In these situations, the search result
will not be improved by pushing the time limit beyond a certain threshold. Thanks to
the spacing policy, our Evo–Div algorithm guarantees a better exploration of the search
space and thus improves its performance when more time is allowed.

Among the three instances for which Evo–Div fails to reach the best-known upper
bound, one notices that only very few existing algorithms reach these bounds, only with
highly specialized strategies. (flat300.28, 28) is solved in [35] with an intensification-
oriented tabu search algorithm and in [2] with a different encoding technique, (R1000.5, 234)
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Graph (k∗) Time limit: 30 minutes Time limit: 12 hours
k #hits #gen #cross T[m] k #hits #gen #cross T[m]

dsjc500.1 (12) 12 10/10 301 428 1 12 10/10 301 428 1
dsjc500.5 (48) 48 10/10 370 373 7 48 10/10 370 373 7
dsjc500.9 (126) 126 2/10 453 514 15 126 10/10 3741 4319 125
dsjc1000.1 (20) 20 7/10 1466 1667 23 20 10/10 1658 2454 29
dsjc1000.5 (83) 85 7/10 368 368 25 83 10/10 2943 3577 178
dsjc1000.9 (223) 225 1/10 298 304 28 223 3/10 4559 5252 400
dsjr500.1c (85) 85 1/10 107 739 16 85 10/10 792 5936 136
dsjr500.5 (122) 122 5/10 422 593 10 122 9/10a 1659 4087 68
r250.5 (65) 65 6/10 650 1411 10 65 10/10 3961 10124 78
r1000.1c (98) 98 4/10 149 311 13 98 10/10 593 2240 97
r1000.5 (234) 239 5/10 326 376 24 238 10/10 1661 2639 146
le450.25c (25) 25 3/10 1660 1991 13 25 10/10 10029 14648 90
le450.25d (25) 25 4/10 1593 1926 13 25 10/10 5316 7115 45
flat1000.76.0 (82) 83 1/10 401 402 29 82 10/10 1646 1884 110
flat300.28.0 (28) 31 10/10 46 50 0 31 10/10 46 50 0
latin square (98) 102 1/10 342 545 24 100 3/10 4189 6717 315

Table 4: Results of Evo–Div with two different time limits. In 30 minutes, Evo–Div still
finds solutions not reached by other algorithms in hours. On the long run (12 hours), the
diversity strategy assures a 100% success rates for most instances.

aFor this case, 15 hours were required to reach a 10/10 success rate.

is solved in [30] thanks to column generation, (latin square, 98) is only reported in [34]
with special collaborative techniques (this latter instance can actually be solved with a
different Evo–Div variant, see Section 5.3 below).

Additionally, we remark that Table 4 also offers the possibility to observe the difficulty
to find k-colorings for different values of k, e.g. r1000.5 can be colored by Evo–Div with
k = 239 colors in less than 30 minutes, but it requires several hours for k = 238. More
generally, if Evo–Div can find a solution with k colors, Evo–Div can solve the (k + 1)-
coloring instance several times more rapidly (on average).

5.3 Influence of Diversity, Crossover and Local Search Length

In this section, we investigate the practical relevance of the most important ideas exploited
by Evo–Div and the influence of the related components on the algorithm performance.
For this purpose, we use ten representative graphs, that show the highest (most sensitive)
performance variations.

Table 5 shows the success rate and the solving time required by Evo–Div and five other
Evo–Div versions obtained by disabling certain components, as described below. The
time limit is always 300 minutes. These experiments allow us to confirm our theoretical
considerations on the components corresponding to the following Evo–Div versions:

1. No-Div (Columns 5 and 6): Evo–Div with no diversity strategy, i.e. all offspring is
accepted and the worst individual in the population is eliminated at the replacement
stage. Compared to Evo–Div (Columns 3 and 4), No-Div performs significantly
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Graph (k∗) k Evo–Div No-Div UnInf-Cross R-5% R-20% No-f̃eval
#hits T[m] #hits T[m] #hits T[m] #hits T[m] #hits T[m] #hits T[m]

dsjc1000.1 20 10/10 29 0/10 – 4/10 211 9/10 37 10/10 31 10/10 26
dsjc1000.5 83 9/10 136 0/10 – 6/10 246 8/10 80 10/10 132 9/10 99
dsjc1000.9 223 2/10 245 1/10 110 2/10 220 2/10 183 0/10 – 0/10 –
dsjr500.1c 85 9/10 93 0/10 – 10/10 55 0/10 – 10/10 21 3/10 76
dsjr500.5 122 8/10 36 1/10 4 10/10 25 1/10 4 7/10 65 2/10 108
r1000.5 238 9/10 99 1/10 19 1/10 250 2/10 27 6/10 76 0/10 –
le450.25c 25 10/10 90 0/10 – 0/10 – 2/10 107 10/10 62 9/10 89
le450.25d 25 10/10 45 1/10 42 0/10 – 1/10 16 10/10 86 10/10 87
flat1000.76.0 82 10/10 110 2/10 90 7/10 236 8/10 99 7/10 159 7/10 84
latin square 100 1/10 42 0/10 – 0/10 – 0/10 – 0/10 – 1/10 211

Table 5: Comparison of the standard Evo–Div with five different versions obtained by
excluding certain components. For each of these versions, we provide both the success rate
(columns “#hits”) and the average time in minutes (columns “T[m]”). This experiment
confirms many theoretical considerations presented throughout the paper.

worse. Even if it is still able to reach some best-known legal colorings, the high
success rates of Evo–Div are lost because diversity is no longer guaranteed.

2. UnInf-Cross (Columns 7 and 8 ): Evo–Div using a crossover version with n = 2
parents and “uninformed” class scoring function—based only on basic class size
as in previous work [15], see also Section 3.3. Although UnInf-Cross is able to
eventually find 70% of the solutions reached by Evo–Div, importantly, UnInf-Cross
is much slower. Even by ignoring the failed 30% instances, UnInf-Cross can require
ten times more time (see dsjc1000.1), and so, it obtains low success rates in most
cases. However, it is still efficient for a difficult instance like (dsjc1000.9,k = 223).

3. R-5% (Columns 9 and 10): Evo–Div with a smaller target minimum spacing R′ =
5%|V |. The standard Evo–Div (with R = 10%|V |) obtains systematically better
results than this version. This confirms the analysis of Section 4.3.1 where it is
recommended to keep a distance of R = 10%|V | between any two individuals.

4. R-20% (Columns 11 and 12): Evo–Div with a larger target minimum spacing
R′′ = 20%|V |. On half of the instances, this version fails or obtains low success
rates. Actually, R′′ > R induces excessive diversification in the search process and
compromises useful intensification. In particular, it fails on (dsjc1000.9, k = 223),
an instance requiring strong intensification—its first solution was found with an
intensification-oriented tabu search algorithm [35] and it can even be solved with
the No-Div version of Evo–Div. This confirms once again the recommendations of
an optimum target minimum spacing of R = 10%|V |.

5. No-f̃eval (Columns 13 and 14): For this version, Evo–Div disables the degree part

of the degree-based evaluation function f̃eval in local search (see Section 2.3) and
uses only the conflict number (i.e. f) as its evaluation function. As expected, the
performance difference is more visible on graphs with high degree variation, espe-
cially on the geometrical graphs (rX.Y and dsjrX.Y) in which the maximum degree
can be with an order of magnitude higher than the minimum degree. Similarly, the
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degree-based discrimination of f̃eval is less visible for graphs in which the degrees
are more homogeneous (Leighton graphs, most of the random graphs). Note that

f̃eval has a positive influence on (dsjc1000.9,k = 223) as this graph has very high
degrees.

Finally, it is worth mentioning another two simple variants of Evo–Div that are able
to improve the results on certain graphs. We have also tested Evo–Div with a longer
TS chain (maxIter = 10.000.000). By only changing this parameter, Evo–Div solved
(flat300.28, k = 30) with 5/10 success rate within 300 minutes, and it even reached one
solution for the same graph using k = 29 colors; more importantly, this version can solve
the very difficult instance (latin square, k = 98) within 7.5 hours (by allowing a larger
time limit of 12 hours, the success rate is 4/30). Furthermore, a version of our crossover
working exclusively with independent sets leads to improved results for some particular
geometrical graphs. Using this crossover, Evo–Div reduced the solving time to seconds
for (dsjr500.5, k = 85), and it also managed to color the r1000.5 graph with k = 237
colors within 300 minutes.

5.4 Comparisons with Best Performing Algorithms

Table 6 compares the performances of the ten best performing algorithms from the lit-
erature (Columns 4–13) with the results obtained by Evo–Div within a time limit of 5
hours—see Column 3, reproducing Columns 2–3 from Table 3. Notice that certain algo-
rithms (e.g. in [30]) can solve the coloring problem directly as an optimization problem,
requiring no input value of k. The other algorithms actually solve a series of k-coloring
decision problems, and so, they spend additional time for superior values of k.

To interpret these results, it is useful to know that some columns from Table 6 actually
summarize the best results of several algorithms or several variants of the same algorithm,
making it difficult to draw an exhaustive comparison. Yet, from Table 6, one observes
that Evo–Div competes very favorably with these top coloring algorithms. Indeed, if one
compares Evo–Div with any other individual column, one finds that over these 18 hard
graphs, Evo–Div can obtain three or more new solutions (smaller k) and a worse result
(larger k) only for at most one graph.

6 Conclusions

We have described a spacing-oriented hybrid evolutionary approach that enables the pop-
ulation to preserve and create useful diversity without sacrificing quality. The spacing
strategy enables our Evo–Div coloring algorithm to successfully avoid premature con-
vergence; by using reactive dispersion mechanisms, Evo–Div is guaranteed to continually
discover new promising areas and to achieve a better coverage of the search space. On the
other hand, Evo–Div employs a Well-Informed Partition Crossover that exploits a wealth
of information for selecting the color classes used to construct offspring. Experiments
show that this hybrid evolutionary approach is both very effective and robust.

The computational performances of Evo–Div have been extensively assessed on the
whole set of the DIMACS benchmark graphs. Evo–Div is able to match all previous
best-know results for all but two graphs. In particular, it finds several solutions—e.g.
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Graph χ/k∗ Evo–Div Local Search Algorithms Population Based Algorithms
k (#hits) ILS TS–Div/Int PCol VSS DCNS HGA HEA AmaCol MMT MCol

[4, 5] [35] [2] [23] [34] [13] [15] [17] [30] [28]
2009 2002 2010 2008 2008 1996 1996 1999 2008 2008 2010

dsjc500.1 ?/12 12 (10/10) 12 12 12 12 — — — 12 12 12
dsjc500.5 ?/48 48 (10/10) 49 48 48 48 49 49 48 48 48 48
dsjc500.9 ?/126 126 ( 8/10) 126 126 126 126 — — — 126 127 126
dsjc1000.1 ?/20 20 (10/10) — 20 20 20 — — 20 20 20 20
dsjc1000.5 ?/83 83 ( 9/10) 89 85 89 88 89 84 83 84 83 83
dsjc1000.9 ?/223 223 ( 2/10) — 223 225 224 226 — 224 224 225 223
dsjr500.1c 84/85 85 ( 9/10) — — 85 85 85 85 — 86 85 85
dsjr500.5 122/122 122 ( 8/10) 124 — 126 125 123 130 — 125 122 122
r250.5 65/65 65 ( 9/10) — — 66 — 65 69 — — 65 65
r1000.1c 98/98 98 (10/10) — 98 98 — 98 99 — — 98 98
r1000.5 234/234 238[237a] ( 9/10) — — 248 — 241 268 — — 234 245
le450.25c 25/25 25 (10/10) 26 25 25 26 25 — 26 26 25 25
le450.25d 25/25 25 (10/10) 26 25 25 26 25 — — 26 25 25
flat300.28 28/28 31[29a] (10/10) 31 28 28 28 31 33 31 31 31 29
flat1000.76 76/82 82 (10/10) — 85 88 86 89 84 83 84 82 82
latin square ?/98 100[98a] ( 1/10) 99 — — — 98 106 — 104 101 99
C2000.5 ?/150[148] 148b (4/10) — — — — 150 153 — — — 148
C4000.5 ?/280[272] 271b (1/10) — — — — — 280 — — — 272

Table 6: Best colorings reached by Evo–Div within 5 hours and the best results of the
state-of-the-art algorithms. The colorings of Evo–Div are publicly available at: www.

info.univ-angers.fr/pub/porumbel/graphs/evodiv/

aFor indicative purposes, notice that the number of colors can be reduced for these graphs by using
different variants of Evo–Div, i.e. (r1000.5, k = 237) was solved with a crossover that works only with
independent sets; (flat300.28, k = 29) and (latin square, k = 98) could be solved using a longer TS
chain—see also Section 5.3.

bFor the large graphs C2000.5 and C4000.5, we used a time limit of 3 and 30 days, respectively.

(dsjc1000.9, k = 223), (flat1000.76, k = 82), and (dsjr500.5, k = 122)—that have
been found previously only by one or two algorithms from a large literature, i.e. see
the best, most recent, ten algorithms in Table 6. Such a performance can be further
appreciated if one takes into account the fact that a unique Evo–Div version is used, with
a rather short computing time limit and with a pre-fixed setting of its parameters. By
allowing more flexible conditions for larger graphs, Evo–Div finds another two solutions
that have been reached only once before: (C2000.5, k = 148) and (latin square, k = 98).
It even manages to find for the first time a coloring with 271 colors for the C4000.5 graph.

To conclude, it is important to note that the spacing strategy developed in this paper
(Section 4) is in fact quite general and could be used in any evolutionary hybrid algorithm
provided that a meaningful distance measure between individuals is defined. Also, the
principle behind the class scoring function (Section 3) can be used for designing dedicated
recombination operators for other grouping or partitioning problems.
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