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General Introduction

Context

The problems studied in this thesis deal with combinatorial optimization and heuristic
algorithms. One of the well known drawbacks of heuristic algorithms is related to their
difficulty of getting out of local optima of low quality compared to the global optimum.
More generally, we observe that the heuristic strategies often lack a global vision; it seems
rather difficult to integrate a form of “self-awareness” in a search process. For example,
certain local search algorithm can be likened to “find the top of Mount Everest in a thick
fog while suffering from amnesia” [Russell and Norvig, 2002].

This thesis is devoted to developing strategies for dealing with such type of difficulties.
For illustration, it is possible to reduce the “amnesia” effects by collecting search space in-
formation while optimizing, in order to guide more effectively the subsequent exploration.
A promising research direction consists of combining heuristics with knowledge discovery
and learning techniques. Knowledge discovery concerns “the non trivial extraction of im-
plicit, previously unknown, and potentially useful information from data”[Frawley et al.,
1992]. Such objectives are not very different from those of the researcher in optimiza-
tion that is faced with algorithms exploring enormous search spaces. Our computational
framework is that of the graph coloring problem.

Objectives

An objective the thesis has been to introduce a form of learning into heuristics in order
to render the search strategy more “self-aware”, or “well-informed”. Even if machine
learning seems to be a promising direction, there are several challenges to overcome. The
most important is related to the operational and computational level: it is essential that
any additional learning mechanism integrated in a search process does not introduce an
important computational overhead.

An elegant way to bring us closer to the above objective is to use a distance measure
between candidate solutions so as to to establish a positional navigation/orientation system
in the search space. In data mining, the detection of structures often require performing
comparisons between points: for example, in data classification, one needs to group in the
same cluster all resembling individuals and in separated clusters the individuals that are
different. From an operational viewpoint, such comparisons are often based on the concept
of distance. A particular challenge in the graph coloring context has been to introduce a
fast distance calculation method.
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General Introduction

A more general challenge has been to effectively put at work a positional naviga-
tion/orientation system based on distances between candidate solutions. For example, we
showed it is possible to record the trajectory of a search algorithm and to keep track of all
visited candidate solutions by recording a smaller set of spheres (a sphere covers all poten-
tial solutions within a certain distance from its center). We have used such distance-based
orientation principles to present both local search and evolutionary algorithms. The dis-
tance measure enables us to capture the notions of position, close and distance candidate
solutions, spatial distribution, search process trajectory, etc.

All introduced algorithms have been implemented and validated on the graph coloring
problem, but most ideas can be translate to other optimization problems, provided that
a meaningful search space distance can be defined.

Contributions

The main contributions can roughly be classified into four directions:

– distance-based search space analysis (cartography) for creating a positional orienta-
tion system for guiding local search heuristics (for diversification and intensification);

– evolutionary algorithms with distance-based control of diversity (spacing) and with
well informed crossover;

– new “well-informed” evaluation functions, tailored specifically to our graph coloring
problem;

– an exact algorithm for computing the distance between partitions (or colorings).

Search Space “Cartography” and Position Guided Local Searches This
project starts from a study of the spatial distribution of high-quality potential solutions
in the search space. Using the partition distance function and a data mining technique
(Multidimensional Scaling), we introduce the following clustering hypothesis: the high
quality solutions are not randomly scattered in the search space, but rather grouped in
clusters within spheres of specific diameter.

Based on this acquired information, one can monitor the evolution of the search process.
We focused on the fact that a typical local search is not concerned with having a global
vision over its own evolution path—and on the fact that it can loop indefinitely between
only several regions. By recording the visited spheres, a “position guided” local search
is able to guide itself toward as-yet-unvisited spheres, i.e. it does not revisit already-
recorded spheres. Besides TS-Div, we also designed an intensification oriented algorithm
(TS-Int) that investigates meticulously a limited perimeter around the proximity of a
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General Introduction

given potential solution; if a solution is situated within a certain distance from this given
point, TS-Int finds it with 100% success rate. The study is reported in a full paper
accepted by ”Computers & Operation Research” [Porumbel et al., 2010]; more discussions
about the diversification part and related issues were presented at the LION ”Learning in
OptimizatioN” conference [Porumbel et al., 2009c].

Spacing Control and Well Informed Grouping Recombination in the Evo-
lutionary Approach This project shows how to use a distance measure so as to main-
tain population spacing (diversity) in evolutionary algorithms. Indeed, distance measures
between potential solutions provide very strong mechanisms for keeping the individuals
pairwise distanced. For instance, this algorithm (call it Evo-Div) inserts a new offspring
solution into the population if and only if it is not “too close” to any existing individual.
The proposed recombination is well-informed in the sense that it uses a large amount of
information to select the best color classes to be inherited by the offspring. A work-in-
progress 12 page article was presented at the 9th European Conference on Evolutionary
Computation in Combinatorial Optimization [Porumbel et al., 2009a], where it was se-
lected among the three best paper nominees. A complete 25-page paper was submitted
too [Porumbel et al., 2009b].

New Well-Informed Evaluation Functions This project deals with investigating
problem specific properties in order to devise new evaluation (objective) functions for
graph coloring. By introducing two new such functions, a classical Tabu search can dif-
ferentiate configurations not distinguished by the straightforward objective function. The
resulting Tabu search algorithm (call it RCTS) can reach the best-known results for many
standard DIMACS instances while remaining quite simple. The results of this study were
submitted in 2007 to an international journal [Porumbel et al., 2007a], and two revisions
were performed in 2009. The positive influences of one of the evaluation functions on
a parameter-free Steepest Descent algorithm were presented at the Artificial Evolution
conference [Porumbel et al., 2007b].

Exact Algorithms for Computing the Partition Distance Part of the analy-
ses and algorithms from this thesis are based on the distance measure between colorings
(or partitions). This project explores exact algorithms for computing this distance; un-
der certain conditions, one can substantially reduce the computational complexity of the
standard solution method—i.e. straightforward reduction to the assignment problem and
application of the Hungarian algorithm. A faster algorithm was very useful in the first
project above because the guided local search algorithms (TS-Div and TS-Int) resort to
numerous distance calculations. Furthermore, we consider that a fast algorithm can also
be useful in many other different applications, especially those concerned with computing
distances between close partitions—the complexity of this operation can be reduced from
O(|V |+k3) to O(|V |). This algorithm was submitted to an international journal [Porumbel
et al., 2008].

Thesis plan

The manuscript is organized as follows.
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General Introduction

– In the first chapter, we briefly outline the scope and objectives of heuristic algo-
rithms, focusing on the limitations that are addressed by this thesis. We introduce
the graph coloring problem, our experimental framework, and we establish the gen-
eral setting and the basic terminology;

– The second chapter introduces a first approach to graph coloring, a basic Tabu
Search (TS) algorithm that will also be useful in the next chapters. This basic TS is
here enhanced with well-informed evaluation functions and with reactive Tabu list
strategies, resulting in a simple-but-effective algorithm RCTS (Reinforced Coloring
Tabu Search);

– Chapter 3 presents a search space analysis investigating the spatial distribution of
high quality potential solutions visited sequentially by a local search. We introduce
the notions of sphere and we provide evidence that the high quality configurations
tend to occur relatively close to each other, clustered in spheres.

– Chapter 4 presents the two “guided” local search algorithms using the search space
analysis: (i) TS-Div is oriented toward diversification and ensures that the search
process does not repeatedly visit the same spheres again and again, and (ii) TS-Int is
intensification-oriented and assures a thorough exploration of a limited perimeter by
performing a breath-first-search enumeration of all spheres within a certain distance
from a given starting point.

– In Chapter 5, we describe the evolutionary algorithm Evo–Div in which we also
exploit search space properties from the previous chapters so as to ensure an ap-
propriate population spacing. The introduced crossover is very well-informed, in
the sense that it uses many gene features to select the information to be passed to
offspring. The number of parents is automatically determined.

– Finally, in Chapter 6, we discuss in detail the distance between colorings, focusing
on an enhanced exact algorithm for its calculation.

All contributions are presented in the chronological order of their development so as
to introduce all notions in a very progressive (incremental) manner. Each chapter can be
read independently, with minimum effort of cross-referencing to other chapters.
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Chapter 1

Introduction

This chapter reviews classical heuristic algorithms and discusses their
applicability to intractable optimization problems. We explain the rea-
sons (the “why do we care”) for studying heuristics, placing a special
emphasis on the limitations that could be overcome by machine learn-
ing. In the second part we discuss our experimental framework—the
graph coloring problem—and we present the best coloring algorithms
introduced along the past three decades.

Contents

1.1 Intractable problems and heuristic algorithms . . . . . . . . . . 6

1.1.1 Machine learning for intelligent heuristics . . . . . . . . . . . . . 8
1.1.2 Collecting information (on-line) while searching . . . . . . . . . . 10

1.2 Graph coloring: framework for experimental evaluation . . . . 12

1.2.1 Practical applications of graph coloring . . . . . . . . . . . . . . 12
1.2.2 Formal definition and coloring representations . . . . . . . . . . . 15
1.2.3 Test data—standard DIMACS instances . . . . . . . . . . . . . . 16
1.2.4 Reference results for performance comparison and evaluation . . 18
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Chapter 1. Introduction

1.1 Intractable problems and heuristic algorithms

An instance of a combinatorial optimization problem is defined by a set of candidate
solutions (i.e. the search space Ω) and an objective function. Solving such a problem
(technically speaking, an instance of the problem) requires finding a solution qui optimizes
(i.e. minimizes) the given objective function. In practice, certain combinatorial problems
are considered computationally intractable. In terms of complexity, these problems are
usually NP-Hard [Garey et al., 1979]: any exact algorithm would require a prohibitive
calculation time, exponential in the input size (we consider P 6= NP ).1

Along the past five decades, intractable computational problems have been the focus
of intensive research in exact algorithms. Indeed, extensive work has been done in several
partially-overlapping communities related to algorithms, including, but not limited to:
algorithms and complexity theory, mathematical optimization theory, operations research
and artificial intelligence. Important progress has been made and, nowadays, there are
three generic approaches [Hoos and Stützle, 2004, p. 27] to such problems:

– study classes of instances that accept effective exact algorithms;

– develop approximation algorithms that run in polynomial time;

– develop heuristic, metaheuristic and stochastic algorithms.

Regarding the first approach, it is important to notice that worst-case exponential algo-
rithms can be remarkably efficient in practice. A representative example is the simplex
algorithm that, although exponential on the worst case, is routinely used to solve lin-
ear programs in polynomial time. Other algorithms based on implicit enumeration (e.g.
branch-and-bound, or branch-and-cut) can be very effective for practical problems of mod-
erate size, although exponential on the worst case. It might happen that exact algorithms
solve in polynomial time intractable problems of large size. However, the opposite can
also happen very often: the exact algorithms can require prohibitive time for small size
instances [Hao et al., 1999, §2.3]. This is also the case for the graph coloring problem;
nowadays, there is no exact algorithm that can color optimally random graphs with more
than 80 vertices [Malaguti and Toth, in press].

In certain fortunate cases, intractable problems can be approached with polynomial
approximation algorithms that, although not exact, are guaranteed to produce a solution
of provable quality, e.g. within a fixed factor away from the optimal solution. While there
are some NP -complete problems on which approximation algorithms have been proved
(e.g. the bin-packing problem), most of them do not accept neither exact, nor approxi-
mate polynomial algorithms. In fact, for most real-life intractable problems, solutions of
guaranteed good-enough quality can not be methodically provided in polynomial time.

1The complexity class P contains all decision problems that can be solved exactly in polynomial time
on a deterministic machine. The NP class makes reference to “Nondeterministic Polynomial” problems
that can be solved exactly in polynomial time on a nondeterministic machine. It is generally assumed that
P 6= NP . An optimization problem X is NP -hard if there is a NP -complete decision problem Y that can
be reduced to X in polynomial time[Garey et al., 1979].

6



1.1 Intractable problems and heuristic algorithms

A practical approach to many intractable problems of large size is heuristic search
algorithms—or simply, heuristics. These algorithms use reasonable resources and they are
able to produce acceptable solutions, but without any theoretical guarantee. Heuristics can
produce competitive results not only on well-known NP -complete problems, but on any
computational problem for which exact algorithms require prohibitive time. For instance,
even a polynomial running time could be too long to be practical in certain fields with
thousands of variables (i.e. electronic circuit design). In practical terms, it is not always
necessary to find the optimum solution, but only “good enough” solutions. Furthermore,
optimal solutions provided by refined exact algorithms can often be reached more rapidly
with basic meta-heuristics. As [Battiti et al., 2008] put it, “we are condemned to live with
heuristics for very long times, maybe forever”.2

Besides computer science, heuristic algorithms are also subject of intensive research in
other fields of computational domains (e.g. operations research, bio-informatics, engineer-
ing) in which one routinely needs to solve computational optimization problems. In this
context, a problem can be seen as “finding the minimum value of an objective function
f over some set of items”. Most computational problems are routinely expressed in the
optimization form. For example, a constraint satisfaction problem asks to decide whether
or not one can assign certain values to a set of variables such that a set of constraints is
satisfied. By defining f(x) as the number of constraints violated by potential solution x,
the problem is equivalent to determining if min f = 0.

Given a computational problem, a heuristic is essentially a “search” algorithm that
seeks the best solution in the space of all potential problem solutions—i.e. in the search
space, also referred to as the problem space (called Ω). Assuming it is not possible to
enumerate all potential solutions of a large intractable problem3, the question is how to
decide what part of Ω to explore/test in a limited time. For this purpose, one can use
either problem-specific or general (meta) guidelines and search strategies. In this view,
the goal of any heuristic is to employ the most intelligent search strategies so as to rapidly
find the most promising search space areas, and to, hopefully, locate the solution.

The term meta-heuristic, coined in the paper that introduced the term Tabu
search [Glover, 1986], represents a class of general-purpose heuristic algorithms that can be
applied to any optimization problem; the only necessary condition is to define a potential
solution encoding and an objective function. Certain meta-heuristics require a neighbor-
hood relation (e.g. local searches) or a mutation operator (evolutionary algorithms), but,
however, such components are regarded as “black boxes”. A meta-heuristic is not con-
cerned with defining them, but it only deals with operations at a higher (meta) level.
The rest of this section assumes a certain familiarity with meta-heuristics; however, the
algorithms in Chapters 2–6 are described in a self-contained manner.

2It seem difficult to assume that one day exact algorithms will be able to solve everything and heuristics
will have no purpose.

3Notice that another approach in combinatorial optimization is represented by implicit enumeration
algorithms like branch-and-bound or branch-and-cut. One should use this type of methods if the search
space can be enumerated (explicitly or implicitly).
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Chapter 1. Introduction

1.1.1 Machine learning for intelligent heuristics

While heuristic algorithms reached impressive success for some otherwise impossible prob-
lems,4 they still have major drawbacks, most of them due to the lack of theoretical provable
behavior. Indeed, it seems difficult to make (local or population-based) heuristics inte-
grate a global vision over the whole search space and over their own trajectory through
this space. For instance, at a given moment of the search, even a (more “global”) evolu-
tionary algorithm typically takes all decisions only by considering the current individuals
and their neighborhoods, i.e. it seems difficult to take into account objects lying outside
this “small word’. Using complex global analyses in optimization is complicated by the
fact that search algorithms are usually very fast (e.g. a coloring algorithm visits millions
of configurations per minute), producing too much information to process in a complex
calculation method. However, data analysis algorithms could be used as they also have the
objective of “revealing, in a large amount of data pieces, of organisation structures behind
them”[Lerman et al., 1981]. Such learning techniques can help make classical heuristics
“more intelligent”, “well informed”.

While the approach of using learning in optimization seems to be quite young, there
has been an important growing of interest over the last decade—numerous references are
available in [Battiti et al., 2008]. Although the goals of the learning techniques can vary
widely across optimization communities, they have been already classified into four major
approaches, see [Boyan et al., 2000], a rich a collection of 14 studies grouped in four
classes. We do not claim that this classification is absolute and without overlapping, but
we consider it is still topical and inclusive of the most popular research threads:

Search spaces analysis Important insight into the problem structure can be achieved by
a statistical analysis of the search space. In fact, all effective heuristic algorithms take
into consideration, either explicitly or implicitly, the structure of the search space.
Search space analyses may focus on, but are not limited to, the following: the form
of the search space surface (e.g. convex or non-convex— in numerical optimization),
indicators of search space asperity (e.g. ruggedness, smoothness, fitness distance
correlation), structural similarities between local optima (e.g. identifying common
“backbone” structures), or the number and spatial distribution of local optima (see
also Section 3.1.1);

Learning evaluation functions This is an active research thread devoted to modeling
new evaluation functions so as to better guide the heuristic through the search space.
A more informative evaluation function should provide an exact assessment of the
long-term effect of searching from a certain point. This is particularly useful if there
are numerous potential solutions having the same value of the objective function.
The Guided Local Search (meta)-heuristic [Voudouris and Tsang, 2003] constitutes
a representative example of this research field; it advocates modifying the objective
function when the search process settles on a local optimum;

4The objective of this chapter is not to make a review on the heuristic algorithms or on their results;
the interested reader can check one of the books from the literature—a very good on is [Hoos and Stützle,
2004].
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1.1 Intractable problems and heuristic algorithms

Learning models to generate solutions This direction focuses on exploiting informa-
tion related to the visited local optima so as to provide indications about how to
find better solutions. For this, one can create a model of generating new solutions
with specialized operators, e.g. by fixing some variables to certain values (shared
by all visited local optima), by estimating the distribution of global optima, or by
determining a “likelihood” of finding the solution in a certain area. It has been
argued that “genetic algorithms do precisely this sort of modeling” [Boyan et al.,
2000]: the population keeps a pool of best potential solutions and genetic operators
try to combine them to construct better solutions. In some sense, at least for cer-
tain memetic algorithms in discrete optimization, this view is not less accurate than
referring to Darwin’s theory of evolution. A pedagogical overview is available in
Chapter 6 of [Battiti et al., 2008], where it is argued that Ant Colony Optimization
and Estimation of Distribution Algorithms are also based on similar principles;

Algorithm selection and parameter tuning This research thread seeks to automate
the process of choosing the appropriate heuristic for a problem, or the best param-
eters of a heuristic. It can be split in two sub-directions:

� Heuristic Selection—It is well known that certain algorithms are very ef-
fective for some types of problems, but less appropriate for others. While the
selection of the best algorithm for a problem is usually based on human ex-
pertise (e.g. certain researcher consider Simulated Annealing is probably better
than Tabu Search on problems with a very large neighborhood), this decision
can be automatized. Furthermore, one can alternate between several heuristics,
neighborhoods or search spaces during the optimization process. A representa-
tive example of this sub-direction is the “hyper heuristics” class of algorithms5

that can be described as “heuristics to choose heuristics”.
� Reactive Parameter Tuning Concerning this sub-direction, it is nowadays a

common technique to use “reactive mechanisms” to automatically “adapt” the
parameter values “on the fly”, during the optimization process. The term “reac-
tive mechanisms” refers to using an on-line “feedback” loop for tuning parame-
ters according to the current state of the search. Reactive Tabu Search [Battiti
and Tecchiolli, 1994] is a representative example of such concepts; however,
algorithms can also react on the neighborhood, on the annealing schedule, or
on the objective function—see Chapters 2–5 in [Battiti et al., 2008]. This sub-
direction is closely intertwined with the others because a parameter change can
trigger a complete transformation of the algorithm. With such a change, one
can transform Simulated Annealing into Steepest Descent or Metropolis Algo-
rithm; the operators of genetic algorithms can also be chosen via parameter
tuning [Maturana, 2009]

While the thesis touches on all the above aspects, the most important contributions
are related to the first three points. Indeed, the first point is fully addressed in Chapter

5As of August 2009, more than 100 references are available in G. Ochoa’s “ Bibliography of Hyper-
heuristics and Related Approaches”, see http://www.cs.nott.ac.uk/~gxo/hhbibliography.html
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3 in which we introduce a new clustering hypothesis: the high quality potential solutions
tend to occur relatively close to each other, clustered in spheres of fixed diameter. While
it is difficult to theoretically prove such an hypothesis, we support it with important
empirical evidence. One should also be aware that other hypothesis from the literature
can be easily rejected for graph coloring. For example, the “big valley” hypothesis [Boese
et al., 1994] assumes that the locally optimal potential solutions should be quite close to
the global optimum solution. While this seems valid for the travelling salesman problem,
for graph coloring, we observed that the quality is not correlated with the distance from
an optimum solution; in fact, most near-optimal solutions have no global optimum in their
proximity. We routinely encountered hard instances that admit several global solutions,
all very different from one another.

The second research thread is touched on in Chapter 2 where we introduce two new
evaluation functions for graph coloring. While the first one is specified before initializing
the exploration, the second one is constructed during the search process. The idea is to
give more importance to variables that often change their state so as to help the search
process fix their values, and so, to induce diversification by encouraging other variables to
change more often.

The third direction is addressed by the TS-Int algorithm from Section 4.3. TS-Int
can be regarded as a post-optimization tool that (tries to) locate the solution in the
proximity of an initial high-quality potential solution provided by a different algorithm.
We empirically observed that TS-Int can reach a global optimum systematically, if the
global optimum is situated within a certain distance from the initial provided high-quality
coloring. In fact, TS-Int can be used to automatically investigate the proximities of several
very distant local minima provided by a diversification-oriented algorithm TS-Div—it is
very likely that the solution is situated in the proximity of one of the best local minima
ever reached. We can say that TS-Int finds a solution based on an approximate location.

The last research thread is also touched on throughout the thesis, in different contexts.
Two examples are: (i) the reactive Tabu tuning techniques in Section 2.4 and (ii) the
reactive dispersion of the evolutionary algorithm (Section 5.4.2.2).

1.1.2 Collecting information (on-line) while searching

Learning techniques for optimization can also be classified into “off-line” techniques and
“on-line” techniques. For example, most search space analyses are instances of “off-line”
learning, in the sense that they are performed in a pre-optimization stage, before starting
the main search space exploration phase. While such information can give essential guide-
lines for designing an effective heuristic algorithm, it is not used to take decisions during
the exploration, e.g. to react to events during the search.

The automatic tuning of parameters is a natural example of “on-line” learning tech-
niques, used “on the fly” during the optimization process. While an “off-line” search
space investigation can use complex statistical clustering methods, an “on-line” search
space analysis would be limited by strong constraints of computational complexity, i.e. it
should not introduce an important slowdown in the search process. As such, the most
common on-line learning techniques are usually very lightweight, often focusing only on
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1.1 Intractable problems and heuristic algorithms

reactions to local information or events—e.g. reactive Tabu tuning techniques (like the
one in Section 2.4) are based on short history information. It seems that it is rather
problematic to collect and integrate “on the fly” a large amount of global information,
e.g. patterns of visited local optima, correlations between potential solution location and
quality, convexity properties of the search space surface, etc.

However, we show in this thesis that a very lightweight learning procedure is enough to
record the complete exploration path of a search process. The main idea is that, although
the total number of visited potential solutions is too large to be recorded, a coarse grained
recording can be performed by recording a smaller number of visited spheres. The notion
of sphere is straightforwardly defined if one has a search space distance measure, i.e. it is
the set of all potential solutions within a certain distance from a center potential solution.

Figure 1.1: An example of a coarse-grained recording of a local search exploration path.
The number of spheres is much lower than the number of visited search space points
(potential solutions). The recording can be performed “on the fly” without important
slowdown for the search process.

Figure 1.1 shows an example of a coarse-grained recording of an exploration path.
Once equipped with a recording component, a local search algorithm can “realize” when
it comes upon already-visited regions (spheres), if it is always attracted to certain regions
that are repeatedly visited, whether it assures global diversification or not. The proposed
recording component can be attached to any local search exploring a space that admits
a distance measure, and, furthermore, it is very lightweight: it only needs to compute
a distance per iteration. More exactly, at each iteration, it computes the distance to the
center of the current sphere: if the search process is still inside the current sphere, no action
is taken; otherwise, the current potential solution becomes the center of the next current
sphere. One might need more computations only if the algorithm needs to translate this
global recording into calculated decisions or actions. However, certain major actions (e.g.
trigger diversification) can be decided with a reasonable amount of calculation overhead,
by keeping the number of distance computations in acceptable limits (as, for example, in
Section 4.2.2).

11



Chapter 1. Introduction

1.2 Graph coloring: framework for experimental evaluation

This section formally describes our optimization problem, the test instances and the previ-
ous methods against which we test all our new algorithms. In combinatorial optimization,
graph k-coloring is no-more-no-less than a particular case of a constraint satisfaction prob-
lem. We recall that a constraint satisfaction problem is formally defined by a triple:

1. a set of variables—in our case, the set of vertices;

2. the domain of all possible values for each variable—for graph k-coloring, it is
{1, 2, . . . , k} where k is the number of colors;

3. a set of constraints between variables—in our case, the value (or color) assigned to
a variable needs to be different from the value of any “adjacent” variable (where
“adjacent” refers to the edge structure). One can say that an allDifferent constraint
is applied on certain pairs of adjacent variables.

By slightly changing this specification, numerous well-known problems can be defined. For
instance, the 8 (or n) queens puzzle only requires adding some more (diagonal) constraints
between the “colors”; for illustration, by replacing “queen” with “rock”, one can say the
puzzle becomes a coloring problem on a complete graph. Additionally, T-coloring or set
coloring are also defined by generalizing the above constraints. However, in this thesis
we do not employ too many techniques related to graph theory—e.g. like separating large
independent sets, identifying cliques or decomposing the graph—but we actually focus on
optimization techniques to minimize the number of violated constraints.

One should be aware that there is a vast body of work on graph coloring, so we only
touch on the most related publications in this thesis. Indeed, in the last five years, there
have been published a number of monographs, surveys and journal special issues [Galinier
and Hertz, 2006; Chiarandini et al., 2007; Malaguti and Toth, in press; Johnson et al.,
2008] with hundreds or even thousands of references to other publications.6 Furthermore,
during the last decade, there have been defended a considerable number of other PhD
theses with a major part dedicated to heuristic graph coloring [Galinier, 1999; Dorne, 1998;
Blöchliger, 2005; Chiarandini, 2005; Devarenne, 2007; Weinberg, 2004; Zufferey, 2002].

1.2.1 Practical applications of graph coloring

The graph (vertex) coloring problem was one of the first problems proved to be NP -
complete at the beginning of the computational complexity studies [Karp, 1972]. Indeed,
its intractability is infamous: except for a very limited number of special cases (trees,
bipartite graphs, etc.), it can not even be approximated by a polynomial algorithm within
a constant factor, unless P = NP—a proof for a factor of 2 is given since the 1970s [Garey
et al., 1979, Theorem 6.11], but newer results are also available [Lund and Yannakakis,

6M. Chiarandini’s on-line “Bibliography on Graph-Vertex Coloring” (www.imada.sdu.dk/~marco/gcp/)
also contains a very rich collection—about 200 references (as of 2009). One can also check J. Culber-
son’s “Graph Coloring Bibliography” (http://web.cs.ualberta.ca/~joe/Coloring/index.html#Color.
bibliography) that contains almost 500 references.
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1994; Bellare et al., 1998]. In practical terms, graph coloring has widespread applications
numerous areas, as for example:

– frequency assignment in cellular networks [Hale, 1980; Gamst and Rave, 1982;
De Werra and Gay, 1994; Dorne and Hao, 1995; Park and Lee, 1996];

– scheduling [Leighton, 1979; Gamache et al., 2007; Lewandowski and Condon, 1996;
Zufferey et al., 2008; Laurent and Hao, 2009];

– register allocation in compilers [Chaitin, 1982; Lewandowski and Condon, 1996;
Chow and Hennessy, 1990];

– automated timetabling [de Werra, 1985; Burke et al., 1994];

– supply chain management [Lim and Wang, 2005; Glass, 2002];

– computing derivatives, Jacobian and Hessian matrices [Gebremedhin et al., 2005];

– air traffic flow management [Barnier and Brisset, 2004];

– network ressource allocation [Woo et al., 1991];

In fact, an exhaustive list of (direct or implicit) applications would perhaps contain
dozens or hundreds of references, simply because the coloring model is very general. The
above list comprises only the most representative applications that I am aware of. However,
even more specific examples are available in the literature (e.g. train platforming, printed
circuit testing, manufacturing) and the reader whose curiosity is piqued can further refer to
the introduction of [Malaguti et al., 2008; Lü and Hao, 2010; Blöchliger and Zufferey, 2008;
Malaguti and Toth, in press]. In some sense, graph coloring is even well-known with respect
to the general public via Sudoku—this game is no-more-no-less than a coloring problem
with k = 9 colors.

1.2.1.1 Existing Heuristic Approaches

The first algorithms for graph coloring were developed in the 1960s [Welsh and Pow-
ell, 1967; Christofides, 1971; Brown, 1972]. Since then, a considerable number of new
techniques have been developed and important progress has been made. While exact
approaches have been tried on graph coloring [Brelaz, 1979; Mehrotra and Trick, 1996;
Sewell, 1996; Ramani et al., 2006; Lucet et al., 2006; Méndez-Dı́az and Zabala, 2006], “very
few exact solution algorithms exist for the problem” [Méndez-Dı́az and Zabala, 2006]. As
such, heuristic methods dominate the literature of practical algorithms of general graph
coloring.7 Essentially, heuristic algorithms belong to three main solution approaches:

1. Sequential construction—e.g. Dsatur [Brelaz, 1979], Iterated Greedy [Culberson and
Luo, 1996], RLX and XRLF [Johnson et al., 1991], very fast methods but not par-
ticularly efficient;

7Notice that a different research thread in exact algorithms consists of investigating particular graph
classes, particular types of colorings, or other related problems that are not NP−complete.
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2. Local search

� Tabu Search [Hertz and Werra, 1987; Fleurent and Ferland, 1996a; Dorne and
Hao, 1998b; Galinier and Hao, 1999; Blöchliger and Zufferey, 2008]

� Simulated Annealing [Chams et al., 1987; Johnson et al., 1991]

� Variable Search Space or Variable Neighborhood Search [Trick and Yildiz, 2007;
Avanthay et al., 2003; Hertz et al., 2008])

� Iterated Local Search [Paquete and Stützle, 2002; Chiarandini and Stützle,
2002; Lü and Hao, 2009]

3. Evolutionary population-based hybrid or distributed methods [Fleurent and Ferland,
1996a; Morgenstern, 1996; Dorne and Hao, 1998a; Galinier and Hao, 1999; Galinier
et al., 2008; Malaguti et al., 2008; Malaguti and Toth, 2008].

In this vast literature, several pieces of research are particularly important and very
related to our study, requiring more attention. A first important breakthrough in heuristic
graph coloring is the Tabucol (Tabu search Coloring) algorithm introduced by Hertz and
Werra [Hertz and Werra, 1987] in 1987. While Tabu Search [Glover, 1986; Glover and
Laguna, 1997] is commonly applied to numerous problems, a particularity of graph coloring
is that the Tabu status is not applied to potential solutions, but to moves (a move is an
assignment of a certain color to a certain vertex). An essential later improvement of
Tabucol consists of a faster (incremental) neighborhood examination technique [Fleurent
and Ferland, 1996a] that enabled calculating the objective function value of all neighbors—
the original Tabucol works only with a sample of the neighborhood. Further important
developments have been focused on determining an optimal length of the Tabu list, so as
to decide how long to forbid a move after performing it [Dorne and Hao, 1998b; Dorne
and Hao, 1998a; Galinier and Hao, 1999; Blöchliger and Zufferey, 2008; Devarenne et al.,
2006], see also Section 2.2.

Another important breakthrough in practical graph coloring is represented by the first
crossover models oriented to groups (classes) instead of items (colors) [Dorne and Hao,
1998a; Galinier and Hao, 1999]. The Greedy Partition Crossover (GPX) enabled the cor-
responding paper [Galinier and Hao, 1999] to clearly dominate the tables with the best
results for many years. With the introduction of this crossover in memetic algorithms (evo-
lutionary algorithms incorporating local search), the population-based algorithms became
one of the best approach to graph coloring. This is in sharp contrast with the boolean
satisfiability problem (SAT) that, although generalizing k-coloring, it seems more difficult
for the evolutionary approach.

Notice also that, very recently, two less-traditional local search algorithms proved sur-
prisingly competitive [Hertz et al., 2008; Blöchliger and Zufferey, 2008]. They are based
on evolved neighborhood and search space structures and on partial solution representa-
tions, along with advanced Tabu tuning techniques. It is worth mentioning a “very old”
paper [Morgenstern, 1996] that introduced numerous graph coloring ideas, some of them
still used nowadays. This study presented several algorithms and their global results—
most of them summarized in the table at page 357—still constitute a reference point for
other algorithms.
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In terms experimental evaluation, the second DIMACS Implementation Chal-
lenge [Johnson and Trick, 1996] collected a large set of graphs that has become a standard
benchmark for testing coloring algorithms since 1996. This challenge, along with other
recent international events [Johnson et al., 2002; Johnson et al., 2008] have boosted the
worldwide research in this competitive and challenging area. Indeed, four of the best
ten algorithms from the literature were published in the last year [Malaguti et al., 2008;
Hertz et al., 2008; Blöchliger and Zufferey, 2008; Galinier et al., 2008].

1.2.2 Formal definition and coloring representations

The graph coloring problem has a very simple formulation: label the vertices of a graph
with the minimum number of colors (the chromatic number) such that there are no two
adjacent vertices sharing the same color. Graph k-coloring is a related problem: given
a connected graph G(V,E) and k different colors represented by numbers {1, 2, . . . , k},
determine whether or not there is a k-coloring (a vertex labeling/coloring using k colors)
without conflicts, i.e. without edges with both ends of the same color.

Most heuristic algorithms deal with the general graph coloring problem by solving a
series of increasingly-difficult k-coloring problems. This method starts with a very large
initial k (e.g. k = |V |) and iteratively decrements k after finding a k-coloring with no
conflicts. The k-coloring problem becomes more and more difficult until the algorithm
fails in finding k-colorings with no conflicts. The lowest k for which the k-coloring problem
was solved constitutes the best reached solution for the general coloring problem, it is an
upper bound to the chromatic number of G.

Definition 1.1. (Array representation) Given a graph G and k ∈ IN∗, a coloring is a
function C : V → {1, 2, · · · , k}, encoded as an array C = [C(1), C(2), . . . , C(|V |)].

The set of all colorings represent the potential solutions (configurations) of the search
space Ω of the problem (G, k). A coloring C is said to be a legal coloring if and only if
C(i) 6= C(j), ∀{i, j} ∈ E. A legal coloring represents a solution to the k-coloring problem
(G, k). While we also encoded this color-based representation in our programs, it is very
useful to interpret a coloring as a vertex set partition.

Definition 1.2. (Partition representation) A k-coloring C = [C(1), C(2), . . . , C(|V |)], of
G is denoted as a partition {C1, C2, . . . , Ck} of V (i.e. a set of k disjoint subsets of V
covering V ) such that ∀x ∈ V , x ∈ Ci ⇔ C(x) = i.

We say that Ci is the class color i induced by the coloring C, i.e. the set of vertices
having color i in C. This partition definition is particularly useful to avoid symmetry
issues arising from the classical color based encoding. As such, it is used in many parts
of the thesis,e.g. to define a meaningful distance between colorings (see Chapter 6) or to
define the crossover operator (see Section 5.3). In this context, C is a legal or conflict-free
coloring (a solution) if and only no color class of C contains adjacent vertices.

Definition 1.3. (Conflicts) Given a k-coloring C, the set of conflicts CE(C) refers to
the edges in conflict generated by C, i.e. CE(C) = {{i, j} ∈ E : C(i) = C(j)}. The set of
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vertices in conflict induced by C is given by: CV (C) = {i ∈ V |∃j ∈ V such that {i, j} ∈
CE}.

We can call conflicting edges and conflicting vertices the elements of CE and, respec-
tively, CV—when no confusion is possible, one can omit the argument (C).

Definition 1.4. (Objective function for k-coloring) Given a k-coloring problem (GV,E , k),
the objective function f assigns to each coloring the number of conflicts |CE|, or the
conflict number. More exactly, f is denoted by:

f(C) = |{{i, j} ∈ E : C(i) = C(j)}| , ∀C ∈ S (1.1)

The k-coloring problem is a decision problem (to determine whether or not there exists
a legal k-coloring) that is solved as an optimization problem: find the minimum value of
f(C) over all colorings C in the search space Ω. A given (G, k) problem is considered solved
if and only if one finds a coloring such that f(C) = 0. We do not take into consideration
exact algorithms (e.g. branch and bound) that could prove that f(C) > 0,∀C ∈ Ω, as
they can not be fast enough for large instances. Indeed, the chromatic number is still
unknown for many random graphs introduced almost 20 years ago—e.g. the dsjc graphs
first presented in[Johnson et al., 1991], see Section 1.2.3 below.

Note that, especially in the evolutionary part, some concepts can also be referred using
a different notation, traditional in the corresponding community—e.g. in evolutionary
computing, everybody uses “fitness function” instead of “objective function”, and so we
do in Chapter 5.

1.2.3 Test data—standard DIMACS instances

The complete DIMACS competition benchmark [Johnson and Trick, 1996] is composed of
47 graphs from the following families:

1. random graphs dsjcX.Y with X vertices and density Y [Johnson et al., 1991];

2. flat graphs flatX.Y generated by establishing edges only between kp predefined
classes of vertices (X= |V | and Y is the chromatic number kp) [Culberson and Luo,
1996];

3. Leighton graphs leX.Y with X=450 vertices and with known chromatic number Y
(they have a clique of size Y) [Leighton, 1979];

4. two families of random geometrical graphs generated by picking points uniformly at
random in the unit square and by joining any 2 points distances by less than a length
threshold—rX.Y and dsjrX.Y 8, where X = |V | and Y is the length threshold (an
additional suffix ”c” in this notation signifies the complementary graph) [Johnson et
al., 1991];

8The graphs labeled dsjr come from the same source as the random graphs labeled dsjc, i.e. they are
due to David S. Johnson et. al. [Johnson et al., 1991] and hence the prefix dsj. The r family was generated
by M. Trick using a program of C. Morgenstern, see also mat.gsia.cmu.edu/COLOR/instances.html
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G k∗ G k∗ G k∗ G k∗

dsjc125.1 5 r125.1 5 le450.5a 5 flat300.20 20
dsjc125.5 17 r125.5 36 le450.5b 5 flat300.26 26
dsjc125.9 44 r125.1c 46 le450.5c 5 flat1000.50 50
dsjc250.1 8 r250.1 8 le450.5d 5 flat1000.60 60
dsjc250.5 28 r250.1c 64 le450.15a 15 school1 14
dsjc250.9 72 r1000.1 20 le450.15b 15 school1.nsh 14

dsjr500.1 12 le450.25a 25
le450.25b 25

Table 1.1: Easy DIMACS k-coloring instances. Numerous other papers report exactly the
same values of the best upper bound k∗ of these graphs.

5. class scheduling graphs (school1, school1.nsh) and a latin square graph
(latin square 10) [Lewandowski and Condon, 1996];

6. huge random graphs (C2000.5 and C4000.5) with up to 4 million edges [Lewandowski
and Condon, 1996].

1.2.3.1 Trivial upper bounds and easy instances

Table 1.1 shows DIMACS k-coloring instances that were solved very easily with all the
developed heuristics, that is, a solution was always reached in a time of seconds or minutes.
Numerous other algorithms can find legal colorings with k∗ colors for all these graphs, but
there is no mention of a legal coloring with less colors—i.e. by using k∗ − 1 colors, the
instance probably moves into an “unSAT” side. In what follows, we concentrate only on
the rest of the instances (hard instances), as most coloring research papers do.

1.2.3.2 Difficulty variation and results interpretation

Recall that the general coloring problem is solved through a series of k-coloring problems.
All coloring algorithms—that we are aware of—reported the results in terms of the lowest
k for which they solved k-coloring. Passing from a result of k to a result of k − 1 is
not similar to a decrement in similar min-conflicts constraint satisfaction problems, i.e.
one color less is not equivalent to one violated constraint less. In our case, “one violated
constraint less” refers to reducing a conflict for a fixed k; and “one color less” refers to
solving a new (k − 1)-problem—this commonly requires reducing several conflicts. For
example, an algorithm that is able to solve a given (G, k) instance, might never find any
(k− 1)-coloring with less than a dozen of conflicts. In this case, solving the instance with
“one color less”, would require reducing several conflicts; (k − 1)−coloring is much more
difficult than k-coloring.

For this reason, in the above section, we talk about “easy instances” and not “easy
graphs”; one speaks about “easy graphs” or “hard graph” only when an associated k is
implicitly referred. All coloring papers, that we are aware of, always reported results
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in the form (G, k), i.e. they show a list of solved instances. In some sense, comparing
coloring algorithms in this manner can be easily misinterpreted, e.g. for an unsolved k-
coloring instance, one sees no difference between an algorithm reaching 1 conflict and
an algorithm never reaching less than 5 conflicts. To our knowledge, there is no paper
reporting results in terms of conflict numbers, but I personally believe that could be very
useful for benchmarking purposes.

1.2.4 Reference results for performance comparison and evaluation

Throughout the thesis, we evaluate all new algorithms by comparing their results on
the DIMACS benchmark with the results of the best approaches from the literature. A
coloring “approach” might simply refer to a unique algorithm or to a class of algorithms—
results are often reported by combining the performances of several algorithm versions.
We briefly outline below the best approaches that we are aware of, indicating also the
standard abbreviation commonly used for referencing.

Local Search Algorithms:

� MIPS—MInimal-state Processing Search, a descent algorithm with hill-climbing
capabilities combined with maximum clique heuristics and greedy construction
stage [Funabiki and Higashino, 2000];

� ILS—Iterated Local Search [Chiarandini and Stützle, 2002; Paquete and Stützle,
2002]), research work investigating two local search architectures with different per-
turbation operators;

� VNS—Variable Neighborhood Search [Avanthay et al., 2003], an algorithm employ-
ing a local search and several different neighborhoods operators that are alternated
so as to take the search process out of local minima;

� ALS—Adaptive Local Search [Devarenne et al., 2006], a local search using a large
neighborhood exploration technique with loop detection mechanisms and with a new
type of Tabu list;

� PCOL—Partial Coloring Tabu search (also called PartialCol) [Blöchliger and Zuf-
ferey, 2008], a reactive Tabu search that encodes potential solutions as partial (in-
complete) legal colorings;

� VSS—Variable Search Space [Hertz et al., 2008], an algorithm in which the search
process switches iteratively between several search spaces, each with its own encod-
ing, objective function and neighborhood structures;

Population-based hybrid methods:

� DCNS—Distributed Coloration Neighborhood Search [Morgenstern, 1996], a large
collection of algorithms and solving techniques, including population-based methods
and the partial solution encoding;
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� HGA—Hybrid Genetic Algorithms [Fleurent and Ferland, 1996b], a first hybridiza-
tion of a coloring evolutionary algorithm with Tabu search, but with a (item) color-
oriented crossover;

� CISM—Crossover by Independent Sets and Mutation Search [Dorne and Hao, 1998a],
an evolutionary algorithm using “Union of Independent Sets” crossover hybridized
with a special Tabu algorithm employing certain random walk moves;

� HEA—Hybrid Evolutionary Algorithms [Galinier and Hao, 1999], an evolutionary
hybrid approach incorporating Tabu Search, and introducing the greedy partition-
based crossover;

� AMCOL—Adaptive Memory Coloring Algorithm (also called AmaCol) [Galinier et
al., 2008], a hybrid evolutionary algorithm with a central memory containing inde-
pendent sets that can be assembled into colorings;

� MMT—two-phase algorithm due to Malaguti, Monaci and Toth [Malaguti et al.,
2008], combining a hybrid evolutionary algorithm and a post-optimization phase
based on column optimization;

� MCOL—Memetic Algorithm for Graph Coloring (or MemCol) [Lü and Hao, 2010],
a very recent memetic algorithm with an adaptive multi-parent crossover operator
and a good balance intensification/diversification;

Comparing the performance with these papers is complicated by the fact that we are
dealing with different machines, different programming languages, or different implemen-
tation/programming styles. The stopping conditions can also vary quite significantly:
while certain papers use machine-independent indicators (e.g. limits on the number of
iterations), most recent papers impose a maximum limit of time9, usually between one
hour and several days—see exact values in Section 2.5.4 or in Section 4.4.5. However,
compared to other combinatorial optimization problems, these references constitute a rich
(and very up-to-date/topical) comparison base, and so, all new algorithms will always be
tested against them—see Sections 2.3 (p. 37), 4.2 (p. 62) and 5.3 (p. 88). By providing as
much information as possible besides the CPU time (e.g. the number of iterations), such
comparisons can offer, at least for indicative purposes, a fairly representative image of the
general performances of a new algorithm.

The results of all above papers are also included in an on-line collection of best up-
per bounds for graph coloring (http://info.univ-angers.fr/pub/porumbel/graphs/).
This library has been compiled while working for the PhD project and it contains
19 references, as of July 2009. An exhaustive list of coloring heuristic algorithms
would probably contain dozens or hundreds of references, but one can not perform
comparisons with all of them. Several papers introducing excellent algorithmic devel-
opments are not listed here simply because of very practical reasons: certain papers

9As opposed to the 1980–2000 period, the CPU speed increases over time are quite moderate nowadays,
and so, the computational effort associated with a given CPU time can also be more easily interpreted.
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are not focused on reaching the best numerical performances and others have sim-
ply been published during the final months of the PhD project, when the writing of
this document was more than half completed [Prestwich, 2002; Glover et al., 1996;
Hamiez and Hao, 2004; Hamiez and Hao, 2001; Lü and Hao, 2009; Bouziri et al., 2008;
Fotakis et al., 2001].
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Chapter 2

RCTS: A Basic Tabu Search
Algorithm with New Evaluation
Functions and Reactive Tabu List

This chapter starts by recalling the principles of a basic coloring algorithm
(Tabucol [Hertz and Werra, 1987]) based on Tabu Search [Glover, 1986;
Glover and Laguna, 1997; Hansen, 1986]. Even today, the original Tabu-
col algorithm, along with several variants developed since 1987, are among
the most popular coloring approaches. Then, this chapter describes two
contributions to improve the best-known TS approach. We devise two new
evaluation functions which employ supplementary (structural or dynamic)
information in addition to the classical number of conflicts. These new eval-
uation functions allow the search process to differentiate configurations not
distinguished by the conventional evaluation function. The second contri-
bution of this chapter concerns a simple reactive mechanism for improving
the tabu list management. The resulting Reinforced Coloring TS (RCTS)
algorithm can reach the best upper bounds for most DIMACS graphs while
remaining still quite simple. The chapter is based on an an article submit-
ted in November, 2007 [Porumbel et al., 2007a].
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2.1 Introduction

Previous studies show that among the classical metaheuristics, Tabu Search (TS) al-
gorithms have very good experimental behavior for coloring a variety of large and
hard graphs. Moreover, several more effective algorithms [Fleurent and Ferland, 1996a;
Dorne and Hao, 1998a; Galinier and Hao, 1999; Galinier et al., 2008; Malaguti et al., 2008;
Blöchliger and Zufferey, 2008; Hertz et al., 2008] also use a TS algorithm as a local improve-
ment procedure. On the other hand, one observes that existing TS coloring algorithms are
basically simple and do not use any sophisticated technique. One wonders then whether
the performance of a TS coloring algorithm can be further boosted by improving some of
its key ingredients while still keeping the algorithm as simple as possible.

In this chapter, we propose improvements on two key components: evaluation function
and tabu list management. Indeed, the evaluation function is essential because it defines
the landscape of the problem and guides the search process (together with the neighbor-
hood). The classical evaluation function for k-coloration simply counts the number of
conflicts, i.e. the number of edges with both ends of the same color. The objective of a
TS algorithm is to move step by step toward the minimal value of this function, to try
to find an optimal k-coloring. However, the classical evaluation function can not differen-
tiate numerous k-colorings with the same number of conflicts, even if they have different
potential of leading to a solution.

For this reason, we investigate two new evaluation functions that use supplementary
information in addition to the number of conflicts. The first function aims to integrate
structural information related to the degrees of the conflicting vertices of the graph un-
der consideration. The second one uses the frequencies of color changes so as to create
a function based on information collected along the search. In addition to the study of
these evaluation functions, we also look into a simple-but-effective reactive mechanism for
improving the tabu list management. We will show that the resulting TS algorithm (here-
after referred to as RCTS - Reinforced Coloring Tabu Search) obtains very competitive
results for many DIMACS graphs, although it remains reasonably simple.

The rest of the chapter is organized as follows. In Section 2.2, we introduce preliminary
definitions and we present the basic TS coloring algorithm—this section is also essential
in other parts of the thesis because the basic Tabu search algorithm is used in different
other sections, including in the evolutionary algorithm. Section 2.3 introduces the new
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evaluation functions and Section 2.4 proposes a new reactive technique for tuning the
tabu tenure. In Section 2.5, we perform an extensive experimental study of the reinforced
coloring TS algorithm on the complete set of DIMACS graphs, followed by conclusions in
the last section of the chapter.

2.2 Basic Tabu Search for k-coloring

Tabu Search was first applied to the graph coloring problem by Hertz and de Werra in
1987, leading to the well-known Tabucol algorithm [Hertz and Werra, 1987]. Tabucol
showed at that time remarkable results for coloring large and hard instances. Tabucol has
also inspired several other TS coloring algorithms [Fleurent and Ferland, 1996a; Dorne
and Hao, 1998b; Galinier and Hao, 1999] which have achieved still better performance.
Even today, these TS coloring algorithms are among the most popular and useful coloring
techniques for general graph coloring. A historical presentation of Tabucol as well as
a comprehensive analysis of some of the best TS algorithms can be found in a recent
survey [Galinier and Hertz, 2006]. Experimental comparisons of TS coloring algorithms
with other metaheuristic coloring algorithms are presented in [Hoos and Stützle, 2004;
Chiarandini et al., 2007].

In brief, compared with the original Tabucol algorithm, the later TS coloring al-
gorithms make improvements in two key elements. First, in [Fleurent and Ferland,
1996a], the authors introduced an efficient incremental evaluation technique for neigh-
borhood examination. This technique allows the algorithm to pick the best neigh-
bor among all the neighboring solutions (Tabucol checks only a sample of the whole
neighborhood). Second, more elaborate tabu-list management techniques are devel-
oped. For instance, in [Dorne and Hao, 1998b; Dorne and Hao, 1998a; Galinier and
Hao, 1999], the authors introduced a conflict-based technique for dynamically tun-
ing the tabu tenure, while some very recent papers[Blöchliger and Zufferey, 2008;
Devarenne et al., 2006] also discuss reactive techniques.

In the rest of this section, we present several key components of TS algorithms for k-
coloring. These components are shared by several TS coloring algorithms and constitute
the starting point for the study reported in this chapter.

2.2.1 Neighborhood investigation

The search space Ω of a k-coloring problem (G(V,E), k) consists of all possible colorings of
G; since a coloring is encoded as a color array in our programs, we obtain thus |Ω| = |V |k.
A simple neighborhood function N : Ω → 2Ω − {∅} can be defined as follows. Given a
k-coloring C, a neighboring k-coloring C ′ is any coloring obtained by simply changing
the color c(i) of a conflicting vertex i into a new color c′(i). The transition from C
to C ′ is referred to as a move and it is denoted by a couple < i, c′(i) >. Notice that
this neighborhood focuses on conflicting vertices in order to help the search process to
concentrate on influential moves and to avoid irrelevant ones (i.e. the color of a non-
conflicting vertex does not need to change). Denoting the neighborhood by N(C), we
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obtain |N(C)| = (k−1)|CV |, which is considerably smaller than the size of a neighborhood
in which any vertex could change its color (i.e. (k − 1)|V |).

To rapidly choose the best next coloring from the neighborhood, we use a |V |×k table
γ in which each element γi,c′(i) denotes the number of conflicts that vertex i would have if
assigned color c′(i). The variation of the conflict number that would be induced by a move
< i, c′(i) > is γi,c′(i) - γi,c(i). Since our neighborhood only deals with conflicting vertices,
the best move is searched by going through all elements γi,c′(i) with i ∈ CV ((k − 1)|CV |
elements). After performing move < i, c′(i) >, γ can be updated in O(|V |) time—i.e. one
needs to change touch only on columns c(i) and c′(i). This dynamic and incremental move
evaluation technique is first employed in [Fleurent and Ferland, 1996a] and proves to be
indispensable for a fast examination of the whole neighborhood.

Plateau and basin of attraction Finally, this neighborhood relation enables us to
formally define another two useful notions: the plateau and the basin of attraction. A
plateau is a set of configurations situated below a certain altitude level (with respect to the
objective function) such that any two configurations can be connected via neighborhood
moves inside the plateau. A configuration is part of basin of attraction of a local optimum
if one can reach the local optimum by performing only descent (down) moves. See also
[Hoos and Stützle, 2004, Ch. 5] for more formal definitions.

Definition 2.1. (Plateau) We say subset P ⊂ Ω is a plateau of Ω if and only if: (i) all
configurations in P have the conflict number limited by a certain quality level and (ii) for
any Ca, Cb ∈ P , there exist configurations C1, C2, . . . , Cn ∈ P such that: C1 ∈ N(Ca),
C2 ∈ N(C1), . . ., Cn ∈ N(Cn−1) and Cb ∈ N(Cn).

Definition 2.2. (Basin of attraction) We say configuration C ′ belongs to the basin of
attraction of local optimum C if there exist configurations C1, C2, . . . , Cn ∈ Ω such that:
C1 ∈ N(C ′), C2 ∈ N(C1), . . ., Cn ∈ N(Cn−1), C ∈ N(Cn) and f(C ′) ≥ f(C1) ≥
f(C2) . . . f(Cn) ≥ f(C).

2.2.2 Tabu list management

A tabu list is commonly regarded as a first-in-first-out structure recording recent configu-
rations or recent moves. In our case, it is more convenient to implement it using a |V | × k
table T where each element indicates a possible move. Each time a move < i, c′(i) > is
performed, i receives the new color c′(i) and the last color of i becomes forbidden (Tabu)
for the next T` (tabu tenure) iterations. In practice, each element of T records the current
iteration number plus the tabu tenure T`. Consequently, in order to check whether or not
a move < i, c′(i) > is Tabu, Ti,c′(i) is compared with the current iteration counter.

In our TS version, the classical Tabu tenure is T` = α · |CE|+ random(A), where the
values of α and A are tuned in previous papers as discussed in the experimental part (see
Section 2.5.1). In this context, random(A) defines a generally-applicable tenure (fixed in
relation to the quality), and α · |CE| is used to keep certain moves Tabu for a longer
time (i.e. moves associated to lower quality configurations). We also introduce a reactive
component to adjust T`, as discussed in Section 2.4.
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Aspiration criterion Recording moves in the tabu list forbids the underlying configu-
ration to be re-visited for the period defined by the tabu tenure T`. In some cases, this
may also prevent relevant, non visited configurations from being considered. To overcome
this problem, a simple aspiration criterion is used: the tabu status of a move is removed
if the move leads to a neighbor configuration which is better than the best configuration
ever found so far.

2.2.3 Basic TS Formal Specification

Algorithm 2.1: General Tabu Search for k-Coloring
Input: graph G, integer k (colors);
Return: f(C∗) the best conflict number ever found;
Variables:

- C and C∗: current coloring and best coloring found so far;

- I: iteration counter;

- T and T`: tabu table and dynamic tabu tenure;

- γ: table |V | × k of conflict number variations induced by chaque move;

Begin

1. I = 0 (iteration counter);

2. T = 0 (Tabu table contains no Tabu move);

3. C = any initial k-coloring;

4. C∗ = C (save the best coloring found so far);

5. Initialize γ (for each possible move, calculate the induced conflict
number variation);

6. while (f(C) > 0 and time/iteration limit not reached )

- Pick the best acceptable move < i, c′(i) > from the neighborhood (if
more moves lead to a best conflict number, a random choice is taken
using the evaluation function);

- T [i, c(i)] = I + T` (set the color of i tabu);

- c(i) = c′(i) (perform the move);

- Update γ;

- if (f(C) < f(C∗)) then C∗ = C (better coloring found);

- I = I + 1;

7. RETURN f(C∗)

End

Algorithm 2.1 shows the general TS k-coloring procedure, including all the components
presented above. For a given k-coloring instance (G, k), our TS algorithm starts with an
initial (random) k-coloring C. The main steps of an iteration are: (i) pick the best
acceptable move by identifying in γ the smallest value γi,c′(i), (ii) set the current color of
i as tabu, (iii) execute the move and (iv) update γ accordingly. The process stops when a
legal coloring is found or when a time (or iteration) limit is reached.
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2.3 New Evaluation Functions

All previously-cited papers directly use the function f—the conflict number, see (1.1),
p. 16—as the evaluation function. Since f only counts the number of conflicts, it has
an inherent inconvenience: it makes no distinction between all configurations with the
same conflict number. Indeed these configurations are equivalent for f even if they may
have different potential for further improvement. In terms of the fitness landscape, f may
generate large plateaus of completely equivalent colorings [Hertz et al., 1994].

To overcome this difficulty, we propose to enrich f with additional information which
can distinguish configurations equivalent in terms of f . We introduce a heuristic function
h : Ω→ [0, 1) and combine it with f by the following simple linear form, leading to a new
evaluation function f̃ :

f̃ (C) = f (C)− h (C) (2.1)

Let us consider two configurations C1 and C2 such that f (C1) = f (C2) 6= 0. Ideally,
we should have f̃ (C1) < f̃ (C2) if the probability to reach a conflict-free k-coloring is
greater when the search runs from C1 than when it runs from C2. Unfortunately, due to
the complexity of the fitness landscape, this probability is unknown, and the computation
of a robust estimation is very difficult. For that reason we here restrict ourselves to local
information easy to calculate. We propose two different heuristics.

The first one only depends on structural information of the graph: the distribution of
the conflict degrees of the vertices (see below ). The second one is based on a learning
mechanism using a long-term memory: it depends on the distribution of the frequencies
of color changes on the vertex set during a first stage of the search process.

2.3.1 A degree-based evaluation Function

Specific Definitions Besides the definitions from Section 1.2.2, let us introduce certain
new definitions used only in this section.

Definition 2.3. (Conflicting degree of a vertex) Let i be a vertex, δi its degree, and C a
configuration. We define CVi = {j ∈ V |{i, j} ∈ CE(C)}. We call |CVi|

δi
the conflicting

degree of i under C.

It is easy to see that 0 ≤ |CVi| ≤ δi ∀i ∈ V ; the minimal value |CVi| = 0 is reached for
non-conflicting vertices, while |CVi| = δi indicates that vertex i is conflicting with all its
neighbors. Moreover, the following relation holds for any coloring: 2|CE| =

∑
i∈V |CVi|,

where CE is the set of conflicts (see also definition 1.3 in Section 1.2.2).
To motivate the new function, let us first consider the example on Figure 2.1 which

depicts two configurations C1 and C2 for a 3-coloring on a very simple graph. The edges
in conflict are respectively {a, b} for C1 and {a, c} for C2. Consequently, |CE (C1) | =
|CE (C2) | = 1 and the two configurations are thus equivalent for f . However, it is easier
to solve the 3-coloring problem from C1 than from C2.

Indeed, since the degree of b is small, one can assign to b a color not used by its
neighbors (i.e. black or white) to solve the {a, b} conflict on C1. That can be done in
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Figure 2.1: Two 3-colorings C1 and C2 with one conflict. The conflict is marked in with
a thicker line; it is easier to solve the gray one (C1, left) than to solve the black one (C2,
right) even if f(C1) = f(C2) = 1.

one step and it does not introduce any other conflicts. Solving the {a, c} conflict on C2

is more difficult because any color change on vertex a or c would perturb one of its more
numerous neighbors. Intuitively, the more neighbors a vertex has, the more difficult it is
to change its color without perturbing the rest of the configuration.

More generally, we can use the degree to define a penalty term: an edge with high-
degree ends should count as more “heavy” in the evaluation function. In order to take all
the conflicting vertices into account, we use the following heuristic h1 to define the penalty
associated to a k-coloring C:

h1(C) =
1

2|E|
∑
i∈CV

|CVi|
δi

(2.2)

In this context, we see that h1(C) gives the total of the conflicting degrees of all the
conflicting vertices of C. Our first degree-based evaluation function f̃1 can now be defined
as follows:

f̃1 (C) = f (C)− h1 (C) (2.3)

The only role of the 1
2|E| coefficient in Equation 2.2 is to keep the value of h1 in [0, 1).

Therefore, f̃1 preserves the f ordering: f̃1 (C) < f̃1 (C ′) whenever f (C) < f (C ′). The
role of the new evaluation function is to help the search process choose between neighbors
with the same conflict number, and not to introduce penalties that outweigh the number
of conflicts.

Certain implementation details might be useful. At each iteration, the basic Tabu
Search has to choose at random a neighbor that minimizes the evaluation function. Im-
plementing such a “random choice” is not straightforward, because it is quite inefficient
to simply collect and record all admissible neighbors and then choose one. We propose
assigning a random value rC′ in [0, 1] for each neighbor C’, at the moment when C ′ is
discovered; in the end, the C ′ with the highest rC′ value is selected. This procedure does
not require recording all neighbors at each step, and it introduces no bias. Toward the
end of the thesis, we realized that better experimental results can be obtained by coupling
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the new evaluations functions in this procedure. Let hmin and hmax be the lowest and
highest value ever reached by function h. The best experimental results can be obtained
by picking the rC′ value in

[
0, h(C′)−hmin

hmax−hmin

]
.

2.3.2 Using dynamic information to construct other functions

In this section, we propose a second heuristic h2 which takes into account information
collected during the search process. The considered information is the color changes per
vertex. Basically, if a vertex changes its color frequently, it should be penalized in order
to discourage the vertex to still change its color.

More precisely, let us consider a first stage of the search with the basic evaluation
function f . For each vertex i, we compute a frequency coefficient freq (i) which is a
scaling of the number of color changes applied on i during the first stage. The heuristic
h2 and the second new evaluation function can now be defined as follows:

f̃2 (C) = f (C)− h2 (C) = f (C)−
∑
i∈CV

|CVi| ·
1

freq(i)
(2.4)

We can say that the degree δi is replaced by a frequency coefficient. Given two colorings
with the same conflict number, the evaluation function f̃2 prefers the one whose conflicting
vertices have smaller frequencies of color change—this implies that it prefers solving the
conflicting vertices of high color change frequency before the others. In practical terms,
one can say that the vertices with high frequencies of color changes are considered more
critical. The new function encourages the search process to solve these vertices before
those with small frequencies of color change. We observed that f̃2 results in more frequent
color changes on vertices that were relatively fixed during the first stage; it has a natural
diversification effect.

2.3.3 Related research and complexity remarks

2.3.3.1 Related Research

One can find several pieces of research on graph coloring using ideas related to ours. A
heuristic function was introduced in [Glover et al., 1996], in which the authors propose to
wait to color the small degree dependent vertices until all other vertices are colored. The
Impasse coloring algorithm [Morgenstern, 1996] is based on a different encoding (partial
colorings), but it also intends to first color high degree vertices, leaving more vertices of
smaller degree in the uncolored class. This idea was also used in [Malaguti et al., 2008].

Regarding the function f̃2, we note that in [Devarenne et al., 2006], the vertices ”fre-
quently changed during the n = N/2 last iterations” are also considered for obtaining
diversification. Other different evaluation functions can also be found in the literature,
i.e. Johnson et. al. proposed for simulated annealing [Johnson et al., 1991] the function
f̂dsjc = −

∑k
i=1 |Ci| +

∑k
i=1 2|Ci||CEi|, where Ci is the set of vertices having color i and

CEi is the set of conflicts of color i.
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2.3.3.2 Reformulation and computational complexity

An advantage of our new functions is that they introduce negligible computational over-
head. Denoting any of the two heuristics by h (see Equation 2.1), one can compute h
using the formula:

h(C) =
∑
i∈V
|CVi| · hi =

∑
{i,j}∈CE

(hi + hj)

where hi is the penalty associated with vertex i, i.e. hi = 1
2|E|·δi for the first function,

or hi = 1
freq(i) for the second. Consequently, since f(C) =

∑
{i,j}∈CE

1, one can calculate

the value of any new function f̂(C) by summing up 1 − (hi + hj) for all conflicts {i, j}.
Before starting the exploration, we construct a table E so that the f̂ =

∑
{i,j}∈CE Eij .

The only computational difference between the three evaluation functions is the initial
value of E: for the classical function, Eij is always 1 while, for example, for f̃2, it becomes
1− 1

freq(i) −
1

freq(j) . Regarding the first function, it is imporatnt to see that it can also be
written as:

f̃1(C) =
∑

{i,j}∈CE(C)

(
1− 1

2|E|δi
− 1

2|E|δj

)
(2.5)

2.4 A simple reactive technique for tuning the Tabu tenure

It is well known that tabu list must be managed with care. In Section 2.2.2, a dynamic
mechanism is presented for tuning tabu tenure: T` = α·|CE|+random(A). In this section,
we reinforce this mechanism by introducing a simple-but-effective reactive technique.

Let us consider a plateau with n configurations C1, C2, . . . , Cn having the same conflict
number |CE|. A tabu list of length n − 1 is not sufficient to break a cycle of length n:
C1 → C2 · · · → Cn → C1. Since our classical tabu tenure is bounded (i.e. T` is always less
than a large n), numerical experiments show that it may not be sufficient to avoid certain
loops in larger-than-average plateaux.

To overcome this difficulty, we consider a reactive tabu list: when the conflict number
stays constant during a given number of iterations Mmax, we increment the length of the
tabu tenure for all the subsequent iterations. In other words, when we observe Mmax

consecutive transitions C1 → C2...→ CMmax such that f (C1) = f (C2) = · · · = f (CMmax),
the tabu tenure becomes T` + 1 for the forthcoming iterations. If the conflict number still
stays constant for another Mmax iterations, the tabu tenure becomes T` + 2; after another
Mmax iterations it becomes T` + 3, etc. The tabu tenure is thus continually incremented
as long as the conflict number remains constant. Since we reset it to the original T` value
only when the conflict number changes again, we guarantee that, sooner or later, the tabu
list is increased to a value that can break a cycle of any length.

Let us remark that using a large tabu list during all the process could have a negative
effect; outside large plateaus, it could encourage the algorithm to leave promising regions
too early. Here, the algorithm learns from its own search evolution, and resorts to a larger
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tabu list only when it is necessary. This simple mechanism enabled TS to solve impor-
tant looping problems on plateaus without affecting the algorithm performance outside
plateaus. Finally, our Tabu list length can be express by the formula:

T` = α|CE|+ random(A) +
Mcst

Mmax
, (2.6)

where Mcst is the number of the last TS iterations with constant conflict number.
To relate the present contribution to earlier research, this Tabu setting strategy be-

longs to the family of reactive search algorithms [Battiti et al., 2008]; Reactive Tabu setting
techniques based on looping detection were independently studied in other recent graph
coloring papers [Blöchliger and Zufferey, 2008; Devarenne et al., 2006]. The most simi-
lar approach [Blöchliger and Zufferey, 2008] considers that the search process is trapped
if the objective function fluctuation stays a long period bellow a certain threshold; this
threshold is set by a separate tuning phase along with two other parameters of the reactive
component. This reactive scheme (called the FOO scheme) can also be regarded as a gen-
eralized, more complex version of our Tabu tenure procedure. The authors of [Devarenne
et al., 2006] consider some different ideas to detect looping, focusing on the identification
of vertices causing loops. More details about the practical influence of our reactive tuning
are given in the experimental part (Section 2.5.3).

2.5 Experiments and Discussions

In this section, we report empirical results of the reinforced coloring TS algorithm on the
complete set of DIMACS coloring benchmarks. The main purpose is to assess the influence
of the two new evaluation functions as well as the reactive Tabu management technique.

All DIMACS graphs were introduced in Section 1.2.3 (page 16). Recall that the color-
ing algorithm actually tries to solve DIMACS instances (G, k) (i.e. a k is provided for each
graph) and that difficulty level of finding conflict-free k-colorings can vary from trivial to
very hard. Indeed, all easy instances from Section 1.2.3.1 were solved by RCTS with 100%
success rate in times of minutes. In what follows, we concentrate only on the rest of the
instances (hard instances), as most coloring research papers do.

2.5.1 Experimental conditions and parameters

Recall that RCTS requires only three parameters: A,α and Mmax. The first two are
inherited from the previous TS versions, the last one is used by the new reactive tabu
tenure (Section 2.4):

� A and α—they are utilized to compute the tabu tenure (T` = α · |CE|+ random(A),
see Section 2.2.2). We commonly set these parameters to values already reported in
the literature [Galinier and Hao, 1999; Dorne and Hao, 1998b]: A = 10 and α = 0.6.
Our own calibration experiments confirm that this combination constitutes a good
setting for our TS algorithm and consequently will be used for all our experiments.
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� Mmax—after Pmax iterations with no conflict number variation, one assumes the
search process is blocked, and so, the reative component is activated (see Section
2.4). In our experiments, Mmax is always fixed to 1000 for all instances, but there are
many safe values one can assign to Mmax. We empirically observed that each time the
conflict number |CE| stayed constant for 1000 iterations, |CE| remained so forever
(with the classical tunning). If larger Mmax values are used, the only difference is
that the reactive reaction is less prompt. Smaller Mmax values can trigger reactive
reactions more often than necessary, thus influencing the search process without
reason.

2.5.2 Influence of the Evaluation Function

In this section, we present experimental evidence to assess the usefulness of the new
evaluation functions.

2.5.2.1 Influence on the TS algorithm

A convenient method to appreciate the influence of the evaluation function consists in
inspecting the running profile of the same algorithm with different functions. We show
that the new evaluation function usually allows the search process to visit more high-
quality configurations in average.

Figure 2.2 depicts a typical evolution of the conflict number for RCTS with f and f̃1

on a random graph along the first 25.000 iterations. The profile of f̃2 is not shown here
since it usually overlaps f . This experiment shows that f̃1−RCTS stays most of the time
at lower conflict numbers than f−RCTS. Such a profile is observed on numerous hard
graphs, providing preliminary evidence that f̃1-RCTS leads most of the time to higher
quality configurations than f -RCTS does.

Table 2.1 formally reinforces this evidence by showing the average conflict numbers
along 1.000.000 iterations with all three functions on some representative graphs from dif-
ferent families. The differences between these averages were confirmed by a statistical test.
We considered the null hypothesis that the average of the conflict numbers obtained with
f̃1 (or f̃2 respectively) is equal to the average obtained with f . Using a very confident level
of significance of α = 0.1%, this hypothesis was rejected in most of the cases, confirming
that most reported differences are statistically significant—see the last two columns of
Table 2.1.

Table 2.1 shows that the average conflict number is always smaller for f̃1 than for f̃c
and, except for one graph, this quality difference was always confirmed by the statistical
test. In the best cases, the conflict number values provided by f̃1-RCTS can be even half
of those provided by f -RCTS. The second function f̃2 also shows an improvement on two
thirds of instances, but with a smaller amplitude.

For the coloring problem, there is no theoretical guarantee that the probability to reach
an optimal solution is strictly correlated with the average quality of the solutions visited
along the search. However, especially for local searches, almost all algorithms try to guide
the search process toward higher quality configurations.
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Figure 2.2: A typical evolution of the conflict number (running profile) with f (dotted
line) and f̃1 (continuous line) from iteration 200 to iteration 25.000. f̃1 allows the search
to visit more configurations of higher quality (fewer conflicts).

2.5.2.2 The evaluation function with empty Tabu list

In order to be sure that the general idea of a more discriminant evaluation function is not
restricted to the TS algorithm or to a specific tabu tenure, we carry out a second exper-
iment with a more neutral parameter-free steepest descent (SD) algorithm. Technically,
SD is the same Tabu Search from Section 2.2, but without tabu list (i.e. T` = 0). It starts
from a random coloring and it is only guided by the evaluation function, i.e. it iteratively
chooses the best neighbor according to this function. A very small number of iterations
(i.e. less than 1000) is enough to descend to a first local optima where SD stops. Since a
learning stage of several hundred iterations would be not sufficient for f̃2, this experiment
is performed only with f̃1 and f .

We performed 1000 independent SD runs (each from a different start random configu-
ration) with f̃1 and f and we compared the number of conflicts of the k-colorings finally
obtained with each function. Figure 2.3 shows the distributions of these conflict numbers
(i.e. the x-axis is the conflict number and the y-axis is the frequency): f̃1 is clearly much
better because even its worst performance is often better than the best one with f . These
distributions were observed for several tested graphs from all families. Note that the new
function allows even this rudimentary SD algorithm to reach a solution for {le450 25a,
25}, while the same SD with f leaves at least 10 conflicts.
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Graph k Average Number of Conflicts Stat. Confirmation

f̃1 f̃2 f [f̃1] 6≡ [f ] [f̃2] 6≡ [f ]

dsjc250.5 28 8.138 7.133 9.878 Yes Yes

dsjc500.5 48 24.9 28.5 26.6 Yes Yes

dsjc1000.5 87 35 32.2 37.7 Yes Yes

dsjr500.5 122 5.106 8.875 10.46 Yes Yes

r1000.5 234 16.02 25.76 29.09 Yes Yes

le450 25c 25 9.38 9.524 12.97 Yes Yes

le450 25d 25 9.183 13.94 13.74 Yes No

flat300 28 0 30 21.63 23.87 22.13 No No

flat1000 76 0 86 30.39 29.02 32.04 Yes Yes

Table 2.1: Average conflict number along the first 1 million iterations with all three
functions. In most cases, the modified functions, in particular f̃1, leads to colorings with
(statistically) fewer number of conflicts.

2.5.2.3 Performances and instance characteristics

We also remarked that the favorable influence of the new function f̃1 is more visible on
some instances than on others. Generally speaking, the best improvement is seen on the
most difficult instances and on some specific classes of graph. A very good example of
impressive performance is given by the random geometrical graphs (dsjrX.Y and rX.Y)
in which f̃1 strongly dominates f with no exception—see Table 2.1 and also Table 2.2 with
complete results.

This performance variation is due to the structure of the graphs, more exactly to the
degree variation. For example, in the case of geometrical graphs (e.g. dsjr500.5), the
maximum degree can be with an order of magnitude higher than the minimum degree and
this makes any degree-based differentiation very effective. Indeed, the average graph class
effectiveness of f̃1 can be ranked according to the degree variation, from the highest to
the lowest: random geometrical graphs, Leighton graphs, random graphs, flat graphs. An
extreme case is the Latin square graph which is regular (i.e. the degree is constant), and
the new degree-based evaluation function brings no new distinction between vertices.

2.5.3 Influence of the Reactive Tabu List

To evaluate the influence of the new reactive tabu tenure, we analyzed and compared the
classical tabu tuning (Section 2.2.2) with the reactive tabu tuning. Recall that the objec-
tive of the reactive part is to avoid looping on k-colorings with the same conflict number.
Here, we consider that the search process is stuck from the moment when the conflict
number does no longer variate. Using several representative graphs from each important
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Figure 2.3: Histograms of best conflict numbers independently reached by 1000 steepest
descents using f̃1 (simple bars) and f (shading lines). SD always leads to smaller number
of conflicts using f̃1 than using f .

family we performed between 20 and 100 executions of the TS algorithm equipped with
the classical tabu tuning and we counted how many of them got stuck before reaching 20
million iterations. The conclusion of this experiment was very clear: more than 90% of
the executions got stuck looping on a plateau long before reaching 20 million iterations.

By introducing the reactive part, these looping problems are solved and the TS algo-
rithm can successfully escape most plateaus. Thus, RCTS can effectively take profit from
higher running times—without reactive tuning, there would be no use to run RCTS more
than several million iterations (regardless of the evaluation function). A major positive
point of our reactive scheme is the simplicity: only one parameter Mmax is needed and it
can easily be assigned a safe value—i.e. any value X satisfying the property that if the
conflict number |CE| stays constant for X iterations, |CE| remains constant forever. We
empirically observed the reactive component is triggered only a few times in millions of
iterations (on plateaus that would otherwise block the process), so that the interference
with other algorithm components is minimal.

2.5.4 Complete RCTS Results on All Hard Instances

In this section, we present the complete results of RCTS with all three evaluation functions
for all hard instances. For each pair {G, k}, we perform 10 executions and we report the
success rate, as well as the average computing effort for finding a conflict-free coloring.
The stopping condition is to reach 10 hours on a 2.8 GHz Xeon processor using the C++
programming language compiled with the -O2 optimization option (gcc version 4.1.2 under
Linux).

Notice that in the coloring literature, it is a common practice to run a coloring
algorithm for at least several hours. For instance, a cutoff of 10 hours is also used
in [Hertz et al., 2008, Table 5], [Blöchliger and Zufferey, 2008, Table 6] (with a the
number of iterations of up to 2000 million). Similarly, another recent paper uses a time
limit of more than 10 hours (e.g. 40000 seconds in [Malaguti et al., 2008, p. 310]).
We find also papers using even more than several days (e.g. [Dorne and Hao, 1998a;
Morgenstern, 1996]).
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It is important to observe that increasing the running time will not lead to improved
performance if the search algorithm gets stuck in a local optimum. On the contrary, if an
algorithm is able to obtain better results when its running time is increased, this should
be considered as a favorable feature of the algorithm because this indicates the search is
not blocked by local optima.

Graph k f̃1-RCTS f -RCTS f̃2-RCTS
#Hits #Iters Time #Hits #Iters Time #Hits #Iters Time
[/ 10] [106] [h] [/ 10] [106] [h] [/ 10] [106] [h]

dsjc500.1 12 10/10 96 < 1
4 10/10 64 < 1

4 10/10 64 < 1
4

dsjc500.5 48 1/10 1352 6.33 0/10 — — 0/10 — —
dsjc500.9 126 9/10 360 1.67 10/10 457 2.4 10/10 466 2.5
dsjc1000.1 21 10/10 1 < 1

4 10/10 2 < 1
4 10/10 2 < 1

4
dsjc1000.5 87 1/10 873 7 0/10 — — 0/10 — —
dsjc1000.9 224 4/10 420 7.5 1/10 321 5 3/10 492 7.33
dsjr500.1c 85 5/10 470 1.2 1/10 7 < 1

4 1/10 7 < 1
4

dsjr500.5 122 7/10 469 2.4 0/10 — — 0/10 — —
r250.5 65 10/10 99 < 1

4 0/10 — — 0/10 — —
r1000.5 237 2/10 1059 7.5 0/10 — — 0/10 — —
le450.15c 16 8/10 11 < 1

4 9/10 17 < 1
4 9/10 17 < 1

4
le450.15d 16 10/10 1 < 1

4 10/10 < 1 < 1
4 10/10 < 1 < 1

4
le450.25c 25 9/10 621 1.1 6/10 572 1.2 6/10 203 1.2
le450.25d 25 9/10 937 2 2/10 1895 4.5 2/10 1895 4.5
flat1000.76 87 10/10 290 2.3 10/10 265 2 10/10 265 2
flat300.28 30 4/10 1183 4.5 6/10 538 2.33 8/10 737 3.1
latin square 100 6/10 641 3 4/10 1005 5 5/10 1141 5.5
C2000.5 162 4/10 237 3.63 1/10 601 9.5 2/10 477 8
C4000.5 305 4/10 88 4.75 2/10 85 4.5 2/10 98 5.5

Table 2.2: Detailed results of RCTS with a time limit of 10 hours for all three evaluation
functions. f̃1-RCTS finds better solutions than f -RCTS on 25% of graphs and has an
improved success rate on another 25% of graphs. The difference between f̃2-RCTS and
f -RCTS is less pronounced.

In Table 2.2, we report detailed results of RCTS on all hard DIMACS graphs. The
first two columns denote the k-COLOR instance, i.e. the graph and the number of colors
k. For each evaluation function, we provide the success rate (Columns 3,6,9) and the
average computation efforts used to solve the instance: the average number of iterations
in millions (Columns 4, 7, 10) and the time in hours (Columns 5, 8, 11). While the number
of iterations is a machine independent measure, the time is given for indication only. The
symbol ”-” means no solution is found within the given 10 hours.

First, we observe that f̃1-RCTS finds better k-colorings (i.e. with a smaller k than
f -RCTS) fors more than 25% of the instances—i.e. 5 graphs our of 19. As also pointed out
in Section 1.2.3.2, a difference of one color is commonly associated with several reduced
conflicts; for certain graphs, we are scheptical that the number of colors can be reduced
by any algorithm (see also the best algorithms in Table 2.3). Secondly, we observe that
f̃1-RCTS obtains a success rate twice as good as f -RCTS for another 25% of graphs.

35



Chapter 2. RCTS: A Basic Tabu Search Algorithm with New Evaluation Functions and
Reactive Tabu List

Thus, one can say that the new evaluation function f̃1 brings important improvement for
more than half of the instances (i.e. 10 out of 19) with respect to the initial function f .
We can also observe that the highest progress is reported especially on the most difficult
instances, and on graph classes showing a large degree variation (see also Section 2.5.2.3).

Indeed, the best performance is obtained for the random geometrical graphs, for which
f̃1-RCTS can quickly (less than one hour) discover solutions that f -RCTS can not find
in 10 hours—e.g. see graph r250.5. Moreover, f̃1-RCTS also solves the difficult instance
(dsjr500.5, 122) in less than two hours and with a stable success rate. Out of the best
ten algorithms from the literature (see also Table 2.3), this instance was previously solved
only by one (much more complex) algorithm [Malaguti et al., 2008]. As discussed in
Section 2.5.2.3, the performance improvement of f̃1-RCTS can also be lower for graphs in
which the degree variation is very low (i.e. flat graphs) and the discrimination power of
f̃1 is less important.

The advantage of the evaluation function f̃2 over f is less visible. This can be explained
by the fact that f̃2-RCTS diverges from f -RCTS only in the second half of the search, i.e.
after 5 hours of computation. As a direct consequence, the values reported by f -RCTS
and f̃2-RCTS are completely identical on all instances that never require more than 5
hours to be solved. By considering now the 4 instances that require more than 5 hours
(i.e. dsjc1000.9 and the last three graphs), one sees that f̃2 has an improved success rate
for 3 instances out of 4.

2.6 Chapter conclusions

We have presented the Reinforced Coloring TS (RCTS) algorithm which extends the
previous TS coloring algorithms by introducing new evaluation functions and a reactive
tabu tenure. By enriching the conventional evaluation function f based on the number of
conflicts, the new functions take into account additional information related to the graph’s
structure (degrees of conflicting vertices) as well as dynamic knowledge learned along the
search (frequencies of color changes). Moreover, the reactive tabu list management allows
the algorithm to break loops and effectively take profit from additional computing time.
Once equipped with these new components, the Tabu search algorithm, although quite
simple, is able to find numerous best-known solutions of the DIMACS graphs.

Table 2.3 contrasts the results of RCTS with ten best algorithms from the literature—
five of them are based on local search and the five others are hybrid algorithms. Even if
a detailed comparison goes beyond the purpose of this chapter, the results give a general
image about the relative performance of the proposed RCTS algorithm on the set of
DIMACS graphs.

Evaluation functions in a general context Finally, let us comment that the proposed
evaluation functions can be directly employed by other algorithms, e.g. in the local search
component of the evolutionary algorithm from Chapter 5. More generally, it seems that the
issue of evaluation function is somewhat overlooked until recently. We are convinced that
this is a fundamental issue for metaheuristics, i.e. a carefully designed evaluation function,

36



2.6 Chapter conclusions

Graph χ/k∗ Local Search Algorithms Hybrid Algorithms
RCTS ILS VNS ALS PCOL VSS DCNS HGA HEA AMCOL MMT MCOL

2002 2003 2008 2008 2008 1996 1996 1999 2008 2008 2010
dsjc500.1 ?/12 12 12 – 13 12 12 – – – 12 12 12
dsjc500.5 ?/48 48 49 49 50 48 48 49 49 48 48 48 48
dsjc500.9 ?/126 126 126 – 128 126 126 – – – 126 127 126
dsjc1000.1 ?/20 21 – – 21 20 20 – – 20 20 20 20
dsjc1000.5 ?/83 87 89 90 89 89 88 89 84 83 84 83 83
dsjc1000.9 ?/224 [223] 224 – – 230 225 224 226 – 224 224 225 223
dsjr500.1c 84/85 85 – – – 85 85 85 85 – 86 85 85
dsjr500.5 122/122 122 124 – – 126 125 123 130 – 125 122 122
r250.5 65/65 65 – – – 66 – 65 69 – – 65 65
r1000.5 234/234 237 – – – 248 – 241 268 – – 234 245
flat300.28 28/28 30 31 31 – 28 28 31 33 31 31 31 29
flat1000.76 76/82 87 – 89 – 88 86 89 84 83 84 82 82
le450.15c 15/15 16 15 15 – 15 15 15 15 15 15 15 15
le450.15d 15/15 16 15 15 – 15 15 15 15 – 15 15 15
le450.25c 25/25 25 26 – – 25 26 25 25 26 26 25 25
le450.25d 25/25 25 26 – – 25 26 25 25 – 26 25 25
latin square ?/98 100 99 – – – – 98 106 – 104 101 99
C2000.5 ?/150 [148] 162 – – – – – 150 153 – – – 148
C4000.5 ?/280 [272] 305 – – – – – – 280 – – – 272

Table 2.3: Results of the Reinforced Coloring Tabu Search and results of the best per-
forming coloring algorithms from the literature on all difficult graphs. The colorings
of RCTS are publicly available at http://www.info.univ-angers.fr/pub/porumbel/
graphs/rcts/

The algorithm acronyms correspond to the following papers: RCTS (Reinforced Coloring Tabu
Search), ILS [Chiarandini and Stützle, 2002; Paquete and Stützle, 2002], VNS [Avanthay et al., 2003],
ALS [Devarenne et al., 2006] , PCOL [Blöchliger and Zufferey, 2008], VSS [Hertz et al., 2008], DCNS [Mor-
genstern, 1996], HGA [Fleurent and Ferland, 1996b], HEA [Galinier and Hao, 1999], AMCOL [Galinier et
al., 2008], MMT [Malaguti et al., 2008], MCOL [Lü and Hao, 2010]. Notice that we indicate (in brackets)
the results of the papers to appear in 2010, still in press at the defense of the thesis.

using problem-specific knowledge, could improve the results for other hard combinatorial
optimisation problems, as already demonstrated for certain cases [Rodriguez-Tello et al.,
2008a; Rodriguez-Tello et al., 2008b].
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Chapter 3

Search Space “Cartography”

This chapter is devoted to a search space analysis, more exactly on in-
vestigating the spatial distribution of high-quality configurations. Such
information will be later integrated in heuristic algorithms in order ot ren-
der them more “well-informed”. The first objective was to design a local
search algorithm capable of guiding itself toward unexplored regions (Chap-
ter 4), but certain ideas are also employed by the evolutionary algorithm
(Chapter 5) to ensure an appropriate population spacing.
Using a classical distance measure between colorings, we introduce the fol-
lowing clustering hypothesis: the high quality solutions are not randomly
scattered in the search space, but rather grouped in clusters within spheres
of specific diameter. We first provide intuitive evidence for this hypothesis
by presenting a projection of a large set of local minima in the 3D space.
More formally, we study the distribution of the distance between the high-
quality configurations visited by a local search: the distance values are
either very small (inter-cluster distances) or very large (intra-cluster dis-
tances). The chapter develops ideas from an article accepted in Computers
and Operations Research [Porumbel et al., 2010]; the overview of search
space analyses is included an article presented at the LION conference [Po-
rumbel et al., 2009c].
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3.1 Introduction

3.1.1 Analysing the search space

It is well known that the performance of all heuristic algorithms is strongly influenced by
the search space structure. In fact, to design an effective heuristic one needs to exploit
(explicitly or implicitly) some features of the search space [Streeter and Smith, 2006]. For
illustration, several types of local minima structures can be exemplified for the satisfiability
problem [Du and Pardalos, 2007, pp. 425–427]: isolated local optima, plateaus, valleys,
bassins of attraction. Perhaps rather suprisingly at first glance, for many algorithms, the
most difficult situation is not the classical local minimum, but the trap: the confinement of
a group of local optima in a well. If trapped into such a structure, a classical local search
would probably become locked looping between the local minima inside the well—even if
it might be able to escape individual local minima.

There are many research threads related to search space analysis—see also [Streeter
and Smith, 2006, §2] for a classification related to our interests. A research direc-
tion, especially in the context of evolutionary computing, consists of defining statisti-
cal measures to estimate the problem difficulty (i.e. convexity, ruggedness, smooth-
ness or fitness distance correlation [Jones and Forrest, 1995]—see [Kallel et al., 2001;
Merz, 2004] for a summary of such measures and related issues. Other studies deal with the
structural similarities between local optima (i.e. the ”‘backbone”’ shared sub-structures)
or with their spatial distribution—as we do in this chapter.

However, each problem has a different number of local optima and plateaux, each one
with its own form, size or depth; furthermore, these local optima can be grouped following
some patterns (in valleys, wells) and they can be concentrated in certain areas [Merz, 2004].
One can find numerous studies investigating the specific local optima properties for the
most representative combinatorial optimization problems: boolean satisfiability [Zhang,
2004; Gerber et al., 1998], graph coloring [Hertz et al., 1994; Hamiez and Hao, 2004;
Culberson and Gent, 2001], the traveling salesman problem [Stadler and Schnabl, 1992],
the 0–1 knapsack problem [Ryan, 1995], graph bi-partitioning [Merz and Freisleben,
2000b], the quadratic assignment problem [Merz and Freisleben, 2000a], job shop or flow
shop scheduling [Reeves and Yamada, 1998; Streeter and Smith, 2006], arc crossing min-
imization in graph drawing [Kuntz et al., 2004],etc. It seems that the local optimum
characteristics of the search space (the number of local optima, their space distribution,
the topology of their basins of attraction) may indeed be very different from one problem
to another, and even from one instance to another. However, all these studies conclude
that the local optimum analysis has great potential to make a positive impact on the
performance.

As also discussed in Section 1.1.2, it is more difficult to collect information “on the fly”
(on-line learning) than to perform analyses in a pre-optimization stage. The inconvenience
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of any pre-optimization local optima analysis is obvious: it requires a-priori known infor-
mation about the local optima of the objective function—and finding high-quality local op-
tima is the actual goal of the main optimization stage. In fact, before the main optimization
stage, very little advance information is usually available on the search space. A possible
approach consists of using smaller instances so as to easily locate the optima to be ana-
lyzed [Hertz et al., 1994]. It is important to notice that important insight can however be
reached by analyzing artificial landscapes, e.g. the NK model [Kauffman and Levin, 1987;
Tomassini et al., 2008; Jones and Forrest, 1995], one-max or long k-path problems [Horn
et al., 1994].

In practice, the on-line integration of learned search space information in a search pro-
cess remains a difficult problem. To achieve this, the search process needs to learn how to
make better local decisions only using global information available at local levels. To over-
come such difficulties in practice, the integration of a learning phase in the optimization
process (“learning while optimizing”) seems very promising. Our approach, developing
ideas of reactive search [Battiti et al., 2008], aims at designing an algorithm capable of
performing a self-oriented exploration.

3.2 The typical local search and the global vision

A very undesirable behavior of local search algorithms is to spend most of the time only
in some specific parts of the search space. A particular classical case is to run into a local
optimum and then to stay all the time only in its neighborhood. While the local opti-
mum problem can be avoided by many thoroughly studied meta-heuristics, fewer efforts
have been done to prevent the search process from looping between a limited number of
basins of attraction and plateaus. Mmost local search algorithms move from configuration
to configuration in the search space without recording too much data about the visited
regions. Usually, at the moment of a given iteration, we have no information whether we
are exploring a completely new region (i.e. the search has never visited any configuration
close to the current one) or a previously-explored region.

Indeed, a local search algorithm is not commonly concerned with having a global view
of its own the exploration process. In most combinatorial optimization problems, the
algorithm does not take into consideration the relations between potential solutions (con-
figurations) visited at different stages of the local search. Furthermore, most studies that
analyze the search space structure (for example [Hertz et al., 1994; Hamiez and Hao, 2004;
Culberson and Gent, 2001] for graph coloring) focus more on providing theoretical infor-
mation than on effectively using such information to improve an algorithm.

Given any local search process searching through a search space, some important ques-
tions might be:

� what does the exploration path look like ?

� which regions is the process more likely to explore?

� does the search process explore more than a few regions?
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� what is the spatial distribution of high quality solutions?

� are they randomly scattered or are they grouped in structures?

� can the search process be guided toward a global optimum?

Clustering hypothesis In fact, the study in this chapter is devoted primarily to
these issues. Using a search space distance metric (see Section 3.3.1.1 or detail description
in Chapter 6), we introduce the notion of sphere: the set of colorings situated withing a
certain distance (radius) from a (center) configuration. The clustering hypothesis is that
the local optima are not randomly scattered in the space, but they form clusters of points
that can be confined in spheres of specific diameter.

In this chapter, we consider the local search from Section 2.2, i.e. the basic Tabu
Search algorithm without aspiration criterion but with reactive Tabu list. For readability
issues, let briefly recall its features and construction. Essentially, TS iteratively moves
from one coloring to another by modifying the color of a conflicting vertex until either a
legal coloring is found, or a predefined stopping condition (i.e. the number of iteration)
is reached. Each performed move (i.e. each new color assignment) is marked Tabu for a
number of iterations, i.e. the Tabu list length T`. In this manner, TS cannot re-perform a
move that was also performed during the last T` iterations.

This algorithm is indeed capable of avoiding certain local optima (and even small
plateaus) by using the Tabu list. But, however, the above questions are still open and
also essential. Is there any guarantee that TS is able to explore more regions in one week
than in one hour? Unfortunately, as for many other local search algorithms, the answer is
no, it might explore roughly the same regions in one hour or in one week. Experimentally
speaking, many other papers using similar algorithms show that the results can not be
improved by increasing the running time beyond a certain level (i.e. several hours for
graph coloring). One can check that [Blöchliger and Zufferey, 2008; Hertz et al., 2008]
use running times of 1 hours and 10 hours and the improvement due to time is quite
limited; we are skeptical that by using 100 or 1000 hours, such algorithms would reach
new colorings.

3.3 Search Space Cartography

In this section, we explore the spatial distribution of specific configurations in the space
search. Two different samples of configurations are considered: (i) the best optima
C∗1 , C

∗
2 , . . . discovered by TS during independent runs, (ii) the best configurations vis-

ited by TS in one run. We consider each sample as a set of points in the search space Ω
(a |V |-dimensional space), and we measure the distance between each two points with the
following distance: the minimum number of neighborhood transitions to arrive from one
point to another. The set theory provides the partition distance (see Chapter 6), that is
very addapted to this situation.

First, we provide 3D visualizations for illustration: the points from the |V |-dimensional
space Ω are mapped into the 3D Euclidean space such that a distance distortion is mini-
mized. This is achieved with a classical Multidimensional Scaling (MDS) procedure. Then,
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we analyze the values of distances between all points and we provide evidence that they are
grouped in clusters in the search space Ω. We make an estimate of the cluster diameter.
Surprisingly, we observed that it does not closely depend on the graph type, but mainly
on |V |. Our assumption is that many of these clusters can be confined in spheres of radius
1
10 |V |.

3.3.1 The operation of cartographing the search space

3.3.1.1 Search space distance: the minimum number of neighborhood tran-
sitions

Let us consider a combinatorial optimization problem with a search space Ω and a neigh-
borhood N . To be able to perform correct visualizations of configuration positions, we
need a distance measure reflecting the proximity according to neighborhood N—a step
(N transition) should not “jump” over a long distance (and the minimum non-zero dis-
tance should be 1, corresponding to neighboring colorings). Let us consider the following
distance measure: the minimal number of neighborhood transitions that one needs to
apply on a configuration so that it becomes equal with the other. We call this a neigh-
borhood distance, i.e. given two configurations C,C ′ ∈ Ω, the distance between them is
formally defined as the minimal number n for which there exist C0, C1, . . . Cn ∈ Ω such
that: C0 = C,Cn = C ′ and Ci+1 ∈ N(Ci) for all i ∈ [0 . . . n− 1].

Fortunately for graph coloring, the set-theoretic partition distance fits well this defi-
nition; let us denote it by d. Using the partition representation (see Definition 1.2), the
partition distance between coloring C and C ′ is the minimal number of vertices that need
to be transferred from one class to another in C so that the resulting partition is equal
to C ′. Since transferring one vertex from one class to another is equivalent to changing
a vertex color, the partition distance is indeed in accordance with the minimum number
of neighborhood transitions from C to C ′. Recall that, in this thesis, we deal with only
one simple neighborhood function: the neighbors of a coloring are essentially obtained via
color changes (see Section 2.2.1 for formal definitions).

For the partition distance, there exists a well-studied computation method using an
O(|V | + k3) Hungarian algorithm—see the paragraph on “fast calculation procedure” in
Section 4.2.2.1 for an overview. Complete details on this distance measure are given in
Chapter 6, but for the moment it is enough to say that d(C,C ′) needs to be a distance
with a specific meaning: the shortest path of steps (neighborhood transitions, moves)
between C to C ′ in the landscape defined by N . Similar cartographies can be realized
with other distance measures, that can be defined for other problems using their specific
neighborhoods (see examples in Section 4.5).

3.3.1.2 Multidimensional Scaling

Multidimensional Scaling (MDS) is a common procedure in data visualization for repre-
senting similarities or dissimilarities in data. It takes as input a matrix of distances (or
dissimilarities between pairs of items) and maps them to a set of locations in the Euclidean
space (IR2 or IR3) such that a loss function (i.e. Kruskal stress in our case) is minimized. In
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our implementation, the MDS procedure has three steps: data collection, data mapping,
and model verification.

Step 1: The matrix of distances in the real search space Given a sample of
k-colorings {C1, C2, . . . Cp} ⊂ Ω, the procedure first constructs the matrix Dp×p where
each element Dij = d(Ci, Cj) is the distance between Ci and Cj . We define the distance
as the minimum number of color changes required to transform Ci in Cj , as discussed in
the previous chapter.

Step 2: Generating IR3 coordinates To obtain the corresponding locations in IR3,
we use the classical cmdscale algorithm for metric (classical) multidimensional scaling as
implemented in the well-known R programming language for statistical data analysis1.
The provided IR3 locations are used to plot the 3D scatter graph and also to calculate the
Euclidean distance matrix dp×p between the points. More exactly, a function call of the
form cmdscale(D, k = 3) proved very efficient in providing a good set of 3D locations that
were plotted with function scatterplot3d. (in fact, they can be even plotted with a
different software); The distances in the 3D representation assess the spatial distribution
of the real configurations in the Ω space.

Step 3: Quality assessment Since the isometry between the Euclidean distance
matrix (dp×p) and the initial distance matrix Dp×p can not be exactly satisfied, the quality
of the embedding is measured with a goodness-of-fit indicator. We measure the distortion
with the classical stress proposed by Joseph Kruskal [Kruskal, 1964]:

sfit =

√∑
1≤i,j≤p(Dij − dij)2∑

1≤i,j≤pD
2
ij

The guideline provided by Kruskal in his seminal MDS paper [Kruskal, 1964] states that
the representation is: a) poor if sfit > 0.2, b) fair if sfit ≤ 0.1, c) good if sfit ≤ 0.05, d)
excellent if sfit ≤ 0.025 and e) perfect if sfit = 0. In this chapter, even if the total number
of points is very high, we present no ’poor’ (i.e. sfit > 0.2) representations.

3.3.2 Spatial distribution of the best configurations

Our first representation aims to provide a cartography (an intuitive map) of the locations
of the best local optima in the search space. For the well-studied coloring DIMACS graph
dsjc250.5 (quite small random graph with 250 vertices), the chromatic number is unknown
but no algorithm ever found a legal coloring with less than 28 colors. We considered k = 27
and we tried to find the best k-colorings by performing hundreds of executions of the basic
TS coloring algorithm; the best local optima we have ever found have 3 conflict. As such,
assuming that a 3-conflict coloring is a global minimum, we performed 350 independent
executions and we only collected the first global minimum discovered by each execution.
Figure 3.1 (left) effectively plots the 350 best local optima independently-discovered by
the 350 TS executions.

Figure 3.1 show some form of clustering of these “global optima” of this instances. One
can place a few small spheres that cover all points—these spheres represent the regions

1www.r-project.org
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Figure 3.1: 350 global optima from the 250-dimensional search space of dsjc250.5 (k = 27)
plotted in the 3D space (with stress sfit = 0.09) by the MDS procedure (left) and the
histogram of the real distance values between these colorings (right). Each coloring is
independently found by a different run. The points are not randomly scattered, but
grouped in clusters. The right figure confirms this: the distances between the points are
either very small (inter-cluster distances) or very large (intra-cluster distances)

that usually attract the TS algorithm (e.g. very strong basins of attraction for TS). Figure
3.1 (right) shows the distribution of the distance values between any two global optimum
(measured in Ω). Most values are either very small (less than 1

10 |V | = 25), or very large;
the small distances correspond to inter-cluster distance while the large ones correspond to
intra-cluster distances.

It is worth mentioning that this type of experiments can be performed only on very
rare configurations, of excellent quality. Collecting widely distributed configurations would
have been much easier, but any 3D projection would be less conclusive and less meaningful.
Indeed, the solutions of the same graph (dsjc250.5) with k = 28 colors are distributed
more uniformly, and so seem the solutions of other instances. This simple experiment
required several months of calculations on a 2.7GHz processor, because it may take up
to several days for a TS execution to find a point from this plot (i.e. a coloring with 3
conflicts with k = 27).

Finally, it might be interesting to note that the phenomena observed empirically in
this section could have certain unexpected connections with similar findings from the
statistical physics community. There is at least a graph coloring study (see [Zdeborová
and Krzaka la, 2007, Fig. 1]) describing how the global optima (legal colorings) are grouped
in small clusters when the problem instance is very hard, i.e. at the COL/UNCOL (i.e.
SAT/UNSAT) phase transition. On the other hand, if the instance is below the phase
transition (and solutions can be easily reached), the global optima appear in a single giant
cluster. However, the instance considered in this section is at the “COL/UNCOL” phase
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3.3 Search Space Cartography

transition, and so, our clusters might correspond to the ones sketched in [Zdeborová and
Krzaka la, 2007, Fig. 1], see the fifth graph between cr and cs.

3.3.3 Spatial distribution of configurations sequentially visited in short
time

In this section we examine the sequence of colorings visited by (quite) short TS processes,
more exactly we investigate the arrangement of high-quality configurations:

Definition 3.1. (High-quality configuration) We say that configuration C ∈ Ω is a high-
quality configuration (i.e. it is deep, or hard–to–find) if and only if f(C) ≤ Bf , where Bf
is a fitness boundary (threshold). Otherwise, we say that C is a low-quality configuration.

Given a problem instance (G, k) and an initial high-quality coloring C0, we apply the
TS algorithm starting from C0. TS visits a series of neighboring colorings and let C0 ,C1,
C2, . . . denote the high-quality configurations, those satisfying f(Ci) ≤ f(C0)—i.e. we
consider the fitness boundary Bf = f(C0). In all our tests, the number of high-quality
configurations represents only a very small fraction of the total number of colorings visited
along the search; we ignore the colorings worse than C0 because they are widely distributed
and can be easily found. They are indeed scattered quite randomly in the space—i.e. even
in the proximity of to the initial local optimum C0, there should be numerous less fit
colorings.

For example, for the problem (le450.25c, 25): (i) it is hard to find a 0-conflict coloring2,
(ii) it is quite easy to find 1-conflict colorings if TS starts from an initial 1-conflict coloring,
(iii) there are 2-conflict colorings scattered everywhere around the initial 1−conflict color-
ing. For this graph and for a 1−conflict starting coloring, we consider the other 1−conflict
configurations as relatively high-quality, and the 2-conflict configurations as relatively low-
quality. If one also considers the low-quality configurations in this investigation, one would
find points very uniformly distributed in the space.

We show in Figure 3.2 the MDS representations of the colorings resulting from this
experiment. Two instances are considered: (a) random graph dsjc1000.1 starting from
a 4-conflict coloring and (b) Leighton graph le450.25c starting from a 1-conflict coloring.
In order to limit the number of points (and the reliability of the MDS representation),
we divide the TS exploration path in intervals of 100 and plot only the first coloring of
each interval. More exactly, if the search visits the following high-quality configurations
in this order: C0, C1, C2, . . ., we graphically depict only C0, C100, C200, . . .. The distances
between the colorings visited at close moments of time (almost consequtively) are too
small—even zero because TS makes many small loops. By taking only one coloring per
interval, we can also cover a longer execution range with a limited number of points—an
so, with acceptable stress (MDS distortion).

These 3D representations provide a good intuitive image of the exploration path. In
the left graph, the exploration process starts from the front-bottom-left corner and passes
from cluster to cluster until it reaches the right side; most colorings visited in-between do

2there are many state-of-the art algorithms that are unable to find legal 25-colorings.

45



Chapter 3. Search Space “Cartography”

 600  configurations of  dsjc1000.1

0 X Axis 200 

0
Z
 A

x
is

2
0

0

0

Y Axis

200

 240  configurations of  le450.25c

0 X Axis 100 

0
Z
 A

x
is

1
0

0
0

Y Axis

100

Figure 3.2: The high-quality colorings (with f(C) ≤ 4) visited during 60000 iterations
by TS for G = dsjc1000.1, k = 20 (left) and the high-quality colorings (with f(C) ≤ 1)
visited during 25000 iterations by TS for G = le450.25.c, k = 25 (right). The stress value
is sfit = 0.19 and sfit = 0.15, respectively.

not appear in the graph because they have worse fitness values (low quality configurations).
In the right graph, the exploration path is even more clear (it starts from the front-bottom-
left corner and ends toward the front-bottom-right corner) but the clusters are closer—for
le450.25c, the distances between clusters are between 15%|V | = 67 and 22%|V | = 99 (see
also Figure 3.3, bottom right graph) because the Leighton graphs have a peculiar structure
as we discuss in Section 4.4.4.

3.3.4 Spatial distribution of configurations visited in long runs

This section is devoted to a more formal (and less intuitive) analysis of much longer
series of high-quality colorings visited by TS on all graph classes (Figure 3.3). We used
a similar scenario as for Figure 3.2, but we examined much more configurations: indeed,
all the high-quality colorings C0, C1, . . . , CN (i.e. satisfying f(Ci) < f(C0) ∀i ∈ [1..N ],
where N = 40.000) visited by TS are now considered for analysis (instead of the several
hundreds of samples C100, C200, C200, . . . considered in the previous representations). We
compute all distances3 d(Ci, Cj) and, with a distance histogram, we show how many pairs
(Ci, Cj) correspond to each distance value.

Figure 3.3 shows bimodal distance distributions, with either very small or very long
distances between the Ci’s: this confirms the existence of some well separated regions with
high densities of Ci’s (clusters). If we denote a “cluster diameter” by Cd, we observe that
Cd varies from 7%|V | to 10%|V | depending on the graph, such that:

3Considering N = 40000 colorings, the number of distances to compute is not extremely large, we
computed all N ×N = 1.600.000.000 distances in several hours.
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Figure 3.3: Histograms of the distances between each two of the C0, C1, C2, . . . , C40000

(high-quality) configurations visited by TS; f(Ci) is limited by: a) 4 conflicts for (G =
flat300.28, k = 30), b) 3 for (G = dsjc250.5, k = 28), c) 4 for (G = dsjc1000.1, k = 20)
and d) 1 for (G = le450.25c, k = 25).

� there are numerous pairs (i, j) such that d(Ci, Cj) < Cd;

� there are very few (less than 1%) pairs (i, j) such that Cd < d(Ci, Cj) < 2Cd;

� there are numerous occurrences of some larger distance values.

This statistical distribution of the Ci’s mainly reflects the path of the search process
through the search space—and not the arrangement of all existing high quality configura-
tions. However, regarding the colorings visited by TS, this section confirms the clustering
hypothesis, i.e. any two Ci’s distanced by more than 1

10 |V | (the largest possible value of
Cd) belong to different clusters of high-quality configurations. We keep this estimation in
the rest of the thesis and we use it to propose new search space exploration methods.
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3.4 Conclusion of the chapter

A precise theoretical analysis of the cluster patterns is beyond the scope of this thesis;
it would require algorithms with a complexity too large for integration into applications.
However, our clustering hypothesis is very useful in practice: it is quite easy to exploit the
fact that two high-quality configurations distanced by more than 1

10 |V | belong to different
clusters.

We will assume that the clustering hypothesis holds for any sequence of colorings that
TS visits. The most important application of this principle is developed in Chapter 4 in
which we present an algorithm for diversification, and one for intensification; both of them
consider the search space organized in spheres with radius 1

10 |V |. Furthermore, since the
TS procedure is also employed in the memetic algorithm from Chapter 5, we will use there
the same principle, so as to keep a minimum spacing between population individuals, i.e.
any two individuals of a population should be distanced by at least 1

10 |V |.
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Chapter 4

Position Guided Local Search
Algorithms Targeting
Diversification and Intensification

We present two position-guided algorithms that work on top of a local
search process (e.g. Tabu Search) so as to guide it toward certain targeted
regions of the search space. For this, the search space is structured in
spheres, and we take profit from the clustering hypothesis introduced in
Chapter 3: the high quality configurations are not randomly scattered in
the search space, but rather grouped in clusters within spheres of diam-
eter R = 1

10 |V |. The first algorithm (TS-Div) uses a learning process so
as to guide the underlying local search toward as-yet-unvisited R-spheres.
The second algorithm (TS-Int) makes deep investigations in a “limited
perimeter” around a given (promising) configuration. TS-Int employs a
breath-first-search routine to enumerate all R-spheres from this “limited
perimeter”, and, each of these spheres is thoroughly explored by numer-
ous independent TS processes. We experimentally observed that if such
a “limited perimeter” contains a global optimum, TS-Int does not fail in
eventually finding it. TS-Div ensures diversity, TS-Int enforces intensifica-
tion, and together they reached very competitive results, in particular they
colored for the first time the well-studied DIMACS instance djsc1000.9
with k = 223 colors; this chapter develops ideas from an article accepted
in Computers & Operations Research [Porumbel et al., 2010].
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4.1 Introduction

4.1.1 Motivation and objectives

Compared to more refined evolutionary or swarm-based algorithms, the classical local
search approach suffers from the fact that it does not exploit enough global mechanisms
and features. Indeed, illustrations of global mechanisms can be found in many meta-
heuristics: evolutionary algorithms use a distributed population along with recombinations
or mutations to make “long jumps” in the search space, ant colony optimization introduced
pheromone trails to induce interaction between globally distributed ants (agents), particle
swarm optimization deals with self-organization, global feedback and stimergy to reach a
“collective” behavior of swarms of agents, etc. This chapter is developed around a simple
classical local search algorithm and tries to overcome the fact that it lacks any form of
global vision or control—unlike the above meta-heuristics.

Indeed, without exploiting global information, all algorithm decisions are based only on
microscopic local information (i.e. the neighborhood of the current configuration, and/or
a short history), without any macroscopic global vision. Consequently, local search al-
gorithms might not properly cover the search space, i.e. they can often visit the same
regions over and over again, or they can simply get blocked in local optima. We show how
to overcome this problem by integrating learned information in the exploration process.
As such, the resulting local search algorithms from this chapter can effectively compete
with more complex, more refined algorithms.

Let us now present the general ideas of the two algorithms. A central notion in both
of them is the search space sphere: the set of configurations situated within a certain
distance from a center configuration.

The first algorithm (TS-Div) is built on top of an underlying Tabu Search (TS), but
also uses a learning component to interpret the exploration trace and to guide the TS
process. This learning component keeps track of all visited configurations by recording all
visited spheres (Section 4.2). To record a sphere, it is enough to record its center, and,
even if the total size of the search space is huge, the number of spheres can be manageable.
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This way, we experimentally proved that it is possible to record the exploration path by
recoding a limited number of centers (see also Figure 1.1, p. 11). In order to guide the
underlying search process toward as–yet–unexplored spheres, the learning component pays
attention to keeping it at a certain distance from recorded spheres centers.

TS-Int (Section 4.3) is oriented to intensification. Given an input high quality config-
uration (provided by TS-Div, or by another algorithm), TS-Int performs in-depth explo-
rations in a close perimeter around the input configuration. First, the sphere of the this
configuration passes through a phase of “meticulous” investigation that launches numer-
ous TS processes allowed to run inside this sphere. Each TS process might arrive at a
sphere “exit point” that is recorded by TS-Int; new TS processes are launched until it is
no longer possible to find distanced “exit points”—when we are sure of this, the sphere is
considered “clear” (of global optima). Then, the sphere investigation is repeated with the
spheres of the “exit points”, i.e. each recorded “exit point” becomes the center of a new
sphere to be checked later. Each newly-discovered sphere center is recorded in a ordered
queue, and so, the centers are investigated in the order of their quality.

All experiments performed in this chapter use an underlying search process based on
a version of the coloring Tabu Search algorithm from Section 2.2. While problem-specific
knowledge can be essential for reaching good practical results, the main ideas of TS-Div
and TS-Int relate only to the metaheuristic local search process. For a greater readability,
let us present in Algorithm 4.1 the Tabu Search metaheuristic [Glover and Laguna, 1997];
the stopping condition is to solve the problem or to reach another stopping condition.

Algorithm 4.1: The basic Tabu Search (TS) metaheuristic
Input: Problem instance, (optional) the start configuration Cst

Return value: f(C∗) (i.e. 0 if a solution is found)
C: the current configuration; C∗: the best configuration ever found
Begin

1. C:=Cst (choose C = random configuration if Cst is not specified.)

2. while a stopping condition is not met

(a) find the best C′ ∈ N(C) so that move C → C′ is not Tabu

(b) C = C′ (i.e. perform the chosen move)
(c) if (f(C) < f(C∗))

• C∗ = C
(d) mark C Tabu for T` iterations

End

The most important details that need to be filled to solve an optimization problem
with TS are the following: the objective function f , the neighborhood relation N and the
Tabu list length. Regarding the coloring problem, these elements were already defined in
Section 2.2 (see also Algorithm 2.1); we will employ the same algorithm used for the car-
tography in Chapter 3—i.e. the basic coloring Tabu Search from Section 2.2 with reactive
Tabu list but without aspiration criterion. TS-Div and TS-Int use only one piece of addi-
tional problem-specific information: the sphere radius is set to R = 10%|V |, following the
clustering hypothesis from Chapter 3. In fact, this hypothesis is validated by the guided
algorithms, as well as by the evolutionary algorithm in Section 5.5.4.
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The interaction points between the guided (meta-)algorithms and Algorithm 4.1 are
the following. The start configuration Cst mentioned in the input field of TS is used by
TS-Int, i.e. TS-Int launches TS from a sphere center Cst and it stops the process when
the distance from C to Cst is too large (reaching a “sphere exit point” becomes a stopping
condition). TS-Div records certain configurations (sphere centers) visited by TS and it
makes only one external modification on the skeleton from Algorithm 4.1: the Tabu list
length can be artificially increased to force the search process leave the current sphere (the
TS specification is reproduced inside Algorithm 4.2).

The remaining of the chapter is organized as follows. In Section 4.2 and Section 4.3,
we present these two guided algorithms: TS-Div (assuring diversification) and, TS-Int
(assuring intensification). Numerical results and discussions are presented in Section 4.4,
followed by conclusions in the last section.

4.2 TS-Div—A position guided search to seek unexplored
regions

The classical TS is useful to avoid re-visiting configurations visited in the near past (a very
limited number), but it seems more difficult to generalize it to avoid all configurations
visited in a distant past. This way, some potential solutions visited in the beginning of the
execution can be revisited over and over again after some periods of time. There might
be a limited number of local optima, with large bassins of attraction, that monopolize the
execution time of a local search. While there are also many other well-studied methods to
help a local search to escape a single basin of attraction, it seems more difficult to prevent
it from looping between a limited number of basins of attraction. This is one of the main
reasons for which, after a certain threshold, an increase of the execution time might not
always improve the performance.

The TS-Div algorithm integrates a learning process for avoiding looping between
already-visited regions. TS-Div employs an extended Tabu list length if it detects that it
comes upon configurations that are too close, according to the distance function, to other
previously-visited configurations, i.e. while it passes through an already-explored sphere.
This strategy prevents the algorithm from revisiting such regions by the reinforced diver-
sification phase associated with the extended Tabu list.

Figure 4.1 sketches the ideas behind TS-Div. While it is not possible to record the
whole exploration path of a local search, one can record the spheres it visits. Indeed, the
centers of all visited spheres are far less numerous, and so, they can be recorded by a
learning component; this way, TS-Div can “realize” when the search process comes upon
an already-visited sphere. In this situation, the Tabu list is increased so as to trigger
diversification, i.e. to impeach the search process from revisiting the same sphere again.
The difficulty comes from the fact that certain spheres contain some local optima that
strongly attract any local search process passing nearby—the generic Tabu search from
Algorithm 4.1 is always attracted to such points.

Generally speaking, one can see the recorded spheres as Tabu spheres, or at least, as
“unrecommended spheres” that the search process is “discouraged” to visit. While the
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Figure 4.1: A schematic example of a TS-Div process exploring the search space. The
curved continuous line represents the exploration path; to arrows indicate the entry and
the exit point. The center of the thick sphere is contained in an already-visited sphere
and TS-Div “realizes” that it needs diversification; in this sphere, a longer Tabu list is
employed an so, the search is forced to diversify more, i.e. to find other spheres.

basic Tabu search can completely forbid certain configurations, it can do this only for a
short time—i.e. it is not intended for imposing long-term Tabu statuses on configurations.
This can be only achieved by performing the same operations at a higher level, i.e. by
recording and forbidding spheres instead of configurations. In some sense, one can say
TS-Div is no more no less than a Higher Level Tabu Search.

4.2.1 Formal TS-Div description

The TS-Div algorithm (see Algorithm 4.2) is based on two central processes: (i) the
exploring process, using the TS procedure from Algorithm 4.1 (reproduced in Algorithm
4.2), (ii) the reactive learning process guiding the first one, Steps 4.(b)− (d) in Algorithm
4.2. The main tools of the learning process are the sphere, and the distance measure,
defined as follows.

For the coloring problem, we use the partition distance from Section 4.2.2 below. Its
calculation method is described in greater detail in Chapter 6, but for the moment it is
enough to say that d(Ca, Cb) represents a measure of type “shortest chain of neighborhood
transitions” between Ca to Cb. It in accordance with the minimum number n for which
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there exist C0, C1, . . . Cn ∈ Ω such that: C0 = Ca, Cn = Cb and Ci+1 ∈ N(Ci) for all
i ∈ [0 . . . n − 1]. Distances of type “shortest chain of neighborhood transitions” can be
found for other problems as well—see Section 4.5. Given such a distance, the search space
R-sphere of C is defined as the closed sphere of radius R centered at C:

Definition 4.1. (Sphere) Given a (center) configuration C ∈ Ω and a radius R ∈ IN , the
R-sphere S(C) is the set of configurations C ′ ∈ Ω such that d(C,C ′) ≤ R.

Since we assume the clustering hypothesis (Section 3.3), we deal only with R-spheres
of radius R = 1

10 |V | in the rest of the chapter. In fact, the term “sphere” and “R-sphere”
are used interchangeably. Two configurations Ca and Cb satisfying d(Ca, Cb) ≤ R = 1

10 |V |
are called close or related ; otherwise they are R-distinct or R-distanced. If d(Ca, Cb) >

|V |
2 ,

we say that Ca and Cb are completely different.
Taking as a basis the basic TS from 4.1, TS-Div performs the same operations but,

in addition, it investigates the TS exploration path by recording the centers of all visited
spheres. At a given iteration, we denote by Cp the last recorded sphere center and by
C the current configuration. The first task of the learning component is to check the
distance d(C,Cp) to see whether C is still in the sphere S(Cp) of Cp—see step 4.(b) in
Algorithm 4.2. While C ∈ S(Cp), the search process is still in the sphere of Cp and the
algorithm iterates essentially as the basic TS does. We say that the search process is
pivoting/revolving around pivot Cp.

As soon as the search process leaves the current sphere (i.e. C /∈ S(Cp)), the learning
component concentrates on guiding decisions. It first compares C to the archive of all
previously recorded configurations (procedure Already-Visited in Algorithm 4.2) to
check whether it is entering in a previously-explored sphere or not. If C is not in the sphere
of any recorded configuration, the learning component replaces Cp with C and records it in
the archive, but the search process continues normally. Otherwise, if the search process is
re-entering the sphere of a previously recorded configuration, the learning process intervene
in the search process: a diversification phase is needed. For this purpose, we extend the
default Tabu tenure T` with a Tincr factor, as explained in the next section.

Diversification using the Tabu tenure The Tabu list length (or Tabu tenure) pro-
vides a simple mechanism for controlling diversification and it has already been used in
the literature—see also Section 2.4. Recall that the major effect of the Tabu list is that
the algorithm can chose moves only among those that are not Tabu,i.e. the moves not
performed during the last T` +Tincr iterations. As such, a longer Tabu list results in more
diverse moves as the last T`+Tincr moves can not be repeated. For example, the algorithm
cannot repeat the same series of moves unless the length of this series is greater than the
Tabu tenure T` + Tincr; any looping has at least T` + Tincr configurations. On the other
hand, a shorter Tabu list is equivalent to stronger intensification; the algorithm returns
much more easily to previously explored configurations re-performing moves completed in
the near past.

To summarize, by varying the Tabu tenure (via Tincr), one controls the balance between
diversification and intensification: the greater the Tincr value, the more diversification there
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Algorithm 4.2: The TS-Div (meta) heuristic
PROCEDURE ALREADY-VISITED
Input: current configuration C
Return value: TRUE or FALSE

1. Forall recorded configurations Crec:

• If d(C,Crec) ≤ R
– Return TRUE

2. Return FALSE

ALGORITHM TS-Div
Input: the search space Ω
Return value: the best configuration Cbest ever visited
C: the current configuration

1. Choose randomly an initial configuration C ∈ Ω

2. Cp = C (the pivot, i.e. the last recorded sphere center)

3. Tincr = 0 (the ‘‘Tabu tenure’’ increase triggered by TS-Div)

4. While a stopping condition is not met

(a) Set (next) C = the best non-Tabu neighbor in N(C)

(b) If d(C,Cp) > R

• Cp = C

• If ALREADY-VISITED(Cp)
– Then Increment Tincr

• Else
– Tincr = 0
– Record Cp

(c) Mark C as Tabu for T` + Tincr iterations
/*T` =The internal default Tabu tenure from Alg. 4.1*/

(d) If (f(C) < f(Cp))

• Replace Cp with C in the archive
• Cp = C (i.e. ‘‘recentering’’ the current sphere)

(e) If (f(C) < f(Cbest))

• Cbest = C

5. return Cbest

is. A suitable control of Tincr guarantees that TS-Div keeps discovering new regions at all
times; in fact, it can even guarantee that the process can never get stuck looping through
already-visited spheres. The longer the time TS-Div spends only running into previously-
visited spheres, the more it increments Tincr—and Tincr is only decremented (to 0) when
the search process finds a new sphere. As such, the Tabu list is increased indefinitely
until a sufficiently high value of Tl + Tincr is guaranteed to break any looping between
already-visited spheres (sooner or later). As such, TS-Div can discover new regions at all
stages of the exploration, even in the very long run.

Note that there might be numerous artificial possibilities to create diversity when the
algorithm realizes it is revisiting a sphere. For example, one could simply apply a random
walk, or a perturbation commonly used in iterated local search algorithms. However, by
applying artificial diversification operators, we consider the search process would risk to
quickly reconstruct a configuration close to the avoided one.
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4.2.2 TS-Div speed

The only problematic aspect of TS-Div concerns the slowdown introduced by the learning
component that needs to compute numerous distances. Our objective is to keep the time
spent by the learning component in the same order of magnitude as the time spent by
the exploring component. To assure such a reasonable overhead, we focus on two crucial
factors: the distance computation time and the number of distance calculations. If any
of these two elements is not kept within reasonable limits, the speed of TS-Div can be
compromised

4.2.2.1 Distance formal definition and fast calculation procedure

Using the partition representation (see Definition 1.2, page 15), the distance between
coloring Ca and Cb is the minimal number of vertices that need to be transferred from
one class to another in Ca so that the resulting partition is equal to Cb (equivalent to
the minimal number of moves needed by TS to arrive from Ca to Cb). There exists a
well-studied distance computation method using an O(|V | + k3) Hungarian algorithm—
see [Gusfield, 2002] for a general set-theoretic approach or [Glass and Pruegel-Bennett,
2005] for the graph coloring application. However, in certain conditions (see Chapter 6),
the distance can be determined in O(|V |) time with a special method.

Basically, the distance is calculated with the formula d(Ca, Cb) = |V |−s(Ca, Cb), where
s is a measure of similarity defined as follows. Using the definitions from Section 1.2.2,
s(Ca, Cb) is maxσ∈Π

∑
1≤i≤kMi,σ(i), where Π is the set of all bijections from {1, 2, . . . k}

to {1, 2, . . . k} and M is a matrix with elements Mij = |Cia ∩ C
j
b | [Gusfield, 2002; Glass

and Pruegel-Bennett, 2005]. This similarity can be calculated by solving an assignment
problem with the Hungarian algorithm. However, we applied the complete Hungarian
algorithm only very rarely (less than 5% of all cases) because the calculation can be
simplified by taking into account some problem particularities. Matrix M has at most |V |
non-zero elements and, as also stated in [Gusfield, 2002, §2], they can be filled in O(|V |)
with the appropriate data structure. Indeed, the non-zero elements of M are situated at
positions MCa(x),Cb(x) (with x ∈ V ) and our algorithm works only with these elements.

Importanly, TS–Div does not require a precise distance value but we only have to
decide if d(Ca, Cb) > R—i.e. s(Ca, Cb) < |V | − R. Since s(Ca, Cb) is always less than
s′(Ca, Cb) =

∑
1≤i≤k maxjMij (because Mi,σ(i) ≤ maxjMij , ∀σ ∈ Π), in many cases it

was enough to check s′(Ca, Cb) < |V | − R to decide s(Ca, Cb) < |V | − R. All maximums
maxjMij can be identified by going through the non-zero elements of M , and so, s′(Ca, Cb)
can be computed in O(|V |). More conditions in which the problem can be solved in O(|V |)
are available in Chapter 6.

As such, a distance computation requires (in average) approximately the same compu-
tation time as a TS iteration. The next section describes a method to keep the number of
iterations and the number of distance computations in the same order of magnitude during
long TS-Div executions. Thus, our distance computation procedure guarantees that the
slowdown introduced by the learning component stays in acceptable limits.
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4.2.2.2 Number of distance calculations

In terms of distance computations, the time needed to go through the archive (routine
Already-Visited, Algorithm 4.2) is the most critical—at each call, TS-Div needs to
check the distance from the current coloring to all colorings from the archive (see the
Forall Loop in Step 1 of the Already-Visited procedure). Our objective is to keep
the execution time of the learning component in the same order of magnitude as the
exploring component. If the archive size exceeds a certain limit, the number of distance
computations becomes too large, compromising the speed. However, the processing of
the archive can become tractable if we focus the learning component on the high quality
configurations, i.e. to allow the above routine to process only high-quality configurations,
from the “deep” layers of the search space.

Following the analogy with the quest for the deepest location on the surface of the
Earth (i.e. Mariana’s Trench), one can also stratify our search space in deeper or upper
layers—see [Du and Pardalos, 2007, p. 426] for more discussions on the multi-level search
space model. In the upper layers, the danger of looping is smaller and the probability of
finding a solution is very limited (the number of local optima itself is limited). As such,
we can let the learning process concentrate only on the deeper search space layers without
assuming too many risks. The only detail that needs to be filled is a formal threshold that
defines our boundary between the deep search space and the upper search space, between
high-quality and low-quality configurations. Recall (Definition 3.1, p. 45) that we say
configuration C ∈ Ω is high-quality if and only if f(C) ≤ Bf—Bf is the “formal” fitness
boundary.

The fitness boundary Bf is automatically lowered and raised by TS-Div according to
the balance between the number of computed distances and the number of iterations, so
as to assure that the number of iterations stay in the same order of magnitude with the
number of distance computations. This proved to be a good “thumb rule” for keeping the
slowdown in acceptable limits. To be specific, Bf directly controls the learning overhead
because the whole learning component (Step 4.(b)) is now executed only if f(C) < Bf .
In practice, Bf varies from 5 conflicts to 20 conflicts; for some problems, even imposing
Bf =∞ could still result in an acceptable running speed.

Regarding the distance calculation from Step 4.(b), computing one distance per iter-
ation does not pose too many problems—due to the small bound of the distance compu-
tation time. Furthermore, the distance computation from this step is not always needed:
if d(Cp, C) < R, then TS-Div needs at least R − d(Cp, C) moves to get out of the sphere
of Cp. As such, after each distance calculation in this step, TS-Div can safely skip it for
the next R − d(Cp, C) iterations; we experimentally observed that more than 90% of the
distance computations (from this step) can be skipped in this manner.

Furthermore, a number of simple optimizations details can significantly reduce the
number of distance calculations along the search. Although we did not use this for graph
coloring, one could also resort to increasing the radius R to reduce the archive size and the
computational overhead. Another simple mechanism consists of transforming the archive
into a queue that removes the oldest element at each insert operation. In this case, TS-
Div becomes a memory-based Higher Level Tabu Search with two lists: (1) the traditional
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list of the last visited configurations that are forbidden, (2) the tabu list of spheres, used
to avoid revisiting spheres visited in the recent past. The significance of the expression
“recent past” would depend on the size of the queue which should be tailored according
to the learning component overhead.

Experimental investigation on the number of computed distances This section
only reinforces the fact that the number of distance calculation should stay in the same
order of magnitude with the number of iterations. Since one cannot mathematically de-
termine the exact number of distance computations of TS-Div (it depends on the search
evolution), we studied it by performing an experimental statistical analysis on a classical
DIMACS instance (G=dsjc250.5, k = 27). We run 10 TS-Div executions of 16 billion
iterations an we investigate the memory and time required by any feasible value of Bf—in
this experiment Bf is fixed.

Bf (constant) 0(equiv. TS) 5 6 7 8 9
Avg. nr. dist. calculations (×106) − 1.5 31.7 877.7 13743 128932
Avg. time (hours:min) 120:56 120:51 120:37 122:32 149:17 312:43
Avg. nr. configurations in archive − 523.8 6244.6 37810 154462 602523
Avg. memory (MegaBytes) − 0.523 6.2 37 154 6025

Table 4.1: The resources consumed by the basic Tabu Search (column 2) and by TS-Div for
several fixed values of Bf (G = dsjc250.5 and k = 27). All reported figures are averaged
over 10 executions of 16× 109 iterations each.

In table 4.1 we present (Row 2) the experimental count of all distance calculations and
the number of hours spent in average on each execution (Row 3). The TS column shows
that the basic TS would need about 120 hours to finish 16× 109 iterations. If Bf ≤ 6, the
learning component overhead is negligible because the number of distance computations
is very small (comparing to the number of iterations 16 billion). For Bf ∈ {7, 8}, the
overhead is still acceptable (i.e. less than a quarter of the basic TS time) but it becomes
too large for Bf = 9, as soon as the number of distance computations becomes too large
comparing to the number of iterations (128 billion >> 16 billion). The memory required
(Row 5) by the archive is proportional with the archive size (Row 4) because recording a
configuration requires |V | × 4 ' 1000 bytes1, equivalent to approximately 1 kB.

4.3 TS-Int—A tree-traversal search of the problem space

A typical issue of classical local search algorithms can be described as follows: the search
process arrives in a local minimum situated in the sphere of a solution, and it needs to
choose the next moves. In the fortunate case, the search process chooses moves on the
direction of the solution and, thus, the solution is soon discovered. But, there might exist

1Modern machines use 64-bit integers so an integer is stored in 4 bytes, but one can also use special
16-bit or 8-bit integers to save more memory.
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Algorithm 4.3: Pseudocode TS-Int
Input: the starting configuration Cs
Return value: the best configuration ever visited
Q = {Cs}
While Q is not empty

1. Cs =FRONT(Q)

2. Launch a TS process (Alg. 4.1) from Cs

For each TS iteration, let C be the current configuration and Do

(a) If d(C,Cs) > 2R then STOP TS and go to 3
(b) If d(C,Cs) > R and C is high-quality then STOP TS and:

i. If d(C,Ci) > R forall Ci ∈ Q
• PUSH(C,Q)

3. If R-sphere S(Cs) is ‘‘clear’’

(a) POP(Q)

millions of possible moves to escape from the local minimum; most of them might lead
to different directions and the algorithm makes no distinction between them. Moreover,
especially for TS-Div, if it chooses a move on a different direction and gets out of the
sphere, it may never return again to it. To cope with this issue, TS–Int is introduced to
methodically explore a limited perimeter, in the proximity of a given starting coloring Cs.

This limited perimeter is implicitely structured in spheres and TS-Int (see Algorithm
4.3) executes a number of sphere investigation stages (see Step 2). At each stage, a R-
sphere S(Cs) is investigated by launching (from center Cs) numerous TS processes that
explore only the proximity of Cs. Each such TS process is stopped when it reaches a
high-quality configuration C outside S(Cs), an “exit point”. If C verifies certain condi-
tions (detailed below), it is recorded in a queue Q representing centers of spheres to be
investigated later. After finishing a sphere investigation stage (TS-Int launched enough
TS processes to consider the sphere is “clear”), TS-Int takes the next sphere center from
Q (Step 1) and repeats the same sphere investigation stage from it (the old sphere center
is removed from Q, see Step 3.(a)). Notice Q is sorted according to the objective function
value so as to traverse the most promising spheres first.

A sphere investigation stage is finished only when S(Cs) can be considered “clear”—
there is no global minimum in S(Cs) (that can be reached with TS). We explain next how
TS-Int decides whether a sphere is “clear” or not. Recall that a TS process is stopped if
it finds a configuration C /∈ S(Cs) that is also high-quality (i.e. f(C) < Bf as for TS-Div,
see last paragraph below). Configuration C is inserted into Q only if Q does not already
contain a sphere covering C (see step 1.(b).i in Algorithm 4.3). In this case, we say that the
TS process was successful ; otherwise, it was unsuccessful—it did not find new promising
spheres. Notice we do not stop the TS process as soon as it exits S(Cs) because a search
process can enter into and exit from a sphere several times before going away definitively
from it. However, if the search process arrives too far from the center without finding any
high quality solution (i.e. if d(C,Cs) > 2R, see Step 2.(a)), then search process is stopped
and it is also labeled unsuccessful.

The conditions to declare S(Cs) as “clear” need to ensure that TS-Int keeps launching
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new TS processes from Cs as long as there are chances to discover new high-quality R-
distanced exit points. We employ a condition that stipulate that TS-Int launches a first
series of at least Y (usually Y = 15) executions from Cs and, in addition, it launches a
number of X (we use X = 10) executions for every single successful execution (i.e. for each
new insertion in Q). In this manner, a sphere investigation stage is finished only if the
number of “unsuccessful” executions is at least X = 10 times higher than the number of
successful executions—enough to consider the sphere has been explored from all “angles”.

4.3.1 MDS representation of the TS-Int traversal

?R=10%|V|
~

Solution to Reach

Input Starting 
Configuration

Figure 4.2: MDS representation of a TS-Int evolution for (le450.25,25). All points repre-
sent R-distanced 1-conflict colorings. They were discovered in the order of their numbers: 1
is the starting point, configurations 2, 3, . . . , 7 are discovered by the TS processes launched
from point 1, etc. The distorsion level is acceptable (i.e. sfit = 0.05).

We can say that TS–Int organizes the search space in spheres that are processed in a
methodical tree-traversal manner—similar to a greedy breath-first-search or A*. The input
start configuration is the root of the tree. Given any configuration Cs, an edge is added
to link it to all new sphere centers discovered by TS processes started from Cs—recall
that all sphere centers in Q are pairwise R-distanced. Similarly, each newly discovered
sphere center C constitutes a new tree vertex linked to the configuration from which C was
reached. The degree of Cs corresponds to the number of pairwise R-distanced new sphere
centers reached from Cs. Basically, TS-Int launches TS processes from Cs as long as there
are chances to discover new configurations, R-distanced from all other configurations in
Q.

For illustration, Figure 4.2 plots a simplified TS-execution. Here, the solution, situated

60



4.4 Results and discussions

at distance 23%|V | from the root vertex 1 (i.e. the input start configuration), is reached
after an exploration of depth 3 (i.e. the tree on Figure 4.2 expanded on three levels). From
experiments, the average degree of this exploration tree for this instance is actually 20.
Consequently, the solution can be obtained by TS-Int after visiting at most 203 = 8000
vertices. Indeed, we experimentally remarked that TS-Int always finds the solution in 10
runs out of 10 if it starts from a point within a distance of 1

4 |V | from the solution (see
more discussions in Section 4.4.3).

The algorithm proposed in this section (TS-Int) can be started from a single input
coloring Cs but also from an archive of completely different configurations (i.e. d(Ci, Cj) >
50%|V | for all Ci and Cj in the archive). In fact, we can take the archive recorded by
TS-Div, keep only a set of best, completely-different colorings and construct a queue for
TS-Int. TS-Int is capable of searching in the proximity of the most promising points
discovered by a different algorithm. Notice that TS-Int also uses the parameter Bf to
make the distinction between high-quality and low-quality configurations. We took the
value provided at the end of TS-Div, but, however it can also be automatically set (like
TS-Div in Section 4.2.2.2), according to the number of distance calculations performed by
TS-Int.

4.4 Results and discussions

In this section, we present detailed empirical results of the position-guided algorithms.
While TS-Div is a classical “stand-alone” algorithm, TS-Int works in a post-optimization
phase: it can be used to improve a certain input configuration (in our experiments, pro-
vided by TS-Div). All experimental tests are carried out on difficult problems from the
well-established DIMACS Challenge Benchmark, See Section 1.2.3 (p. 16). We also dis-
cuss the influence of the graph structure on the landscape surface (associated with our
neighborhood), as this can explain the behavior of other algorithms, too.

4.4.1 Experimental protocol

First, we need to point out that a TS-Div execution can be roughly equivalent to TS in the
first iterations, while the archive is almost empty. The learning component intervenes in
the exploration process only after a number of iterations, as soon as the exploration process
starts to re-explore already-visited spheres. If the basic TS quickly solves a problem, TS-
Div does not solve it more rapidly. The objective of TS-Div is visible in the long run, i.e.
it only helps TS on the difficult instances where the basic TS fails.

To effectively test TS-Div, we perform 10 independent executions, each with a time
limit of 50 hours. Within this time limit, TS-Div re-initializes its search with a random
k-coloring each time it reaches 40 million iterations. Those restarts of TS-Div share the
same archive of spheres. The statistics of the results are based on these 10 independent
executions. Similarly, TS-Int is tested in the same experimental conditions, i.e. using 10
independent executions, each with a time limit of 50 hours. In Section 4.4.5, we will give
some comments on the issue of running time with respect to the common practice of the
literature.
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Instance TS-Div Algorithm
Graph χ, k∗ k successes

executions Iterations [×106] Time [hours]
dscj250.5 ?,28 28 10/10 4 < 1
dsjc500.1 ?,12 12 10/10 42 < 1
dsjc500.5 ?,48 48 2/10 7409 35
dsjc500.9 ?,126 126 10/10 473 2
dsjc1000.1 ?,20 20 2/10 2200 9
dsjc1000.5 ?,83 87 5/10 2464 28
dsjc1000.9 ?,224 224 8/10 1630 24
flat300 28 0 28,28 29 7/10 1186 8
flat1000 76 0 76,82 86 3/10 3020 33
le450 25c 25,25 25 4/10 765 11
le450 25d 25,25 25 2/10 1180 19
r1000.1c ?,98 98 10/10 47 < 1

Table 4.2: The results of TS-Div for a time limit of 50 hours. Columns 1, 2 and 3 denote
the instance, the success rate (Column 4) is the number of successful executions out of
10; Column 5 and 6 show the average number of iterations and the average time needed
to find a solution.

Regarding TS-Int, recall that it requires an input configuration Cs from which TS-Int
starts searching for a solution (only a limited perimeter around Cs is explored). As such,
the successfulness of TS-Int depends entirely on the distance from Cs to the solution.
Typically, we first carry out a TS-Div execution, we collect the best colorings ever visited
and provide them to TS-Int. These colorings are filtered so as to keep only completely
different colorings as starting points for TS-Int; we finally present the results on the best
input colorings.

4.4.2 Standard results of TS-Div and TS-Int

Table 4.2 reports the detailed results of TS-Div for several difficult instances (G, k)—
especially those not easily solved by the basic TS. Columns 1–3 describe the instance, i.e.
Column 1 is the graph, Column 2 shows χ (the chromatic number, or “?” if unknown)
and k∗ (the best known k when our article was accepted in 2009); Column 3 denotes the
k for which we apply our algorithm. Columns 4–6 present the results of the algorithm,
i.e. the success rate (the number of executions that solve the problem in 50 hours or less)
in Column 4, the average number of iterations and the average time required to find a
solution in Column 5 and 6, respectively. TS-Div improves the basic TS on most difficult
instances because TS-Div never stops from exploring new regions—see also Section 2.5.4
for the performance of a very similar TS algorithm (f -RCTS uses an additional aspiration
criterion but there are no major differences).

Table 4.3 presents the results of TS-Int on several instances for which TS-Div provides a
starting configuration whose proximity is explored. Columns 1–3 have the same meaning
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as for Table 4.2, Column 4 shows the amplitude of the improvement (the number of
conflicts of the start and the end configuration reported by TS-Int), Column 5 presents
the success rate of achieving this improvement and Columns 6 and 7 denote the average
computing effort (in iterations and in CPU hours, respectively).

Instance Improvement Success rate Iterations [×106] Time [hours]
G χ, k∗ k fstart −→ fend

successes
runs

dsjc1000.1 ?, 20 20 1→ 0 10/10 3774 12
dsjc1000.5 ?, 83 86 2→ 0 10/10 623 19

85 80∗(k+1) → 0 2/10 1453 39
dsjc1000.9 ?, 223 223 1→ 0 10/10 23 4
le450.25c 25, 25 25 1→ 0 10/10 3410 10
le450.25d 25, 25 25 1→ 0 10/10 6466 25
flat300.28 28, 28 28 150∗(k+2) → 0 10/10 < 1 < 1
flat1000.76 76, 83 85 74∗(k+1) → 0 10/10 1655 36

Table 4.3: Instances for which colorings are improved by TS-Int using a time limit of 50
hours. The input colorings are typically provided by TS-Div; however, the cells marked
∗ indicate that TS-Int finds a legal k-coloring only starting from a legal (k + 1) or (k +
2)−coloring.

TS-Int can reach a solution with 100% success rate (see Column 5 of Table 4.3) when it
starts from an appropriate coloring (i.e. not too far from a solution, see also Section 4.4.3).
Remarkably, it finds for the first time a legal coloring with 223 colors for the large graph
dsjc1000.9. While TS-Div assures diversification, TS-Int is an intensification algorithm
that can be systematically executed after TS-Div in order to (try to) improve its best
colorings.

It is important to note that certain input start configurations provided to TS–Int
(in Table 4.3) are easily accesible—i.e. except for dsjc1000.5, dsjc1000.9 and the rows
marked ∗, all input configurations have been collected over a single TS–Div execution.
For example, we solved (dsjc1000.1, k = 20) for the first time with TS-Int, not with TS-
Div. The first TS-Div execution did not reach a solution but it found three completely
different 1-conflict colorings; one of them leads TS–Int to the solution with 100% success
rate. Similar conclusions can be drawn for the Leighton graphs in which we only applied
TS–Int on the first 1–conflict configuration ever found by TS–Div.

4.4.3 TS-Int—finding the global optimum from an approximate location

TS-Int can be quite useful even in combination with other algorithms, especially when
one could provide (by any means) an approximate location of the solution. In our main
experimentation protocol, we consider that the configurations with lower conflict numbers
have more chances to be close to a solution; thus, TS-Int always processes the spheres in the
order of their conflict number. However, another possible “guess” of the solution location
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is obtained by considering that a legal k-coloring might be close to a legal (k+ 1)-coloring
or even to a (k + 2)-coloring.

This assumption worked perfectly well for the flat300.28 graph for which TS-Int finds
a legal coloring with χ = 28 colors starting from a legal coloring with χ + 2 colors (the
colors greater than χ are replaced with color 1). The graphs in this family are generated by
adding edges only between the χ independent sets of an initial χ−partition of V [Culberson
and Luo, 1996]. A large proportion of the 30 classes of the legal 30-coloring are very close
to some of the initial 28 independent sets, and so, TS-Int can easily reconstruct the rest
of the coloring; the distance between the legal 30-coloring and the legal 28-coloring is only
7%|V |.

We experimentally observed that, if we provide a starting point within 1
4 |V | distance

(guess precision) from a solution, TS-Int finds the solution with a 100% success rate. These
facts were observed on several graphs and for different initial colorings within 1

4 |V | distance
from a known solution (considering a time limit of 50 hours). Searching a solution within
1
4 |V | = 25%|V | distance (around the start configuration) typically requires a complete
exploration of a tree on 3 levels because each edge corresponds to a distance of 10%|V | in
the search space—see also Figure 4.2 (p. 60). The number of levels that can be processed
in a certain time limit depends on the exploration speed and on the average tree degree.
Since TS-Int is also highly amenable to parallelization (at essentially 100% efficiency), one
could speed up the algorithm by an order of magnitude by launching all processes from
Cs in parallel. The required 1

4 |V | precision of the solution location could thus be extended
to 40%|V | and even |V |2 if sufficient computation time is allowed.

4.4.4 The influence of the graph structure on the landscape

We observed that, even if legal colorings are always very few and rare (for a difficult
instance), the number of 1-conflict colorings (reached by our algorithms) can vary greatly.
In the random graph case, before discovering a legal coloring, TS-Div usually visits between
3 and 20 colorings with one conflict. For the flat300.28 flat graph, TS-Div always directly
descends to the legal 30-coloring from colorings with 4−−5 conflicts; as such, it can discover
a solution even without visiting any 1-conflict coloring at all. At the other extreme, for the
Leighton graphs, our algorithms can find thousands of 1-conflict colorings before finding a
0-conflict coloring (this is why it seems easier to solve le450.25c by first finding a 1-conflict
coloring with TS-Div and by applying TS-Int on it).

4.4.4.1 The coloring landscape for Leighton graphs

The explanation of these important contrasts lays in the structure of the graph: this
structure defines the constraints between variables, and, implicitelly, the fitness land-
scape (as defined by our neighborhood). The Leighton graphs have a built-in 25-vertex
clique [Leighton, 1979], and numerous 1-conflict colorings can share a common difficult
conflict on this clique and be very different outside it. They form very large plateaus
in which it is difficult to find the coloring that correctly colors the 25 vertices of the
clique. This complements the information from the search space analysis in Chapter 3:
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the distances between the clusters of the 1-conflict colorings (sequentially visited by TS on
Leighton graphs, see the bottom right graph in Figure 3.3, p. 47) are significantly smaller
than for a random graph.

4.4.4.2 The coloring landscape for flat graphs

The flat graphs are very different: they are constructed from a χ-partition of V such that
a legal coloring has to assign a different color to each set from this initial partition. Any
1-conflict coloring has already identified most of these sets, and so, thet ransition to the
solution is trivial. Indeed, the descent to the solution has always been very steep with
any algorithm using our basic neighborhood (i.e. based on color changes, see Section 2.2).
In fact, our algorithms can arrive at the solution even without ever visiting any 1-conflict
coloring at all. We can say that the fitness landscape surface contains a unique almost
vertical deep “well” (or hole) with the solution at its bottom. All intermediate quality
colorings are situated in this “well”; we can say that a fitness-distance correlation is high.

This peculiar landscape structure can explain the behavior of several other algorithms
on an instance like (flat300.28, k = 28). TS-Int is able to locate the “well” simply by using
a legal 30-coloring as the starting point—this legal coloring implicitly identified many of
the 28 initial independent sets. It is surely located in the proximity of the “well” and
TS-Int can not miss the solution because this proximity is explored almost systematically.
PartialCol [Blöchliger and Zufferey, 2008] can very easily find solutions with k = 28 colors
simply because it uses a partition-based representation and neighborhood. VSS [Hertz et
al., 2008] can solve the instance with k = 28 because one of its search spaces is partition-
based.

On the other side, even the best hybrid evolutionary algorithms fail on (flat300.28,
k = 28) because they do not use a partition-based local search operator. Taking an
easier instance (flat300.28, k = 29), we also observed that Evo–Div (the algorithm from
Chapter 5) never finishes by reporting intermediate-value colorings, i.e. either it finds
the solution, or it reports a best coloring with numerous (even more than 10) conflicts.
Genetic algorithms perform much better on random graphs as they can combine color
classes from completely different 1-conflict configurations to reach many new different good
configurations (in other different areas). Regarding the flat1000.76 graph, all existing
algorithms are very far from a χ = 76 colors solution, and so, they rather behave like
on random graphs (we observed that the solutions we have found with Evo–Div are very
different—unlike those of flat300.28).

4.4.5 Running time of TS-Div and TS-Int

In our experimentations, TS-Div and TS-Int were allowed to run 50 hours per execution
for a given coloring instance. We see that within this maximum time, TS-Div and TS-Int
are able to reach very competitive results for the set of difficult graphs. Moreover, not all
solutions required the maximum 50 hours computation time.

Let us mention that in the literature on graph coloring, it is a common practice to run
a coloring algorithm several hours to several days to (try to) solve a hard coloring instance.
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For example, some of the most recent coloring algorithms [Blöchliger and Zufferey, 2008;
Hertz et al., 2008] use running times of 10 hours for the largest instances. Now if we
compare the number of iterations, the values required by TS-Div are even more comparable
with respect to other local search algorithms. Indeed, the maximum iterations of TS-Div
are in the order of billions (between 109 and 8 × 109) while the best local searches in
the literature report the same order of magnitude (e.g. 2× 109 iterations [Blöchliger and
Zufferey, 2008, Table 6] or 3× 109 [Hertz et al., 2008, Table 5]).

Now let us insist on a more important point of TS-Div concerning the running time.
One understands that, by its very nature, TS-Div will continually find new regions if it is
given more computation time—it makes no important redundant exploration in the long
run. Consequently, TS-Div will be able to find new or better solutions with the additional
computation resources.

Notice that this is a desirable characteristic which is not verified by many existing
algorithms. Very often, running them beyond some time (or iteration) threshold will not
lead to better results simply because either the algorithms are trapped in deep local optima
or because they re-explore again and again the same regions. TS-Div provides a simple,
yet effective solution to this delicate issue because it is forced to discover new spheres at all
stages of its execution. The same comment applies to TS-Int for which more computation
time means more intensified exploitation of more spheres. Consequently, better results
can naturally be expected.

4.5 Toward applications for other combinatorial problems

By carefully investigating the source code of the guided algorithms—see Algorithm 4.2 (p.
55) and Algorithm 4.3 (p. 59)—one observes that TS-Div and TS-Int do not exploit any
feature specific only to the coloring problem. Indeed, the only components they require
are:

– a search space (in our case, the set of all possible colorings)
– a neighborhood function (in our case defined by a color change)
– an objective function (in our case, the conflict number)
– and a search space distance (in our case, the partition distance).

Essentially, both algorithms are extensions of Tabu Search. The necessary condition
to efficiently implement them for other problems is to find a search space distance measure
: (i) with low computation complexity (comparing to a TS iteration) and (ii) that is in
accordance with the neighborhood—TS should not “jump” over a long distance in one
step. More formally, the distance should be in close relation with the minimum number of
TS steps needed to go from one configuration to another. Like for any generic algorithm,
the success of TS-Div or TS-Int are also dependent on problem-specific factors, i.e. a
suitable choice of the radius R, or a method to define high-quality configurations.

However, as long as there exists such a distance measure with a reasonable computation
time (that not significantly outweighs the computation time of a TS iteration), both
algorithms can be applied to any combinatorial problem. TS-Int is not so sensitive to
the distance calculation time and so, it can be more easily applied to other problems–it
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could be very effective when one has any other method to “conjectura” the location of
the solution. However, with the distance measure, ideally, one should be able to group
in a R-sphere all/most “equivalent“ local optima—i.e. that share a common important
“backbone” substructure. One can find several examples of easy–to–compute distances
that can also be defined in this manner, by using some specific neighborhoods:

– the Hamming distance for problems with array representation using the 1-Flip neigh-
borhood (i.e. constraint satisfaction problems with a neighborhood operator that
consists of changing the value of a single variable),

– the Kendall tau distance [Kendall, 1938] for problems with permutation-based repre-
sentation using a neighborhood defined by adjacent transpositions (i.e. the travelling
salesman problem considering a neighborhood in which a move inverses two adjacent
cities—the adjacent pairwise interchange neighborhood),

– the edit distance for problems with an array representation and with the neighbor-
hood defined using edit operations.

Concerning the time needed to go through the whole archive, it can be substantially
reduced (if necessary) in at least three ways: (i) by going only through the high-quality
configurations (i.e. focussing on the “deep” layers of the search space), (ii) by increasing
the value of the radius R and (iii) by transforming the archive into a queue that removes
the oldest element at each insert operation. In the later case, TS-Div would behave like a
Double-List Tabu Search, i.e. with two lists: (1) the traditional list of the recently visited
configurations that are forbidden, (2) the new Tabu list of “recently” visited spheres, used
to avoid revisiting spheres seen in the recent past. The significance of the expression
“recent past” would depend on the size of the queue which should be tailored according
to the overhead induced by learning component.

4.6 Chapter conclusions

Using empirical space search analysis that shows that the local minima of the coloring
problem are grouped in clusters covered by spheres of 1

10 |V | diameter (Chapter 3), we
have devised a fast method to record the spheres of local minima visited by a local search
process. The TS-Div algorithm records its exploration path (only by recording the spheres)
and uses an additional learning process to discourage it from returning to already-explored
spheres. Moreover, the TS-Div algorithm does not introduce any auxiliary user-provided
parameters because Bf is automatically set.

The main objective of TS-Div is the global diversification of the search process: unlike
the basic TS, TS-Div does not risk too many redundant explorations in the long run. As
such, TS-Div is much more effective than the basic TS and it competes well even with the
best algorithms from the literature. The search capacity of TS-Div is reinforced by TS-Int,
which is an intensification-oriented algorithm used to better explore the proximity of the
most promising configurations. It is able to systematically find a solution if the solution
is situated within a certain distance from the starting configuration. TS-Int organizes the
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Graphe χ, k∗ TS–Div/Int VSS PCol AmaCol DCNS HEA MMT MCol
2009 2008 2008 2008 1993 1999 2008 2010

dsjc500.1 ?, 12 12 12 12 12 12 − 12 12
dsjc500.5 ?, 48 48 48 48 48 49 48 48 48
dsjc500.9 ?, 126 126 126 126 126 126 − 127 126
dsjc1000.1 ?, 20 20 20 20 20 21 20 20 20
dsjc1000.5 ?, 83 85 87 88 84 88 83 83 83
dsjc1000.9 ?, 224 223 224 225 224 226 224 225 223
r1000.1c ?, 98 98 − 98 − 98 − 98 98
flat300.28 28, 32 28 28 28 31 31 31 31 29
flat1000.76 76, 82 85 86 87 84 89 83 82 82
le450.25c 25, 25 25 26 25 26 25 26 25 25
le450.25d 25, 25 25 26 25 26 25 26 25 25

Table 4.4: Comparison between TS–Div/TS–Int and the best-known upper bounds at the
moment when our article[Porumbel et al., 2010] was accepted. All the reported colorings
are available on the Internet for further research use: www.info.univ-angers.fr/pub/
porumbel/graphs/tsdivint/

The algorithm acronyms correspond to the following papers: VSS [Hertz et al., 2008],
PCOL [Blöchliger and Zufferey, 2008], AmaCol [Galinier et al., 2008], DCNS [Morgenstern, 1996],
HEA [Galinier and Hao, 1999], MMT [Malaguti et al., 2008], MCOL [Lü and Hao, 2010].

search space as a tree of connected spheres and applies a classical tree traversal algorithm
to methodically investigate all spheres one by one.

To summarize, we devised a pair of algorithms that assures both the diversification
and the intensification tasks by guiding underlying search processes. Table 4.4 presents a
comparison between the best results obtained in this study and the best results from the
literature. Five papers in this table are very recent (year 2008) as we took into account
only the best algorithms; moreover, some of these cited papers present in fact more than
one algorithm version—but Table 4.4 shows the best k reported by any of them. The
population-based heuristics (last four columns) are traditionally the most effective and,
on some instances, they all find better results than all local searches. However, our method
is also very effective comparing with all state-of-the-art algorithms and it even finds for
the first time a new legal coloring for a very hard DIMACS instance (dsjc1000.9).
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Chapter 5

Diversity Control and Grouping
Recombination in the
Evolutionary Approach

This chapter is devoted to evolutionary algorithms, introducing both
problem-specific contributions and also certain general ideas of evolution-
ary computing. Population diversity is ensured by a generally applicable
procedure to control spacing between individuals. Using a search space
distance measure, this procedure decides what individuals are acceptable
in the population, what individuals need to be replaced and when to apply
mutations. We present a very “well-informed” multi-parent crossover: it
uses several features of the parent color classes (i.e. class conflicts, class
size, vertex degrees) to select those used as building blocks for offspring
construction. In fact, the algorithm is well-informed in several senses. For
example, the high-quality coloring clustering information from Chapter 3
enables us to define the threshold of minimum population spacing. In fact,
there are several connections to previous chapters (e.g. the new evaluation
function from Section 2.3.1 is employed in the local search), but we will
briefly recall the basic ideas. Most of the best-known upper bounds are
reached (often with 100% success rate) and an upper bound is even im-
proved. The chapter is based on a 12 page article selected among the three
best-paper nominees at Evocop 2009 [Porumbel et al., 2009a]; the complete
work is submitted to a leading journal.
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5.1 Introduction

As indicated in the introduction of this study (see Section 1.2.1), an important class of
coloring heuristic algorithms is represented by evolutionary hybrid methods. Most of these
methods are basically memetic algorithms—evolutionary algorithms incorporating local
search—and they constitute one of the most effective approach for our problem (Section
1.2.4).

However, a major drawback known in all fields of evolutionary computing is the risk
of premature convergence—and this seems an an essential problem for graph coloring,
too. To deal with this risk, we use the distance measure between individuals and we
show how to use it to ensure a healthy spacing between individuals. We present an
generally-applicable population strategy to impose a certain distance between individuals
in memetic algorithms. The new strategy can guarantee that premature convergence is
always avoided, while not sacrificing population quality. At the same, this procedure also
reduces another important risk specific for small populations, i.e the risk of failing to
adequately cover the search space [Reeves, 1997].

Another challenging issue in evolutionary computation is to design a crossover that is
meaningful for the problem, i.e. that preserves good features of the parents and disrupts
the bad ones [Radcliffe, 1994]. For graph coloring, it is very useful to consider colorings
as vertex set partitions [Galinier and Hao, 1999]—recall a partition of set V is a splitting
of V into non-overlapping classes (or groups). Indeed, most recombination schemes select
certain classes from two parent partitions and use them as building blocks to assemble the
offspring [Galinier and Hao, 1999; Malaguti et al., 2008; Hamiez and Hao, 2001; Malaguti
and Toth, 2008]. In fact, this is in accordance with the principles of grouping genetic
algorithms in which promising groups (genes) need to be transferred from parents to
offspring by inheritance [Falkenauer, 1998]. An essential issue is to correctly choose the
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best classes (or groups) to be used for offspring construction. While previous approaches
consider only the class size or the class conflicts, we introduce a refined measure to rank the
parent classes and, implicitly, to better choose the information that is passed to offspring.

We also investigate which specific features can render an individual very fit (high
quality). Such information is very useful along the chapter, i.e. to design a well-informed
evaluation function in the local search, to determine the appropriate number of parents
in the recombination, etc. By also studying the arrangement of very fit individuals, we
define an appropriate border between “close” and “distant” individuals. An important
principle of our diversity strategy is to work only with distant individuals. The resulting
algorithm, which will be called Evo–Div, matches most of the best-known upper bounds
and also finds a new solution for a well-studied graph. Finally, we clearly evaluate the
contribution of each new major component or technique.

Next section recalls the basic notions and presents the general design of the coloring
evolutionary algorithm. The new multi-parent crossover is detailed in Section 5.3. The
method of controlling the population diversity/spacing is discussed in Section 5.4. Sec-
tion 5.5 is devoted experimental results and we finish by presenting final remarks and
conclusions in the last section of the chapter.

5.2 Generic graph coloring memetic algorithm

5.2.1 Specific terminology in evolutionary computing

In order to present our algorithm, let us notice that we will employ a slightly different
terminology, according to the well-established tradition of the evolutionary computation
community. Comparing to the rest of the thesis, the main differences are the following:

individuals They represent the potential solutions or configurations employed in the
local search part. As such, we say that all individuals form a population POP =
{I1, I2, . . . I|POP |};

fitness function In accordance with terminology from the Darwin’s theory, we say that
evolutionary algorithms try to find the most fit individual, the one with the lowest
value of the fitness function. In our case, the fitness function is the objective function
f , equivalent to the number of conflicts—see Definition 1.3, page 15;

new evaluation function f̃eval Our hybrid algorithm uses a local search procedure that
employs a new evaluation function. While in Section 2.3 we introduced two new
evaluation functions f̃1 and f̃2, in this chapter we only use f̃eval = f̃1.

We only use this new evaluation function in the local search procedure of the memetic
algorithm; in the rest of the chapter, only the classical fitness function is used.

5.2.2 The memetic algorithm

The skeleton of Evo–Div (see Algorithm 5.1) uses basic ideas from previous similar
algorithms [Fleurent and Ferland, 1996a; Galinier and Hao, 1999; Costa et al., 1995;
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Malaguti et al., 2008; Dorne and Hao, 1998a; Galinier et al., 2008; Morgenstern, 1996], but
it also bring several new features: routines to control population spacing, new mutation
operators, or the possibility to use n ≥ 2 parents. Most coloring evolutionary algorithms
are memetic because recombination alone can not produce individuals of sufficiently high
quality and local improvement is needed. Indeed, it is difficult to perfectly blend color
classes taken from parents, and so, the crossover of high quality parents can result in less
fit offspring. The goal of the local search is to fix this blending and also to intensify the
search around the coloring constructed by the crossover operator.

Our memetic template in Algorithm 5.1 uses function acceptOffspring to detect
what offspring solutions do not fit certain spacing criteria. The mutation is triggered only
when the natural reproduction process can no longer produce sufficiently spaced offspring
through, i.e. more exactly, when it reaches a number of failed tries (i.e. maxRejections).
As in the natural evolution, mutations arise very rarely. The stopping condition is either
to find a legal coloring or to reach a predefined time limit. In our experiments, the local
search procedure is the most time consuming operator.

Algorithm 5.1: Evo–Div: Evolutionary Hybrid Algorithm with Diversity Strategy

Input: the search space Ω
Result: the best configuration ever reached

1. Initialize (randomly) parent population Pop = (I1, I2, . . . , I|Pop|)
2. While a stopping condition is not met

A. rejections= 0
B. Repeat

1. (I1, I2, . . . , In)=RandomParents(Pop, n) /* n ≥ 2 */
2. O =Crossover(I1, I2, . . . In)
3. If rejections≥maxRejections
a. O =Mutation(O)

4. O =LocalSearch(O,maxIter)
5. rejections++

Until AcceptOffspring(Pop,O)
C. IR = ReplacedIndiv(Pop)
D. Pop = Pop− IR +O

The parent selection (RandomParents) is quite classical and it simply consists in
choosing n different individuals uniformly at random from the population. In this manner,
the “survival of the fittest” selection pressure is only at the replacement stage, which thus
becomes essential. To complete the algorithm description, the rest of the chapter presents
the black-box components from this template, most notably: the crossover operator (rou-
tine Crossover, see Section 5.3), the spacing strategy (routines AcceptOffspring
and ReplacedIndiv and Mutation, see Section 5.4). The local search improvement
procedure (LocalSearch) is independent of the evolutionary scheme and it is described
briefely in the next section below.
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5.2.2.1 The Local Search Procedure

The LocalSearch routine implements a version of the Tabu Search algorithm discussed
in Section 2.2. We briefly recall its features and construction. Essentially, this algorithm
iteratively moves from one coloring to another by modifying the color of a conflicting
vertex until either a legal coloring is found, or a predefined number of iterations (i.e.
maxIter = 100000) is reached. Each performed move (i.e. each new color assignment)
is marked Tabu for a number of iterations, i.e. the Tabu list length T`. In this manner,
Tabucol cannot re-perform a move that was also performed during the last T` iterations.
Importantly, our procedure finally returns a random configuration from all visited colorings
with the same minimum conflict number.

Recall (Chapter 2) that we set the Tabu list length using T` = α ·f(C)+random(A)+⌊
Mcst
Mmax

⌋
, where α, A and Mmax are predefined parameters, Mcst is number of the last

consecutive moves that kept the fitness function constant (Section 2.4), and random(A)
return a random integer in [1..A]. Concerning the values of these parameters, we use:
α = 0.6, A = 10 (as previously published in [Galinier and Hao, 1999]), and Mmax = 1000.
The last term is a new reactive component only introduced to increment T` after each
series of Mmax iterations with no fitness variation. This situation typically appears when
the search process is completely blocked looping on a plateau; a longer Tabu list can
more easily trigger the search process diversification that is needed in this case (see also
Section 2.4).

Well-informed evaluation function At each iteration, the Tabu search algorithm has
to choose a non-Tabu move that leads to a coloring with the minimum number of conflicts.
If there are several possible choices, the traditional approach is to take any at random. We
discussed in Section 2.3.1 that it is useful to introduce additional criteria to differentiate
between colorings with the same conflict number. In this chapter, we use the evaluation
function f̃1, and since there is no risk of confusion with f̃2, we denote f̃eval = f̃1. Formally,
using (2.5) from Section 2.3.3.2, we recall the evaluation function:

f̃eval(I) =
∑

{i,j}∈CE(I)

(
1− 1

2|E|δi
− 1

2|E|δj

)
,

where δi denotes the degree of vertex i (that is non-zero, recall that G is connected)
and CE(I) is the set of conflicting edges (see also Section 1.2.2). Using this function,
the local search continues to choose moves leading to the best conflict number, but the
random choice is based on this function, i.e. the lower the f̃eval value of a coloring, the
more chances it has to be chosen as the next coloring.

The basic principle behind this evaluation function will also be used in other com-
ponents presented later in this chapter—e.g. the recombination operator employs degree
information to better distinguish color classes. Chapter 2, as well as Section 5.5.4, show
that such degree-based differentiation is useful for certain graphs with a very high degree
variation. Essentially, we exploit the idea that it is more difficult to reduce the conflict
of an edge with end vertices have higher degrees. If the algorithm has to choose between

73



Chapter 5. Diversity Control and Grouping Recombination in the Evolutionary Approach

two 1-conflict colorings, it prefers the one with a more isolated edge in conflict, i.e. with
the two conflicting vertices of lower degree, involving less constraints.

5.3 Well-informed crossover

A coloring can be seen as a vertex set partition (Definition 1.2), and this appears to be
the best interpretation to design an effective crossover. In this context, the recombination
consists in choosing k color classes from the parents and in assembling them for construct-
ing the offspring. The goal is to make the offspring inherit the best k color classes, or the
most fit, the ones that bring the highest contribution on quality. For example, if one can
select k conflict-free classes (independent sets) that cover V , then one can use them to
construct a legal coloring. This is usually not possible, and so, an essential question needs
to be addressed in this section: how to select the best k color classes from parents. Fur-
thermore, while previous studies typically consider two parents, we propose a generalized
framework that determines the appropriate number of parents for each instance.

In order to establish a meaningful class ranking, our first concern is to design a well-
informed scoring (fitness) function for classes. For this, we propose 3 scoring criteria: (i)
the number of conflicts inside the class, (ii) the number of vertices in the class and, (iii)
the sum of the degrees of the class vertices. The first criterion is very important in terms
of quality and it assumes that a color class with fewer edges in conflict is always preferable
to a class with more conflicts. However, one often encounters classes with no conflicts as
Evo–Div converges to near-optimal configurations. A second criterion is needed: if one has
to choose between two classes with the same number of conflicts, one prefers the largest
one. Finally, there are instances for which the color class sizes are quite homogeneous
and a third criterion is used for further discrimination: the sum of the degrees of the
class vertices. The idea behind this third criterion is that a vertex of lower degree is more
isolated and easier to color (see also Section 5.2.2.1); as such, a class with higher degree
vertices is more valuable.

Formally, the crossover operator, hereafter called Well-Informed Partition Crossover
(WIPX), is specified in Algorithm 5.2. It first searches (Steps 2.A and 2.B) in all parents
for the class with the best (minimal) score. After assigning it to the offspring (Step 2.C),
it chooses the next most fit class and repeats. At each step, all class score values are
calculated by ignoring the vertices that already received a color in the offspring (see Step
2.A.1). WIPX stops when k colors classes are assigned; any remaining unassigned vertex
receives the color k (Step 3).

An important risk of this crossover is to inherit most classes only from one parent,
especially if there is a (very fit) parent whose classes “eclipse” the others. However, the
similarity between the offspring and the parents is implicitly checked afterward by the
diversity control procedure that rejects the offspring if it is too similar to any existing
individual.
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Algorithm 5.2: The Well Informed Partition Crossover WIPX

Input: parents I1, I2, . . . , In
Result: offspring O

1. O =empty, i.e. start with no vertex color assigned

2. For currentColor= 1 To k

A. Foreach parent Ii ∈ {I1, I2, . . . , In}
Foreach color class Ij

i in Ii

1. Remove from Ij
i all vertices already assigned in O

2. conflicts = |{(v1, v2) ∈ Ij
i × I

j
i : (v1, v2) ∈ E}|

3. classSize = |Ij
i |

4. degreeCls =
∑
v∈Ij

i

δv /*δv=degree of v*/

5. score[Ij
i ] = conflicts− 1

|V | (classSize + degreeCls
|E|×|V | )

B. Set (i∗, j∗) = arg min
(i,j)

score[Ij
i ]

C. Foreach v ∈ Ij∗

i∗

O[v] =currentColor
3. Foreach unassigned v ∈ O

O[v] = k

5.3.1 The best inheritable features and the number of parents

An important principle in crossover design for grouping problems is to promote promising
groups (genes) and to avoid as much as possible to disrupt good features existing in
parents [Falkenauer, 1998]. Our goal is then to identify what “good features ” are and
how to promote them in the inheritance process. The quality of very fit colorings can
reside in individual classes (genes) of high quality (e.g. independent sets), but also in their
blending, or mixture. We can say that the quality can be due to excellent individual genes
but also to high epistasis—e.g. productive interaction between genes. Importantly, the
number of parents determines the fragmentation of the class blending from each parent.
Since each parent provides k

n classes (in average) to the offspring solution, a higher n
results in fewer classes selected from each parent—equivalent to more disruptions of the
existing class blending (from each parent). Our goal comes to deciding what is more
important: preserving the class blending or maximizing the probability of inheriting good
individual classes?

Certain instances have solutions with numerous very small classes—e.g. 4 vertices (in
average) for an instance with |V | = 1000 and k = 223. It is not difficult to find independent
sets of this size, but the difficulty consists of mixing many small classes in an optimum
way. This situation typically appears for dense graphs, for which one needs a large number
of colors k and the average class size (i.e. |V |k ) becomes very low. For small classes, it is
better to use two parents so as to preserve the existing blending of color classes.

75



Chapter 5. Diversity Control and Grouping Recombination in the Evolutionary Approach

At the other extreme, there are the sparse graphs for which one needs fewer colors and
large class sizes, i.e. 50 vertices (in average) for instances with |V | = 1000 and k = 20.
In this example, the quality of very fit colorings resides rather in large independent sets,
than in their blending. Consequently, it is recommended to use more parents because: (i)
this does not disrupt high-quality features (independent sets), and (ii) a larger number
of input classes for recombination (e.g. n × k with n = 4) increases the probability of
selecting and inheriting very good individual classes (for the previous case with k = 223,
4×k ≈ 1000 input classes would have been too much, making the result too chaotic). The
generic rule is to use two parents for instances with small classes, three for instances with
average classes, or four for very large classes. To be specific, our rule is to use:

1. n = 2 if |V |k < 5

2. n = 4 if |V |k > 15

3. n = 3 otherwise.

5.3.2 Related work

The algorithm 5.2 provides a general framework for designing recombination in coloring
problems, and, more generally, in partitioning problems. In fact, by modifying the class
scoring (step 2.A.5), one can generate other crossovers. For example, to obtain the Greedy
Partition Crossover from [Galinier and Hao, 1999], one basically needs to score each class
with the class size (i.e. score = -classSize in step 2.A.5) and to set n = 2. The first
three crossovers from [Malaguti and Toth, 2008] can also be replicated in this manner.
The recombination from [Hamiez and Hao, 2001] uses a different framework and it is used
to construct offspring only from independent sets. A similar version can be obtained by
setting score to ∞ if the class has conflicts, or to classSize otherwise. It seems that the
idea of constructing offspring only with independent sets has a positive influence on certain
particular graphs; see also the discussion on more crossovers versions in Section 5.5.4.

In all these methods, after inserting the k classes in the offspring, some problematic
vertices may remain unassigned. In previous studies, a greedy procedure is used to assign a
color to each of them, so as to minimize the conflicts over the graph. However, we consider
this operation also induces a risk in disturbing good color classes—because it could add
the new conflicts following quite superficial greedy decisions. We prefer to assign to all
these problematic vertices the same color k (Step 3), and so, only the last color class is
disturbed with new conflicts. The task of assigning better colors to these problematic
vertices is thus left to the subsequent local search steps.

One should be aware that in the large graph literature coloring literature, there have
been also tried other types of crossover operators, based on the color-oriented (array)
encodings [Fleurent and Ferland, 1996b; Malaguti and Toth, 2008], on unifying pairs of
conflict-free sub-classes [Dorne and Hao, 1998a], on sexual reproduction using a splitting
of the graph into two parts [Marino et al., 1999], distance-preserving crossovers [Tagawa
et al., 1999], etc.
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5.4 Maintaining and creating diversity

Our diversity strategy has two objectives. The first one is to maintain an appropriate
spacing between individuals at all times of the execution. This ensures that the population
individuals can not all converge toward the same point of the search space—i.e. premature
convergence is avoided and diversity is preserved. However, this can not guarantee that
the algorithm is able to create diversity, i.e. to permanently discover new search space
areas. For this reason, our second objective is to make the population distribution evolve
along time, so as to continually move from old regions to new ones. In this manner, even
if the population of our memetic algorithm is small, it can cover numerous regions over
the time.

There are many different means to measure diversity[REFS], but in this study we use
an indicator based on distances between individuals. Our diversity is thus based on the
spacing indicator S, defined as the average distance between two individuals. In addition,
the minimum spacing Smin refers to the minimum distance in the population. The two
objectives of our spacing strategy can be formally expressed as follows:

� keep Smin above a specific target minimum spacing R

� make the average spacing S as high as possible.

Basically, the first point is addressed by the offspring rejection procedure and the
second by the replacement operator. They correspond to routines AcceptOffspring
and ReplacedIndiv in Algorithm 5.1 and they are presented in Section 5.4.2 and Section
5.4.3 below.

5.4.1 Search space distance metric

We brieefly recall the distance metric on which the whole spacing strategy is based. Us-
ing the partition coloring representation (see Definition 1.2, Section 1.2.2), the partition
distance (call it d) is the minimum number of elements that need to be moved between
classes of the first partition IA so that it becomes equal to the second partition IB. Impor-
tantly, the distance between IA and IB is equivalent with the minimum number of local
search steps (color changes) required to arrive from IA to IB. This way, our local search
procedure can not jump over a long distance in one step.

A distance calculation procedure is sketched in Section 4.2.2.1 and complete details are
provided in Chapter 6. However, the speed of this calculation procedure is not essential
for the evolutionary algorithm. We did not observe any significant slow-down caused by
distance computations. The local search operator is much more time consuming as it is
quite long (we use maxIter = 100000 iterations). The distance represent a number of
vertices (whose colors need to be changed), and so, it can only take values between 0 and
|V |; this is why we usually report distance values in terms of percentages of |V |.
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5.4.2 Offspring rejection

Since the first objective of the diversity strategy is to maintain a target minimum spacing
(denoted by R), we insert an offspring in the population only if its distance to each
existing individual is greater than R. Consequently, if an offspring solution O is situated
at a distance of less than R from an individual I, the rejection procedure detects this
issue (routine AcceptOffspring returns False in Algorithm 5.1) and performs one of
the following actions:

1. rejects O, if f(O) > f(I)—i.e. if O is worse than I;

2. directly replaces I with O, if f(O) ≤ f(I).

However, in both cases, we consider that O is not satisfactory enough because it does not
bring diversity to the population. As such, Evo–Div does not pass to the next generation
and repeats the whole reproduction process, starting with the parent selection, see the
Repeat-Until loop in step 2.B. of Algorithm 5.1. The reproduction process is repeated
until the offspring solution is distanced enough from the existing individuals, see also
Section 5.4.2.2.

5.4.2.1 Target minimum spacing R

A delicate issue in this procedure is to determine a suitable value of the minimum space
(denote by R, referring to the sphere radius). Recall (Definition 4.1) that we denote by
SR(I) the closed sphere of radius R centered at I, i.e. the set of individuals I ′ ∈ Ω such
that d(I, I ′) ≤ R. If I is a high quality individual, an appropriate value of R should imply
that all other high quality individuals from SR(I) share important color classes with I,
i.e. they would bring no new information into the population (or they are structurally
related to I). We have to determine the maximum value of R such that all high quality
individuals, that are structurally unrelated to I, are situated outside SR(I).

Since all individuals in the population are local minima obtained with Tabu Search,
we will use the value of R determined by the analysis of the TS exploration path. Recall
(Chapter 3) this classical scenario: start from an initial local minima I0, and let Tabu
Search visit a sequence of high quality individuals I0, I1 ,I2, . . . IN (i.e. we count only the
individuals satisfying f(Ii) ≤ f(I0), ∀i ∈ [1..N ]). After recording all these individuals up
to N = 40000, we computed the distance for each pair (Ii, Ij) with 1 ≤ i, j ≤ N and we
constructed a histogram to examine the number of occurrences of each distance value.

This histogram (Chapter 3.3.4) showes that the distribution of the distance value is
bimodal, with numerous occurrences of small values (around 5%|V |) and of some much
larger values. This provides evidence that the I ′is are arranged in distant groups of close
points (clusters); the large distances correspond to inter-cluster distances and the small
ones to intra-cluster distances. If we denote a “cluster diameter” by Cd, we can say
that Cd varies from 7%|V | to 10%|V | depending on the graph: To determine a suitable
R value, it is enough to note that any two individuals situated at a distance of more
than 10%|V | (approximately the highest possible Cd value) are not in the same cluster—
because (ideally) they have certain different essential color classes. In conformity with
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Section 3.3.4, we set the value of R to 10%|V | for all subsequent runs. We say that
two individuals distanced by less than R = 10%|V | are “too close”; otherwise they are
“distant”, or R-distanced.

5.4.2.2 Reactive dispersion via mutations and increased R

Ideally, the target minimum spacing R can be assured only by the natural reproduction
process,i.e. through crossover and local search. One of the principles of our spacing pol-
icy is to ensure diversity without sacrificing quality, and so, Evo–Div applies “artificial”
mutations as rarely as possible—i.e. only as a last-resort tool. The mutation only consists
of perturbing a certain number (mutation strength) of randomly chosen vertices. To be
specific, all colors of these vertices are first erased and new colors are sequentially assigned
using a greedy criterion (minimize the generated conflicts). The strength is initially R (i.e.
R vertices are perturbed), but, if the offspring solution resulting after local search is still
rejected, the strength is doubled at the next Mutation call (in the Repeat-Until loop
of Algorithm 5.1). The mutation strength can be gradually increased (i.e. R, 2R, 3R . . . )
until a sufficiently-high strength (at most |V |) enables the local search to produce a dis-
tanced offspring solution.

Increasing R to disperse the population Recall (Algorithm 5.1) that the muta-
tion is triggered only ofter maxRejections tries that failed to produce offspring solutions
distanced-enough from existing individuals. By using a very high value of maxRejections,
Evo–Div ensures a very low overall number of mutations throughout the search (see Sec-
tion 5.5.1.1). However, mutations can become more frequent in certain special situations
that require enforcing more diversity, i.e. when the search process is blocked looping on
particular search space structures. Let us now show how to make an evolutionary search
“realize” when there is not enough diversification.

For illustration, the population can converge toward a very stable state in which: (i)
the average spacing is less than 2R and (ii) all individuals have the same fitness (the
best-ever so far). In this situation, a large part of the population can be confined in a
sphere of radius 2R that contains many R-distanced local optima—this can be due to some
particular search space structures, i.e. numerous plateaus confined in a deep “well”. To
deal with this issue, we propose a reactive dispersion mechanism so as to trigger numerous
mutations in the subsequent generations to help the population to leave this problematic
2R-sphere. This mechanism also resort to the minimum spacing R that is also essential
in the diversification/intensification balance. By doubling its value in this situation, most
subsequent offspring solutions from the 2R-sphere will be rejected. By also reducing
considerably maxRejection, the dispersion mechanism allows much fewer tries of natural
offspring birth, ensuring more frequent mutations and more diversification.

The same reactive dispersion is also applied to unblock the search on the following
situation: when too many offspring solutions are continually rejected since the beginning of
the search—e.g. when the average of “rejections per generation” becomes three times more
than the normal (of about 0–1.25, see Section 5.5.1.1). This indicates that the population
is distributed around certain local optima with very strong basins of attractions, so that
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the natural reproduction process usually leads to offspring in the same basins. By using
the reactive dispersion mechanism, mutations are triggered more rapidly and most part of
the population soon leaves the current positions. Defining ”too many rejected offspring”
is not difficult if we take into account that the average number of rejected offspring per
generation is between 0 and 3. Experiments show that if it reaches 5 (for the whole
execution, since the beginning), the diversity-enforcing strategy can be applied.

Note that, while mutation is an essential operator in evolutionary strategies or real-
encoded genetic algorithms, it is seems less useful in combinatorial optimization, or, at
least, for graph coloring. Indeed, we are not aware of previous graph coloring algorithms
presenting a mutation operator with a very positive effect on performance. While a muta-
tion operator can easily assure diversity, this does not typically compensate the associated
quality loss. This is the main reason why mutations should be used sparingly.

5.4.3 Replacement strategy

At each generation, an existing individual is chosen by the ReplacedIndiv routine in
Algorithm 5.1 to release a slot for the offspring solution. While the reproduction process
is important for discovering new promising areas, this replacement operator is also very
important because it decides what areas are abandoned. The relative position of the
offspring solution is not taken into account in this decision. Recall that the offspring
rejection procedure checks that the offspring solution is not too close to any individual,
i.e. the offspring has to be the representative of a different distant area. As such, the
distribution of the population permanently moves from certain already-visited areas to
new areas.

5.4.3.1 Direct replacement

However, population replacement is not carried out only with the ReplacedIndiv rou-
tine. Until the reproduction process generates an offspring solution sufficiently different
from existing individuals, we consider that the population distribution is stagnant and
Evo–Div does not pass to the next generation. As detailed in Section 5.4.2, if there is
an existing individual I close to the offspring O, then I can be directly replaced by O
(if f(O) ≤ f(I)). With this move, the population distribution does not actually evolve
toward new regions, but this is only a ”side” move performed so as to intensify the search
in the R-sphere that contains O and I. Since this R-sphere contains two high-quality
individuals reached independently, we consider the R-sphere is promising and it deserves
intensification.

This direct replacement can also result in violating the constraints of the target min-
imum spacing, e.g. if there are I1 and I2 such that d(I1, I2) > R, d(O, I1) < R, and
d(O, I1) < R, directly replacing I1 with O would lead to a minimum spacing of d(O, I2) <
R. However, this is an anomaly that is solved at the next call of ReplacedIndiv. In-
deed, this routine first finds the closest individuals Ia and Ib, and, if d(Ia, Ib) < R, the less
fit of them is eliminated. In this manner, out of the three initial close colorings O, I1 and
I2, only one will eventually survive, assuring that a population slot is always set free for

80



5.4 Maintaining and creating diversity

individuals exploring more regions. Importantly, population stagnation is avoided.

5.4.3.2 Standard replacement

In standard cases d(Ia, Ib) > R ∀Ia, Ib ∈ Pop and the ReplacedIndiv routine is not
typically concerned with assuring the target minimum diversity. Its objective is to increase
the average spacing and, for this, it needs to get rid of small distances between existing
individuals. In addition, it should also respect the ”survival of the fittest” principle.
Since the parent selection is uniformly random, the replacement stage is essential for both
spacing and quality.

Generally speaking, the standard elimination procedure (see Algorithm 5.3 below)
selects two very close individuals that candidate for elimination and only the least/less fit
of them is eliminated. The first candidate C1 is chosen by a random function using certain
fitness-based guidelines (via the AcceptCandidate function). The second candidate C2

is chosen by introducing the following spacing criterion: C2 is the closest individual to C1

respecting the same fitness-based guidelines as C1.

Algorithm 5.3: The Replacement (Elimination) Function

Input: population Pop = (I1, I2, . . . , I|Pop|)
Result: the individual to be eliminated

1. Repeat

C1 = RandomIndividual(Pop)

Until AcceptCandidate(C1) (fitness-based acceptance)

2. minDist = maximum possible integer

3. Foreach I ∈ Pop− {C1}
If d(I, C1) <minDist

If AcceptCandidate(I)
• minDist = d(I, C1)
• C2 = I

4. If f(C1) < f(C2)
Return C2

Else

Return C1

The AcceptCandidate function separates the first half of the population from the
second half—with respect to the median fitness value; additionally, the best individuals
are also treated separately. As such, this function always accepts a candidate Ci for
elimination if Ci belongs to the second half, but it accepts Ci only with 50% probability if
Ci belongs to the first half. Only the best individual is fully protected; it can never become
a candidate for elimination—unless there are too many best individuals (more than half
of the population) in which case any individual can be eliminated. As such, the role of
the first half of the population is to permanently keep a sample of the best individuals
ever discovered. The first half of the population stays quite stable in comparison with the
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second half that is a diversity-oriented sub-population, changing very rapidly. This might
recall the principles of scatter search, a population-based heuristic using an intensification
set and a diversification set—see [Hamiez and Hao, 2001] for a graph coloring scatter
search algorithm.

5.4.4 Related research and ideas

Principles of diversity preservation strategy can be found in several research threads from
the literature. In diversity-guided or diversity-controlling genetic algorithms [Ursem, 2002;
Shimodaira, 1997; Zhu, 2003], one uses an indicator of overall population diversity so as to
choose the genetic operators and their application probability. For example, [Zhu, 2003]
uses a diversity indicator based on the average hamming distance to adapt the mutation
and crossover rates. In [Ursem, 2002], one employs intensification operators (selection
and recombination) when a diversity indicator is high, or diversification operators (mu-
tation) when the diversity is too low. In this research thread, one does not really need
a distance measure between individuals, but only an overall population diversity indica-
tor. For example, [Ursem, 2002] employs an indicator of statistical dispersion around the
average value on each variable, making it particularly useful in continuous optimization.
Generally speaking, the population diversity can be measured by numerous indicators,
depending on the field (see the refs in [Zhu, 2003, p. 1]).

A distance-based study is the MA—PM algorithm [Sörensen and Sevaux, 2006], in
which the population management also uses an offspring rejection procedure. In MA—PM,
if an offspring solution does not satisfy the diversity criterion, it is immediately mutated.
In contrast, we prefer to repeat the natural reproduction process until it brings diversity
to the population. This way, we do not sacrifice “quality for diversity”; in addition, we
also bring forward a completely new replacement operator and we set the target minimum
spacing (i.e. the “diversity parameter”) according to motivations of clustering. For these
reasons, Evo–Div can also compete with the best heuristics on the underlying problem.

We also mention that, in memetic algorithms, it is a common strategy to give attention
to the fact that the offspring solution needs to be different enough from its parents. Since
local search is used, there is a high risk that the recombination of two very fit and close
parents leads to similar solutions. To avoid this, a good idea is to always mate distant
parents and, in addition, one can also take care that to generate the offspring solutions
at equal distances from each parent. For example, the crossover in [Galinier and Hao,
1999] takes care to inherit half of the color classes from one parent, and half from the
other. Similar techniques can be found for other combinatorial problems, e.g. see the
distance preserving crossover for the traveling salesman problem [Freisleben and Merz,
1996]. However, our crossover is not intended to ensure equal distances between the
offspring solution and parents; this issue is indirectly addressed only by the rejection and
replacement strategies.

More distantly related, the crowding distance introduced by Deb et. al [Deb et al., 2002]
is used for solution ranking in multi-objective numerical optimization. An essential differ-
ence comparing to this method is that the crowding distance is measured in the objective
function space—i.e. it relies on differences between fitness values of the individuals [Deb
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et al., 2002; Coello et al., 2004; Rajagopalan et al., 2008].

5.4.4.1 Other evolutionary computation fields

In multi-modal continuous optimization, one needs to locate all the global optima of a
function with several “peaks”. In this context, niching methods (e.g. fitness sharing or
crowding [Mahfoud, 1995a; Mahfoud, 1995b; Smith et al., 1993; Deb and Goldberg, 1989;
Miller and Shaw, 1996; Goldberg and Richardson, 1987; Beasley et al., 1993; De Jong,
1975; Cedeño and Vemuri, 1999; Smith et al., 1993]) were introduced for the ”forma-
tion and maintenance of stable subpopulations” [Mahfoud, 1995a; Mahfoud, 1995b]. Each
subpopulation is devoted to a peak of the multi-modal function and it can be seen as a
sub-species [Miller and Shaw, 1996] that exploits a “niche”.

Compared to niching, Evo–Div does not encourage the population to specialize per-
manently on several niches, but it insists on repeatedly moving from region to region.
For multimodal functions, the niches correspond to the several peaks of the function
and one often promotes crossover only inside the subpopulations [Miller and Shaw, 1996;
Cedeño and Vemuri, 1999] (intra-niche crossover). In our memetic algorithm, we prefer
”inter-niche” crossover because this is the best tool to discover new regions. Our goal is to
make the distribution of a small population evolve very rapidly so as to explore millions
of different niches along the time, i.e. to maintain and create diversity throughout the
search.

Fitness sharing [Goldberg and Richardson, 1987] is a very popular niching technique
that is based on the following principle: if two individuals are distanced by less than
a cut-off distance (the niche radius or the sharing parameter σshare), their fitness value
is reciprocally penalized [Goldberg and Richardson, 1987; Miller and Shaw, 1996; Smith
et al., 1993; Deb and Goldberg, 1989; Beasley et al., 1993]. Although this approach is
different from ours, an essential part of it consists in defining a suitable ”niche radius”,
a concept resembling our minimum spacing R. While our strategy it to reject inserting
offspring on a radius of R around any existing individual, by sharing, one would only
penalize such a close offspring solution. In both cases, if an inappropriate radius is used,
the efficiency is significantly decreased. We set this radius using clustering motivations;
sharing theories on niche radius are available (see [Beasley et al., 1993, §5.1]) and they
often rely on specific assumptions on the multimodal continuous function (e.g. that it has
an a-priori known number of evenly distributed peaks).

Crowding selection (e.g. de Jong’s crowding [De Jong, 1975], Mahfoud’s deterministic
crowding [Mahfoud, 1995a], and others [Cedeño and Vemuri, 1999]) tries to ”‘induce niches
by forcing new individuals to replace individuals that are similar genomically”’ [Smith et
al., 1993]. In this manner, a new individual replaces one from its own niche or subpop-
ulation and it minimizes changes on the parent population, i.e. it preserves the diversity
of the existing mixture [Miller and Shaw, 1996]. This resembles our direct replacing pro-
cedure, but, while our operation also induces a form of niching, stable niches/clusters are
not actually recommended for large discrete spaces. Our standard replacement chooses
the eliminated individual regardless of the offspring’s position and, it encourages the pop-
ulation to continually move from “niches” to “niches”.
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Final Remarks In light of the above, the idea of explicit population control using
distance metrics, seems, to a certain extent, overlooked in single-objective combinatorial
optimization. However, there are several reasons for which it can be very useful to improve
memetic algorithms with small populations—algorithms that are already very effective for
such problems [Merz, 2004]. While computing |Pop|2 distances per generation is a limita-
tion in niching [Miller and Shaw, 1996; Smith et al., 1993], this overhead is almost negligible
in memetic algorithms where the local search procedure is much more time consuming. In
multi-modal algorithms, the niching techniques also address intensification (by allowing
a stable sub-populations on niches), but, in memetic algorithms, intensification can be
ensured through local search. The diversity policy should only address diversification by
permanently guiding the search to new regions. To sum up, our approach combines ideas
from other evolutionary computation fields with new ideas specific for memetic algorithms
in combinatorial optimization.

5.5 Experiments and results

5.5.1 Experimental conditions

The algorithm is tested on all the hard DIMACS benchmark instances presented in Section
1.2.3. Concerning the upper bound of the “easy graphs” from Section 1.2.3.1, they can be
reached by Evo–Div in a short time.

5.5.1.1 Parameters

Parameter setting is not a particularly difficult task for Evo–Div—each parameter can be
assigned a suitable value only by following explicit theoretical guidelines. By searching
a perfect optimal value for each parameter, one could skew the results slightly more in
Evo–Div’s favor, but not enough to upset our main conclusions. We explain below how to
reach a suitable (but not perfect) setting with limited tunning effort:

– Major genetic parameters: (i) population size is |POP |=20, (ii) the number of par-
ents n is between 2 and 4, and (iii) target minimum spacing is R = 10%|V |. We
argued that the spacing strategy is intended for small population, and so, any pop-
ulation size between 10 and 30 could be used for reaching similar gloabal results.
Previous work always used n = 2 parents, but we showed how to automatically set
n according to instance specific information (i.e. the relation between k and |V |, see
Section 5.3.1). Recall that the minimum spacing R was set to 10%|V | using search
space motivations (Section 5.4.2.1).

– The local search number of iterations is set to maxIter = 100.000 and the internal
parameters are set to: α = 0.6, A = 10 and Mmax = 1000 following previous work
on Tabu Search (see also Section 5.2.2.1).

– Special case parameters : (i) maxRejections—the maximum number of rejected
offspring before resorting to mutations, and (ii) mutation strength. By using
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maxRejections = 50, we are sure to respect the principle of preserving diversity
without sacrificing quality because quality-deteriorating mutations are performed
very rarely (i.e. in less than 0.1% of generations for any instance). Recall that the
average number of rejected offspring per generation is normally between 0 and 3,
as also indicated by crossovers–generations

generations in Table 5.1. Only during the dispersion
phase, we divide maxRejections by 10 in order to perform mutations more quickly
to speed up leaving the current region. The mutation strength is set so as to perturb
R vertices, enough to produce a mutated coloring outside the R-sphere of the initial
coloring. Another guideline is to use a gradually-increasing strength—i.e. if the first
offspring produced via mutation is rejected, the next one perturbs 2R, and then 3R,
4R, etc (see also Section 5.4.2.2).

5.5.2 Standard general results with a time limit of 300 minutes

Graph (k∗) k Successes/Tries Generations Crossovers Time[min]
dsjc500.1 (12) 12 10/10 301 428 1
dsjc500.5 (48) 48 10/10 370 373 7
dsjc500.9 (126) 126 8/10 1987 2157 63
dsjc1000.1 (20) 20 10/10 1658 2454 29
dsjc1000.5 (83) 83 9/10 2148 2439 136
dsjc1000.9 (223) 223 2/10 2872 3296 245
dsjr500.1c (85) 85 9/10 562 4156 93
dsjr500.5 (122) 122 8/10 1028 2230 36
r250.5 (65) 65 9/10 3175 6423 48
r1000.1c (98) 98 10/10 593 2240 98
r1000.5 (234) 238 9/10 953 1785 99
le450.25c (25) 25 10/10 10029 14648 90
le450.25d (25) 25 10/10 5316 7115 45
flat300.28.0 (28) 31 10/10 46 50 0
flat1000.76.0 (82) 82 10/10 1646 1884 110
latin square (98) 100 1/10 585 973 42
C2000.5 (150a) 148 4/10 5051 8953 2148
C4000.5 (280b) 271 1/10 5960 29709 32142

Table 5.1: Detailed results of Evo–Div with a CPU time limit of 300 minutes on all hard
instances. The algorithm reaches most of the best known results with a very high success
rate (see Column 3)—the minimal value of k for which a solution was ever reported in the
literature (i.e. k∗) is given in Column 1, in parenthesis.

aFor this large graph, we used a time limit of 3 days; however, even 24 hours were enough for Evo-Div
to find a first solution.

bFor this exceptional large graph and for this very low k, we used a time limit of 30 days; however,
legal 272-colorings can be reached in less than 10 days.
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Table 5.1 presents the standard results of Evo–Div on the difficult instances with a time
limit of 300 minutes. Columns 1 and 2 denotes the instance, i.e. the graph and the number
of colors k. For each instance, this table reports the success rate over 10 independent runs
(Column 3), the average number of generations required to find a solution (Column 4),
the average number of crossovers (Column 5) and the average CPU time in minutes (last
column). The total number of local search iterations is in close relation with the number
of crossovers because the local search procedure (with maxIter = 100000) is applied once
after each crossover.

Although a time limit of 5 hours is not very high for graph coloring, Evo–Div finds
most of the best-known solutions from the literature—see also other algorithms in Table
5.3. If we consider the complete DIMACS benchmark from Section 1.2.3 (i.e. including
the easy instances), Evo–Div matches the previously best-known results for 43 graphs out
of 47 and it reaches a new coloring for (dsjc1000.9,k = 223). Only for 3 out of the 47
DIMACS instances, Evocol is below the best-known level—and one of these three upper
bound, (latin square, k = 98), can actually be reached with a different Evo–Div variants,
see Section 5.5.4 below.

We chose a time limit as the stopping condition because, in our case, machine-
independent indicators are less meaningful and they can be easily misinterpreted. For
example, a fixed limit on the number of generations would not take into account the
amount of computational overhead introduced by a varying number of offspring rejec-
tions and distance calculations. Furthermore, the theoretical complexity of a genera-
tion, crossover, or iteration can be different from algorithm to algorithm; the comparison
of such indicators could also be biased. Most recent algorithms [Malaguti et al., 2008;
Blöchliger and Zufferey, 2008; Hertz et al., 2008; Galinier et al., 2008]1 also use a time
stopping condition and the best results are typically reached withing 10 hours. Our re-
ported CPU times are obtained on a 2.8GHz Xeon processor using the C++ programming
language compiled with the -O2 optimization option (gcc version 4.1.2 under Linux).

5.5.2.1 Evidence of Evo–Div Speed and Search Space Extensive Coverage

While we consider the 300 minutes time limit as a standard, we also show results with
other time limits so as to better evaluate the algorithm. Table 5.2 presents the results
using a time limit of 30 minutes (Columns 2-6) and 12 hours, respectively (Columns 7-
11). The columns from this table have the same meaning as in the previous Table: the
interpretation of Columns 2-6 (and Columns 7-11, respectively) is the same as for Columns
2-6 in Table 5.1.

Some interesting conclusions can be drawn from Table 5.2. Evo–Div can still find
many best-known solutions within 30 minutes, which is very rapidly considering that the
currently used execution times for graph coloring are usually hours or even days. To our
knowledge, the smallest previous time limit (producing competitive results) is 1 hour for
two articles published in 2008, see the results in Tables 1-4 in [Blöchliger and Zufferey,
2008] and Tables 1-3 in [Hertz et al., 2008]. Evo–Div–30minutes finds many solutions not

1amacol check, mais plus important voir d’autres!!!
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Graph (k∗) Time limit: 30 minutes Time limit: 12 hours
k #hits #gen #cross min k #hits #gen #cross min

DSJC1000.1 (20) 20 7/10 1466 1667 23 20 10/10 1658 2454 29
DSJC1000.5 (83) 85 7/10 368 368 25 83 10/10 2943 3577 178
DSJC1000.9 (224) 225 1/10 298 304 28 223 3/10 4559 5252 400
DSJC500.1 (12) 12 10/10 301 428 1 12 10/10 301 428 1
DSJC500.5 (48) 48 10/10 370 373 7 48 10/10 370 373 7
DSJC500.9 (126) 126 2/10 453 514 15 126 10/10 3741 4319 125
DSJR500.1c (85) 85 1/10 107 739 16 85 10/10 792 5936 136
DSJR500.5 (122) 122 5/10 422 593 10 122 9/10a 1659 4087 68
flat1000.76.0 (82) 83 1/10 401 402 29 82 10/10 1646 1884 110
flat300.28.0 (28) 31 10/10 46 50 0 31 10/10 46 50 0
latin.square.10 (98) 102 1/10 342 545 24 100 3/10 4189 6717 315
le450.15c (15) 15 10/10 10 26 0 15 10/10 10 26 0
le450.15d (15) 15 10/10 10 33 0 15 10/10 10 33 0
le450.25c (25) 25 3/10 1660 1991 13 25 10/10 10029 14648 90
le450.25d (25) 25 4/10 1593 1926 13 25 10/10 5316 7115 45
r1000.1c (98) 98 4/10 149 311 13 98 10/10 593 2240 97
r1000.5 (234) 239 5/10 326 376 24 238 10/10 1661 2639 146
r250.5 (65) 65 6/10 650 1411 10 65 10/10 3961 10124 78

Table 5.2: Results of Evo–Div with two different time limits. In 30 minutes, Evo–Div still
finds solutions not reached by other algorithms in hours. On the long run (12 hours), the
diversity strategy assures a 100% success rates for many hard instances.

aFor this case, 15 hours were required to attain 10/10 success rate

reached by the algorithms from any of these tables: (DSJC1000.5, k = 85), (flat1000.76,
k = 83), (le450.25c, k = 25) and (le450.25d, k = 25). This first proves the effectiveness
of the crossover operator, as the diversity policy is less active in a short run—e.g. the
percentage of rejected offspring solutions (i.e. #cross−#gen

#gen ) is often very low.
The results on the long run (12 hours in Table 5.2) offer evidence that Evo–Div is

capable of search space extensive coverage. Conventional algorithms may have difficulties
in improving the performance by pushing the time limit beyond a certain threshold because
they fail to exhaustively cover the search space—they can get blocked on plateaus, loop
between certain areas, etc. By successfully solving such issues, our spacing policy can
make Evo–Div reach 100% success rates if enough time is allowed.

One should be aware that the following rule is generally satisfied: if Evo–Div is ca-
pable to solve an instance, it solves it systematically. There are only two exceptions: (i)
DSJC1000.9, which has been rarely solved with 223 colors (and it poses rather intensi-
fication challenges, see Section 5.5.4 below), and (ii) latin square, one of the only three
Evo–Div “weak points”. However, we are convinced that these “weak points” are not due
to evolutionary diversity failures, but certain graphs require insisting on other points: (i)
solving flat300.28 with k = 28 would need an intensification-oriented approach [Porum-
bel et al., 2010] or an encodings based on partial solutions [Blöchliger and Zufferey, 2008;
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Hertz et al., 2008], (ii) R1000.5 could be solved with k = 234 only with column genera-
tion [Malaguti et al., 2008] or other exact techniques [Prestwich, 2002], (iii) latin square
could be solved with k = 98 using special distributed Metropolis algorithms [Morgen-
stern, 1996]—however, see below that this graph can also be solved by a different Evo–Div
version with a more generous time limit.

5.5.3 Comparison with state-of-the-art algorithms

Graph χ/k∗ Evo–Div Local Search Algorithmsa Hybrid Algorithmsa

k (#hits) ILS VNS PCol VSS DCNS HGA HEA AmaCol MMT MCOL
2009 2002 2003 2008 2008 1996 1996 1999 2008 2008

5 hours 1.6h 3h 10h 10h >24h >24h ≈3h ≈3h ≈10h
dsjc500.1 ?/12 12 (10/10) 12 — 12 12 — — — 12 12 12
dsjc500.5 ?/48 48 (10/10) 49 49 48 48 49 49 48 48 48 48
dsjc500.9 ?/126 126 ( 8/10) 126 — 126 126 — — — 126 127 126
dsjc1000.1 ?/20 20 (10/10) — — 20 20 — — 20 20 20 20
dsjc1000.5 ?/83 83 ( 9/10) 89 90 88 87 89 84 83 84 83 83
dsjc1000.9 ?/224 [223] 223 ( 2/10) — — 225 224 226 — 224 224 225 223
dsjr500.1c 84/85 85 ( 9/10) — — 85 85 85 85 — 86 85 85
dsjr500.5 122/122 122 ( 8/10) 124 — 126 125 123 130 — 125 122 122
r250.5 65/65 65 ( 9/10) — — 66 — 65 69 — — 65 65
r1000.1c 98/98 98 (10/10) — — 98 — 98 99 — — 98 98
r1000.5 234/234 238/237b ( 9/10) — — 248 — 241 268 — — 234 245
le450.25c 25/25 25 (10/10) 26 — 25 26 25 25 26 26 25 25
le450.25d 25/25 25 (10/10) 26 — 25 26 25 25 — 26 25 25
flat300.28 28/28 31/29b (10/10) 31 31 28 28 31 33 31 31 31 29
flat1000.76 76/82 82 (10/10) — 89 88 86 89 84 83 84 82 82
latin square ?/98 100/98b ( 1/10) 99 — — — 98 106 — 104 101 99
C2000.5 ?/150[148c] 148 (4/10) — — — — 150 153 — — — 148
C4000.5 ?/280[272c] 271 (1/10) — — — — — 280 — — — 272

Table 5.3: Best colorings reached by Evo–Div within 5 hours and results of the best
performing coloring algorithms from the literature. The colorings of Evo–Div are publicly
available at http://www.info.univ-angers.fr/pub/porumbel/graphs/evodiv/

aThe acronyms of the algorithms can be found in Section 1.2.4, p. 18.
bNotice that the number of colors can be reduced for these graphs by using different Evo–Div versions,

i.e. (R1000.5,k=237) was solved with a crossover that works only with independent sets; (flat300.28, k = 29)
and (latin square, k = 98) were solved using a longer TS chain, see Section 5.5.4.

cFor the large graphs C2000.5 and C4000.5, we used a time limit of 3 and 30 days, respectively. Notice
that the upper bounds in brackets are reported independently very recently (when this document was more
than half written) in [Lü and Hao, 2010].

Table 5.3 compares Evo–Div (Column 3, reproducing Columns 2–3 from Table 5.1)
with the best ten algorithms from the literature (Columns 4–13). For most instances,
Evo–Div reaches very high success rates within a quite short time limit—the fifth line
of Table 5.3 also shows the maximum time needed by other algorithms to reach certain
solutions. For each algorithm, we also provide the publication year in Row 4 so as to have
a rough idea of the computer generation that was used—very recent in half of the cases.

In principle, we use a unique Evo–Div version with a fixed setting of the parameters
and with a rather short time limit. Only the very large graphs C2000.5 et C4000.5 require
much more than 300 minutes but they are an exception and all known algorithms use time
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limits of days or weeks. The three upper bounds reached with different Evo-Div versions
are clearly indicated. One should be aware that most individual columns from Table 5.3
actually summarize the best results of several algorithms or, at least, of several versions
of the same algorithm.

5.5.4 Influence of diversity, crossover, and evaluation function

The goal of this section is to show the practical relevance of the most important ideas
exploited by Evo–Div. The algorithm could still obtain good performance if one excludes
certain components. For example, if one uses a less diversifying crossover, this weakness
can be partially covered by the spacing strategy. For this reason, not all test instances
are very sensitive to changes of theoretical design. However, we chose ten representative
instances, showing the most important performance variation, and we test several Evo–Div
versions on them.

Graph (k∗) k Evo–Div No-Div Basic-Cross R-5% R-20% No-f̃eval
#hits Min #hits Min #hits Min #hits Min #hits Min #hits Min

DSJC1000.1 (20) 20 10/10 29 0/10 – 4/10 211 9/10 37 10/10 31 10/10 26
DSJC1000.5 (83) 83 9/10 136 0/10 – 6/10 246 8/10 80 10/10 132 9/10 99
DSJC1000.9 (224) 223 2/10 245 1/10 110 2/10 220 2/10 183 0/10 – 0/10 –
DSJR500.1c (85) 85 9/10 93 0/10 – 10/10 55 0/10 – 10/10 21 3/10 76
DSJR500.5 (122) 122 8/10 36 1/10 4 10/10 25 1/10 4 7/10 65 2/10 108
flat1000.76.0 (82) 82 10/10 110 2/10 90 7/10 236 8/10 99 7/10 159 7/10 84
latinsquare (98) 100 1/10 42 0/10 – 0/10 – 0/10 – 0/10 – 1/10 211
le450.25c (25) 25 10/10 90 0/10 – 0/10 – 2/10 107 10/10 62 9/10 89
le450.25d (25) 25 10/10 45 1/10 42 0/10 – 1/10 16 10/10 86 10/10 87
r1000.5 (234) 238 9/10 99 1/10 19 1/10 250 2/10 27 6/10 76 0/10 –

Table 5.4: Comparison of the standard Evo–Div with five different versions obtained by
excluding certain components. For each of these versions, we provide both the success rate
(columns “#hits”) and the time in minutes (columns “Min”). This experiment confirms
many theoretical considerations presented throughout the paper.

Table 5.4 shows the success rate and the solving time obtained using Evo–Div and five
other algorithm versions obtained by disabling certain components, as described below.
The time limit is always 300 minutes, the processor and the machine are identical and
the code source is also the same—except the lines that enable or disable a component.
These results confirm our theoretical considerations on the components corresponding to
the following Evo–Div versions:

1. No-Div (Columns 5 and 6): Evo–Div with no diversity strategy—i.e. all offspring is
accepted and the worst individual is eliminated at the replacement stage. Comparing
with Evo–Div (Columns 3 and 4), No-Div performs significantly worse. Even if it is
still able to find some solutions, the stable success rates of Evo–Div are lost because
diversity is no longer present;

89



Chapter 5. Diversity Control and Grouping Recombination in the Evolutionary Approach

2. Basic-Cross (Columns 7 and 8 ): Evo–Div with a crossover similar with the Greedy
Partition Crossover [Galinier and Hao, 1999] (see also Section 5.3.2). Although
Basic-Cross is able to eventually find 70% of the solutions reached with Evo-Div,
importantly, Basic-Cross is much slower. Even by ignoring the failed 30% instances,
Basic-Cross requires ten times more computing time (see DSJC1000.1) and this is
the reason why it obtains low success rates. On the other hand, this crossover is still
efficient for a difficult instance like (DSJC1000.9,k = 223);

3. R-5% (Columns 9 and 10): Evo–Div with a fixed target minimum spacing R′ =
5%|V |. The standard Evo–Div obtains systematically better results than this ver-
sion. This confirms Section 5.4.2.1 where it is recommended to keep a distance of
R = 10%|V | between any two individuals;

4. R-20% (Columns 11 and 12): Evo–Div with a fixed taget minimum spacing R′′ =
20%|V |. On half of the instances, this version fails or obtains low success rates.
The results are quite good because R′′ > R, and so, there is no lack of diversity
in R-20%. On the other hand, there is too much diversification and not enough
intensification. For example, it fails on (DSJC1000.9,k = 223), an instance that
needs more intensification as it was solved even by No-Div. This confirms once
again our recommendations of an optimum target minimum spacing of R = 10%|V |;

5. No-f̃eval (Columns 13 and 14): Evo–Div without the degree-based evaluation func-
tion f̃eval in local search (see Section 5.2.2.1). The positive effect of the new function
f̃eval is more visible on graphs with high degree variation—especially the geometrical
graphs (rX.Y and DSJRX.Y) in which the maximum degree can be with an order
of magnitude higher than the minimum degree. It is normal that the degree-based
differentiation of f̃eval is less visible for graphs in which the degrees are more ho-
mogeneous (Leighton graphs, most of the random graphs). Note that f̃eval has a
positive influence on (DSJC1000.9,k = 223) as this graph has very high degrees.
However, except this instance and the geometrical graphs, Evo–Div is still able to
reach similar results with the classical evaluation function .

Finally, it is worth mentioning another two simple variants of Evo–Div that are able to
improve the results on certain graphs. We have also tested Evo–Div with a longer TS chain
(maxIter = 10.000.000). By only changing this parameter, Evo–Div solved (flat300.28,
k = 30) with 5/10 success rate within 5 hours, and it even reached one solution for the
same graph using k = 29 colors; it also solves (latin square, k = 98) within 7.5 hours (by
allowing a larger time limit of 24 hours, the success rate is more than 1/10). Furthermore,
a version of our crossover working exclusively with independent sets leads to improved
behaviour on some particular geometrical graphs. Using this crossover, Evo–Div reduced
the solving time to seconds for the (dsjr500.5,k = 85) instance, and it also managed to
color the very difficult r1000.5 graph with k = 237 colors.
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5.6 Conclusions of the chapter

We described a new evolutionary hybrid algorithm (Evo–Div) that distinguishes itself by
using a population spacing strategy that can both preserve and create diversity. We employ
a Well-Informed Partition Crossover (WIPX) that exploits a large amount of information
to choose the color classes used to construct offspring. We showed evidence that WIPX
is able to help the population to quickly converge to solutions. On the other hand, the
spacing strategy enables the population to successfully avoid premature convergence; by
using many mechanisms to create diversity, it helps the search process to cover a very
large area of the search space. Experiments show that the spacing strategy makes the
memetic algorithm reach 100% success rate by using enough time.

The global results on all 47 DIMACS graphs (see also Section 5.5.3) are encouraging.
Evo–Div finds almost all known best colorings and it reaches two upper bounds not known
before this thesis: (dsjc1000.9, k = 223) and (C4000.4, k = 271). It might be interesting
to notice that the legal coloring for (latin square, k = 98) was re-discovered for the first
time in almost 15 years [Morgenstern, 1996]. In fact, Evo-Div reaches all best-known
results except for two graphs (r1000.5 and flat300.28).

This shows the effectiveness of the memetic approach introduced in previous work
(e.g. [Galinier and Hao, 1999; Malaguti et al., 2008; Lü and Hao, 2010]), but also the
contributions of Evo—Div in terms of diversity and crossover design. Although a detailed
comparison goes beyond the purpose of this chapter, notice that (dsjc1000.9, k = 223)
is only solved with TS-Div/Int (see Chapter 4), a method using in fact two algorithms
with a total time limit of up to 100 hours [Porumbel et al., 2010]. We also mention that
this solution is also reported by a memetic algorithm (MemCol) that was independently
developed by [Lü and Hao, 2010] and accepted for publication very recently. Even these
new excellent results do not actually find any lower numbers of k compared to Evo–Div.
While MemCol uses a similar time limit, it seems capable of visiting nearly 3 times more
configurations for the same time period (the speed indicator “iterations per minute” of
MemCol is 2-3 higher for certain large graphs like dsjc1000.9).

Finally, the spacing strategy is general enough to be used for other combinatorial
optimization problems. The rejection mechanism is based only on calculating the minimum
distance from the offspring to the population; the replacement operator does not need
problem-specific operations (see Algorithm 5.3). To implement our memetic algorithm
with diversity guarantee (see Algorithm 5.1), one only needs: a search space, a fitness
function and a distance measure between individuals.
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Chapter 6

Partition Distance: Graph
Coloring Interpretation and Fast
Calculation

In this chapter, we present in greater detail the partition distance and a
fast computation method. A coloring is a particular case of a partition,
and so, the partition distance has often been used for graph coloring. How-
ever, this distance has a far more general applicability than comparing
colorings—partition distance algorithms are often employed in very diverse
areas related to partitioning problems, e.g. clustering or image segmenta-
tion. We present a new exact algorithm for computing this distance and we
discuss its applicability in different situations. If any of several conditions
is met, the new algorithm is with an order of magnitude faster than the
currently used method—i.e. straightforward reduction to the assignment
problem solved via the Hungarian algorithm. The chapter is based on an
article submitted in August, 2008 [Porumbel et al., 2008].
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6.1 Introduction

Let us denote by S a set and let k be a non-negative integer.1 A k-partition of S (cor-
responding to a k-coloring of vertex set V ) is a splitting of S into k non-overlapping
classes (clusters, parts, blocks or cells) that cover all elements of S. Numerous practical
applications dealing with data partitioning or clustering require computing the distance
between two partitions. Previous articles proved that one can compute it in polynomial
time—minimum O(|S| + k2) and maximum O(|S| + k3)—using a reduction to the linear
assignment problem.

We propose several conditions for which the partition distance can be computed in
O(|S|) time. In practical terms, this computation can be done in O(|S|) time for any
two relatively resembling partitions—i.e. any distance of less than |S|

5 can be computed
in O(|S|), except certain specially constructed cases. In addition, the algorithm can also
be used to identify the maximal set of classes such that the similarity restricted to these
classes is higher than a specific threshold.

6.1.1 Context and related studies

Given two k−partitions P1 and P2, the partition distance between P1 and P2 is defined
as the minimum number of elements that need to be moved between classes of P1 so that
the resulting partition equals P2. The similarity is defined as the maximum number of
elements that do not require to be moved in order to obtain two equal partitions. We
assume no restriction on the cardinality of a class: it can be empty and it can also be
equal to S.

This definition of partition distance was first stated in 1965 by Régnier [Régnier, 1983]
and the currently used computation methodology was presented by Day in 1981 [Day,
1981]. The method transforms the distance problem into the linear assignment problem
on a k×k matrix. Solving the linear assignment problem by classical algorithms is known
to take O(k2) time in the best case and up to O(k3) time in the worst case (i.e. with
the Hungarian algorithm [Kühn, 1955]). A complete description of this methodology
is available [Gusfield, 2002] and it is used by all recent studies ([Charon et al., 2006;
da Costa and Rao, 2004; Cardoso and Corte-Real, 2005; Konovalov et al., 2005; Denœud
and Guenoche, 2006; Talbi and Weinberg, 2007]) dealing with partition distances.

The Hungarian algorithm was a landmark result as it solved the assignment problem
in polynomial time. Since the input data of this problem contains a k × k matrix, no
algorithm can solve in less than O(k2) time. As such, the Hungarian method performs
many other O(k2) operations without worsening its general complexity. In this thesis, the
input data has only O(|S|) elements (i.e. the two partitions) and one works with a similar

1For consistency with the set theory terminology, we denote the set by S, but it corresponds to V in
the other chapters of the thesis.
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matrix in which only |S| elements (at maximum) are non zero. We believe that the best
approach to compute the partition distance is not to straightforwardly apply the general
Hungarian algorithm, mainly because one works with a sparse matrix. Algorithms for
solving the assignment problem for sparse matrices are available [Carpaneto and Toth,
1983], but the possibility of reducing the complexity bellow O(k2) was not considered.

From a theoretical viewpoint, the partition distance satisfies several interesting prop-
erties. For instance, it is known that the partition distance constitutes a metric in the
space of partitions [Cardoso and Corte-Real, 2005]. More in-depth studies [Charon et
al., 2006] show that, although the distance ranges from 0 to |S|, it can never reach
|S| − 1 and more precise upper bounds are provided (e.g. |S| −

⌈
|S|
k

⌉
). A compari-

son between the distance function and other similar measures for partitions (e.g. the
Rand index commonly used for comparing two data clusterings) is available [Denœud
and Guenoche, 2006], showing the distribution of several indexes between close par-
titions. The distribution of the distances between random partitions is also studied,
showing how one can interpret the value of a distance [Denœud, 2008]. Generaliza-
tions of this distance measure are also available in the literature [Berman et al., 2007;
Berger-Wolf et al., 2007].

This last study [Denœud, 2008] could be particularly useful for graph coloring because
it empirically observes that the average distance between two random partitions is in
the region 65%|S|–75%|S| for |S| = 100 [Denœud, 2008, Table 1]. This gives important
information on how to interpret distance values between colorings, i.e. a direct consequence
is that two colorings distanced by 50%|V | can not be considered “very far”. Furthermore,
the radius R = 10%|V | used to define the spheres in several of the developed heuristics
represent indeed a “very small” value.

6.1.2 Why a new algorithm?

The algorithm introduced in this chapter computes the distance in O(|S|) steps if any of
several conditions is satisfied, e.g. if each class in P1 shares with a class of P2 at least
half of the elements in each class. In addition, we show that the algorithm can be very
useful in practice to compute almost any small distance. For illustration purposes, we
also discuss experiments on a graph coloring algorithm that computes billions of small
distances (less than |S|5 ). The algorithm encounters very few distances (several hundreds
per billion) that, although very small (less than |S|5 ), require more than O(|S|) steps.

The proposed algorithm can be used in numerous other applications concerned with
close partitions, as for example those comparing a reference partition (a ”gold standard”)
with a partition determined by an algorithm. A classical example is image segmenta-
tion, where a segmentation partition can be evaluated according to its distance from
a correct/ideal segmentation [Cardoso and Corte-Real, 2005]. In biology, the distance
is used to appreciate the difference (error) between a known partition of a population
(a family structure) and a reconstruction based on genetic data [Konovalov et al., 2005;
Berger-Wolf et al., 2007]. In clustering, one often obtains different partitions with different
clustering algorithms and needs to find a consensus between them. To do this, one deter-
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mines a central partition, i.e. a partition that minimizes the average distance to all other
partitions [da Costa and Rao, 2004; Berman et al., 2007]. If there is no much disagreement
between the clustering algorithms, the partitions they produce will be sufficiently similar
to be handled by the algorithm proposed in this chapter. Partition distances have been
used in numerous other articles but we only touch on the most related publications in this
chapter.

In the next section, we give a set of basic definitions. Section 6.3 discusses the con-
ditions required for determining the distance in O(|S|) steps. Section 6.4 extends the
application of the proposed algorithm when some of these conditions are only partially
satisfied. Section 6.5 discusses the application of the algorithm to graph colorings, which
is followed by conclusions.

6.2 Distance definition

A k−partition P of a finite set S = {1, 2, . . . , |S|} is a function P : S → {1, 2, . . . , k}.
It can also be defined as a set of classes {P 1, P 2, . . . , P k} such that

⋃
1≤i≤k P

i = S and
P i ∩ P j = ∅, for all i, j ∈ {1, 2, . . . , k},i 6= j. The two definitions are equivalent since
P i = {x ∈ S|P (x) = i}; P (x) identifies the number of the class of element x, and so,
x ∈ PP (x) for all x ∈ S. If the P function is not surjective, some classes of the partition
need to be empty.

Given two k−partitions P1 and P2 of S, we denote by d(P1, P2) the distance between
P1 and P2, i.e. the minimum number of elements that need to be moved between classes
of P1 so that the resulting partition becomes equal with P2. The similarity s(P1, P2) is
a complementary measure of the distance denoting the maximum number of elements of
P1 that do not need to be moved in order to obtain equal partitions. The two measures
satisfy the following equation:

s(P1, P2) + d(P1, P2) = |S|. (6.1)

Alternatively, the distance can also be interpreted as the minimum number of elements
one needs to erase from S such that the two partitions restricted to the set of remaining
elements of S (denoted by S′) are equal [Gusfield, 2002]. S′ represents a set of elements
that are shared by the two partitions and thus |S′| = s(P1, P2).

To calculate the similarity |S′|, one needs to find the one-to-one correspondence σ :
{1, 2, . . . , k} → {1, 2, . . . , k} (assignment) maximizing the sum:

s(P1, P2) = max
σ

 ∑
1≤i≤k

Ti,σ(i)

 , (6.2)

where T is the k × k similarity matrix T (P1, P2) with elements:

Tij = |P i1 ∩ P
j
2 | (6.3)

To determine the maximum of the sum in formula (6.2), one can solve a classical
assignment problem. Indeed, most papers [Day, 1981; Gusfield, 2002; Charon et al., 2006;
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Konovalov et al., 2005] suggest to apply on matrix T a classical Hungarian algorithm of
time complexity between O(k2) and O(k3) [Kühn, 1955].

Normalized similarity and normalized distance Very often, it is useful to use the
normalized values of the similarity and the distance: sP1,P2 = s(P1,P2)

|S| and dP1,P2 = d(P1,P2)
|S| .

These values represent a better indicator of the proportion of elements shared by two
partitions, sP1,P2 , or that require to be moved, dP1,P2 . Clearly, the following formula holds
for any S, P1 and P2: dP1,P2 + sP1,P2 = 1.

Note that since the distance is always strictly less than |S|, one can also normalize
it with respect to other values, for example the maximum distance [Charon et al., 2006].
However, the simple normalization above suffices for the purpose of this thesis.

classes:    1                 2           3 

P1: |1 2 3 4    | 5 6 7 | 8 9|

P2: |1 2 3 4 8 | 5 9    | 6 7| 
=>

           T(Sim. Mat.)   

        4     0     0
        0     1     2
        1     1     0
         

U

=> Similarity = 7
Distance = |S| - 7 = 2

=> Move 8 and 5 in P2=> : |1 2 3 4    | 8 9 | 5 6 7| = P1

Figure 6.1: An example of distance computation

Figure 6.1 above illustrates the process of distance calculation. There are two
3−partitions P1 and P2 of set S = {1, 2, . . . , 9} such that: P 1

1 = {1, 2, 3, 4}, P 2
1 = {5, 6, 7},

and P 3
1 = {8, 9} denote the first partion, and P 1

2 = {1, 2, 3, 4, 8}, P 2
2 = {5, 9} and

P 3
2 = {6, 7} denote the second. The similarity matrix T is computed with formula (6.3);

the best assignment σ̄, that maximizes the sum in formula (6.2), is defined by σ̄(1) = 1,
σ̄(2) = 3 and σ̄(3) = 2. We obtain s(P1, P2) = T11 +T23 +T32 = 4 + 2 + 1 = 7, and so, the
distance is d(P1, P2) = |S| − s(P1, P2) = 2 (the normalized value is dP1,P2 = 2

9 = 22%|S|).
Indeed, if one changes the class of 2 elements (e.g. 8 and 5 in P2), one partition is trans-
formed into the other.

6.3 Distance computation

In this section, we describe the new O(|S|) time algorithm and the necessary conditions for
calculating the similarity—and implicitly the distance via (6.1)—of two given partitions
P1 and P2 of a set S. The algorithm has two major steps: (i) construct the similarity
matrix T (P1, P2), and (ii) find the best σ̄ in formula (6.2).

6.3.1 Similarity matrix T in O(|S|) time

Our algorithm works on a k × k similarity matrix T , but only uses the following |S|
elements (at maximum): Tij = TP1(x),P2(x), where x ∈ S. In fact, we know that all other
elements of T are zero without calculating them—see formula 6.3—but such elements are
not “touched”. This construction step of T can be done in O(|S|) time in three steps, as
follows. First, one allocates memory for T (without any initialization); this requires O(1)

96



6.3 Distance computation

time because the allocation can be done at a block level, see below. In the second step,
one goes through each x ∈ S and initializes TP1(x),P2(x) = 0—in O(|S|) time. Finally, one
goes through again each x ∈ S by incrementing TP1(x),P2(x) := TP1(x),P2(x) +1—O(|S|) time
again. In fact, the matrix structure is only used for indexing reasons, to quickly address
the positions TP1(x),P2(x) with x ∈ S.

From now on, the values at positions TP1(x),P2(x) with x ∈ S will be called relevant.
The rest of the elements of T are considered irrelevant because the algorithm never needs
them, neither for reading nor for writing.

The memory allocation of T should be done by finding a memory block of k2 integers,
but without initializing any value. Such allocations are usually done at a block level, and
there is no theoretical requirement to perform a byte by byte checking on the k2 block.
We used the instruction malloc(k2· sizeof(int)) that basically searches the list of free
RAM blocks (chunks) to find one that is larger than the specified number of bytes—i.e.
k2· sizeof(int). In this manner, the time complexity of this operation depends on the
fragmentation of the RAM memory, but not on the number of bytes to be allocated.2

6.3.2 Maximal assignment in O(|S|) steps

This section discusses several conditions that enable our algorithm to compute the parti-
tion distance in O(|S|) steps. We always consider that the input consists of an integer |S|
(such that, implicitly, S is {1, 2, . . . |S|}) and two vectors of integers denoting P1(x) and
P2(x) for all x ∈ S. These two vectors can take values between 1 and k. We make use
of the similarity matrix T from the previous section and the objective is to find a maxi-
mal assignment σ̄, i.e. a bijective function σ̄ maximizing the sum

∑
1≤i≤k Ti,σ(i) in formula

(6.2). For each of the presented conditions, the computation method is a Las Vegas O(|S|)
algorithm—it computes the distance or informs about the failure if the condition is not
satisfied. In other words, the wasted time testing any condition is O(|S|); it does not
increase the total time complexity of a more general algorithm (i.e. Hungarian method)
that could be needed afterward.

Theorem 6.1. If for all i ∈ {1, 2, . . . , k}, there exists j ∈ {1, 2, . . . , k} such that Tij >
Tij1 and Tij > Ti1j, for all j1 6= j, i1 6= i, then the partition distance can be determined in
O(|S|) time.

Proof. In a first step, it is possible to compute in O(|S|) the relevant elements of T (see
Section 6.3.1) and also Tiσ̄(i), the unique maximum element of each row i. To determine
these row-maximums, one goes only through the O(|S|) relevant elements T and performs
the following instruction: if Tij is greater than the current maximum on row i (initially,
this maximum is zero), the current maximum is updated to Tij .

Since Tiσ̄(i) is a strict maximum on row i, any other mapping σ : S → S would lead
to a lower sum

∑
1≤i≤k Ti,σ(i). Checking that σ̄ is bijective follows from the fact that if

σ̄(i) = σ̄(i′) = j, then both Tij and Ti′j represent the unique maximum of column j, and
so, i and i′ need to be the same.

2The interested reader can check a description of a malloc implementation—one of the most popular
is Doug Lea’s Malloc, see “A memory allocator” by Doug Lea.
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The inequalities in the conditions from this theorem need to be strict, because other-

wise one can not determine a bijective σ̄, e.g. if T =
[

2 1
2 1

]
. The case solved by this

theorem can be seen as a dual of a specific Hungarian algorithm case in which the first
step uncovers k mutually independent zeros (i.e. not lying in the same row or column).
However, we compute the partition distance without converting the problem to a mini-
mization problem (the Hungarian algorithm solves minimization problems) and without
performing the O(k × k) row/column reductions needed by the Hungarian algorithm.

A similar condition could be expressed without mentioning the matrix T .

Corollary 6.2. If for all i ∈ {1, 2, . . . , k}, there exists j ∈ {1, 2, . . . , k} such that |P i1 ∩
P j2 | >

|P i
1|

2 and |P i1 ∩ P
j
2 | >

|P j
2 |
2 , then the partition distance can be determined in O(|S|)

time.

Proof. The given hypothesis conditions represent a particular case of the conditions in
Theorem 6.1. From (6.3), we have

∑
1≤`≤k Ti` =

∑
1≤`≤k |P i1∩P `2 |. Since all P `2 are disjoint

and their union is S,
∑

1≤`≤k |P i1∩P `2 | = |P i1∩S| = |P i1|. Therefore, for all i ∈ {1, 2, . . . k},
we have ∑

1≤`≤k
Ti` = |P i1|. (6.4)

By similar reasoning, we can conclude that:∑
1≤`≤k

T`j = |P j2 |. (6.5)

Using the hypothesis conditions, it follows that Tij > Tij1 and Tij > Ti1j , for all j1 6=
j, i1 6= i and the proof can be finished by using Theorem 6.1.

The main practical drawback of the conditions of this Corollary and of Theorem 6.1 is
that, if there is a single row i on which they are not satisfied, the rest of the construction
can not be used for determining the best assignment. The next theorem overcomes this
issue and moreover, it can not be related to a dual of a step of the Hungarian algorithm.
We show how one can determine the best assignment i σ̄→ j on a row i by looking only
at the elements on row i and column j—recall that the Hungarian algorithm returns only
complete solutions and it takes no such intermediate (early) decisions on particular rows
or columns.

Theorem 6.3. If for row i ∈ {1, 2, . . . , k} there exists column j ∈ {1, 2, . . . , k} such that
Tij ≥ Tij1 + Ti1j for all j1 6= j, i1 6= i, there exists a maximal assignment σ̄ such that
σ̄(i) = j. If the number of rows i not satisfying this condition is bounded (i.e. less than
3
√
|S|), the partition distance can be determined in O(|S|) time.

Proof. Following a very similar algorithm to the one in Theorem 6.1, one can determine
matrix T and also the maximum value on each row and on each column. By going
through the O(|S|) relevant elements once again, one marks all maximum elements that
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are discovered on each row. Since only a marked row-maximum Tij can satisfy Tij ≥
Tij1 + Ti1j for all j1 6= j, i1 6= i, the algorithm just needs to check for each row-maximum
Tij that it is greater than Ti,− + T−,j , where Ti,− and T−,j are the second maximum values
in row i and column j, respectively. We consider that Ti,− = Tij if and only if row i has
at least two maximum value elements. Furthermore, determining the second maximum
value of a row (or column, respectively) is very similar to determining the first maximum.
Thus, the hypothesis condition can be checked for all rows in O(|S|) time.

Let Tij be an element marked by the above O(|S|) procedure, such that Tij ≥ Tij1 +
Ti1j for all j1 6= j, i1 6= i. We need to show one can construct an maximum assignment
by mapping i to j. Let σ be a maximal assignment. If σ(i) = j, then σ constitutes the
searched assignment. Otherwise, let j1 = σ(i) and i1 = σ−1(j). Using the hypothesis
condition, one obtains:

Tij + Ti1j1 ≥ Ti1j + Tij1 = Ti1σ(i1) + Tiσ(i) (6.6)

By composing the transposition permutation (i, i1) with σ, one obtains a new bijective
mapping σ̄ that differs from σ only on positions i and i1, such that the values on these
positions are switched, i.e. σ̄(i) = j and σ̄(i1) = j1. The difference of value between
assignments σ̄ and σ (see (6.2)) is Tij + Ti1j1 − (Ti1j + Tij1) ≥ 0. Using (6.6), σ̄ also needs
to be a maximal assignment.

To summarize, an algorithm could establish a partial best assignment on all rows i that
satisfy the hypothesis condition, regardless of the rows that do not satisfy this condition.
This assignment on these rows is determined by mapping row i to a column j satisfying
Tij ≥ Tij1 + Ti1j for all j1 6= j, i1 6= i. If there are two rows i1 and i2 pointing to the same
j, one can map i1 to j and i2 needs to be mapped to any other value on row i2 (because
all these values need to be zero).

The rest of the assignment can be constructed by applying the Hungarian algorithm
on the remaining rows and columns. Under the given hypothesis condition, the number of
unassigned σ̄ elements is k′ =

⌊
3
√
|S|
⌋

in the worst case. To complete the assignment, one
first marks the k′ unassigned rows and the k′ unassigned columns. A new k′ × k′ matrix
is also allocated and initialized to zero in less than O(|S|). Then, one goes through the
relevant elements of T and copies into a new k′ × k′ matrix all elements situated at the
intersection of a marked row and column. Finally, the Hungarian algorithm determines
the maximum assignment value on this restricted matrix using maximum O(k′3) ≤ O(|S|)
operations, resulting in a total time complexity of O(|S|) for the whole algorithm.

A similar condition could be expressed without mentioning the matrix T , in a simpler
manner.

Corollary 6.4. If for all i ∈ {1, 2, . . . , k}, there exists j ∈ {1, 2, . . . , k} such that |P i1 ∩
P j2 | ≥

|P i
1∪P

j
2 |

2 , then the partition distance can be computed in O(|S|) steps.

Proof. This proposition follows from equations (6.4) and (6.5) as it becomes a particular
case of Theorem 6.3. However, this corollary also has the advantage that it is very easy
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to implement because |P i1 ∪ P
j
2 | = |P i1|+ |P

j
2 | − |P i1 ∩ P

j
2 | and |P i1| and |P j2 | can be easily

determined.

Regarding the most general proofs of this section, note that Theorem 6.1 and Theorem

6.3 do not result one from another. For example, if T =
[

3 2
2 3

]
, only Theorem 6.1 can

be used; if T =
[

2 2
0 2

]
, one should use Theorem 6.3. In the next section, we show how

Theorem 6.3 and Corollary 6.4 can also be used in practice to construct only a part of the
solution.

6.4 Extensions

In case the hypothesis conditions of Theorem 6.3 or Corollary 6.4 only hold for a restricted
set of rows i ∈ {1, 2, . . . , k}, we can still perform important time complexity reductions.
First, let us prove the following proposition:

|P i1 ∩ P
j
2 | ≤

|P i1 ∪ P
j
2 |

2
for all i, j ∈ {1, 2, . . . , k} =⇒ s(P1, P2) ≤ 2

3
|S|. (6.7)

Proof. Let σ̄′ be a maximal assignment and j = σ̄′(i), where i is any row. One can write

Tij ≤
|P i

1∪P
j
2 |

2 as Tij ≤
|P i

1|+|P
j
2 |−|P i

1∩P
j
2 |

2 , or 3Tij ≤ |P i1| + |P
j
2 |. Making the sum over all

rows i, one obtains 3
∑

1≤i≤k Tiσ̄′(i) ≤
∑

1≤i≤k |P i1| +
∑

1≤j≤k |P
j
2 | = 2|S|, which proves

(6.7).

We use the conditions of Corollary 6.4 only for a greater readability, but the same result
could be derived for the conditions of Theorem 6.3, i.e. if Tij < Tij1 + Ti1j for all j1 6=
j, i1 6= i, then |P i1 ∩ P

j
2 | ≤

|P i
1∪P

j
2 |

2 is also satisfied—see (6.4) and (6.5).
Now, we present the actual reduction of the s(P1, P2) computation into smaller pieces.

We divide S into two subsets A and B such that only the computation on B requires an
algorithm of higher complexity. Let us denote by I the set of elements i for which there is

ji ∈ {1, 2, . . . , k} such that |P i1 ∩ P
ji
2 | >

|P i
1∪P

ji
2 |

2 . We write J = {j ∈ S| there exists i ∈ I
s.t.j = ji} and let

A =
⋃
i∈I

P i1 ∪ P
ji
2 (6.8)

and B = S − A. Using A in the reasoning of Theorem 6.4 or 6.3, one finds there exists a
maximal assignment σ̄ satisfying σ̄(i) = ji, for all i ∈ I. Since J is the image of I through
the bijective σ̄, then {1, 2, . . . , k} − J is the image of {1, 2, . . . , k} − I. The rest of σ̄ can
be constructed only using rows and columns from these two sets, which contain values
generated only by classes of B (i.e. subsets P i1, P

j
2 ⊆ B).

Writing s(P1, P2)|X the similarity between partitions P1 and P2 restricted to setX ⊂ S,
we obtain s(P1, P2) = s(P1, P2)|A + s(P1, P2)|B. Since no confusion arises, we can simply

100



6.5 A graph coloring case study

write: |S| × sP1,P2 = |A| × sP1,P2 |A + |B| × sP1,P2 |B and we can even omit the index P1,P2 :

sS =
|A|
|S|

sA +
|B|
|S|

sB,

where sX is the normalized similarity between P1 and P2 restricted to set X.
The sets A and B can be directly determined from set I using (6.8) and I can be

determined in O(|S|) time, following the reasoning of Theorem 6.3. Furthermore, sA can
be determined in O(|A|) < O(|S|) as explained in Section 6.3.2; sB can be determined
in maximum O((k − |I|)3) using the Hungarian algorithm. To summarize, the total time
complexity of computing the similarity this way is O(|S|) + O((k − |I|)3) at maximum.

Using (6.7), we obtain sB ≤ 2
3 . This means that if the total similarity is high (i.e. for

example sS > 0.9), S can be split in two parts:

1. A, on which the normalized similarity sA is very high (e.g. sA > sS > 0.9) and can
be computed in O(|S|).

2. B, on which the normalized similarity is much lower sB ≤ 2
3 and can not be computed

in O(|S|).

In case the total similarity of P1 and P2 is high, even if we cannot always compute it in
O(|S|) time, we can always identify the part of S where the matching is stronger (i.e. A)
in O(|S|) time. This could be particularly useful for applications that only need to find
the best class matches between two partitions.

6.5 A graph coloring case study

In this section we present numerical conclusions observed in the context of a graph coloring
local search (TS-Div, see Section 4.2) that computes billions of distances to guide itself
through the search space. This algorithm tries to stay at a certain distance from certain
reference colorings and the time complexity of distance computing is crucial—e.g. for
certain graphs, a O(k3) algorithm can make the process at least 100 times slower. The
details of the heuristic are not essential here, but we only discuss a statistic of the computed
distances.

We consider one billion small distances computed by this algorithm while solving two
standard coloring instances (DIMACS instances (dsjc1000.1, k = 20) and (dsjc1000.5, k =
86) with 1000 vertices). In fact, many distances computed by TS-Div were small because
they represent distances between close positions in a series of neighboring colorings; two
neighboring coloring differ only by the color of a single vertex. However, even if there
are also greater distances, we only count in this statistics the pairs (P1, P2) satisfying
d(P1, P2) < |S|

5 . For each distance calculation, TS-Div applies our partition distance
algorithm following this methodology:

1. If the condition in Corollary 6.4 is satisfied, the algorithm simply computes the
correct distance in O(|S|) time.
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2. Otherwise, the algorithm detects that the condition is not satisfied (it returns
IMPOSSIBLE in O(|S|) time, see Algorithm 6.1, p. 104) and the O(k3) Hun-
garian algorithm is executed.

The first step was sufficient for more than 99.99% cases. More precisely, in more than 109

computed distances, we found less than 103 (i.e. 737 when k = 20 and 880 for the k = 86
case) pairs (P1, P2) for which d(P1, P2) < |S|

5 but the hypothesis condition in Corollary 6.4
is not satisfied. If we consider even smaller distances (more exactly, only pairs (P1, P2)
such that d(P1, P2) < |S|

10 ) the O(|S|) time algorithm is sufficient for all practical cases we
encountered.

The explanation of this practical success lies in the fact that the similarity restricted
to different subsets of S presents quite homogeneous values in practice. Thus, if the total
similarity is high (i.e. sP1,P2 > 0.9 equivalent to d(P1, P2) < |S|

10 , the sX values are quite
close to 0.9 for most classes X of the partitions. Thus, the cardinal of set B (on which
sB < 2

3 , and the conditions from section 6.3.2 are not met) is very limited, usually B is
empty in practice.

However, theoretically one can still construct a counter-example to this by taking two
partitions such that P 1

1 = P 1
2 and |P 1

1 | = 0.9|S|. In this case sP1,P2 ≥ 0.9, but the two
partitions, which are very similar on A = P 1

1 , can be totally different on B = S −A. The
most difficult part is the computation of the similarity restricted to B; only this one may
still require between O(k2) and O(k3) time.

6.6 Concluding remarks

This chapter introduced a very fast algorithm for computing the distance between two
close partitions P1 and P2 of a set S (for graph coloring the set S is actually the vertex
set V ). If any of several proposed conditions is verified, then the distance value can be
computed in O(|S|) time—otherwise it is possible to inform about the failure in O(|S|)
time. In the coloring context, this algorithm makes and important difference, because
the conventional method would require at least O(|S| + k2) time—for an instance like
(dsjc1000.9, k = 223), a number of operations of about |S|+ k2 = 1000 + 2232 ≈ 50.000
is much more costly than |S| = 1000.

If no proposed condition is satisfied, our algorithm returns “impossible” in O(|S|) time.
In this situation, the Hungarian algorithm is finally executed, but there is no complexity
overhead introduced by our algorithm, i.e. O(|S|) does not matter in a complexity sum
of the form O(|S| + k2) + O(|S|) = O(|S| + k2). Moreover, the proposed algorithm can
also be useful even if the required conditions are not totally satisfied, as it is explained
in Section 6.4. In such a situation, the algorithm can be used to identify the subset of
S on which the matching is stronger, i.e. where the normalized similarity is at least 2

3 .
Finally, certain ideas can be very useful for solving general assignment problems defined
with sparse matrices.
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6.6.1 A complete pseudocode example of the algorithm

The algorithm we present in this appendix (p. 104) corresponds to Corollary 6.4 and, as
one can see, it is quite simple. By detailing it, one can also implement a similar version
corresponding to any other theorem in this chapter. The number of classes does not need
to be the same for P1 and P2 because k is not given in the input; it is computed as the
maximum number of classes in any partition.
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Algorithm 6.1: Algorithm For Computing The Partition Distance, corresponding
to Corollary 6.4.

Inputs:

� |S|, so that S = {1, 2, . . . , |S|}
� P1 and P2 as |S|-vectors (i.e. position x in P1 represent P1(x), for all x ∈ S)

Return value:

� the distance Σ, if the condition in Corollary 6.4 is satisfied

� IMPOSSIBLE, otherwise.

Begin

1. init Σ = 0

2. init k = maximum value in vectors P1 and P2

3. allocate the k × k matrix T (without filling any element)

4. init k−vectors M and σ̄ to 0 (the maximum on each row and the maximal
assignment that is constructed)

5. init k−vectors |P1| and |P2| to 0 (denoting the cardinal of each class)

6. for x = 1 to |S|
� set i = P1(x) and j = P2(x)
� set Tij = 0

7. for x = 1 to |S|
� set i = P1(x) and j = P2(x)
� increment Tij , |P i1|, |P

j
2 |

� IF Tij > Mi, then set Mi = Tij and σ̄(i) = j.

8. for i = 1 to k

� IF Mi = 0, then continue (with next i)

� IF 3Mi ≤ |P i1|+ |P
σ̄(i)
2 |, then return IMPOSSIBLE

� set Σ = Σ + Ti,σ̄(i)

9. return Σ

End
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The idea of using a search space metric to obtain a position-guided search seems, to a
certain extent, overlooked in combinatorial optimization. Related distance-based ideas
have been applied only for more specific optimization purposes (e.g. distances-preserving
crossovers, crowding in multi-modal continuous optimization, fitness distance correlation,
etc.). However, we showed that distances can be used in a more systematic way, either
for understanding the search space, or to induce a navigation/orientation “compass” in
the optimization process. Such techniques can be seen as part of an emerging new area of
“learning methods in optimization”. Indeed, heuristic algorithms can be substantially im-
proved by collecting information (“on-line” or “off-line”) about the search space structure
and about the patterns of visited configurations.

Along the thesis, we (try to) extract and exploit the most relevant and meaningful in-
formation in the design of all components, so as to make all algorithms as “well-informed”
as possible. Four algorithms (RCTS, TS-Div, TS-Int, Evo-Div) have been tested on the
challenging experimental framework of the graph coloring problem. Indeed, this is one of
the most famous and most studied NP -complete problems—a dozen of new algorithms
have been published only during this 3-years time thesis. Although the number of algo-
rithms is continually growing, we have reached almost all best-known upper bounds and
we have even found certain new legal colorings for the first time.3

The contributions of this thesis can be classified as follows. In the introduction, we re-
viewed the main issues related to learning in optimization, and we presented the best graph
coloring algorithms. In Chapter 2, we started by presented a simple coloring Tabu Search
algorithm that has been improved with new “well-informed” evaluation functions. By cou-
pling a few additional algorithmic techniques—i.e. a reactive Tabu list—this “lightweight”
Tabu Search can reach very competitive results compared to the best ten algorithms from
the literature.

By investigating the trajectory of the basic Tabu Search, we presented in Chapter 3 the
clustering hypothesis: the high-quality visited configurations are not uniformly scattered
in the search space, but grouped in clusters that can be confined in spheres of radius
R = 10%|V |. In the rest of the thesis, we considered that two colorings distanced by
less than 10%|V | are “too close”. We have defined the radius R based on the partition
distance measure (a search space distance, equal to the minimum number of neighborhood
transitions between colorings).

In Chapter 4 we presented two position-guided algorithms that are based on the search
space distance and on the notion of sphere. The first one (TS-Div) is “guided” toward
diversification. It performs a coarse-grained recording of its own trajectory by recording a
limited number of visited spheres. In this manner, it is “aware” when the search process
is entering an already-visited sphere. When this happens, it acts so as to induce more
diversification in the following moves, in order to quickly leave the sphere. This guarantees

3For the 15 years old DIMACS graphs, the standard benchmark in graph coloring. All mentioned legal
colorings are available on-line for further study: info.univ-angers.fr/pub/porumbel/graphs/bestcol/
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that the local search does not perform redundant explorations in the long run. Since the
basic Tabu list forbids redundant explorations in the short run, TS-Div is able to cover
(more) properly the search space.

The TS-Int algorithm is guided for intensification, so as to thoroughly explore a given
limited perimeter, a specific promising region. Starting from an input configuration, it
launches several local search processes that can run only inside the sphere of the start
configuration. Such a process is stopped as soon as it leaves the sphere, and the “sphere exit
point” is inserted in a queue of “start configurations”, i.e. configurations whose spheres will
be explored later. When the processes launched from a start configuration do no longer find
distanced high-quality sphere exit points (the sphere investigation is complete), the next
start configuration is considered and TS-Int continues with another sphere investigation
on it. The result is a “breath-first Tabu search” that seems to be able to find any solution
within less than 30%|V | distance from the starting point (with 100% empirical success
rate).

An evolutionary approach is presented in Chapter 5. One contribution is the introduc-
tion of a spacing strategy that forbids the population from keeping at the same time two
close individuals in the population. Using distance-based reactive dispersion mechanisms,
the spacing among individuals is always kept at “healthy levels”. This way, premature
convergence can be avoided; the resulting algorithm (Evo–Div) is actually able to contin-
ually create useful diversity without quality sacrifices. A well-informed crossover is also
presented; it uses several features of the parent color classes in order to decide the most
appropriate information that is passed to offspring.

Finally, the distance function is studied in detail in the last chapter, providing more
insight into how to interpret distance values. We also introduce a Las Vegas exact algo-
rithm that, if one of several conditions is verified, reduces the distance calculation time
from O(|V |+ k3) to O(|V |+ k). Besides the speed-up brought to TS-Div, this algorithm
can also be used in numerous other practical applications dealing with distances between
close partitions.

Prospects

A distance measure can be very useful to capture several notions that can help under-
standing the search space, in particular: search space position, close and distant candidate
solutions, or spatial distribution. We think that distance measures can be employed in a
more systematic way in optimization, both for understanding the search space, and also
to equip a search process with a “compass” of navigation/orientation through this space.

Although these ideas were validated only on the graph coloring problem, certain strate-
gies are very general and could also be tested on other problems. For example, how can one
know if a local search process covers its search space uniformly, or if it makes many redun-
dant explorations? The coarse-grained trajectory recording of TS–Div offers a potential
answer: by recording a restricted set of spheres, one can indeed inspect the trajectory
of the search process and clarify this kind of questions. The only condition to carry out
that is to be able to calculate a neighborhood distance, i.e. a distance which indicates the
(minimum) number of neighborhood transitions between two configurations—see several
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examples in the Section 4.5.
Concerning the evolutionary approach, it would be very interesting to formalize a

generic strategy of diversity: we think that the spacing control ideas can be directly used
in other evolutionary hybrid algorithms. Obviously, to obtain at the best practical results,
it is always essential to study the details and the specific characteristics of the problem,
so as to adapt the approach. However, similar ideas have been already tested successfully
in other evolutionary communities (e.g. multimodal continuous optimization), and thus,
we think that more progress can be expected.

Furthermore, a more in-depth work could couple the ideas concerning the local search
trajectory recording with the spacing control in the evolutionary algorithm. While the
spacing control ensures that two very close individuals can not be simultaneously in the
population, it does not ensure similar properties on individuals belonging to different
generations—such problem could be avoided by recording the spheres of all individuals at
all generations (their number should be limited, compared to the number of all individuals
ever visited by the evolutionary search).
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oration. PhD thesis, Université de Montpellier, France, 1999.

[Gamache et al., 2007] cited page 13
M. Gamache, A. Hertz, and J.O. Ouellet. A graph coloring model for a feasibility prob-
lem in monthly crew scheduling with preferential bidding. Computers and Operations
Research, 34(8):2384–2395, 2007.

[Gamst and Rave, 1982] cited page 13
A. Gamst and W. Rave. On frequency assignment in mobile automatic telephone sys-
tems. In Proceedings of the IEEE Global Communications Conference, pages 309–315,
1982.

[Garey et al., 1979] cited page 6, 6, 12
M.R. Garey, D.S. Johnson, et al. Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco, U.S.A., 1979.

[Gebremedhin et al., 2005] cited page 13
A.H. Gebremedhin, F. Manne, and A. Pothen. What color is your jacobian? graph
coloring for computing derivatives. SIAM Review, 47(4):629, 2005.

115



REFERENCES

[Gerber et al., 1998] cited page 39
M.U. Gerber, P. Hansen, and A. Hertz. Local optima topology for the 3-sat problem.
Cahiers du GERAD, G–98–68, 1998.

[Glass and Pruegel-Bennett, 2005] cited page 56, 56
C.A. Glass and A. Pruegel-Bennett. A polynomially searchable exponential neighbour-
hood for graph colouring. Journal of the Operational Research Society, 56(3):324–330,
2005.

[Glass, 2002] cited page 13
CA Glass. Bag rationalisation for a food manufacturer. Journal of the Operational
Research Society, pages 544–551, 2002.

[Glover and Laguna, 1997] cited page 14, 21, 51
F. Glover and M. Laguna. Tabu Search. Springer, 1997.

[Glover et al., 1996] cited page 19, 28
F. Glover, M. Parker, and J. Ryan. Coloring by tabu branch and bound. In Cliques,
Coloring, and Satisfiability Second DIMACS Implementation Challenge [Johnson and
Trick, 1996], pages 285–307.

[Glover, 1986] cited page 7, 14, 21
F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers and Operations research, 13(5):533–549, 1986.

[Goldberg and Richardson, 1987] cited page 83, 83, 83
D.E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal
function optimization. In Proceedings of the Second International Conference on Genetic
Algorithms on Genetic algorithms and their application table of contents, pages 41–49.
L. Erlbaum Associates Inc. Hillsdale, NJ, USA, 1987.

[Gusfield, 2002] cited page 56, 56, 56, 93, 95, 95
D. Gusfield. Partition-distance a problem and class of perfect graphs arising in cluster-
ing. Information Processing Letters, 82(3):159–164, 2002.

[Hale, 1980] cited page 13
W.K. Hale. Frequency assignment theory and applications. Proceedings of the IEEE,
68(12):1497–1514, 1980.

[Hamiez and Hao, 2001] cited page 19, 70, 76, 81
J. P. Hamiez and J. K. Hao. Scatter search for graph coloring. In Artificial Evolution,
volume 2310 of LNCS, pages 168–179. Springer, 2001.

[Hamiez and Hao, 2004] cited page 19, 39, 40
J.P. Hamiez and J.K. Hao. An analysis of solution properties of the graph coloring
problem. In Metaheuristics computer decision-making, pages 325–345. Kluwer Academic
Publishers, Norwell, MA, USA, 2004.

116



REFERENCES

[Hansen, 1986] cited page 21
P. Hansen. The steepest ascent mildest descent heuristic for combinatorial programming.
Congress on Numerical Methods in Combinatorial Optimization, Capri, Italy, pages 70–
145, 1986.

[Hao et al., 1999] cited page 6
J.K. Hao, P. Galinier, and M. Habib. Metaheuristiques pour l’optimisation combinatoire
et l’affectation sous contraintes. Revue d’Intelligence Artificielle, 13(2):283–324, 1999.

[Hertz and Werra, 1987] cited page 13, 14, 21, 23
A. Hertz and D. Werra. Using tabu search techniques for graph coloring. Computing,
39(4):345–351, 1987.

[Hertz et al., 1994] cited page 25, 39, 39, 40
A. Hertz, B. Jaumard, and M.P. de Aragão. Local optima topology for the k-coloring
problem. Discrete Applied Mathematics, 49(1-3):257–280, 1994.

[Hertz et al., 2008] cited page 14, 14, 14, 18, 22, 34, 36, 41, 65, 65, 65, 67, 86, 86, 87
A. Hertz, A. Plumettaz, and N. Zufferey. Variable space search for graph coloring.
Discrete Applied Mathematics, 156(13):2551–2560, 2008.
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[Régnier, 1983] cited page 93
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Heuristic Algorithms And Learning Techniques
– Applications to the Graph Coloring Problem –

Abstract

The last couple of decades have seen a surge of interest and sophistication in us-
ing heuristics to solve combinatorial optimization problems. However, the theoretical and
practical research of these algorithms show there are many important challenges yet to
be overcome – e.g. it seems that it is quite difficult to make a heuristic integrate a global
vision over its own evolution or over its trajectory. An important risk is to loop repeat-
edly between a limited number of different local optima and to explore only few regions
even by using a very long time. Taking the well-known graph coloring problem as an
experimental framework, we develop several new heuristics that integrate certain learning
mechanisms so as to render the search process more “self-aware”. For instance, we intro-
duce an algorithm that is able to record its trajectory and to interpret its own evolution.
A search space analysis showed that the best discovered potential solutions tend to occur
relatively close to each other, clustered in spheres of fixed radius. Using such learned infor-
mation, we developed: (i) diversification algorithms that ”pay attention” not to visit the
same sphere repeatedly, (ii) intensification algorithms assuring an in-depth exploration of
a closed perimeter using a breath-first-search traversal of its spheres, or (iii) evolutionary
algorithms that are able to keep the individuals sufficiently distant at all times, while not
sacrificing population quality. In fact, we present numerous other techniques (e.g. new
evaluation functions) that are able to render the heuristic search more “well-informed”.

Keywords : search while learning, graph coloring, exploration path recording, intensi-
fication heuristics, population diversity, search space distance

Algorithmes Heuristiques et Techniques d’Apprentissage
– Applications au Problème de Coloration de Graphe –

Résumé

Au cours des trois dernières décennies, les algorithmes heuristiques ont permis de
réaliser des progrès remarquables dans la résolution des problèmes difficiles d’optimisation
combinatoire. Cependant, la conception de ces algorithmes relève encore plusieurs chal-
lenges importants – en particulier, il semble qu’il est toujours difficile d’intégrer dans
une heuristique une vue d’ensemble sur l’évolution de la recherche ou sur sa trajectoire.
Prenant comme cadre expérimental le problème bien connu de la coloration de graphe, nous
présentons de nouvelles stratégies qui font appel à certains mécanismes d’apprentissage
pour rendre le processus de recherche plus “auto-conscient”. Nous introduisons un al-
gorithme qui est capable d’enregistrer sa trajectoire et d’interpréter sa propre évolution.
Une analyse de l’espace de recherche a montré que les meilleures configurations visitées
sont relativement proches les unes des autres, regroupées dans des sphères de rayon fixe.
Avec ce type d’informations apprises, nous avons conçu : (i) des algorithmes de diver-
sification qui “prennent garde” à ne pas visiter la même sphère à plusieurs reprises, (ii)
des algorithmes d’intensification qui se focalisent sur l’exploration d’un périmètre limité
en utilisant un parcours en largeur des sphères de ce périmètre, et (iii) des approches
évolutionnistes pour gérer la diversité de sorte que les individus soient à la fois de bonne
qualité eu égard à la fonction objectif et suffisamment distants les uns des autres. En
fait, nous présentons une gamme de techniques (e.g. nouvelles fonctions d’évaluation) qui
peuvent rendre la recherche heuristique “bien informée”.

Mots clés : apprentissage et optimisation, enregistrement de l’évolution de la recherche,
heuristique d’intensification, diversité de la population, distance dans l’espace de recherche


