
Further experiments and insights on Projective

Cutting-Planes
Abstract. This paper is a continuation of the study from [15] that introduced the Projective

Cutting-Planes method to optimize (a linear function) over polytopes P with prohibitively-many
constraints. The main goal of the new paper is to explore new applications of Projective Cutting-Planes

and to present more numerical results on them. The current paper first presents an application of
Projective Cutting-Planes on a robust linear programming problem, in which P is defined as a
primal polytope. Then, we will explore the Multiple-Length Cutting-Stock problem, in which P is
defined as a dual polytope in a Column Generation model. Finally, we will also provide additional
insight for certain developments from [15], to draw more general conclusions from numerical results
reported along both papers.

1. Introduction. To (try to) make the current paper relatively self-contained,
we first briefly present the main ideas of the Projective Cutting-Planes method
introduced in [15]. We focus on a Linear Program (LP) of the form:

(1.1) opt
{
b>x : a>x ≤ ca, ∀(a, ca) ∈ A

}
= opt

{
b>x : x ∈P

}
,

where A is the set of unmanageably-many constraints and “opt” stands for either
“min” or “max”.

Given any x ∈ P, the projection sub-problem project(x → d) asks to advance
from x along d up to the pierce point x + t∗d where P is hit, i.e., determine the step
length t∗ = max {t ≥ 0 : x + td ∈P}. To solve sub-problem, one also has to find a
constraint of A satisfied with equality by x + t∗d, see the formal definition in [15,
Def. 2.1].

The proposed Projective Cutting-Planes relies on the above projection sub-
problem to iteratively generate a sequence of inner solutions xit that converge along
the iterations it to an optimal solution opt(P). Each inner solution xit is chosen
as a point on the segment joining the previous inner solution xit−1 and the pierce
point xit−1 + t∗it−1dit−1 returned by the last projection. At the same time, each
call to the projection sub-problem returns a (first-hit) constraint (of A) satisfied with
equality by the pierce point. By generating such a constraint at each iteration it, the
Projective Cutting-Planes constructs a sequence P1 ) P2 ) · · · ⊃ P of outer
approximations of P; like in the standard Cutting-Planes, this generates a sequence
of outer solutions opt(Pit) that converge to opt(P) along the iterations it.

At the first iteration it = 1, one can choose any starting feasible solution x1.
The first direction d1 is often d1 = b, to make the first projection project(x1 →
d1) advance along the along the direction with the fastest rate of objective function
improvement. As hinted above, the projection project(xit → dit) returns a first-hit
constraint at each iteration it; this constraint is added to the constraints of Pit−1

to construct Pit. Then, one chooses a point xit+1 on the segment joining xit and
xit + t∗itdit and the next direction points towards the new current outer optimal
solution opt(Pit), i.e., dit+1 = opt(Pit) − xit+1. Then, the process is repeated
by solving project(xit+1 → dit+1); this projection returns a new pierce point and a
new constraint that is added to the constraints Pit to construct Pit+1.

A key aspect is the design of a projection algorithm that could compete in terms
of computational complexity with the separation algorithm. As hinted in the main
paper, there are several techniques that can bring us very close to this goal. This new
paper will show (on the robust optimization problem) that it is possible to generalize
the separation algorithm to a projection algorithm without significantly increasing
the complexity. The computational bottleneck of both sub-problems is enumerat-
ing a set of nominal constraints that generate prohibitively-many robust cuts. On

1



Multiple-Length Cutting-Stock problem, we will confirm an idea already hinted in the
main paper: in many cases, if the separation sub-problem can be solved by Dynamic

Programming, so can be the projection sub-problem. The main difference is that the
projection sub-problem usually requires minimizing a ratio instead of a difference.
Such a change of objective function does not always induce an important slowdown
because it does not necessarily generate an explosion of the number of states if the
interior points xit are chosen very carefully.

The remaining is organized as follows. Section 2 presents the application of
the proposed method on a on a robust optimization problem and the (dual) Column

Generation formulation for (Multiple-Length) Cutting-Stock. Section 3 reports nu-
merical results on these problems, followed by conclusions in the fourth section. In
appendix, we provide additional insight into the implementation of the projection
algorithms studied throughout this work and the main paper [15], e.g., a fast data
structure to record a Pareto frontier (needed by our Dynamic Programming scheme).

2. Adapting Projective Cutting-Planes for robust optimization and Multiple-
Length Cutting-Stock. We first recall [15, (2.2.1)] that for any feasible x ∈ P and
d ∈ Rn, the projection sub-problem project(x → d) can be solved by minimizing
the fractional program (2.1) below; we will thus instantiate (2.1) on a robust linear
problem in Section 2.1 and on Multiple-Length Cutting-Stock in Section 2.2.

(2.1) t∗ = min
a

{
ca − a>x

a>d
: (a, ca) ∈ A, d>a > 0

}
.

2.1. A robust optimization problem. The main idea in robust optimization
is to seek an optimal solution that remains feasible if certain constraint coefficients
deviate (reasonably) from their nominal values. The robust optimization literature
is now constantly growing and the acceptable coefficient deviations can be defined
in many ways, e.g., using linear or ellipsoid uncertainty sets. However, to avoid
unessential complication, we here focus only on the robustness model from [6]; the
reader may refer to this paper for more references, motivations and related ideas.
There are two main principles behind this robustness model: (i) the deviation of a
coefficient is at most δ = 1% of the nominal value (ii) there are at most Γ coefficients
that are allowed to deviate in each nominal constraint. The underlying assumption
is that the nominal coefficients of a given constraint can not change all at the same
time, always in an unfavorable manner.

2.1.1. The model with prohibitively-many constraints and the standard
Cutting-Planes. Let us first consider a set Anom of nominal constraints that is small
enough to be enumerated in practice, i.e., there is no need of Cutting-Planes to
solve the nominal version of the problem (with no robustness). We then associate
to each (a, ca) ∈ Anom a prohibitively-large set DevΓ(a) of deviation vectors â, i.e.,
vectors â ∈ Rn that have at maximum Γ non-zero components and that satisfy âi ∈
{−δai, 0, δai} ∀i ∈ [1..n], using δ = 0.01 in practice. Each such deviation vector

â yields a robust cut (a + â)
>

x ≤ ca, so that we can state (a + â, ca) ∈ A. In
theory, each âi (∀i ∈ [1..n]) might be allowed to take a fractional value in the interval
[−δai, δai], thus leading to infinitely-many robust cuts (semi-infinite programming);
however, the strongest robust cuts are always obtained when each non-zero âi is either
δai or −δai. There are at most

(
n
Γ

)
2Γ deviation vectors for each nominal constraint

(a, ca) ∈ Anom, because there are
(
n
Γ

)
ways to choose the non-zero components of â

and each one of them can be either positive or negative, hence the 2Γ factor.

2



The generic LP (1.1) is instantiated as follows:

(2.1.1) min
{

b>x : (a + â)
>

x ≤ ca ∀(a, ca) ∈ Anom ∀ â ∈ DevΓ(a); ai ∈ [lbi, ubi] ∀i ∈ [1..n]
}

This is a minimization problem unlike the general LP (2.1), but the main steps of
the (standard or new) Cutting-Planes method described in Section [15, § 2] remain
exactly the same. The only difference is that the feasible solutions (pierce points)
determined by Projective Cutting-Planes represent upper bounds instead of lower
bounds. The last condition ai ∈ [lbi, ubi] of (2.1.1) constitutes the initial constraints
A0, most instances using lbi = 0 ∀i ∈ [1..n], i.e., the variables are most often non-
negative.

We consider a canonical Cutting-Planes for the above (2.1.1), based on the fol-

lowing separation sub-problem: given any x ∈ Rn, minimize ca − (a + â)
>

x over all
(a, ca) ∈ Anom and over all â ∈ DevΓ(a). For a fixed nominal constraint (a, ca) ∈ Anom,
the strongest possible deviation â>x x of (a, ca) with respect to x is determined by
maximizing âx = arg max

{
â>x : â ∈ DevΓ(a)

}
. To find this âx, one needs to deter-

mine the largest Γ absolute values in the terms of the sum a>x =
∑n
i=1 aixi; this

way, â>x x can be written as a sum of Γ terms of the form δ|aixi|. We next describe
how these largest Γ values can be determined by a partial-sorting algorithm of linear
complexity.

Remark 8. If Γ is a fixed parameter, the largest Γ entries in a table of n values
(e.g., such as |a1x1|, |a2x2|, . . . |anxn| above) can be determined in O(n) time. We
use a partial-sorting algorithm essentially described as follows: iterate over i ∈ [1..n]
and attempt at each step to insert the ith entry in the list of the highest Γ values; this
operation takes constant time using the appropriate list data structure.20 In practice,
however, the repeated use of this algorithm takes around 15% of the total running time
for Γ ≥ 10. �

Compared to the above Cutting-Planes, the algorithm from [6] is slightly differ-
ent because it returns multiple robust cuts at each separation call. This idea might be
very effective in practice, both for the standard Cutting-Planes and the Projective
Cutting-Planes. However, for now, the goal of this study is to compare the projection
and the separation sub-problems in a standard setting, and so, we prefer a canonical
approach with a unique (robust) cut per iteration.

2.1.2. Implementing the Projective Cutting-Planes. Before presenting the
projection algorithm (Section 2.1.3 next), let us first discuss the overall Projective
Cutting-Planes for the robust optimization problem (2.1.1). In fact, if we con-
sider the projection algorithm as a black-box component, the implementation of
Projective Cutting-Planes becomes rather straightforward, simply following the
steps indicated in [15, § 2].

The only slightly problematic question is how to select the interior point xit at
each iteration it ≥ 1. In common with most problems studied in this work, exper-
iments suggest that it is not very efficient to define xit as the best feasible solution

20 This list of the largest Γ values is recorded in a self-balancing binary tree, as implemented in the
C++ std::multiset data structure. At each iteration i, the partial-sorting algorithm has to check if
the current value vnew is larger than the minimum value vmin recorded in the tree. If this is the case,
the insertion of vnew may make the tree size exceed Γ, and so, vmin has to be removed. Each insertion
and each removal takes constant time with regards to n, by considering Γ as a parameter. However,
these operations can still lead to a non-negligible multiplicative constant factor (like log(Γ)) in the
complexity of the partial sorting algorithm; this explains how this partial sorting can take 15% of
the total running time of the overall Cutting-Planes.

3



found up to the iteration it (i.e., the last pierce point xit = xit−1 + t∗it−1dit−1).
Although such an aggressive Projective Cutting-Planes variant could find better
feasible solutions in the beginning, it may eventually need more iterations in the long
run. For best long-term results, it is certainly better to choose a more interior point
xit, not too close to the boundary of P, enabling the inner solutions x1, x2, x3, . . . to
follow a central path (a similar concept is used in some interior point algorithms). As
such, we define xit using the formula xit = xit−1+αt∗it−1dit−1 with α = 0.1 ∀it > 1.

To construct an initial feasible solution x1, one could be tempted to try x1 = 0n,
but this is sometimes impossible because 0n may be infeasible. However, it is not
difficult to generate x1 by constructing a feasible solution in a relatively simple LP
whose feasible area stays (deeply) inside the feasible area of (2.1.1). We construct
this (deeply) inner LP as follows: for each (a, ca) ∈ Anom, we insert a constraint

a>x + δ|a|>x ≤ ca, where |a| = [|a1| |a2| . . . |an|]>. If x is non-negative (as in most
instances), than any solution x that satisfies a>x + δ|a|>x ≤ ca ∀(a, ca) ∈ Anom is
feasible with regards to all robust cuts — because a robust cut uses a deviation vector
â that satisfies â ≤ δ|a|, so that (a + â)>x ≤ a>x + δ|a|>x ≤ ca.21 Finally, the
first direction d1 points to the solution of the nominal problem, i.e., we take d1 =
opt(P0)− x1, where P0 is the polytope of the nominal problem with no robust cut.

2.1.3. Solving the projection sub-problem. Based on (2.1), the projec-

tion sub-problem reduces to minimizing
ca − (a + â)>x

(a + â)>d
over all nominal constraints

(a, ca) ∈ Anom and over all deviation vectors â ∈ DevΓ (a) such that (a + â)>d > 0.
Just as the separation algorithm, the projection algorithm iterates over all nominal
constraints Anom, in an attempt to reduce the above ratio (the step length) at each
(a, ca) ∈ Anom; for each (a, ca) ∈ Anom it is possible to find several increasingly stronger
â that gradually decrease the above ratio. Let t∗i denote the optimal step length ob-
tained after considering the robust cuts associated to the first i constraints from Anom.
It is clear that t∗i can only decrease as i grows. Starting with t0 = 1, the projection
algorithm determines t∗i from t∗i−1 by applying the following five steps:
1. Set t = t∗i−1 and let (a, ca) denote the ith constraint from Anom.
2. Determine the strongest deviation vector ât with respect to x+td by maximizing:

(2.1.2) ât = arg max
{
â> (x + td) : â ∈ DevΓ(a)

}
.

For this, one has to extract the largest Γ absolute values from the terms of the
sum a> (x + td); we apply the partial-sorting algorithm used for the separation
sub-problem in Remark 8.

3. If (a + ât)
>

(x + td) ≤ ca, then x + td is feasible with regards to the first i
constraints from Anom (and the associated robust cuts), because any deviation
vector â ∈ DevΓ(a) satisfies â> (x + td) ≤ â>t (x + td). In this case, the final
value t∗i = t has been obtained and the algorithm terminates for this value of i.
Otherwise, the robust cut (a + ât, ca) leads to a smaller feasible step length:

21 In fact, even for the instances with some negative variables this procedure could still lead to
feasible solutions x1 in practice. We also noticed this (deeply) inner LP can remain feasible by
replacing a>x + δ|a|>x ≤ ca with a>x + 2δ|a|>x + ∆ ≤ ca, for some small ∆ > 0. The use of this
parameter ∆ makes the generated solutions x1 even more deeply interior, pushing them away from
the boundary; experiments suggest it is usually better to start from such (well-centered) solutions
rather than from a boundary point. This is in line with similar ideas in interior point algorithms for
standard LP, i.e., it is better to start out with very interior points associated to high barrier terms
and to converge towards the boundary only at the end of the solution process, when the barrier terms
converge to zero.

4



(2.1.3) t′ =
ca − (a + ât)

>
x

(a + ât)
>

d
< t.

4. If t′ = 0, then the overall projection algorithm returns t∗ = 0 without checking the
remaining nominal constraints, because it is not possible to return a step length
below 0 since x is feasible. In practice, we used the condition “if t < 10−6” because
very small step lengths usually represent numerical computation errors.

5. Set t = t′ and repeat from Step 2 (without incrementing i). The underlying idea
is that the deviation vector ât determined via (2.1.2) is not the strongest one with
regards to x+t′d, because ât generates the highest deviation in (3.1.2) with regards
to a different point (i.e., x + td). But there might exist a different robust cut
(a+ât′ , ca) for the same nominal constraint such that â>t′ (x + t′d) > â>t (x + t′d).
This could further reduce the step length below t′, proving that x+t′d is infeasible.

By sequentially applying the above steps to all constraints (a, ca) ∈ Anom one by one,
the step length returned at the last constraint of Anom provides the sought t∗ value.

2.1.3.1. Comparing the running times of the projection and the separation algo-
rithms. In theory, the above projection algorithm could repeat many times Steps 2-5
for each i, iteratively decreasing t in a long loop. However, experiments suggest that
long loops arise only rarely in practice; the value of t is typically decreased via (2.1.3)
only a dozen of times at most for all (thousands of) nominal constraints, i.e., for all
i. For many nominal constraints (a, ca) ∈ Anom, the above algorithm only concludes
at Step 3 that x + td does respect all robust cuts associated to (a, ca) so that the
only needed calculations are the partial-sorting algorithm (called once at Step 2) and
several simple for loops over [1..n].

Furthermore, the overall projection algorithm can even stop earlier without scan-
ning all nominal constraints, by returning t∗ = 0 at Step 4. An exact separation
algorithm could not stop earlier, because ca − (a + âx)>x can certainly decrease up
to the last nominal constraint (a, ca). As such, the projection algorithm can become
even faster than the separation one in certain cases. Indeed, for the last (very large)
instance from Table 4 with Γ = 50, a separation iteration takes around 0.62 seconds
(in average), while the projection one takes 0.56 seconds (in average). At the other
end of the spectrum, for an instance like nesm with Γ = 50, an intersection iteration
can take about 30% more time than a separation one. All things considered, one can
say that the running time of the above intersection algorithm is similar to that of the
separation algorithm.

Finally, the computational speed of the proposed projection algorithm can not
be achieved by simply calling the separation algorithm multiple times. An approach
based on repeated separation would make the projection algorithm at least twice as
slow as the separation one: a first call to the separation algorithm would find a first
robust cut satisfied with equality by some x+ td and then one needs at least a second
call to check if x + td can be further separated to decrease t. Experiments suggest
that a third or a fourth call is often needed in practice. More generally, one of the
goals of this work is to explore techniques that can bring us (very) close to designing
a projection algorithm as fast as the separation one.

2.2. Multiple-Length Cutting-Stock.

2.2.1. The model with prohibitively-many constraints and the standard
Cutting-Planes. Cutting-Stock is one of the most celebrated problems usually solved
by Column Generation, as first proposed in the pioneering work of Gilmore and

5



Gomory in the 1960s. Given a stock of standard-size pieces (e.g., of wood or paper),
this problem asks to cut these standard pieces into smaller pieces (items) to fulfill
a given demand. The pattern–oriented formulation of Cutting-Stock consists of a
primal program with prohibitively-many variables, using one variable for each feasible
(cutting) pattern. After applying a linear relaxation on this primal program, one
obtains the following dual LP:

(2.2.1)
max b>x

ya : a>x ≤ ca, ∀(a, ca) ∈ A
x ≥ 0n

}
P

The notations from (2.2.1) can be directly interpreted in (Multiple-Length) Cutting-
Stock terms. Each constraint (a, ca) ∈ A is associated to a primal column representing
a (cutting) pattern a ∈ Zn+ such that ai is the number of items i to be cut from a
standard-size piece (for any item i ∈ [1..n]). Considering a vector w ∈ Zn+ of item
lengths, all feasible patterns a ∈ Zn+ have to satisfy w>a ≤ W , assuming W is the
unique length of the standard-size pieces. The vector b ∈ Zn+ represents the demands
for the n items. Writing the primal LP associated to (2.2.1), one can see how the
primal objective function asks to minimize the total cost of the selected patterns.

In pure Cutting-Stock, all feasible patterns (a, ca) ∈ A have a fixed unitary cost
ca = 1, but we will focus on the more general Multiple-Length Cutting-Stock in which
the input standard-size pieces can actually have different lengths and different costs.
While all discussed algorithms could address an arbitrary number of lengths, we prefer
to avoid unessential complication and to consider two lengths 0.7W and W of costs
0.6 and resp. 1. The cost of a pattern a is thus the cost of the smallest standard-size
piece that can accommodate a, e.g., if w>a ≤ 0.7W then ca = 0.6, else ca = 1.

The standard Column Generation method is equivalent to a Cutting-Planes

algorithm that optimizes the above LP (2.2.1) by iteratively solving the separation
subproblem min(a,ca)∈A ca−a>x on the current optimal outer solution x = opt(Pit)
at each iteration it. In (Multiple-Length) Cutting-Stock, this sub-problem is typically
solved by Dynamic Programming. In a nutshell, the main idea is to assign a state
s` for each feasible length ` ∈ [1..W ]; all patterns of length ` have the same cost c`
and the pattern a` ∈ Zn+ that minimizes c`− a>` x gives the objective value of s`, i.e.,
obj(s`) = c` − a>` x. The Dynamic Programming scheme generates transitions among
such states, and, after calculating them all, returns min

`∈[1..W ]
c` − a>` x in the end.

2.2.2. Adapting Projective Cutting-Planes for Multiple-Length Cutting-
Stock. The Projective Cutting-Planes was designed in [15, § 2] as a rather generic
methodology that allows a certain flexibility and different variations. We now need
a few customizations to make it reach its full potential on Multiple-Length Cutting-
Stock. As with other problems explored in this work, a key observation is that defining
xit as the best solution ever found up to iteration it is not efficient in the long run,
partly because xit could fluctuate too much from iteration to iteration.

However we did perform experiments for such a xit choice, using the for-
mula xit = xit−1 + t∗it−1dit−1. This choice leads to an aggressive Projective

Cutting-Planes variant that starts very well by strictly increasing the lower bound
with each iteration it, i.e., check that b>xit = b>

(
xit−1 + t∗it−1dit−1

)
≥ b>xit−1

is surely satisfied because the objective function does not deteriorate by advanc-
ing along xit−1 → dit−1 (see also Step 2 from [15, § 2]). This Projective

Cutting-Planes variant has the advantage that the lower bound b>xit becomes
constantly increasing along the iterations it, eliminating the infamous “yo-yo” effect

6



appearing very often (if not always) in Column Generation. However, our prelimi-
nary experiments (available on-line, see Figure 6, p. 15) suggest that this aggressive
choice leads to more iterations in the long run. Furthermore, we will also see in
Section 2.2.3.2 that the projection sub-problem project(x→ d) can be solved more
rapidly when x is a “truncated” solution, e.g., when xi is a multiple of γ = 0.2 for
each i ∈ [1..n].

For this reasons, we decided to propose a different Projective Cutting-Planes

variant, defining xit using the following approach. Let us first introduce the operator
bxc that truncates x down to multiples of some γ ∈ R+ (we used γ = 0.2), i.e.,
xi becomes γ ·

⌊
1
γxi
⌋

for any i ∈ [1..n]. Let xbst denote the best truncated feasible

solution generated up to the current iteration; xbst can be determined as follows:
start with xbst = 0n at iteration it = 1, and replace xbst with

⌊
xit + t∗itdit

⌋
at each

iteration it > 1 where b>
⌊
xit + t∗itdit

⌋
> b>xbst. We propose to choose the inner

solution xit at each iteration it based on the following rules:
– set xit = 0n in half of the cases (half of the iterations);
– set xit = xbst in 25% of the cases;
– set xit =

⌊
1
2xbst

⌋
in 25% of the case.

Regarding the iterations it = 1 and it = 2, let us choose x1 = 0n and d1 = 1
W w,

and resp. x2 = 0n and d2 = b. The choice of projecting along 0n → 1
W w at

the very first iteration is inspired by research in dual feasible functions for Cutting-
Stock problems [4], which shows that 1

W w is often a dual-feasible solution (in pure
Cutting-Stock) of very high quality. The choice at iteration 2 is a rather standard one,
since the projection towards b enables one to advance along the direction with the
fastest rate of objective function improvement. By solving these two sub-problems,
the Projective Cutting-Planes also generates a few initial constraints in (2.2.1).
To ensure an unbiased comparison, our standard Column Generation algorithm also
generates such initial constraints in the beginning, i.e., it solves the separation sub-
problem on b and 1

W w before launching the standard iterations.

2.2.3. Solving the Projection Sub-problem. Numerous Column Generation

algorithms for cutting and packing problems rely on Dynamic Programming (DP) to
solve the separation sub-problem. And, in many such cases, if the separation sub-
problem can be solved by Dynamic Programming, so can be the projection one.

Given a feasible x ∈P in (2.2.1) and a direction d ∈ Rn, recall that the projection
subproblem project(x → d) asks to minimize (2.1). For Multiple-Length Cutting-
Stock, (2.1) is instantiated as follows:

(2.2.2) t∗ = min
a

{
f(w>a)− a>x

d>a
: a ∈ Zn+, w>a ≤W, d>a > 0

}
,

where the function f : [0,W ]→ R+ maps each ` ∈ [0,W ] to the cost of the cheapest
(shortest) standard–size piece of length at least ` available in stock. The DP scheme
proposed next can work for any non-decreasing function f , i.e., under the natural
assumption that shorter pieces are cheaper than longer pieces. Such functions f
can encode many different Cutting-Stock variants, like variable–sized bin–packing or
elastic cutting stock; see more examples in [13, §4.1.1].

2.2.3.1. The main DP algorithm, the state definition and the state transitions.
We consider a set S` of DP states for every feasible length ` ∈ [0..W ]. Each state
s ∈ S` is associated to all patterns a ∈ A of

(a) length slen = w>a = `;
(b) cost sc = f(w>a)− a>x = f(`)− a>x;

7



(c) profit sp = d>a.
All states in S` have the same length ` but their cost and profit can vary. Under this
cost/profit interpretation, (2.2.2) reduces to minimizing the cost/profit ratio obj(s) =
sc

sp
over all states s ever generated, i.e., min

{
obj(s) = sc

sp
: s ∈ S`, ` ∈ [0..W ]

}
. No-

tice any feasible pattern can be associated to a state, although we will see that cer-
tain states are dominated and do not need to be recorded. Finally, the above cost
sc = f(x>a)− a>x is always non-negative because x ∈P.

The proposed DP algorithm starts only with an initial null state of length 0, cost
0 and profit 0. It then performs a DP iteration for each item i ∈ [1..n]; if bi > 1, this
iteration is performed bi times because a pattern can cut up to bi copies of item i (and
there is no use in exceeding the item demand bi). Each such DP iteration generates
transitions from the current states to update other (or produce new) states. A state
transition s→ s′ associated to an item i leads to a state s′ such that:

(a) s′len = slen + wi, i.e., the length simply increases by adding a new item;
(b) s′p = sp + di, i.e., we add the profit of item i;
(c) s′c = sc + f(s′len)− f(slen)− xi, i.e., the term f(s′len)− f(slen) updates the

cost of the standard-size stock piece from which the pattern is cut, and −xi
comes from the −a>x term from the above cost definition f(`)− a>x.

Algorithm 1 provides the pseudo-code executed for each item i ∈ [1..n] considered
bi times. The most complex operation arises at Step 5, where one needs to check that
the new state s′ is not dominated by an existing state in S`+wi

before inserting it in
S`+wi

; the efficient implementation of this step is described in Section 2.2.3.2.

Algorithm 1 The Dynamic Programming steps executed bi times for each item i

1. for ` = W − wi to 0:
2. for each s ∈ S`: . for each state with length `
3. initialize state s′ with s′len = `+ wi, according to above formula (a)
4. calculate s′p, s

′
c with above formulae (b) and (c)

5. if s′ is not dominated by an existing state in S`+wi (Section 2.2.3.2) then
– S`+wi ← S`+wi ∪ {s′}
– record the transition s→ s′ (to reconstruct an optimal pattern in the end)

This pseudo-code is a generalization of the separation algorithm. To solve the sep-
aration sub-problem on some d ∈ Rn, one would only need the following simplification:
consider only singleton sets S` = {s} where s is a state of cost sc = f(w>a) = f(`)
and maximum profit sp = d>a, i.e., for each length ` ∈ [0,W ], it is enough to record
only the maximum profit state, the cost being fixed to f(`). In the end, the separation
algorithm simply returns min {sc − sp : s ∈ S`, ` ∈ [0..W ]}.

The projection sub-problem is more difficult because recording a unique state per
length is no longer enough. To illustrate this, notice that a state with a cost/profit
ratio of 5

4 does not necessarily dominate a state with a cost/profit ratio of 3
2 only

because 5
4 <

3
2 . Indeed, the 5

4 state can evolve to a sub-optimal state by following a
transition that decreases the cost by 1 and increases the profit by 4 because 5−1

4+4 =
4
8 �

3−1
2+4 = 2

6 . This could never happen in a (knapsack-like) separation sub-problem,
i.e., the relative order of two states defined by cost−profit differences would never
change because all transitions induce linear (additive) changes to such differences.

2.2.3.2. Reducing the number of DP states to accelerate the DP projection algo-
rithm. Several ideas can be applied to reduce the number of recorded states. First,
let us show it is enough to record a unique maximum-profit state for each feasible

8



cost of a state in each S`. For this, consider two states s∗, s ∈ S` such that s∗c = sc
and s∗p > sp. The state s is dominated and can be ignored because any transition(s)
equally applied on s∗ and s would lead to the same cost s∗c + ∆c = sc + ∆c > 0 and

to profits s∗p + ∆p > sp + ∆p; this way, it is easy to check that
s∗c + ∆c

s∗p + ∆p
<

sc + ∆c

sp + ∆p

holds — recall we are only interested in positive profit states (positive denominators)
because of the condition d>a > 0 from (2.2.2).

Let us now compare s∗ to a state s ∈ S` that satisfies sc > s∗c and sp ≤ s∗p.
Such state s is also dominated by s∗ because it can only lead via transitions to
s∗c + ∆c

s∗p + ∆p
<

sc + ∆c

sp + ∆p
. As such, a state s ∈ S` with a higher cost than an existing

state s∗ ∈ S` (i.e., sc > s∗c) must have a higher profit to be non-dominated, i.e.,
a non-dominated state s such that sc > s∗c satisfies sp > s∗p. This can be seen as
a formalization of a very natural principle “pay a higher cost only when you gain a
higher profit”. However, the cost and the profits of all non-dominated states in S`
can thus be ordered using a relation of the form:

c1 < c2 < c3 < . . .(2.2.3a)

p1 < p2 < p3 < . . .(2.2.3b)

Let us now discuss the length of the lists (2.2.3.a)–(2.2.3.b) that have to be
recorded for each S` ∀` ∈ [0..W ]. If there are fewer potential costs values, these
lists have to be shorter, and so, the total number of states is reduced. Accordingly, if
all pattern costs f(`) (∀` ∈ [0,W ]) are multiples of 0.2 and if we only use truncated
solutions xit such that all components of xit are also multiples of 0.2, the maximum
number of feasible costs values is 6, because any state cost has the form f(`) − a>x
for some a ∈ Zn+ and thus it has to belong to {0, 0.2, 0.4, 0.6, 0.8, 1}. This way, the
resulting DP algorithm might often need to record only a few states per length, and
so, it is not necessarily significantly slower than a separation DP algorithm recording
a unique state per length.

Finally, we need a fast data structure to manipulate lists of cost/profit pairs
satisfying (2.2.3.a)–(2.2.3.b), because it is important to accelerate the following two
operations executed by Algorithm 1:22

(i) iterate over all elements of S` to implement the for loop at Line 2;
(ii) insert a new state at Line 5 after checking that it is not dominated.

Remark 9. A list of cost/profit values satisfying (2.2.3.a)–(2.2.3.b) can be seen
as a Pareto frontier with two objectives (minimize the cost and maximize the profit).
It is not difficult to scan the elements of such a frontier to implement the above
operation (i). The most computationally-expensive task is to insert a new state for
the above operation (ii), because this requires checking if the new state is dominated
by an existing state. This not be efficiently checked by naively scanning the whole list
of cost/profit values. We propose to record this list in a self-balancing binary tree that
can perform many look-up operations in logarithmic time. Furthermore, the insertion
of a new non-dominated state can lead to the removal of other existing states that

22 To further accelerate the DP, experiments suggest it can be useful (in practice) to sort the items
i ∈ [1..n] in descending order of the value wi

1+xbst
i

. Precisely, Algorithm 1 is executed for each of the

items [1..n] considered in this order. In a loose sense, this amounts to considering that it is better to
start with longer items that did not contribute too much to the best truncated inner solution xbst

ever found.

9



become dominated. Appendix A.1 describes in detail the self-balancing binary tree
that we used to (try to) perform such operations as rapidly as possible. �

3. Numerical Experiments. We here report numerical results on the robust
optimization problem and then on two Multiple-Length Cutting-Stock variants.

3.1. A Robust optimization problem. We consider the instances from [6]
using Γ ∈ {1, 10, 50}; these instances originate in the Netlib or the Miplib libraries.
In fact, we discarded all instances that are infeasible for Γ = 50, since our methods
are not designed to find infeasibilities. We also ignored all instances that require less
than 5 cuts in loc. cit. (i.e., seba, shell and woodw) because they are too small to
produce meaningful comparisons. We thus remain with a test bed of 21 instances
with between n = 1000 and n = 15000 variables.23 Recall our robust optimization
problem has a minimization objective, so that the inner solutions xit determined by
Projective Cutting-Planes along the iterations it generate upper bounds b>xit.

0 10 20 30 40 50 60 70 80
1.0

1.04

1.08

Iterations

B
ou

n
d
V
al
u
e

N
om

in
al

O
p
ti
m
u
m

ship12s, γ = 50
lower and upper bounds of new method

lower bounds of standard method

0 20 40 60 80 100 120 140 160 180 200
1.0

1.05

1.1

1.15

1.2

1.25

Iterations

B
o
u
n
d
V
al
u
e

N
o
m
in
a
l
O
p
ti
m
u
m

pilotja, γ = 50

lower and upper bounds of new method

lower bounds of standard method

iteration 108: gap 3.1% ( ub-lb
lb

)

iteration 24: gap 0.06% ( ub-lb
lb

)

Figure 5: The progress over the iterations of the lower and upper bounds reported
by the Projective Cutting-Planes (in red), compared to those of the standard
Cutting-Planes (lower bounds only, in blue).

23 Most instances have between n = 1000 and n = 5000 variables and a number of constraints
between 500 and 3000. We refer to [6, Table 1] for the nominal objective value of each instance.
We mention that stocfor3 is an exceptionally large instance with n = 15695 and more than 15000
constraints. For even greater detail on their characteristics, the instances are publicly available
on-line in a human-readable format (the original MPS files are difficult to parse) at cedric.cnam.
fr/∼porumbed/projcutplanes/instances-robust.zip.

10

cedric.cnam.fr/
cedric.cnam.fr/
~
porumbed/projcutplanes/instances-robust.zip


3.1.1. A general view on the running profile. Figure 5 plots the run-
ning profile of the standard Cutting-Planes compared to that of the Projective

Cutting-Planes on two instances. The standard Cutting-Planes needed 83 and
resp. 207 iterations to fully converge. After only half this number of iterations, the
Projective Cutting-Planes reported a feasible solution with a proven low gap of
0.06% or resp. 3.1%, as indicated b y the arrows in the figure.

3.1.2. The main tabular results. Table 4 next page compares the total com-
puting effort (iterations and CPU time) needed to fully solve each instance with the
new and the standard method. For Projective Cutting-Planes, we also provide
the computing effort needed to reach a gap of 1% between the lower and the upper
bounds; this may require a time of seconds in general, significantly less the stan-
dard Cutting-Planes. For example, the standard Cutting-Planes needed between
one and two hours (depending on γ) to determine the optimal solution for the last
instance stocfor3, while the Projective Cutting-Planes reported in less than 3
seconds a feasible solution with a proven gap below 1% (see columns “gap 1%” in
bold in the last row). In many practical settings, this could represent a satisfactory
feasible solution.24

For sctap2 and sctap3 with Γ = 50, the standard Cutting-Planes is seriously
slowed down by degeneracy issues, i.e., it performs too many Simplex pivots that only
change the basis without improving the objective value. It thus needs significantly
more iterations than normally expected — see the figures in bold in the rows of sctap2
and sctap3. We suppose that such degeneracy phenomena are also visible for czprob
with Γ = 50 in Table 1 of [6], because their algorithm takes 100 more time for Γ = 50
than for Γ = 10, which is unusual.

Remark 10. Except for the above experiments, the degeneracy issues of the stan-
dard Cutting-Planes are not very visible in other Cutting-Planes implementations
from this work (including in [15]). However, such problems well recognized in the
Cutting-Planes literature, especially in Column Generation; as [11, §4.2.2] put it,
“When the master problem is a set partitioning problem, large instances are difficult
to solve due to massive degeneracy [...] Then, the value of the dual variables are no
meaningful measure for which column to adjoin to the Reduces Master Problem”. In
Projective Cutting-Planes, the inner-outer solutions xit and opt(Pit−1) repre-
sent together a more “meaningful measure” for selecting a new constraint, avoiding
iterations that keep the objective value constant. In fact, as hinted at point 2 of [15,
§ 2], a projection can not keep the objective value constant when xit is strictly interior
(which is surely the case when α < 1). This comes from the fact that the objective
value can not deteriorate or remain constant by advancing along xit → dit, because
xit + dit = opt(Pit−1) and xit belongs to the strict interior of Pit−1 ⊇P.

3.2. Multiple–Length Cutting-Stock. We here consider a Multiple-Length
Cutting-Stock variant with two types of input standard-size pieces: one of length W
and cost 1, and one of length 0.7W and cost 0.6. Preliminary experiments confirm
that introducing a third type of standard-size piece lead to similar experimental con-
clusions. We prefer Multiple-Length Cutting-Stock over the standard Cutting-Stock
because: (i) the constraints (a, ca) ∈ A of the Column Generation dual LP (2.2.1)
do not satisfy all ca = 1, and (ii) it is not possible to generate lower bounds using the
Dual Feasible Functions that proved so effective in standard Cutting-Stock [4].

24It is also true that the robust optimal solution is always within 103% of the nominal optimum.
The value of the starting solution x1 might be only a few percents higher than the nominal optimum.

11



γ
=

50
γ

=
1
0

γ
=

1
O

P
T

n
ew

m
eth

o
d

std
.

m
eth

o
d

O
P

T
n

ew
m

eth
o
d

std
.

m
eth

o
d

O
P

T
n

ew
m

eth
o
d

std
.

m
eth

o
d

(+
%

)
g
a
p

1%
fu

ll
con

v
erg

.
fu

ll
co

n
v
erg.

(+
%

)
ga

p
1
%

fu
ll

co
n
v
erg

.
fu

ll
co

n
v
erg

.
(+

%
)

gap
1%

fu
ll

con
v
erg.

fu
ll

con
v
erg.

In
stan

ce
iters

tim
e

iters
tim

e
iters

tim
e

iters
tim

e
iters

tim
e

iters
tim

e
iters

tim
e

iters
tim

e
iters

tim
e

2
5
f
v
4
7

2.54
8

146
1.16

8
14

9
1.19

1
1
9
9

1
.265

2.541
158

1
.1

8
8

1
6
9

1
.2

7
3

2
0
4

1
.4

5
5

1
.4

57
135

1.023
147

1.11
149

1.12
b
n
l
2

1.84
7

486
13

.6
6

49
1

13
.8

1
1
927

4
8.13

1.84
703

2
0
.9

2
7
0
8

2
1
.0

8
1
2
9
5

3
1
.3

1
0
.7

903
501

14.47
504

14.56
552

12.66
c
z
p
r
o
b

0
.6

4
01

61
0.485

73
4

32.3
1
293

5
8.52

0.3749
32

0
.1

8
1

1
2
5

0
.8

9
9

1
7
0

1
.3

0
2

0
.1

223
14

0.0935
25

0.196
25

0.124
g
a
n
g
e
s

0
.4

7
36

1
<

0
.0

0
1

25
0
.0

5
9

25
0
.059

0.4302
1
<

0
.0

0
1

3
1

0
.0

8
5

3
3

0
.0

7
4

0
.0

531
1
<

0.001
25

0.063
25

0.049
g
f
r
d
-
p
n
c

0
.0

6
49

64
0.14

0
4

64
0
.1

4
1

64
0
.092

0.0649
64

0
.1

0
8
6

6
4

0
.1

0
9

6
4

0
.0

9
0

0
.0

592
67

0.1415
67

0.142
67

0.100
m
a
r
o
s

12
.1

2
272

2.40
2

27
8

2.45
8

3
7
9

3
.518

12.11
281

2
.5

0
8

3
0
0

2
.6

8
3

3
9
5

3
.4

8
6

5
.76

200
1.812

219
1.983

227
1.714

n
e
s
m

0
.8

7
52

56
0.579

80
0
.7

9
8

80
0
.659

0.8752
56

0
.6

0
4

8
0

0
.8

2
4

8
0

0
.6

5
8

0
.4

515
58

0.647
82

0.880
82

0.639
p
i
l
o
t
j
a

4.87
7

121
2.41

8
16

1
3.04

2
2
0
7

3
.701

4.815
125

2
.3

1
6

1
7
2

3
.0

7
4

1
7
9

3
.4

1
8

2
.3

44
110

1.522
135

1.908
143

1.693
p
i
l
o
t
n
o
v

8.51
96

4.227
12

0
4.61

5
1
1
9

3
.714

8.51
103

6
.1

2
1
3
9

6
.9

1
2

1
4
1

4
.9

1
5

4
.4

02
94

3.355
120

3.805
119

1.776
p
i
l
o
t
w
e

6.10
9

102
0
.9

7
11

8
1.10

2
1
4
3

1
.204

6.108
102

1
.0

4
5

1
1
9

1
.1

9
1
4
4

1
.3

0
8

3
.1

93
98

0.853
115

1.005
124

1.066
s
c
f
x
m
2

2.11
4

93
0.387

13
9

0.58
4

1
4
6

0
.537

2.113
101

0
.4

0
1

1
5
2

0
.6

0
3

1
5
0

0
.4

9
8

0
.9

889
88

0.357
131

0.536
142

0.486
s
c
f
x
m
3

2.14
2

139
0.95

7
19

6
1.35

3
2
1
5

1.27
2.141

142
0
.9

5
5

2
2
7

1
.5

7
5

2
2
2

1
.3

0
9

0
.9

77
91

0.605
197

1.352
213

1.216
s
c
t
a
p
2

2.84
4

185
1.94

6
24

2
2.56

7
6
5
4
5

1
47.3

2.814
332

3
.6

8
5

6
9
6

8
.4

9
5
4

1
0
.6

2
1
.5

33
191

2.035
353

3.88
302

2.644
s
c
t
a
p
3

3.04
145

2.64
9

23
9

4.55
9
4
6
3

3
66.1

2.995
180

3
.4

5
7
7
3

1
5
.4

9
1
1
6
8

2
0
.2

2
1
.6

02
213

3.785
406

7.394
347

4.799
s
h
i
p
0
8
l

0
.1

2
44

1
0.002

20
0
.1

1
1

29
0
.171

0.1157
1

0
.0

0
2

1
9

0
.1

2
8

2
3

0
.1

3
4

0
.0

300
1

0.002
19

0.127
24

0.147
s
h
i
p
0
8
s

0
.1

3
96

2
0.006

32
0
.1

2
2

42
0
.139

0.129
2

0
.0

0
6

3
4

0
.1

3
4

3
5

0
.1

2
3

0
.0

317
1

0.001
32

0.123
38

0.127
s
h
i
p
1
2
l

0
.3

5
28

1
<

0
.0

0
1

48
0
.4

4
2

65
0
.576

0.3462
1
<

0
.0

0
1

4
8

0
.4

1
8

6
5

0
.5

5
5

0
.0

600
1

0.004
45

0.451
56

0.483
s
h
i
p
1
2
s

0
.3

8
98

4
0.015

63
0
.3

7
7

83
0
.376

0.3857
5

0
.0

1
9

6
4

0
.3

8
7

8
6

0
.3

9
8

0
.0

617
4

0.015
58

0.305
63

0.281
s
i
e
r
r
a

0
.0

2
39

1
0.001

54
0
.4

1
4

61
0
.567

0.0239
1

0
.0

0
1

5
4

0
.4

1
2

6
1

0
.5

6
9

0
.0

223
1

0.004
51

0.538
51

0.483
s
t
o
c
f
o
r
2

1.52
2

6
0.022

43
7

5.04
7

4
8
4

6.67
1.522

7
0
.0

2
5

4
3
8

5
.3

8
7

4
8
6

6
.5

6
2

0
.7

588
3

0.054
438

7.573
712

10.3
s
t
o
c
f
o
r
3

1.48
2

29
2
.1

9
2

37
7
7

2
125

4
329

2701
1.482

32
1
.8

6
2

3
7
8
1

2
0
2
9

4
3
3
0

2
8
5
1

0
.7

327
1

0
.9

9
3720

3023
6069

3482

T
ab

le
4
:

R
esu

lts
of

P
r
o
j
e
c
t
i
v
e
C
u
t
t
i
n
g
-
P
l
a
n
e
s

an
d

sta
n

d
a
rd

C
u
t
t
i
n
g
-
P
l
a
n
e
s

o
n

ro
b

u
st

o
p

tim
ization

in
stan

ces.
T

h
e

colu
m

n
s

O
P

T
in

d
icate

th
e

in
crea

se
in

p
ercen

ta
g
e

o
f

th
e

rob
u

st
ob

jective
va

lu
e

w
ith

resp
ect

to
th

e
n

o
m

in
a
l

o
n

e
(w

ith
n

o
rob

u
stn

ess).
C

olu
m

n
s

“gap
1
%

”
in

d
ica

te
th

e
co

m
p

u
tin

g
eff

ort
n

eed
ed

to
reach

th
e

itera
tio

n
i
t

w
h

en
th

e
g
a
p

b
etw

een
th

e
u

p
p

er
b

ou
n

d
b
>

x
i
t

an
d

th
e

low
er

b
ou

n
d

o
p
t
V
a
l
(P

i
t )

is
b

elow
1%

,
i.e.,

eith
er

0
<

o
p
t
V
a
l
(P

i
t )≤

b
>

x
i
t ≤

1
.0

1
o
p
t
V
a
l
(P

i
t )

o
r
o
p
t
V
a
l
(P

i
t )≤

b
>

x
i
t ≤

0.99
o
p
t
V
a
l
(P

i
t )
<

0.

12



Table 5 compares the Projective Cutting-Planes (from Section 2.2.2) to the
standard Column Generation on thirty instances from the literature.25 Column 1
represents the instance, Column 2 indicates the optimal value of (2.2.1), Columns
3–6 report the results of the new method, and Columns 7–10 provide the results
of the standard Column Generation. For both methods, Table 5 first indicates the
computing effort (iterations and CPU time) needed to reach a gap of 20% (i.e., so
that ub≤ 1.2·lb) and then the total computing effort needed to fully converge.

Projective Cutting-Planes Standard Column Generation
Instance OPT gap 20% full convergence gap 20% full convergence

iters time[s] iters time[s] iters time[s] iters time[s]
m01-1 49.3 90 0.02 166 0.05 187 0.07 194 0.08
m01-2 53 82 0.02 140 0.04 171 0.06 202 0.07
m01-3 48.2 70 0.02 134 0.04 180 0.07 212 0.08
m20-1 56.6 79 0.02 101 0.03 101 0.03 148 0.04
m20-2 58.7 73 0.02 103 0.02 123 0.04 175 0.05
m20-3 64.8 61 0.01 116 0.02 118 0.03 136 0.03
m35-1 73.9 61 0.01 61 0.01 64 0.01 64 0.01
m35-2 71.5 125 0.02 125 0.02 143 0.02 143 0.02
m35-3 73.7 67 0.01 67 0.01 82 0.01 82 0.01
vb50c1-1 866.3 46 0.8 82 2.2 83 5.5 113 8.3
vb50c1-2 842.5 39 1.6 86 2.5 91 7.6 121 9.6
vb50c1-3 860.2 37 1.5 85 3.1 87 6.9 115 9.5
vb50c2-1 672.3 55 2.2 114 9.8 82 13.1 127 20.2
vb50c2-2 593.1 40 1.9 80 5.1 88 11 139 21.1
vb50c2-3 480.048 36 3.5 181 47.2 75 20.6 216 76.3
vb50c3-1 282 37 11.7 122 57.6 67 36.1 179 105
vb50c3-2 239.398 37 16.8 115 64.6 60 30.6 145 85.1
vb50c3-3 271.398 36 12.9 132 65.3 68 38.2 173 109
vb50c4-1 579.548 40 3.5 115 17.5 73 12.5 158 35.5
vb50c4-2 551.01 36 3 123 21.9 73 18.5 166 46.6
vb50c4-3 700.039 40 2.3 111 9.9 81 11.9 147 24.8
vb50c5-1 337.8 40 8.7 133 51.9 61 24.8 228 109
vb50c5-2 349.799 30 4.8 130 44.1 64 21 207 81.4
vb50c5-3 295.775 36 11 115 53.6 71 28.4 177 83.9
wäscher-1 24.0648 71 0.2 319 4.2 294 2.3 483 4.7
wäscher-2 22.0003 69 0.2 501 8.6 158 1 481 6.7
wäscher-3 12.1219 31 0.03 110 0.3 110 0.3 170 0.5
hard-sch-1 51.4254 112 14.7 345 69.2 345 48.1 712 115
hard-sch-2 51.4426 116 15.1 339 67 365 50.9 685 110
hard-sch-3 50.5957 110 15.1 295 58.6 357 52.8 630 107
Table 5: The new method compared to the standard method on Multiple-Length
Cutting-Stock. The Column Generation needs at least 60% more iterations on roughly
a quarter of instances (see bold figures in Columns 5 and 9). All reported CPU times
are smaller than those reported in the companion paper (Section 2, p. 6) of [16], for
both the new method and the standard Column Generation. This can not only be
explained by the hardware evolution, but also by a better implementation.

Table 5 demonstrates that Projective Cutting-Planes reaches the 20% gap

25 We use ten instance sets, taking the first 3 instances from each set. For each set, the number
(ID) of each individual instance is indicated by a suffix, e.g., we write m01-1, m01-2, m01-3 to refer to
the first, second and third instance respectively from the set m01. The characteristics of the instances
(i.e., the values of n, W , b, etc) and their origins are described in Table 1 from [16].

13



three or four times more rapidly than the standard Column Generation (compare
Columns 3–4 to Columns 7–8). This is mostly due to the fact that Projective

Cutting-Planes can generate high-quality lower bounds from the very first iterations,
as it will also be shown by the running profiles from Figure 6, Section 3.2.1 next.

Regarding the complete convergence, the standard Column Generation requires
in average 93% more CPU time and 44% more iterations than the Projective

Cutting-Planes. For the last three (most difficult) instances, the Projective

Cutting-Planes reduced the number of iterations by half. By applying stabiliza-
tion techniques on the classical Column Generation, the reduction of the number of
iterations would generally be between 10% and 20%, for all instances except the (very
easy) m20 and m35 [16, Table 2].

3.2.1. An aggressive Projective Cutting-Planes. Let us now consider an
aggressive Projective Cutting-Planes, defining xit = xit−1 + t∗it−1dit−1, i.e., xit

is the best feasible solution discovered up to the current iteration (the last pierce
point).

Figure 6 presents the evolution along the iterations of the lower bounds of the
aggressive and standard Projective Cutting-Planes compared to the Lagrangean
bounds of the standard Column Generation. This figure demonstrates that the ag-
gressive Projective Cutting-Planes starts very well by strictly increasing the lower
bound at each iteration (no “yo-yo” effect); however, the full convergence of this ag-
gressive algorithm needs significantly more CPU time than the standard Projective

Cutting-Planes. Since it does not use truncated interior points xit, the iterations of
the aggressive algorithm are slower. As such, even for the first instance m01-1 where
the aggressive version needs less iterations, the total convergence time is approxi-
mately three times larger than that of the standard Projective Cutting-Planes.
For vb50c1-1, the aggressive algorithm needs 9 times more (CPU) time.

3.2.2. Results over Multiple Runs. Although we have only presented in-
dividual results on individual instances until now, we can demonstrate that similar
trends show up across multiple runs. Table 6 presents results over 10 runs, reporting
the average, the standard deviation and the minimum/maximum number of itera-
tions required for full convergence by both the new and the standard method. To
randomize the two methods, we determine each optimal solution opt(Pit) by ran-
domly breaking ties in case of equality (at each iteration it). The maximum number
of iterations needed by the Projective Cutting-Planes is usually lower than the
minimum number of iterations of the standard Column Generation, and so, there is
no need for statistical tests to confirm this difference is statistically significant. In
addition, all standard deviations are usually rather limited for both methods, gener-
ally representing less than 5% of the average value. Other preliminary experiments
confirm that similar trends show up across all instances from each instance set.

3.3. The oscillations of the inner solutions and the “bang-bang” effects.
The goal of this section is to (try to) gain more insight into why an “aggressive”
definition of xit like xit = xit−1 + t∗it−1dit−1 leads to poor results in the long run
on certain problems and to reasonable results on others. A possible explanation is
related to the oscillations of the inner solutions xit along the iterations it. The above
aggressive xit definition generates stronger oscillations (“bang-bang” effects) for the
robust optimization (Section 3.1) and the Benders decomposition ([15, § 4.1]) problems
than for graph coloring ([15, §. 4.2]) or Multiple-Length Cutting-Stock (Section 3.2).

We provide below the values of the first 15 components of xit+1 = xit+t∗itdit for

14



0 20 40 60 80 100 120 140 160 180

20

30

40

Iterations

L
ow

er
b
ou

n
d

m01-1

aggressive new method (project best interior point)

new method standard version

classical CG

0 10 20 30 40 50 60 70 80 90 100 110

300

500

700

Iterations

L
ow

er
b
o
u
n
d

vb50c1-1

aggressive new method (project best interior point)

new method standard version

classical CG

Figure 6: Two representative examples of running profiles, comparing the aggressive
and the standard Projective Cutting-Planes against Column Generation. While
the aggressive Projective Cutting-Planes starts very well (the black curves show
no “yo-yo” effect), it converges rather slowly in terms of CPU time.

Instance OPT Projective Cutting-Planes standard Column Generation
avg (std. dev) min/max avg (std. dev) min/max

m01-1 49.3 159 (4.7) 152/168 191 (8.2) 173/202
m20-1 56.6 98.8 (3.2) 91/102 162 (6.9) 152/175
m35-1 73.9 63.3 (3.2) 61/69 66.3 (2) 64/69
vb50c1-1 866.3 82 (0) 82/82 113 (0) 113/113
vb50c2-1 672.3 114 (0) 114/114 127 (0) 127/127
vb50c3-1 281.949 173 (18.2) 119/180 196 (7.2) 174/198
vb50c4-1 579.548 115 (0) 115/115 158 (0) 158/158
vb50c5-1 337.675 201 (22.8) 133/209 238 (3.3) 228/239
wäscher-1 24.0648 308 (13) 287/328 485 (7.5) 466/494
hard-sch-1 51.4253 356 (7.7) 346/370 707 (11.4) 691/726

Table 6: Statistical comparison (over ten runs) of the number of iterations needed by
the two methods to fully converge on the first instance from each instance set.

it ∈ {1, 11, 21, 31, 41}, i.e., as generated by Projective Cutting-Planes using the
above aggressive xit definition. For each problem, we selected the very first instance
from the main table of results, i.e., from Table 4, from the second group of rows of
[15, Table 1], from [15, Table 3], and then from Table 5. It is clear that these values
exhibit stronger oscillations for the first two problems than for the last two. This
explains why setting xit = xit−1 + t∗it−1dit−1 is appropriate for graph coloring, while
the best settings for the first two problems take a form xit = xit−1 + αt∗it−1dit−1

15



with α < 0.5. Regarding Multiple-Length Cutting-Stock, although we could not obtain
the best results using xit = xit−1 + t∗it−1dit−1 in Section 3.2, this choice would still
leads to reasonable results in Table 6 (where the number of iterations is reasonably
small, even if the CPU time is too large).

The robust optimization problem:

0 37.36 0 59.62 0 69.77 0 97 199.2 0 0 417 4403 0 65.66

20.76 22.81 0 49.76 0 45.46 0 65.86 236.4 0 136.3 254.6 3500 0 64.43

27.38 18.04 0 46.28 0 37.49 0 55.68 248.7 0 180.8 201.3 3205 0 64.03

33.26 13.8 0 43.21 0 30.41 0 46.66 259.6 0 220.7 154.1 2942 0 63.67

36.22 11.68 0 41.63 0 26.86 0 42.14 265.1 0 240.7 130.3 2811 0 63.49

The benders reformulation (IP version):

2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76

0.37 0.37 0.37 0.37 0.37 0.37 4.08 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

0.112 0.112 0.112 0.112 0.112 0.112 1.93 0.112 0.112 1.64 0.112 0.112 0.112 0.112 0.112

0.026 0.026 0.026 0.026 0.026 0.026 1.62 0.026 0.026 1.62 0.026 0.026 0.026 0.026 0.026

0.018 0.024 0.018 0.018 0.018 0.029 1.67 0.03 0.018 1.12 0.018 0.079 0.018 0.029 0.018

Standard graph coloring:

0.025 0.021 0.036 0.021 0.033 0.021 0.021 0.021 0.029 0.029 0.021 0.025 0.029 0.025 0.033

0.04 0.064 0.033 0.028 0.084 0.028 0.035 0.019 0.04 0.059 0.019 0.073 0.054 0.025 0.05

0.04 0.063 0.033 0.029 0.085 0.028 0.044 0.019 0.04 0.058 0.019 0.072 0.056 0.025 0.051

0.038 0.062 0.032 0.03 0.089 0.027 0.045 0.018 0.039 0.056 0.018 0.07 0.054 0.025 0.051

0.037 0.06 0.032 0.031 0.088 0.026 0.044 0.018 0.038 0.055 0.018 0.068 0.053 0.025 0.051

Multiple length cutting stock:

0.28 0.43 0.72 0.79 0.23 0.7 0.55 0.39 0.69 0.01 0.41 0.4 0.05 0.25 0.95

0.27 0.43 0.72 0.79 0.24 0.7 0.55 0.39 0.69 0.01 0.41 0.4 0.05 0.24 0.95

0.28 0.43 0.72 0.79 0.23 0.7 0.55 0.39 0.69 0.01 0.41 0.4 0.05 0.24 0.95

0.28 0.44 0.72 0.79 0.23 0.7 0.55 0.4 0.69 0.01 0.41 0.41 0.05 0.24 0.95

0.28 0.43 0.72 0.79 0.23 0.7 0.55 0.39 0.69 0.01 0.42 0.39 0.05 0.24 0.95

4. Conclusions. This paper has expanded the research work on Projective

Cutting-Planes first started in [15]. We presented two new problems on which we
illustrated new techniques for solving the projection sub-problem (almost) as rapidly
as the separation sub-problem. The new numerical experiments confirm all conclusion
from [15]. We recall that the main added value is that Projective Cutting-Planes

has a built-in mechanism to generate feasible (inner) solutions along the iterations,
i.e., we obtain a sequence of inner solutions that converge towards opt(P), somehow
similarly to the solutions of the central path in interior point algorithms. There
is no such built-in mechanism in Cutting-Planes: even if some ad-hoc methods
could be sometimes used in Cutting-Planes to generated feasible solutions along
the iterations, these inner solutions represent a by-product of the algorithm with no
influence on the Cutting-Planes evolution.

Projective Cutting-Planes can offer certain advantages beyond the reduction
of the computing effort needed to fully converge. For instance, the robust linear pro-
gramming experiments from Table 4 (Columns “gap 1%”) demonstrate that Projective
Cutting-Planes can produce a feasible solution with a provable optimality gap below
1% using in certain cases less than 5% of the total convergence time. Furthermore,
Projective Cutting-Planes can easily avoid the degeneracy problems of standard
Cutting-Planes. The separation sub-problem of the standard Cutting-Planes de-
termines each new constraint only guided by the current optimal (outer) solution.
The Projective Cutting-Planes generates new constraints by taking into account
a pair of inner–outer solutions. This, coupled with the fact that all considered pro-

16



jection sub-problems project(xit → dit) satisfy b>dit > 0, enables the Projective

Cutting-Planes to more easily avoid many degeneracy issues (i.e., iterations that
keep the objective value constant) that can arise in Cutting-Planes. Although in
our experiments these issues of the standard Cutting-Planes are only visible in Sec-
tion 3.1 (Remark 10, p. 11), it is well-known that they do arise quite frequently in
Column Generation as well.26

The numerical tests on Multiple-Length Cutting-Stock confirm that an aggres-
sive Projective Cutting-Planes that chooses xit as the best solution ever discov-
ered (i.e., xit = xit−1 + t∗it−1dit−1) eliminates the infamous “yo-yo” effect that
appears very often (if not always) in Column Generation. However, this Projective
Cutting-Planes variant is not particularly effective in the long run (see Figure 6,
p. 15). We prefer a more conservative variant that chooses xit as indicated in Sec-
tion 2.2.2. Compared to this Projective Cutting-Planes variant, the standard
Column Generation requires in average 93% more CPU time and 44% more iterations
in Table 5. By applying stabilization techniques on the classical Column Generation,
the reduction of the number of iterations would generally be between below 20%, for
all instances except the (very easy) sets m20 and m35 [16, Table 2].

We hope this paper, which continues the initial research from [15], sheds useful
light on solving other LPs with prohibitively-many constraints.

REFERENCES

[1] H. Ben Amor and J. M. V. de Carvalho, Cutting stock problems, in Column Generation,
G. Desaulniers, J. Desrosiers, and M. M. Solomon, eds., vol. 5, Springer, 2005, pp. 131–161.

[2] J. F. Benders, Partitioning procedures for solving mixed-variables programming problems,
Numerische mathematik, 4 (1962), pp. 238–252.

[3] A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Naval re-
search logistics quarterly, 9 (1962), pp. 181–186.

[4] F. Clautiaux, C. Alves, and J. M. V. de Carvalho, A survey of dual-feasible and superad-
ditive functions, Annals of Operations Research, 179 (2009), pp. 317–342.

[5] A. M. Costa, A survey on benders decomposition applied to fixed-charge network design prob-
lems, Computers & operations research, 32 (2005), pp. 1429–1450.

[6] M. Fischetti and M. Monaci, Cutting plane versus compact formulations for uncertain (in-
teger) linear programs, Mathematical Programming Computation, 4 (2012), pp. 239–273.

[7] J. Gondzio, Interior point methods 25 years later, European Journal of Operational Research,
218 (2012), pp. 587–601.

[8] J. Gondzio, P. González-Brevis, and P. Munari, Large-scale optimization with the primal-
dual column generation method, Math. Prog. Comp., 8 (2016), pp. 47–82.

[9] S. Held, W. Cook, and E. C. Sewell, Maximum-weight stable sets and safe lower bounds
for graph coloring, Mathematical Programming Computation, 4 (2012), pp. 363–381.

[10] A. N. Letchford, F. Rossi, and S. Smriglio, The stable set problem: Clique and nodal
inequalities revisited, European Journal of Operational Research, in major revision (2018).

[11] M. E. Lübbecke and J. Desrosiers, Selected topics in column generation, Operations Re-
search, 53 (2005), pp. 1007–1023.

[12] E. Malaguti, M. Monaci, and P. Toth, An exact approach for the vertex coloring problem,
Discrete Optimization, 8 (2011), pp. 174–190.

[13] D. Porumbel, Ray projection for optimizing polytopes with prohibitively many constraints in
set-covering column generation, Mathematical Programming, 155 (2016), pp. 147–197.

[14] D. Porumbel, From the separation to the intersection subproblem for optimizing polytopes with
prohibitively many constraints in a Benders decomposition context, Discrete Optimization,
29 (2018), pp. 148–173.

26As [1, §4] put it, “Column generation processes are known to have a slow convergence and
degeneracy problems”. Section 4.2.2 of [11] explains that “large instances are difficult to solve due to
massive degeneracy” — see also the references from loc. cit for longer explanations of the mechanisms
that lead to degeneracy issues.

17



[15] D. Porumbel, Projective Cutting-Planes, unpublished notes, (2019).
[16] D. Porumbel and F. Clautiaux, Constraint aggregation in column generation models for

resource-constrained covering problems, INFORMS JoC, 29 (2017), pp. 170–184.
[17] F. Vanderbeck, Computational study of a column generation algorithm for bin packing and

cutting stock problems, Mathematical Programming, 86 (1999), pp. 565–594.

APPENDICES
Appendix A. Numerical aspects on three projection algorithms. For the

sake of completeness, we will now describe all implementation details of the projection
algorithms studied throughout this paper and the initial study [15].

A.1. A fast data structure to manipulate a Pareto frontier. We here
present the data structure used by the projection algorithm for Multiple-Length Cutting-
Stock to record Dynamic Programming (DP) states. This data structure is not essen-
tially linked to Cutting-Stock: it can manipulate any Pareto frontier with two ob-
jectives. In Section 2.2.3.2 (Remark 9, p. 9) we described how the DP projection
algorithm needs to handle a list of states I whose cost and profits ci/pi ∀i ∈ I sat-
isfy the Pareto dominance relation (2.2.3.a)–(2.2.3.b), recalled below for the reader’s
convenience.

c1 < c2 < c3 · · · < c|I|

p1 < p2 < p3 · · · < p|I|

As described in Remark 9, one computationally expensive task (of Algorithm 1,
p. 8) is the insertion of a new pair c+/p+ at Step 5; it can be very inefficient to scan
the whole list I only to check if c+/p+ is dominated or not. As such, we propose
to record I using a self-balancing binary tree, which is a data structure designed to
manipulate ordered lists, e.g., it performs a lookup, an insertion and a removal in
logarithmic time with respect to |I|. The order of states in the tree is given by the
simple comparison of costs, i.e., if ci < cj , then ci/pi is ordered before cj/pj .

Any self-balancing binary tree implementation has to be able to compare c+ to the
pair c∗/p∗ with the highest cost no larger than c+, i.e., c∗ = max{ci : ci ≤ c+, i ∈ I}.
Without comparing to c∗/p∗, it is certainly impossible to decide whether c+/p+ should
be inserted before or after c∗/p∗ in the binary tree. Thus, any implementation of the
self-balancing tree has to provide a means to determine c∗/p∗. In the worst case, it
is certainly possible to (temporary) insert c+/p+ in the tree and return the element
before c+/p+; this operation relies on the insertion operator and other constant-time
manipulations, and so, it takes logarithmic time.

Once c∗/p∗ is determined, we apply an insertion routine as follows. First, if
p∗ ≥ p+, then the new pair c+/p+ is directly rejected because it is dominated by
definition. Otherwise, if p∗ < p+, then c+/p+ has to be inserted in the tree, and so,
other recorded pairs may become dominated and need to be removed. For instance, if
c∗ = c+ and p∗ < p+, then c∗/p∗ is immediately removed from the tree. Furthermore,
our insertion routine enumerates one by one all next recorded pairs c#/p# ordered
after c∗/p∗ (and after c+/p+) that satisfy p# ≤ p+ and removes them all. Indeed,
such pairs c#/p# are certainly dominated by c+/p+, given that p# ≤ p+ and c# > c+;
the latter inequality follows from the fact that c#/p# is ordered after c∗/p∗ in the
tree.

A.2. Numerical difficulties when solving the Benders integer model.
For both the separation and the projection sub-problem, the Cutting-Planes algo-
rithm for the Benders reformulation (3.2.8a)–(3.2.8c) from the main paper [15] can

18



encounter a number of numerical issues that are worthwhile investigating. The main
one in Appendix A.2.1 regards the optimization of the relaxed master programs, to
determine opt(Pit) at each iteration it. The second one in Appendix A.2.2 concerns
the projection algorithm.

A.2.1. Numerical difficulties when solving the integer master problem.
The ILP solver for determining opt (Pit) at each iteration it can be particularly
prone to numerical or precision problems, especially if Pit contains too many con-
straints (3.2.8b) with exceedingly large coefficients – as determined by the sub-problem
algorithm. For the (cplex) LP solver, many values (of variables or slacks) can be zero
in theory and slightly larger than zero in practice; multiplying such “ε-sized” values
with extremely large coefficients can generate noising terms and numerical precision
problems.

Recall that the separation sub-problem performs a normalization of these co-
efficients by imposing 1>u = 1 in (3.2.4). Regarding the projection sub-problem,
we mentioned at point (ii) from Section 3.2.3 that the returned u does not need to
be normalized. This is perfectly fine in theory, but if the optimal solution of the
LP (3.2.11a)–(3.2.11e) used by the sub-problem has some exorbitant coefficients (see
reasons in Appendix A.2.2 below), the projection algorithm can return a constraint
(3.2.8b) with exceedingly large coefficients. To avoid such drawbacks, we apply the
following principles when solving the projection sub-problem:

– If (3.2.11a)–(3.2.11e) has multiple optimal solutions, it is better to take one
with reasonable coefficients; as such, when solving (3.2.11a)–(3.2.11e), the
projection algorithm breaks ties by minimizing 1>u.

– Before inserting a constraint (3.2.8b) into the master problem, it is better
to normalize it; for this, we multiply u by a scalar such that the largest
coefficient uij of a term uijxij in (3.2.8b) becomes equal to 10.

Despite above efforts, the master ILP solver (for both the standard or the new
Cutting-Planes) might take too long to optimize certain relaxed master ILPs associ-
ated to (3.2.8a)–(3.2.8c), i.e., it can be too difficult to determine opt(Pit) at certain
(rare) iterations it. Although such problems are not frequent, they could completely
block the overall algorithm for a prohibitively long time; accordingly, the integer
Benders model can become very difficult to solve in such cases, almost impossible.

The key for overcoming this drawback comes from the fact that it is not really
essential to determine the optimal solution opt(Pit) at each iteration it (as described
soon). Accordingly, we enforce a limit of n

120 + 1 seconds on the running time of the
ILP solver; as soon as this limit is exceeded, the Cutting-Planes continues with
the best sub-optimal solution of Pit found by the ILP solver in the given time,
which is different from opt(Pit). This does not change the correctness of the overall
algorithm, because this sub-optimal solution could be separated anyway at the next
call to the sub-problem algorithm. If this is not the case, we allow 500 more time to
the ILP solver and we let it try again to determine opt(Pit). If this second try fails,
we consider the instance can not be solved. This technique is described in greater
detail in Appendix C.2 of [14].

A.2.2. Numerical aspects when solving the projection sub-problem.
The projection algorithm could be prone to numerical problems when α is close to
1. More exactly, a small precision error in computing the step length t∗ can lead
to an infeasible pierce point x + t∗d, and, if α is very close to 1, this could lead to
choosing an infeasible inner solution x+α ·t∗d at the next iteration. For the standard
separation, a small precision error can be less problematic if the returned constraint

19



does separate the current optimal outer solution.
In particular, the LP (3.2.11a)–(3.2.11e) used to solve the projection subproblem

in the main paper [15] can be particularly prone to numerical problems, because the
decision variables u can be unbounded. In fact, the only constraint that can limit the
magnitude of u is −∑{i,j}∈E bwddijuij = 1 from (3.2.11d); but since the terms dij can
be positive, negative or zero, it is possible to satisfy this constraint by assigning some
extremely high values to certain uij variables. Furthermore, certain factors bwdxij in
the sum

∑
{i,j}∈E bwdxijuij from the objective function (3.2.11a) can be zero in theory

and slightly different from zero in practice (at least when using Cplex); multiplying
such non-zero factors bwdxij with an extremely large uij can lead to non-zero artificial
(noising) terms in the objective function.

To reduce such phenomena, we impose a limit of 100 on the maximum value
the variables u can take in (3.2.11a)–(3.2.11e). In fact, any practical algorithm for
(3.2.11a)–(3.2.11e) has to impose such a limit in practice because the memory is finite
and the variables u can not be really unbounded. This leads to restricting the feasible
set of (3.2.11a)–(3.2.11e); in theory, the resulting restricted LP might not minimize
t∗ to the full, and so, it might return an overestimated t∗ so that x + t∗d could be
potentially infeasible. However, one can certify that the projection sub-problem is
correctly solved by checking that the optimal solution satisfies uij < 100 ∀{i, j} ∈ E.
This is very often confirmed and the optimal u hardly ever contains values above 0.5
in practice. When there is however some uij = 100, this is most certainly due to the
numerical issues described above; for such rare cases, we could check the feasibility of
x + t∗d using the separation sub-problem. In practice, Projective Cutting-Planes

never reported a final solution that proved to be infeasible; the fact that some of the
intermediate solutions x + t∗d might actually be (slightly) infeasible does not change
the correctness of the final solution reported in the end.

A.3. Projection with Reinforced Relaxed Stables for Graph Coloring.

A.3.1. Detailed Definition of the reinforced relaxed (RR-) stables. We
recall from the initial work [15, Section 3.3.4] that, besides standard graph coloring,
we also considered a second model in which each constraint a>x ≤ 1 of the dual
Column Generation model is defined by an RR–stable a ∈ P , i.e., by an (extreme)
solution a of the auxiliary polytope P from [15, Definition 3.1]. This auxiliary poly-
tope P is an outer approximation of the stable set polytope. It is constructed by
reinforcing with cuts the description of the relaxed stables (i.e., vectors respecting the
edge inequalities), hence the name reinforced relaxed stables (RR–stables).

Recalling [15, (3.3.4)], P is defined by six classes of (reinforcing) cuts of the form
e>a ≤ 1 ∀(e, 1) ∈ R or f>a ≤ 0 ∀(f , 0) ∈ R. We now present these six classes
of cuts, without applying the Charnes–Cooper transformation on them. In fact, the
cuts (a)–(d) are statically added when calling the first intersection sub-problem (and
they are re-used for all the next sub-problems), while the cuts (e)–(f) are dynamically
added one by one using the cut generation algorithm from Section 3.3.4.
(a) The first cut class simply comes from the edge inequalities defining the standard

0–1 stables, i.e., at this stage, we only impose au + av ≤ 1 ∀{u, v} ∈ E, obtaining
the description of the relaxed stables, i.e., the fractional stable polytope.

(b) Generalizing the above idea, we use cuts (b) to generate a number of clique in-
equalities of the form a(C ) =

∑
v∈C av ≤ 1, using only cliques C of maximum

size min(5, k). These cliques are enumerated one by one by backtracking; the
role of the parameter 5 is to keep the number of such cliques within reasonable
limits. To avoid combinatorial explosions, the backtracking algorithm uses the

20



rule that any vertex has to be ignored after appearing in 20 inequalities, i.e., after
20 apparitions, the vertex is discarded from generating future cliques. We use the
most standard backtracking algorithm to enumerate all cliques of maximum size
min(5, k), except that we discard any vertex after it appears in 20 cliques.

(c) To generate cuts (c), we actually construct a collection of clique inequalities that
“cover” V . They are generated by iterating over the vertices V = [1..n], using a
method that is reminiscent of Algorithm 1 from [10] or of [12, § 2.2.2]. At the first
iteration i = 1, this method simply selects a clique C of a given maximum size k′

(see below) that contains the vertex i = 1 and imposes the clique inequality
a(C ) ≤ 1. We now introduce a set V ′ = V \ C that will evolve along the
iterations; all subsequent cliques will be determined by maximizing the number
of elements from V ′. At the second iteration, we move to the next element i ∈ V ′
to determine a new clique C 3 {i} of maximum size k′ and impose a(C ) ≤ 1.
After performing V ′ ← V ′ \C , we move to the next iteration and repeat. At each
iteration, we search for a clique C of bounded size k′ with a maximum of elements
from V ′, i.e., we apply the Branch & Bound with Bounded Size (BBBS) from
Appendix A.3.3 with very large weights for all v′ ∈ V ′ and with small weights
to all v ∈ V \ V ′. The value of k′ is given by the minimum clique size for which
this BBBS algorithm can solve the standard maximum clique of bounded size
(with weights 1n) on G within at most 0.01 seconds. Experiments suggest that
such cuts (c) can even accelerate the cut generation by a factor of ten on the
Leighton graphs (le450 25c, le450 25c, etc.), especially when k′ is much larger
than the value of k used at point (f).

(d) A cut of this class is associated to any u, v, w ∈ V such that {u, v} ∈ E, {u,w} /∈
E and {v, w} /∈ E. Using notation Nv = {v′ ∈ V : {v, v′} ∈ E}, a maximum
standard 0–1 stable astd satisfies the following:

astd
u + astd

v ≤ astd
w + astd(Nw −Nu ∩Nv),

because if the maximum stable astd contains u or v (exclusively), then it also has
to contain either w or a neighbor of w. This neighbor of w can only belong to
Nw − Nu ∩ Nv because it can not be connected to both u and v (since one of u
or v belongs to the stable). This idea has also been generalized to the case of
triangles {µ, u, v} ⊂ V not connected to a vertex w ∈ V . We obtain the following
cuts:
au + av ≤ aw + a(Nw −Nu ∩Nv) ∀{u, v} ∈ E, {u,w} /∈ E, {v, w} /∈ E

aµ + au + av ≤ aw + a(Nw −Nµ ∩Nu ∩Nv) ∀{µ, u}, {µ, v}, {u, v} ∈ E, {µ,w} /∈ E, {u,w} /∈ E, {v, w} /∈ E

However, we insert such cuts only when they have less than 10 non-zero coeffi-
cients, because we noticed in practice that they are the most effective when they
have 3 or 4 non-zero coefficients. For instance, when Nw −Nu ∩Nv = ∅, the first
cut simplifies to au+av ≤ aw. Such a cut would eliminate [1/ω 1/ω 1/ω . . . 1/ω]
from P , where ω is the maximum clique size of G. This enabled us in [15, Remark
5] to show that the optimum of the proposed Column Generation model with RR
stables can be larger than ω.

(e) These cuts are classical odd-cycle (or odd-hole) inequalities that can be sepa-
rated in polynomial time. First, notice than a (simple) odd cycle H yields a cut∑
v∈H ah ≤

|H|−1
2 because a stable with |H|+1

2 vertices of H would select two
consecutive vertices of the cycle. To separate such a cut, it is enough to re-write

it in the form 1 ≤
∑
v∈H

(1 − 2av), equivalent to 1 ≤
∑

{u,v}∈EC(H)

(1 − au − av),

21



where EC(H) represents the |H| edges of the cycle inside H. The separation
sub-problem can be solved by finding the shortest odd cycle in G considering edge
weights 1−au−av ∀{u, v} ∈ E — these weights are always non-negative because
of above cuts (a). This shortest odd cycle can be found by applying Dijkstra’s
algorithm on an augmented graph with: (i) a source linked to all vertices V , (ii)
all vertices V without any edges between them, (iii) a set V ′ of copies of V linked
to V via edges {u, v′} ∈ V × V ′ of weight 1− au − av for any {u, v} ∈ E (i.e., v′

is a copy of v), and (iv) a target vertex linked to all vertices V ′.
(f) The last cut class consists of k-clique inequalities a(C ) ≤ 1 associated to cliques

C with at maximum k elements, where k is a parameter that defines the model
— it always has to be indicated in the numerical results as in (Column 9 of)
[15, Table 3]. Separating these cuts reduces to solving a maximum weight clique
problem with bounded size k; the weights a are given by the optimal solution at
the current cut generation iteration. For large values of k, (the iterative call
to) this problem can become the main computational bottleneck of the overall
Cutting-Planes. This is why we present in Appendix A.3.3 a specific Branch &

Bound with Bounded Size (BBBS) algorithm dedicated to this clique problem
with bounded size.

A.3.2. A cut generation algorithm with Reinforced Relaxed Stables.
For the reader’s convenience, let us recall the Charness-Cooper LP (re-)formulation
(3.3.6a)–(3.3.6d) solved by the projection algorithm.

t∗ = min α− x>a(A.3.1a)

e>a ≤ α, f>a ≤ 0 ∀(e, 1) ∈ R, ∀(f , 0) ∈ R(A.3.1b)

d>a = 1(A.3.1c)

a ≥ 0n, α ≥ 0(A.3.1d)

The above LP (A.3.1a)–(A.3.1d) is solved by cut generation because enumer-
ating all reinforcing cuts R is computationally very exhausting, if not impossible.
Notice that these reinforcing cuts R are slightly modified when they are inserted in
the above LP (re-)formulation, i.e., we use e>a ≤ α in (A.3.1b) instead of e>a ≤ 1 as
described in Appendix A.3.1. However, the difficulty of the separation sub-problem
for (A.3.1b) does not depend on the right-hand side α, but on the structure of the
cuts R. To make the overall Projective Cutting-Planes reach its full potential, it
is important to have a fast separation algorithm.

A positive distinguishing characteristic of the above LP reformulation (A.3.1a)–
(A.3.1d) is that the prohibitively-many reinforcing cuts R from (A.3.1b) do not de-
pend on x or d; these constraints remain the same along all iterations of the over-
all Projective Cutting-Planes. As such, after solving the projection sub-problem
project(xit → dit) at some iteration it of the overall Projective Cutting-Planes,
one can keep all generated cuts (A.3.1b) and only update (A.3.1c) to move to the
next iteration it + 1. The first four cut classes (a)–(d) from R are actually static
and they are inserted in (A.3.1a)–(A.3.1d) at the very first iteration of the overall
Cutting-Planes. Only the cuts (e)–(f) are dynamically generated one by one, by
repeatedly solving a separation sub-problem.

This sub-problem asks to find maximum between max
(e,1)∈R

e>a−α and max
(f ,0)∈R

f>a,

for the current optimal solution (a, α) at the current cut generation iteration. Since
the cuts (e) can be separated in polynomial time by applying Dijkstra’s algorithm on

22



a bipartite graph with 2n + 2 vertices (Appendix A.3.1), the most computationally-
critical step is the separation of the k-clique inequalities (f).

A.3.2.1. Controlling a trade-off between speed and efficiency using k-clique in-
equalities. The k-clique cuts

∑
v∈C av ≤ 1 take the form

∑
v∈C av ≤ α in (A.3.1b),

where C is a clique with k vertices. The separation of these cuts requires solving
a maximum weight clique problem with bounded size k, which is NP–Hard when k
is not a constant parameter. We propose in Appendix A.3.3 a dedicated Branch &

Bound with Bounded Size (BBBS) algorithm to solve this problem. The repeated
call to this algorithm becomes the most important computational bottleneck for the
overall Cutting-Planes, especially when k is not very small. We also tried to generate
the cuts (f) by solving the maximum weight clique problem with no size restriction
(k = ∞). This is the well-known maximum clique problem for which there exist
elaborately-tuned off-the-shelf software (e.g., we used the well-known Cliquer, due
to S. Niskanen and P. Österg̊ard, see users.aalto.fi/∼pat/cliquer.html), but our BBBS
algorithm is faster when k is not too large.

The value of k can be used to control a trade-off between speed and efficiency,
between the total computation time of the Projective Cutting-Planes and the
reported optimal value (of the new (3.3.1) model with RR stables). Experiments
confirm that the above maximum weight clique problem with bounded size k can be
solved more rapidly (i.e., BBBS becomes faster) when k is lower.27 On the other
hand, by lowering k, the outer approximation P ) conv(P0−1) becomes coarser, in
the sense that P contains more artificial RR stables that are not standard stables.
This leads to more artificial constraints in the new (3.3.1) model, so that the lower
bound reported in the end becomes smaller.

On sparser graphs, the resulting Projective Cutting-Planes with RR–stables
is naturally faster than the classical Column Generation with standard stables. Sparser
graphs have smaller cliques and larger stables, so that the maximum weight clique
problem with bounded size (for the Projective Cutting-Planes) becomes easier
and the maximum weight stable problem (for the standard Column Generation) be-
comes harder.

A.3.2.2. Accelerating the Cut Generation using Stabilization. As stated above,
most of the computing effort is spent on repeatedly separating the constraints (f) by
solving a maximum weight clique problem. We also propose a few stabilisation ideas
to accelerate the cut generation for (A.3.1a)–(A.3.1d):

1. We use a simple-but-effective solution smoothing technique: instead of calling the
separation algorithm on the current optimal solution, we call it on the midpoint
between the current optimal solution and the previous optimal solution. If the
current optimal solution can not be separated this way, we have to call the
separation algorithm again, this second time on the current optimal solution.

2. We propose a (meta-)heuristic algorithm for the sub-problem before solving it
exactly. This heuristic executes 5 · n iterations of a Tabu Search algorithm.28

27This was actually observed both for the BBBS algorithm developed in this work and for the
Cplex ILP solver applied on the same problem. In theory, a very small k can even be seen as a
parameter, so that the maximum weight clique problem with bounded size k is no longer NP-Hard
(it becomes polynomial by enumerating all such cliques in O(nk) time).

28 This Tabu Search algorithm encodes each candidate solution as a bit string of length n with
exactly k ones. The objective function is the sum of the weights of the edges induced by the
vertices selected by the bit string. Each two vertices u, v ∈ V are associated to an edge weight,
either 1

2
(au + av) if {u, v} ∈ E or a prohibitively-small negative weight when {u, v} /∈ E. A

Tabu Search iteration selects the best non-Tabu vertex swap, the one maximizing the objective
function. We also use incremental data structures to perform a fast streamlined calculation of the

23

users.aalto.fi/
~
pat/cliquer.html


We always start the cut generation in a heuristic mode, trying to solve all
maximum weight cliques with this heuristic. But once the heuristic fails, the cut

generation algorithm switches to an exact mode (running the BBBS) for 15 it-
erations. After each 15 iterations, it tries again to solve the problem heuristically.
Unless this repeated heuristic call is successful, the cut generation remains in
the exact mode for another 15 iterations.

A.3.3. A Branch–and–Bound with Bounded Size (BBBS) for the Max-
imum Weight Clique Problem. The maximum weight clique with bounded size
is a rather general graph–theoretic problem that could be modeled and solved with
many different methods. Against our expectations, we did not find any dedicated
off-the-shelf software to solve it as rapidly as necessarily. We thus have to introduce a
new Branch & Bound with Bounded Size (BBBS) algorithm devoted to this prob-
lem. This BBBS was mainly used to separate the cuts (f) from Appendix A.3.1, as
needed by the cut generation algorithm from Appendix A.3.2 above. At the same
time, BBBS can directly solve the complementary problem, i.e., the (bounded-size)
maximum weight stable. We thus also used BBBS to solve the separation sub-problem
of the classical Column Generation with standard stables in the results reported in
[15, Section 4.2.2].

The main algorithmic engine

The BBBS algorithm relies on a fairly straightforward Branch & Bound (B&B) routine
that successively adds vertices to existing cliques, to construct increasingly larger
cliques (B&B nodes). A branching tree with such nodes is constructed in a deep–
first manner. More exactly, all cliques are constructed (to generate B&B nodes) by
adding vertices to existing cliques following an initial order v1, v2, . . . vn such that
w1 ≥ w2 ≥ w3 ≥ · · · ≥ wn, i.e., the vertices are initially sorted by decreasing weight.
As such, the very first B&B node is simply the clique {v1}. The second generated B&B
node is {v1, vi} where i = min {i : {vi, v1} ∈ E} and the third node is {v1, vi, vj}
where j = min {j : {vj , v1} ∈ E, {vj , vi} ∈ E}, assuming k ≥ 3.

The total number of generated B&B nodes (and the total running time) depends
substantially on the quality of the lower and upper bounds used for branch pruning.
The lower bound is simply given by the best clique ever generated, i.e., there is a
unique global lower bound for the whole branching tree at each moment. In addition,
recall (point 2 from Appendix A.3.2.2) that one can first try to solve the bounded–size
maximum weight clique problem using a (meta-)heuristic prior to launching BBBS;
this can provide a second lower bound. Preliminary experiments suggest that trying
other better or faster (meta–)heuristics do not usually lead to an impressive acceler-
ation of the BBBS, and so, we hereafter focus on the upper bound.

The upper bound of each node

The upper bound is determined at each B&B node and it is more critical for reducing
the running time. Let us first present the most basic upper bound to be generalized
next. Consider the current B&B node corresponding to a constructed clique C of k′ el-
ements with k′ < k (otherwise the node is a leaf). The remaining as-yet-unconsidered
vertices constitute a list (u1, u2, u3, . . . ) sorted by decreasing weight—this is how

objective function variation associated to each vertex swap. After deselecting a vertex, it becomes
Tabu for 10+random(5) iterations, where random(5) returns a uniformly random integer value in
{0, 1, 2, 3, 4, 5}. For k =∞, we used the multi-neighborhood Tabu search (www.info.univ-angers.fr/
∼hao/clique.html) due to Q. Wu, J.K. Hao and F. Glover.

24

www.info.univ-angers.fr/~hao/clique.html
www.info.univ-angers.fr/~hao/clique.html


the vertices were sorted in the beginning. After eliminating from (u1, u2, u3, . . . ) all
vertices that are not connected to all v ∈ C , one obtains a reduced list LC of vertices
linked to all vertices from C . The simplest upper bound is then given by the sum of
the weights of the first k − k′ vertices in LC (plus the weight of C ).

We now present a higher–quality upper bound that can greatly accelerate BBBS
in practice (by a factor of up to seven). The main idea is to go beyond simply summing
up the weights of the first k − k′ vertices in LC : it is better to investigate in greater
detail which of the vertices in LC should really contribute to the upper bound value.
A vertex u of LC can not contribute to the upper bound value if a preceding v ∈ LC

(of higher weight) satisfying {v, u} /∈ E has already contributed to the bound value.
We say that v shadows u.

The pseudo-code below implements the above idea to calculate the lower bound:
notice how the first continue leads to ignoring the current vertex u when some v
shadows u. However, this idea can not be applied twice: if there is a second vertex u′

such that {v, u′} /∈ E, v can not shadow both u and u′ because selecting u and u′ can
be better than selecting v (assuming {u, u′} ∈ E). This explains why the pseudo-code
below first inserts u into a list L of vertices that can shadow other vertices (Line 15),
but then removes any v ∈ L at Line 6 if v shadows u, i.e., v can shadow only one
vertex at most. However, v could still shadow some u′ ∈ V , but only if {v, u, u′} is a
stable and such cases are detected using a second list L′.

1: ub←
∑
v∈C

weight(v), addedVtx = 0

2: L← ∅ . vertices v that shadow other vertices
3: L′ ← ∅ . non-edges {v, u} /∈ E such that v shadows u
4: for all u ∈ LC do . scan LC by descending order of weight
5: if ∃v ∈ L such that {v, u} /∈ E then . v shadows u
6: L← L \ {v} . v can not shadow more vertices but it can
7: L′ ← L′ ∪ {(v, u)} . shadow some u′ if {v, u, u′} is a stable at Line 10
8: continue
9: end if

10: if ∃(v, u′) ∈ L′ such that {v, u, u′} is a stable then . v shadows both u and u′

11: L′ ← L′ \ {(v, u′)} . v can shadow at maximum two vertices
12: continue . u is shadowed by v and u′

13: end if
14: ub← ub + weight(u), addedVtx← addedVtx + 1
15: L← L ∪ {u} . u can shadow subsequent vertices in LC

16: if (addedVtx == k − |C |) then
17: break
18: end if
19: end for
20: return ub

Finally, to make the BBBS reach its full potential, one could still apply a number
of further engineering and implementation optimizations (as in many applied algo-
rithms). For instance, experiments suggest that the BBBS can be faster if we limit the
size of the lists L and L′ to min(10, 2

3k). In addition, we decided not to use the above
improved upper bound when k is exceptionally large (greater than half the average
degree of G).

Appendix B. The detailed Column Generation model and its Lagrangian
bounds. The Column Generation model optimized throughout this work is

25



(B.1)
max b>x

ya : a>x ≤ ca, ∀(a, ca) ∈ A
x ≥ 0n

}
P

All proposed algorithms related to Column Generation were presented from the
standpoint of this LP, both for graph coloring in [15, (3.3.1)] and for (Multiple-Length)
Cutting-Stock in (2.2.1). This is actually the dual of the master LP below, obtained
by relaxing ya ∈ Z+ into ya ≥ 0.

(B.2)

min
∑

(a,ca)∈A
caya

x :
∑

(a,ca)∈A
aiya ≥ bi ∀i ∈ [1..n]

ya ≥ 0 ∀(a, ca) ∈ A

The (enormous) set A encode constraints in the above dual LP (B.1) or equiva-
lently columns in the above primal (B.2). These columns represent stables in graph
coloring, cutting patterns in (Multiple-Length) Cutting-Stock, or, more generally routes
in vehicle routing problems, assignments of courses to timeslots in timetabling, or any
specific subsets in the most general set-covering problem. For each column (a, ca) ∈ A,
a ∈ Zn+ is generally an incidence vector such that ai indicates how many times an
element i ∈ [1..n] is covered by a. We use a primal decision variable ya to encode
the number of selections of each column (a, ca) ∈ A. The objective of (B.2) asks to
minimize the total cost of the selected columns, under the (set-covering) constraint
that each element i ∈ [1..n] has to be covered at least bi times.

On several occasions, we referred to the Lagrangian lower bounds of the stan-
dard Column Generation. When all columns have equal unitary costs (i.e., ca =
1 ∀(a, ca) ∈ A as in graph coloring), we simply used the Farley lower bound

(B.3) L (x) =
b>x

1−mrdc(x)
,

where mrdc(x) is the minimum reduced cost with regards to the optimal (dual) values
x = opt(Pit) at the current iteration it, i.e., mrdc(x) = min

(a,ca)∈A
ca − a>x.

In Multiple-Length Cutting-Stock, the column costs are no longer unitary, but we
can still apply the Farley bound (B.3) after normalizing all columns in A. More
exactly, we replace (a, ca) with ( a

ca
, 1) for each (a, ca) ∈ A and we obtain a nor-

malized model (B.2) that has the same objective value as the original model be-
cause the variables y are continuous. Let cmin = min {ca : (a, ca) ∈ A}. The nor-
malized minimum reduced cost mnorm

rdc (x) satisfies mnorm
rdc (x) ≥ 1

cmin
mrdc(x) when

mrdc(x) ≤ 0, because any (a, ca) ∈ A that achieves mrdc(x) = ca − a>x ≤ 0 satisfies
1
ca

(
ca − a>x

)
≥ 1

cmin

(
ca − a>x

)
. The Farley bound evolves to L (x) below.

(B.4)
b>x

1−mnorm
rdc (x)

≥ L (x) =
b>x

1− 1
cmin

mrdc(x)

The above L (x) is a valid lower bound when mrdc(x) ≤ 0, but not necessarily
when mrdc(x) > 0, because we used mrdc(x) ≤ 0 in the proof. An example can simply
confirm this. Consider an instance with two standard-size pieces in stock: a piece of
length 0.7 and cost 0.6 and a piece of length 1 and cost 1. The demand consists of

26



two small items of lengths w1 = 0.7 and w2 = 0.3. Taking x1 = 0.5 and x2 = 0.4, one
obtains mrdc(x) = 0.6 − 0.5 = 1 − 0.5 − 0.4 = 0.1 and we L (x) = 0.9

1− 1
0.6 0.1

= 1.08

which is not a valid lower bound, since the optimum for this instance is 1 (cut both
items from a standard-size piece of length 1).

Recall (last paragraph of Section 2.2.2) that the first two iterations of Projective
Cutting-Planes for Multiple-Length Cutting-Stock solve the projection sub-problems
project(0n → 1

W w) and project(0n → b), obtaining two initial lower bounds. As
described above, L ( 1

W w) is not a valid lower bound in standard Column Generation,
becausemrdc(

1
W w) ≥ 0. As such, even if we also (warm-)start the Column Generation

by solving the separation sub-problem on 1
W w and b, the Column Generation gen-

erates only one initial lower bound L (b) for these two initial iterations.

27


