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ABSTRACT

Scheduling deals with the allocation of tasks requiring processing to limited
resources over time. The scheduling problems arise among others, in areas of
product manufacturing, computer processing and transportation. In this the-
sis we review the properties of both the general scheduling and cyclic schedul-
ing problems with a focus on the cyclic version of the problem.

As the cyclic scheduling problem is NP-Hard complexity, in the worst case
scenario, the time required to solve the problem is exponential time. This
difficulty has motivated this research work in developing an efficient neural
network approach to solving the cyclic scheduling problem.

This thesis focuses specifically on the cyclic job shop and cyclic flexible manu-
facturing system problems. Hence, models that solve the minimum cycle time
or work in progress of the problems are developed. These models are funda-
mental to which the neural network approach can be applied.

In existing literature, the absence of neural network research into solving the
scheduling problem is due to its characteristics such as complex architecture,
defining initial conditions, difficulty in tuning its parameters (i.e. learning rate,
stoppage conditions, etc) and tendency for infeasible solutions. However, in
this thesis, we develop and study three variations of the recurrent neural net-
work approach. These are the Recurrent Neural Network (RNN) approach, the
Lagrangian Relaxation Recurrent Neural Network (LRRNN) approach and the
Advanced Hopfield network approach. Several algorithms are combined with
these neural networks to ensure that feasible solutions are generated and to
reduce the search effort for the optimum solutions.

A Competitive Dispatch Rule Phase (CDRP) is developed to generate initial
feasible solutions before the three recurrent neural network approaches are
initiated. This is important as the search space of the problem can be reduced
through this approach. For the cyclic flexible manufacturing system problem,
a Modified Competitive Dispatch Rule Phase (MCDRP) is developed. This en-
sures the best possible cyclic schedule with minimum work in progress, for the
neural network approaches to work from. As the solutions may be trapped in
local minimum energy state, a schedule perturbation phase is developed to
”kick-start” the search effort. Finally, using the developed schedule Postpro-
cessing phase that contains the Adhere Conjunctive and Adhere Disjunctive
algorithms, the subsequent final solutions are always a feasible schedule.

We also extend the review into the cyclic job shop problem with linear prece-
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dence constraints. A Delinearization algorithm is developed to solve this prob-
lem; an approach based on transforming the linear constraints of the problem
into its uniform constraints as proven in existing cyclic scheduling literature.

We are able to demonstrate the suitability and applicability of the RNN, LR-
RNN and Advanced Hopfield network approaches through computational
and comparative testing. The experimental results indicate that the three ap-
proaches are attractive alternatives to traditional heuristics in solving cyclic
scheduling problems, even though in some cases it is computationally expen-
sive.

ix



ABSTRACT

Un problème d’ordonnancement consiste à exécuter sur un horizon de temps
donné un ensemble de taches au moyen de ressources en nombre limité.
On rencontre ce problème dans divers domaines, comme l’industrie de pro-
duction, dans les systèmes de transport ou encore dans les ordinateurs avec
l’allocation des tâches. Dans cette thèse, nous nous concentrons sur le
problème d’ordonnance cyclique. Les propriétés liées à l’ordonnancement en
général, ainsi qu’à sa version cyclique seront étudiées.

Le problème d’ordonnancement des tâches est un problème NP-complet, le
temps nécessaire pour le résoudre peut être exponentiel dans le pire des sce-
narios. Ceci a motivé notre travail de recherche et nous a mené à développer
une approche efficace utilisant les réseaux de neurones pour le résoudre.

Cette thèse se concentre particulièrement sur le problème du Job Shop Cyclic et
sur son utilisation dans le cadre des ateliers flexibles (FMS : Flexible Manufac-
turing System). Pour cela, nous avons développé deux modèles de résolutions
basés sur les réseaux de neurones. Le premier a pour objectif de minimiser le
temps de cycle et le second a pour objectif de minimiser les encours de pro-
duction. On remarque une absence de travaux utilisant les réseaux de neu-
rones sur ce type de problème dans la littérature scientifique. Ceci est dû à
l’architecture complexe des réseaux de neurones, à la difficulté de définir les
conditions initiales, au réglage de ses paramètres (taux d’apprentissage, con-
dition d’arrêt, etc.) ainsi que sa tendance à générer des solutions impossibles.
Néanmoins, dans cette thèse, nous proposons 3 variations autour des réseaux
de neurones récurrents: un réseau de neurones récurrents (RNN), une relax-
ation Lagrangienne pour un réseau de neurones récurrents (LRRNN) et un
réseau Hopfield avancé. Plusieurs algorithmes sont combinés avec ces réseaux
de neurones pour assurer que les solutions générées sont toutes possibles et
pour réduire l’effort de recherche des solutions optimales.

Une phase prétraitement CDRP (Competitive Dispatch Rule Phase) est imcor-
ponée pour générer des solutions initiales correctes avant que les 3 réseaux
de neurones récurrents soient initialisés. Celle-ci permet de réduire l’espace
de recherche du problème. Pour le problème du FMS cyclique, une phase
modifiée (MCDRP) est appliquée. Pour s’échapper des optimums locaux, une
phase de perturbation est ajoutée pour relancer la recherche dans une autre
région de l’espace de recherche. Enfin, une phase de post traitement assure
que les solutions finales sont toujours dans l’espace des solutions possibles.
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Dans une première partie, nous avons étendu nos travaux au problème du job
shop cyclique avec des contraintes de précédence linéaire. Selon la littérature
en ordonnancement cyclique, il est possible de transformer les contraintes
linéaires en contraintes uniformes équivalentes, c’est pour cette raison qu’un
algorithme de délinéarisation est mis emplace pour permettre de traiter ce
problème avec notre approche lagrangienne précédente.

Nous sommes capable de démontrer la conformité et l’applicabilité des ap-
proches utilisant des réseaux RNN, LRRNN et Advanced Hopfield à travers
une évaluation comparative. Les résultats expérimentaux indiquent que
les 3 approches proposées sont des alternatives attrayantes par rapport
à d’autres approches heuristiques traditionnelles même si parfois celles-ci
restent coûteuses en terme de calcul.

xi
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Background



CHAPTER

ONE

Introduction

1.1 Scheduling in general

In real-life situations, the usage of time and the activities associated with time
have different meanings to each person or environment. Proper utilization of
time is obviously more important for some people or environments compared
to others. High utilization of time can result in productive activities leading to
excellent returns. These returns may include higher income generated, more
time available for other activities after certain activities are completed, or even
longer rest-time, and less stress. On the other hand, low utilization of time
may prevent us from obtaining the best results and returns possible in a given
window of opportunity. Lost opportunities are often quoted when time is not
utilized properly.

Before we can utilize a process to its fullest potential, some planning is usu-
ally required. Planning should involve stating most or all of the activities that
are available to be completed, the actual time length to complete the activities
and possibly preferences of order to undertake the activities. Sometimes other
consideration may also be taken into account e.g. important requirements or
skills or equipment needed and even information related to the activities.

However, when the environment involved is manufacturing, high utilization
of time is vital. With the huge investment values, high cost of machinery and
potentially high cost of labour, proper use of time is very important to guaran-
tee the highest possible return on investment (ROI). The planning stage in this
manufacturing environment is formally known as scheduling.

The activity of scheduling can be done manually in the case of small manufac-
turing size, or simple large jobs on a small number of resources. A scheduling
specialist who has honed his or her scheduling skills from years of experience
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could probably also do scheduling manually. However, in the case where a
large number of jobs are involved, close due dates for every completed com-
ponent is required or complicated rules are needed to handle changes in job
processing, more sophisticated techniques are required. Currently, a variety of
scheduling softwares are predominantly available. A majority of the schedul-
ing software have large generic features that have to be customized according
to the environment in which it will be utilized.

Research into scheduling has spanned from scheduling theory to applying
these research theories into real-life manufacturing floor, service sector and
various computing applications. The scheduling problem has been a re-
searched area since 1950s [130]. As part of the combinatorial optimization
problem, there is much interest in this area. The scheduling problem exists not
only in particular types of manufacturing environment, but also in the service
sector and areas of computing research.

Scheduling is defined as sequencing or ordering operations or tasks over a
certain length of time [50]. It involves setting the start times and end times
for the tasks. To achieve or obtain this particular sequence, a decision making
process is required. Vital information regarding the system is required in the
decision making process. This will include characteristics of the operations
or tasks and the environment in which operations are to be undertaken. This
scheduling is done on limited and available number of resources, based on cer-
tain restrictions or constraints. These constraints may involve the resources or
even constraints on how the operations or tasks should be sequenced. Solving
the scheduling problem has an objective or a number of objectives to fulfill.

The tasks are operations or activities that need to be executed. Examples of
tasks are assembly jobs in a factory, processing clients’ requests in a bank (in
a service sector), allocation of departure times for a flight in an airport, or
computing computer programs on a processor. Associated with each task, is
its properties. These properties may include its priority level, the instance the
task is available or should be completed.

The resource type differs according to which area the scheduling problem is
focused on. It includes machines in manufacturing environments, vehicles in
transportation systems, a particular labour in a service sector, or even proces-
sors for computing.

The constraints that could encompass either the tasks or resources are the or-
der which the tasks are to be processed, restrictions on when and how the
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Figure 1.1: Planning, Scheduling and Sequencing on Production System

resources are available or even limitations of usage of the resources over a lim-
ited time period.

When comparing planning and scheduling, planning involves what must be
done and the restrictions on methods to be used, whereas scheduling involves
how the activities must be executed and when it must be done. Planning uses
the estimates of the time and resources or skills required to complete the ac-
tivities. Other information needed could include precedence relationships be-
tween jobs to be done. For scheduling, it is the temporal assignments of all
the tasks and activities that must be executed for the plan which is impor-
tant. Planning is measured through the feasibility of the plan and scheduling
through its performance. An example of how planning, scheduling and se-
quencing interact can be seen in Figure 1.1.

Coming to the different terms associated with the scheduling problems, terms
like sequencing, scheduling and scheduling policy are widely used. However
from Pinedo (2002) [132], some distinctions related to the use of the terms se-
quence, scheduling and scheduling policy have been described. Sequencing
involves the different permutations related to the order which the N number
of tasks must be loaded onto the machine [36]. In contrast, scheduling involves
much more complicated settings in addition to negotiating the sequencing pro-
cess and the tasks that may be stopped during the processing period. This
may be due to machine breakdown, or unavailability due to preventive main-
tenance tasks. The use of scheduling policy, is more evident in a stochastic en-
vironment when various parameters of the tasks or machines are of stochastic
values. The policy dictates rules of action on how to sequence the tasks which
includes shortest processing time (SPT), longest processing times (LPT), etc.
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1.1.1 Why is Scheduling Difficult to Solve?

One main reason for this is the amount of data associated with the problem.
Not only do we have to figure out what to schedule, when to schedule the
tasks or activities but also on which resource to schedule the tasks on. Consid-
ering the fact that with the large number of resource available in actual real-life
situations, this can be tedious. The simplest problem to schedule is obviously
a single job on a single resource.

Also the problem gets more complicated when other factors like temporal re-
lationships between tasks, time instance which the parts are released to be
processed, due time of the whole product and also the availability of the re-
sources over the time period being considered. So the larger the problem, the
more data or information it involves, and the more difficult it is to solve the
scheduling problem. From Conway et. al. (1976) [36], scheduling problems
are proven to be NP-hard.

When we factor in the uncertainties that exist in machine processing envi-
ronment, this leads us to the second main reason. Uncertainties or stochas-
tic nature in the production system that greatly affect the scheduling include
breakdown of machines, failures of tools, cut in supplies, abrupt change or
cancellation of orders, changes in due dates or even variable processing time
for incoming tasks. Some researchers have factored this in as stochastic mod-
els [160], [134], [91]. These unpredictabilities have an impact on the schedule
thus requiring changes, making the whole scheduling process dynamic. Most
researchers call this dynamic scheduling.

Changes in schedule may involve the substitution of resources, or delay in
start times of tasks or even worse, the whole reformulation of the schedule.
Obviously the most ideal case to approach these disturbances is a scheduling
model that can adapt to any changes while maintaining the objectives of the
process.

Infeasibilities within the schedule found can make the scheduling difficult.
With large problems, depending on the model used, and assumptions, a fea-
sible schedule may or may not exit. Constraints that restrict the scheduling
problem sometimes also limits the possibility of feasible schedules. So, solv-
ing the scheduling problem depends greatly on the methods and algorithms
used in the model, plus various other information that are associated with the
machine processing environment.

To reflect on how difficult the scheduling problem is, assuming the existence
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of N jobs to be scheduled on a single machine. The N jobs on a machine has
N! possible sequences. For example for a mere 20 jobs to be scheduled on a
machine, this means that there are 20! distinct permutations to schedule the
jobs (i.e. 2.43290201× 1018 distinct permutations).

In a manufacturing environment, where product deliverability is vital, late
deliverability has an effect on the cost. The product manufactured must not
only be of high quality, and low priced, its short requested lead time and on-
time delivery and production rate is vital. With the manufacturing resource
available to process the operations, scheduling will improve and maintain a
high level of productivity and efficiency. Scheduling is also used primarily
to cope with frequent change in product specifications. As such, the use of
scheduling in an manufacturing environment will guarantee this. Obviously,
this also depends on the capabilities of the type of resources available and the
capacity of the manufacturing location itself.

The development of a schedule involves selecting a sequence that will guar-
antee that all required tasks are processed. It also involves designating the
required resources needed and the appropriate times to start and complete the
processing of each individual task.

1.1.2 Impact of good scheduling

A good, feasible schedule can very much impact on production costs such as
variable production and overtime costs, inventory holding costs, penalty costs
associated with missing deadlines, and possible expediting costs for imple-
menting the schedule in a dynamic environment. An efficient scheduling ap-
proach may result in high resource utilization. This is especially true for many
production systems having resources with limited capacity, and every hour’s
utilization contributes to the production system’s efficiency. The quantity of
work in progress requiring storage space of facilities could potentially be kept
to a minimum or even totally eliminated with a good schedule. The chances
of lateness can be reduced or eliminated too, as proper scheduling will accu-
rately estimate completion time for all the jobs requiring processing. This will
guarantee timely delivery of orders.
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1.2 Research Objective

Our research has been motivated by the challenges in solving cyclic schedul-
ing problems that, as will be discussed in subsequent chapters are complex to
solve.

Our research in this thesis will highlight the work done in developing an opti-
mal plan for cyclic scheduling of jobs in a manufacturing system. The manu-
facturing system here covers mainly the cyclic job shop and the cyclic flexible
manufacturing systems environment. Certain assumptions and modelling of
the real-life events are necessary to capture the real scheduling problems. We
provide a mathematical model of the process plan or the scheduling problem.
Using rules that are considered constraints, we include this in the formulated
optimal plan. The plan will utilize the resources in the most optimal man-
ner. Using this plan, the neural network is used to generate cyclic schedule
solutions. An extension of the neural network is introduced, explained and
proved. The cyclic schedule is feasible and optimal in relation to the objectives
of the manufacturing system and the utilization of the resources.

In summary, the main proposals that this thesis will aim to present are:

• Exploring types of cyclic scheduling problem and associated elements in
it;

• Proposing new models and formulations for cyclic scheduling problem,
specifically cyclic job shop and flexible manufacturing system for map-
ping to a dynamic recurrent neural network architecture;

• Developing new dynamical Recurrent Neural Network that correlates to
the new formulation of the cyclic scheduling problem;

• Extending the Recurrent Neural Network into the Lagrangian Relaxation
Recurrent Neural Network to improve the approach in solving the cyclic
scheduling problem;

• Extending our approach and modelling in solving the extended version
of the cyclic job shop cyclic scheduling problem with linear precedence
constraints;

• Developing an Advanced Hopfield Network to solve the cyclic flexible
manufacturing systems scheduling problem;
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• Developing hybrid solutions by integrating specific algorithms to these
new approaches in order to escape from local minima and attaining most
feasible and optimal solutions;

• Evaluating the computational complexity with qualitative and quantita-
tive analysis of these approaches.

1.3 Organization of this thesis

This thesis aims to give an overview of the scheduling problem and further
delve into the cyclic scheduling problem in the first part of this thesis. We have
already looked into and discussed the general description associated with the
scheduling and how scheduling can be applied in this Introduction Chapter.

We will discuss how the scheduling problem has evolved, the inner prop-
erties of the scheduling and how it has been categorized from previous re-
searchers in Chapter 2. This chapter will include all the major entities making
up the scheduling problem and the cyclic scheduling problem, that reflects the
real-life environment. We will discuss the different parameters in the cyclic
scheduling problems compared to non-cyclic scheduling problems and var-
ious known classes. We then show how the various entities and properties
can be modelled mathematically, the technical side of the scheduling prob-
lem and why the cyclic scheduling problem is difficult to solve in Chapter 3.
The modelling of the cyclic scheduling problem is vitally required before any
approach can be applied to these problems. The latest development in ap-
proaches used to solve the cyclic scheduling problem is also discussed. In
this chapter, we also describe and review the cyclic scheduling problem of
cyclic job shop scheduling problems (CJSSPs) where we propose a modelling
approach with the main objective of minimizing the cycle time related to the
problem. We then review the cyclic flexible manufacturing systems scheduling
problems (CFMSSPs) and a proposed modelling approach. The differences in
modelling this particular cyclic scheduling problem are explained while our
approaches are aimed at achieving an accurate modelling of the constraints
and objective functions.

We then introduce the neural networks (NN) as an approach to solving this
scheduling problems. Different and popular types of artificial neural network
are discussed and their potential in giving efficient results are discussed. We
then present the evolution of research into neural network, used to solve the
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scheduling problems.

Moving into the second part of this thesis in Chapter 4, we then present the
dynamics of the Recurrent Neural Network and Lagrangian Relaxation Recur-
rent Neural Network that encompasses the preprocessing and postprocessing
phases. We describe in detail the dynamics and architecture of the network ap-
plied to the cyclic job shop and flexible manufacturing systems. We also study
the cyclic job shop problem with linear constraints and propose a modelling
and delinearization approach in solving this special type of CJSSP. We further
extend solving these cyclic scheduling problem with the developed Advanced
Hopfield network technique.

Our proposed approaches are simulated on various benchmark problems to
ascertain the accuracy and viabilities of the modelling techniques and neural
network approaches in Chapter 5, and this thesis concludes with a discussion
on our contributions and findings.
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CHAPTER

TWO

State-Of-The-Art Review

As many research works have been directed into the scheduling arena, a clas-
sification of the scheduling problem is important. This chapter highlights the
differences in each type of scheduling problem and where the importance
is placed. This will also track the growth and the research into solving the
scheduling problem in the past years, where their feasibilities and their viabil-
ities can be placed in each problem.

From Conway et. al. (1967) [36], classification of the scheduling problem is
primarily described, based on:

i. the jobs and operations to be processed,

ii. the number of machines and types of machines in the environment ,

iii. the restrictions or constraints that surround the manner in which the pro-
cessing should be done,

iv. criteria or objective which the schedule can be evaluated.

Using the above classification, a scheme comprising of four fields has been
used to describe the scheduling problems - A|B|C|D, where A denotes the
number of jobs in the problem, B denotes the number of machines in the prob-
lem, C determines the machine environment set-up and D is the criterion to be
minimized. Table 2.1 shows the different descriptions for each parameter.

An alternative to the above scheme, is the three parameter scheme from Gra-
ham et. al. (1979) [59] described as α|β|γ. This less compact notation scheme
describes α as the machine environment, β as the various job characteristics
and γ as the criterion to be minimized. Notations in Table 2.2 play an impor-
tant part in defining various basic and non-basic scheduling problems used by
many researchers.

10



Number of jobs, A
Z+ Positive number of jobs
n Variable number of jobs

Number of machines, B
Z+ Positive number of machines
n Variable number of machines

Machine environment, C
o Single machine
J Job shop
F Flow shop
P Permutation Flow Shop
D Mixed shop
O Open shop

Objective to minimize, D
C j Completion time
Cmax Makespan
L j Lateness
Tj Tardiness
E j Earliness
Fj Flowtime
Wj Waiting time

Table 2.1: Four parameters scheduling scheme

Cavalieri et. al. (2007) [26] formed a recent classification framework to bench-
mark the scheduling approach. This relates to the following models:

Production System Models : This is described as production resources in the
system that include production components of types processors (machin-
ing stations), storage (buffers), transporters (transportation systems) and
human operators. This also categorized the process plan of how prod-
ucts are processed in the plants with the models sequence of operations
for a given product, composed of several operations or only one object
(tasks). Production Planning can be long term (or Production Planning)
of time length 6 months to one year, mid-term (or Work Order) which are
monthly or the weekly short-term (or Job based).

Manufacturing Scenarios : This relates to the collection of events or depen-
dent activities in the dynamic behaviour of the manufacturing domain.

Plant scenarios : This relates to the dynamic behaviour of production com-
ponents that includes machine breakdown, stochastic variation in setup
times and operations processing times, stochastic variations on transport
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Machine Environment, α
o Single machine
P Identical parallel machines
Q Uniform parallel machines
R Unrelated parallel machines
PMPM Multi-purpose machines with identical speed
QMPM Multi-purpose machines with uniform speed
G general shop machines
X Mixed shop of job shop and open shop
O Open shop
J Job shop
F Flow shop

Job Characteristics, β
pmtn pre-emption allowed
prec Precedence constraints exist between jobs
intree Precedence constraints structured as rooted tree with outdegree

for each vertex at most one
outtree Precedence constraints structured as rooted tree with indegree

for each vertex at most one
r j Release date specified
τ = 1 each job has a unit of processing time
a ≤ τ ≤ b each job has processing time bounded by a and b

Objective to minimize, γ
C j Completion time
Cmax Makespan
L j Lateness
Tj Tardiness
E j Earliness
Fj Flowtime
Wj Waiting time

Table 2.2: Three Parameter Scheduling Scheme
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service time and also material arrival time.

Operational scenarios : In this scenario, the condition on how product release
is conceived, production order to be used, the expected release time, ex-
pected due dates and others (product cost, quality) operational issues
e.g. product cost and quality.

2.1 Characteristics of Scheduling Problems

2.1.1 Characteristics of Tasks

In this thesis, the terms: task, operation and job are commonly quoted. Here,
a job J comprises of N operations O1, O2, · · · , ON. So to complete a job, all
its operations must be processed. This paradigm is more obvious in product
manufacturing which requires sub-components to be assembled together in a
particular sequence. For example the job of assembling an automobile requires
sub-component of parts such as windscreen, doors, seats, etc. The complexity
of completing a job is influenced largely by the number of operations required
and its associated individual requirements. However the term task is used
generically to describe a process on its own, without any subtask required.

So a system that requires scheduling, may have N tasks or N numbers of
jobs (J1, J2, · · · , JN), each with a number ni of operations (Oi;1, Oi;2, · · · , Oi;ni)
where i ∈ (1, 2, · · · , N).

The next few subsections will identify various parameters that may be associ-
ated with the tasks or operations.

2.1.1.1 Processing Time of Tasks

The processing time is one of the main parameters of tasks that must be known
before any scheduling can be done. Sometimes, this can also be known as the
processing requirements. We denote pi as the processing time of task i.

Most processing time are known in advance, deterministic and fixed. However
some scheduling problem may involve processing times that are not known
prior to start times, hence dynamic or stochastic processing time occurring is
considered.
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2.1.1.2 Release Time of Tasks

Another common parameter of tasks is the release time, ri. This is the time at
which a particular task is available to the system. The advanced knowledge
of release times are vital for scheduling, as the earlier a tasks is available the
earlier it can be loaded onto a resource to be processed. Consequently idle time
will incur on the resource, awaiting for the task that has yet to be released.

2.1.1.3 Due time of Tasks

Due time, d j is the predefined time requirement set by a customers, by a job
or task. This can be described as the expected time customers should receive
the completed product or the shipping time of the product to the customers.
Penalties are normally applied to any delay that violates the due time.

2.1.1.4 Preemption of Tasks

One of the other characteristics associated with a task being processed by a
resource is whether preemption is allowed or not. If a task is non-preemptive,
this means that the task, once started on a resource, cannot be stopped until it
has been completed. In other terms, it means that no interruption is allowed
once the processing of the task has started.

Task preemptiveness is common when preventive maintenance is scheduled
on a resource, with three cases existing i.e. resumable, semi-resumable and non-
resumable. In all cases, the task has to be stopped before it is completed due to
the resource being taken offline, and is resumed again on the same resource at
a later time. A preemptive task may also be allowed to be resumed on another
available resource. This is known as resumable. In the semi-resumable case, the
task is partially restarted from the beginning after the resource becomes avail-
able again. However in the non-resumable case, the tasks has to be completely
restarted from scratch if it was stopped its completion. In all cases of pre-
emption, the task may be stopped and started several times before the task is
completely processed.

2.1.1.5 Others

The non-delay or no wait characteristics may exist in the processing of a task
once the task has been started on a machine/resource. This is common in
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manufacturing environment where the parts must be continuously processed
until completion. This will include moving parts between various machines.
An example of this case is the processing of copper wire that must be kept
heated at a high temperature while is is rolled through different machines to
its required diameter. Having any delay between operations will greatly affect
the processing abilities and quality of the end product. This characteristic of
no wait is commonly denoted by parameter nwt.

Recirculation is one of the minority of characteristics associated with tasks,
when a task must be processed more than once in a particular machine. Or-
der cancellation on jobs may also be considered where jobs are allowed to be
taken off the production line before the jobs are fully completed. The common
term of weights, associated with tasks is common where a priority status exists
on the tasks to be processed. The weights correlate to the importance of the
task, that is to be considered when selecting between tasks for processing on a
particular machine.

2.1.2 Characteristics of Machines

The resources are the key elements used to process the tasks. In the manufac-
turing environment, machines are the resources. Some machines may only be
able to undertake a particular operational ability e.g. etching, cutting, solder-
ing or assembly. Whereas some machines may be fitted with tools from a par-
ticular set allowing several operational abilities on the same machine. Multi-
purpose machines (MPM) have been used in flexible manufacturing systems
(FMS) and can handle various but not unlimited operations, studied in [86],
[81], [87].

In order to move the parts between machines, a part transport device or system
is needed. This material handling system (MHS) can include human operator,
conveyors, robots or automated vehicle. It is common that some sort of finite
storage known as buffers is available too, to hold work in progress between
machines and to prevent deadlock in the whole production system. Smith et.
al. (1999) [143] included the modelling of a material handling system in the
job shop scheduling problem. By including the material handling activities,
the complete job shop problem is solved directly or indirectly by solving the job
shop scheduling first followed by scheduling the material handling activities.
Many scheduling problem solved simplifies and reduces the complexity of the
scheduling problem by ignoring material handling activities thus known as
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truncated job shop.

2.1.2.1 Setup Times

Setup in machines occurs when time is required to prepare the machine, pro-
cess or product parts prior to starting the processing phase. This also in-
cludes obtaining the correct tools, returning unused tooling, machine cleanup,
setting up the required fixtures, inspecting completed parts and positioning
work in process material into the machine. Most researchers, in order to
simplify the modelling of the scheduling problem, have for long considered
setup time to be negligible and normally considered it as part of the process-
ing time. Allahverdi et. al. (1999) [9] comprehensively reviewed the types
of setup times. The reviewed setup times included sequence-independent
and sequence-dependent setup, batch and non-batch setup times and how the
setup times relates to the shop environments of a single machine, parallel ma-
chines, flow shops, etc.

2.1.2.2 Machine Breakdowns

Breakdowns occur on machines/resources due to faults that commonly involve
breakage of internal working mechanisms. Quite rarely, breakdowns may also
be due to human error. Factors like the length of time the machines has been
in use, frequency of use and whether preventive maintenance has been regu-
larly done on the machines, greatly affect occurrences of breakdowns. When
the machines do breakdown, any work in the form of tasks or operations be-
ing processed must be unloaded and delayed. Thus the tasks must be pre-
empted, forcing it to be relocated and resumed on another available machine.
This unavailability of the machine may jeopardize the completion time of the
overall job. According to Albers et. al. (2001) [7], there exists two types of
machine breakdowns: permanent breakdown where machines do not recover at
a later date and transient breakdown where machines are fixed and are opera-
tional again after breakdown. These machine breakdowns may be known in
advance (which is extremely rare) called offline settings while in online settings,
the machine availability is not known completely prior to starting the schedul-
ing process. The term lookahead is commonly used to describe the scheduler’s
ability to anticipate with some accuracy, when the unavailabilities will happen.
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2.1.3 Characteristics of Objectives

A measure commonly used to evaluate a schedule is known as objective func-
tion. These objective functions are always a function of the completion time of
the jobs. With the scheduling problems, researchers have aimed to minimize or
maximize a predefined objective function. Objective functions are categorized
as Regular Objective Functions and Non-Regular Objective Functions.

Regular Objectives Functions: As a function of the completion time, Ci the
function can only increase if at least one of the completion times increases.
From [36], considering regular objective function as follows:

M = f (C1, C2, . . . , Cn) (2.1)

hence if M′ = f (C′
1, C′

2, . . . , C′
n), then

M′ > M only if C′
i > Ci for at least one i, 1 ≤ i ≤ n (2.2)

This regular objective is used in schedules to define that the first schedule’s
completion time is no later than the second schedule’s completion time. The
regular objective characteristic will imply that the first schedule is at least as
good as the second. This should include maximum or average completion
times, flow times, lateness and tardiness. However, objective functions con-
taining earliness, instead of completion time, is not considered regular from
Brucker (2001) [22].

Non-Regular Objective Functions: The function increases with decreasing com-
pletion time parameters. The function only occurs when combining a regular
objective and a non-regular objective e.g. total of tardiness and total of earli-
ness.

2.1.4 Characteristics of Constraints

These are rules that affect the scheduling problem and determine how ele-
ments in the scheduling problem interact. Constraints in scheduling can be
categorized into activities associated constraints, temporal constraints and ma-
chine related constraints.

Temporal constraints relate to the time frame rules for the delivery and pro-
cessing of the operations. This normally can be in the form of earliest and
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latest of the start and end times, and the fixed or variable processing times of
the operations. Precedence constraints that dictate the order required for pro-
cessing of the operations are part of this class. The extension of the precedence
constraints are precedence constraints with minimal delays and precedence
constraints with fixed delays.

Machine related constraints can be divided into capacity related and synchro-
nization constraints. In the capacity constraints, the machine has predefined
capacity that cannot be breached. This depends on various conditions e.g. pe-
riods for which a resource is unavailable or forbidden states due to closure. In
the case of synchronization constraints, is when a certain task is executed on a
particular machine, a corresponding machine must be activated to process an
associated task.

2.1.5 Characteristics of Schedule

The schedules generated from the scheduling process may be improved based
on whether the operations can be shifted to an earlier starting times or dates.
This is required in order to optimize some objectives under certain constraints.
There are two types of shifts possible, the local shift allows for a schedule shift
while preserving the operation sequence while the global shift will change the
operation sequence but do not delay any other operations. Types of schedules
according to [132] are:

Inadmissible schedules - excessive idle time in the machine

Nondelay schedules - no idle time on the machines when there are operations
waiting to be processed. This implies that the machines should be busy
if there are any operations in waiting.

Active schedules - a feasible schedule cannot exist or be improved by moving
the tasks forward or backward resulting in task finishing earlier and no
tasks finishing later. This schedules cannot be improved without delay-
ing other operations in the schedule.

Semi-active schedules - a feasible schedule in which no operation can be com-
pleted earlier without changing the order of the processing. This also
mean that the schedule cannot be improved by shifting operations to the
left of the schedule.
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Figure 2.1: Types of Feasible Solutions

Operations with the associated processing times
Job 1 Job 2 Job 3

O M P.T. O M P.T. O M P.T.
O1,1 M1 6 O2,1 M1 1 O3,1 M1 5
O1,2 M4 8 O2,2 M2 3 O3,2 M3 5
O1,3 M3 9 O2,3 M3 9 O3,3 M2 3
O1,4 M2 4 O2,4 M4 6 O3,4 M3 6

Table 2.3: Processing times for Gantt Chart Example

According to [132], optimal schedules tend to be semi-active schedules
that are active but are not non-delay. This categorization of feasible solu-
tions is depicted in Figure 2.1.

2.1.6 Representation Models

Representing the schedule that is feasible can be done in two main meth-
ods: Gantt Chart and Disjunctive Graph.

2.1.6.1 Gantt Chart

The Gantt chart [51] is the most common method to graphically repre-
sent a schedule. The chart consists of the unit time in the abscissa and
machines on the ordinate axis. The chart shows the related jobs or opera-
tions to be performed on the different machines. Each block incorporates
the starting time and completion time of that job or operation.

Figure 2.2 shows one of the solutions to job shop scheduling problem of
the Table 2.3. The table shows the predetermined machines that the op-
erations must be processed on, along with its required processing times.
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Figure 2.2: Example of Gantt Chart

2.1.6.2 Disjunctive Graph

The disjunctive graph is another method used to represent sched-
ules [16]. This graph as shown in Figure 2.3 displays relationships be-
tween jobs and operations, as well as relationships between operations
to be processed in a particular machine. The nodes represent the indi-
vidual operations with the associated processing times beside it. The
conjunctive relationships are shown between operations of the same job.
However since each machines may consist of several operations that can
be processed on it, the disjunctive clique is used. The clique contains the
subset of operations to be processed on the same machine, such that each
operation pair has a disjunctive relationship. The graph has two extra
nodes representing the source and sink of the schedule that corresponds
to the initial and final operation, but without any processing times at-
tached. A deduction can be made from the graph for the actual schedule
when the bi-directional disjunctive constraints are uni-directional and
the directed disjunctive graph is non-cyclic. This deduction of a feasible
schedule will determine the order the operations should be processed
and also the sequencing of the operations on each machine.

2.2 Types of Scheduling Problems

The functional classification of scheduling problems as reflected in [85]
comprises as follows:
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Figure 2.3: Example of Disjunctive Graph

1. Requirement Generation

2. Processing Complexity

3. Scheduling Criteria

4. Parameter Variability

5. Scheduling Environment

The requirement generation will determine if the manufacturing system
is a closed shop or open shop. Closed shop is where the inventory parts
are used from existing in-house stores. Open shop is where the plant will
source parts from outside with no inventory kept in the plant. Hence
there will be a smaller storage cost involved.

The processing complexity of the scheduling problem is known from the
number of processing steps and machines required. The following are
divided into:

1. single stage, single processor

2. single stage, multiple processor

3. multiple stage, flow shop

4. multiple stage, job shop

The environment that dictates the layout of the machines in the shop
floor depends on the type of products being manufactured or processed.
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A good, well designed and compact machine layout can minimize cost,
reduce completion time, have high throughput and allow for more flexi-
bility.

2.2.1 Single Machine

The single machine environment is the simplest of all machine environ-
ment. Here only one machine exist to execute all the tasks. Some of the
more complicated machine environments may be uniquely reduced to
this state. Although there is only one machine to be utilized, character-
istics like set-up time and capacity of the machine makes this problem
interesting to solve.

2.2.2 Parallel machine

The parallel machines set-up allows for more processing strength and
flexibility compared to the single machine layout. It is common in man-
ufacturing floors to have several identical machines positioned as paral-
lel layouts. A job to be processed may be loaded on to any one of the
parallel machines.

Some parallel machine layouts may consist of machines with variable
speeds. This is also referred to as uniform machines. If the speed of a
machine m is υm, the processing time of task i is pi then the period that
the task is loaded on the machine is pi/υm.

However cases also exist where parallel machines are not identical, this
are known as unrelated parallel machines. These unrelated parallel ma-
chines would have different speeds depending on the task being pro-
cessed.

2.2.3 Flow shop

Rather than having machines positioned in parallel, these machines are
in series. All jobs must be processed on each of the machines, starting
from the first machine and finishing at the last machine. Usually a First
In First Out (FIFO) policy applies in flow shops as the machines are set in
series. Tasks cannot be loaded on the next machine if the machine is busy
so it must be held on the buffer or on the current machine. The processing
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order on a machine will normally determine the order for the rest of the
machines in the series, also known as permutation flow shop [100].

Another variation of the flow shop is the flexible flow shop also known
as hybrid flow shop [113], where a combination of parallel machines ex-
ists in series. A set of parallel machines will form a stage, with tasks
having to complete all stages. [113] reviewed various researches and ap-
proaches done into 2-stage, 3-stage, and k-stage hybrid flow shop. Sev-
eral other research works into flow shops have concentrated on stochas-
tic flow shop that incorporated unknown release time of tasks, break-
down in machines and stochastic processing times, as seen in [58]. No-
wait flow shop [8] or continuous flow shop [44] is another special case
where no operations must be left idle between consecutive machines,
even if this delays the first loading of the operations on the first machine.
The case where the machines are always kept busy once the production
has started is the no-idle flow shop [88]. Flow shop with up to 2 machines
are polynomially solvable but with more than 2 machines, the flow shop
problem is NP-hard according to [53], [57].

2.2.4 Job shop

The job shop environment is a much more complicated scheduling case.
Each N jobs has numerous operations to be processed on the limited
number of machines, M. Each job may require different and specific
routes through the machines. The operations may also require to be pro-
cessed once on the machines. If the operations is routed and to be pro-
cessed on the same machine more than once, that would be classified as
a re-entrant job shop.

One of the earliest works into job shop scheduling stemmed from [125].
The common constraints associated with the job shop scheduling are:

• Each job must be processed by a particular machine exactly once in
a pre-known order.

• All jobs are ready to be processed at time zero.

• Processing of a job on a particular machine is called an operation,
hence a job can only be completed if all operations have been pro-
cessed.
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• The processing time of the operations are a deterministic, constant
and are known in advance.

• A precedence constraint exists between operations from the same
job, which means that the preceding operation must be finished be-
fore a succeeding operation can be started.

• Once the operation has been started by the machine, it can not be
interrupted or preempted.

• Each machine can process only one job in any period of time.

• Assuming no machine breakdown, and negligible transportation
time, and setup time.

2.2.5 Open shop

The open shop differs from the job shop such that no precedence relation-
ship is considered between tasks. Similar to the job shop layout, for N
jobs and each job j, there are a preset n j number of operations to be com-
pleted or processed on M machines. Hence the scheduling problem aims
to determine the job orders on the machines and machine orders [22].

2.2.6 Flexible Manufacturing Systems (FMS)

The Flexible Manufacturing System (FMS) normally comprises of numer-
ically controlled machine tools, serviced by a material handling system.
These machines are flexible and can handle numerous part types with
minimum change over time required. FMS allows the choice of one or
more stations for each operation and one or more processes to manufac-
ture each part type. FMS has been sought after as one of the best com-
promises between flexibility and economical cost for high volume pro-
duction [28]. The flexibilities associated with FMSs is in terms of operat-
ing sequence, transport and multiple resources working simultaneously.
Scheduling in FMS differs from other conventional scheduling machine
environment in its feasibility characteristics [83].The availability of alter-
native resources in the system to handle routing flexibility makes a big
difference. This eliminates the possibility of major bottlenecks in the ma-
chines when routing is not feasible. FMS can be divided into two sub
classes: Real time (or reactive) and predictive (or deterministic). Real time
FMSs are usually subjected to unstable demand or frequent disturbance
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to production. Whereas deterministic FMSs are more stable and allow
for optimal states for optimizing criteria e.g. makespan, production flow,
WIP, waiting times and buffers size.

2.3 The Cyclic Scheduling Problems

The cyclic scheduling, as a special case of the scheduling problem, can
be defined as the infinite occurrence of generic tasks required to produce
numerous assemblies. An occurrence is considered to be a single execu-
tion of the task. Even though the task occurrences are infinite, there is a
particular cyclic pattern associated with these occurrences.

Compared to the non-cyclic scheduling problems, the cyclic scheduling
problem differs in a few instances. In cyclic scheduling, the set of tasks
will be executed repeatedly over a probable extended infinite time hori-
zon. This may include either a number of cycles or an infinite number of
cycles or loops. This can be achieved through generating a special frame-
work (or schedule) comprising of a pattern of operating sequence that is
to be executed repeatedly. This reduces the complexity by seeking out
the optimization of a single schedule.In real-life, many systems, such as
production line, the tasks are executed repeatedly.

Where else, the non-cyclic (acyclic) scheduling problems involve the
scheduling of all finite tasks to accomplish the required demand. This
is normally done without any definite pattern while trying to attain the
desired objective e.g. makespan, tardiness, or earliness.

For the cyclic scheduling problem, a set of generic tasks, T are processed
cyclically where there are N tasks in total. Let N be the number of generic
tasks;

T = 1, 2, . . . , N (2.3)

Associated with each generic task, i is its processing time, pi. The tasks
are sequenced in a particular order in the form of a schedule. The op-
erating sequence will generate a continuous flow of completed tasks in
predefined intervals.

This will result in a single schedule that completes a task (or a set of tasks
if the tasks are required to complete a certain job) or a job every τ unit of
time. Here τ is defined as the cycle time. Hence, the schedule will repeat

25



itself every τ (τ > 0) unit of time. The cycle time is a good measure of
the throughput of the system [136].

In this research work, we denote start time of task i as Si. Moreover if
operation i is from a particular job, j, the start time will be Si, j. In the
case where, a consideration of which occurrence of the task, i is required,
the superset parameter, k is attached to the start time variable as follows,
Sk

i, j. Iteration < i, k > denotes the k-th occurrence of task i.

The start time of occurrence k for a task i of a job j, with a fixed cycle time
τ , is given by [64]:

Sk
i, j = S0

i, j + τk ∀k ∈ Z (2.4)

Also to guarantee that the (k+1)-th occurrence of an operation i can only
proceed if the previous k-th occurrence of the same operation has been
completed, the following statement holds true:

Sk+1
i, j ≥ Sk

i, j + pi; j (2.5)

For the two operations i and i′ that should be processed on the same
machine M, we ensure guarantee that the two operations do not overlap,
so the following statement holds true:

Sk
i, j 6= Sk

i′ , j (2.6)

The average cycle time, ω can be expressed as follows [65]:

ω = limk→∞ maxi∈T(Sk
i, j + pi, j)

k
(2.7)

The average cycle time can be used to calculate the throughput of the
system which is equal to 1

ω .

2.4 Parameter in Cyclic Scheduling Problems

The two most important parameters in the cyclic schedule are the cycle
time, τ and latency.
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2.4.1 Cycle Time

The cycle time would be the time taken to execute all the operations be-
fore the next schedule pattern is repeated. When processing tasks in a
cyclic schedule, the difference between occurrences of the task is also
measured as cycle time. Minimizing the cycle time is one of the major
criteria in cyclic scheduling as it will increase the number of jobs com-
pleted and maximizing throughput of the machines.

2.4.2 Latency

Latency is the number of cycles required to complete a single job. This
definition also normally denotes the number of jobs concurrently under
production.

As an example, Figure 2.4 shows a cyclic schedule with cycle time of
15 units that is composed of 8 tasks. Figure 2.5 shows an improvement
of the cycle time of only 9 units for the same number of tasks but with
latency value of 4.

2.5 Characteristics of Cyclic Scheduling

Problems

2.5.1 K-Periodicity

The cyclic scheduling problem can be divided into 1-periodic schedule
(or periodic schedule) and K-periodic schedule for K > 1. 1-periodic
schedule has only 1 occurrence of each operation per cycle period and
K-periodic schedule has K occurrences of an operation per cycle. An
example of the K-periodic schedule is shown in Figure 2.6.

2.5.2 Precedence Constraints

Precedence constraints determine the order of processing for the opera-
tions within each job or task. Any two tasks or operations with prece-
dence constraints must have one task completed before another task can
be started. Denoting start time and end time of task Ta by Start(Ta) and
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Jobs with processing times
Job Machine P.T.
O1 M1 1
O2 M3 2
O3 M1 2
O4 M2 3
O5 M1 3
O6 M3 1
O7 M2 1
O8 M3 2

Table 2.4: Cyclic Gantt Chart
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Jobs with processing times
Job Machine P.T.
O1 M3 2
O2 M1 1
O3 M2 3
O4 M1 2

Table 2.5: 2-periodic Cyclic Gantt Chart.
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Figure 2.6: 2-periodic cyclic schedule

End(Ta) respectively, and start time and end time of task Tb by Start(Tb)
and End(Tb) respectively. This is mathematically modelled as:

End(Ta) ≤ Start(Tb) or End(Tb) ≤ Start(Ta) (2.8)

In the first case above, the task Tb is a successor of Ta, but in the second
case, task Tb is the predecessor of task Ta. Previously Lenstra et. al. (1978)
[108] studied the complexity of scheduling with precedence constraints
while Blazewicz et. al. (2002) [17] reviewed the properties of task-on-arcs
graph and task-on-node graphs representation of precedence constraints
for the scheduling problems.

Here within the cyclic schedule, the restriction of when to start an opera-
tion only after the completion of another operation is vital for feasibility.
We can distinguish two types of precedence constraints.

Uniform Precedence constraints: In basic cyclic scheduling problems (with-
out any resource constraints) with uniform precedence constraints is
when the execution indices between two cyclic tasks/operations are con-
stants. One of the modelling methods of these uniform constraints is
the uniform graph [65]. The uniform graph represents the precedence
constraint by nodes (representing tasks), directed arrows (relationship
of precedence), with value on relationship of length, L and height, H.
Here L is the processing time of the task (or start/delay) and H as oc-
currence denominator (or height/distance). The generalized precedence
constraint between task i and i′ is as follow:

Sk
i + Li,i′ ≤ S

(k+Hi,i′ )
i′ (2.9)

with L is a rational number and H an arbitrary integer.

The precedence constraint between the subsequent occurrences of a par-
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Figure 2.8: Gantt Chart for linear precedence constraints (2,3,1,2,0)

ticular task i is:
Sk

i + pi ≤ S(k+1)
i (2.10)

with pi as processing time for task i.

Linear Precedence constraints: The linear precedence constraint that gov-
erns the generic tasks i and i′ can be defined as follows [124]:

S
(βi,i′n+δi,i′ )
i + pi ≤ S

(β′i,i′n+δ′i,i′ )
i′ ∀n > 0 (2.11)

The βi,i′ and β′i,i′ are two positive natural numbers while δi,i′ and δ′i,i′

are just two natural numbers. The linear precedence constraint between
operations i and i′ is denoted by (pi, β, δ, β′, δ′). This means that βn + δ

occurrence of operation i must be completed before occurrence β′n + δ′

of operation i′.

This linear relationship can be represented by a directed graph G =
(T, E) with nodes T and arcs E. The nodes represent the operations
while the arcs represents the linear constraints. The example in Figure 2.8
shows the linear precedence constraints effect on the occurrences of both
operations i and i′. Here the constraints are denoted by (2, 3, 1, 2, 0) or
S(3n+1)

i + 2 ≤ S(2n)
i′ ∀n > 0.

According to [124], some linear precedence constraints can be reduced

30



into uniform constraints. From:

Minimize τ s.t. (2.12)

S
(βi,i′n+δi,i′ )
i + pi ≤ S

(β′i,i′n+δ′i,i′ )
i′ ∀n > 0 (2.13)

into

Minimize τ s.t. (2.14)

Si′ − Si ≥ Li,i′ − τHi,i′ ∀(i, j) ∈ E (2.15)

provided that the graph G is strongly connected. This means that for all
cycles c of graph G, the combined weight of the arcs ∏

β′

β = 1. Assuming

that the weight for each arc (i, i′) is
β′i,i′
βi,i′

.

From [67], it is proven that the periodic schedule holds true for linear
precedence constraints for all arcs (i, i′) ∈ E if:

S0
i + (βi,i′k + δi,i′)τi + Li,i′ ≤ S0

i′ + (β′i,i′k + δ′i,i′)τ
′
i (2.16)

Some key researchers that had investigated the linear precedence con-
straints in cyclic scheduling problem are Munier (1996) [124], Hanen and
Munier Kordon (2008) [67] and Cavory et. al. (2005) [27].

2.5.3 Disjunctive Constraints

Another important constraints widely used in this scheduling domain
is the disjunctive constraints. These constraints are applicable in both
non-cyclic and cyclic scheduling problems These constraints deal mainly
with relations to the resource availabilities [13]. The purpose of these
constraints is to ensure that the two or more tasks assigned to the same
resource, are not carried out or processed simultaneously. This will elim-
inate the chances of overlapping in time when processing the tasks.

This can be illustrated by using 2 simple tasks: Ta and Tb that can only
be processed on the same machine M. The disjunctive constraint on ma-
chine M at any instant of time is:

End(Ta) ≤ Start(Tb) or End(Tb) ≤ Start(Ta) (2.17)

As such the example above denotes that variable constraints of start
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times for task Ta (or start time task Tb) cannot start until end time of
task Tb (or end time of task Ta) has been completed. Here the constrained
propagation will try to reduce the values of the variables to adhere to
the above equations. Baptiste et. al. (1996) [13] extended this constraint
in a way as to include the state resources and the flexibility of time tran-
sition between operations being processed for the ILOG TMSCHEDULE
software. The state resources where resources are operating only at a
particular state by the tasks, are defined as:

[End(TA) ≤ Start(TB)]or[End(TB) ≤ Start(TA)]

or[duration(TA) = 0]or[duration(TB) = 0]

or[State(TA) = State(TB)]

where State(T) represent the state of task T and duration(T) as duration
for which the task requires the resource.

2.5.4 Cyclic Constraints

This constraint applies when defining the schedule, i.e. framework to
be repeated when a deterministic and predefined cycle time is known
and fixed. Consider the start time, Si, j for a particular operation Oi, j, the
cyclic constraint is denoted as:

0 ≤ Si, j < τ (2.18)

where τ is the fixed cycle time.

2.5.5 Performance Measures

The most common objective functions or performance measures used in
cyclic scheduling problems include:

1. Maximizing throughput of the cyclic production system that will
also maximize the frequency of completing jobs. This is equivalent
to minimizing the cycle time. In effect: Maximizing throughput will
maximize work in progress (WIP) but will minimize cycle time.
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2. Minimizing work-in-progress will thus save storage space and re-
duce parts waiting times.

3. Minimizing flowtime i.e. time needed to produce one occurrence
of a product or complete one job comprising of a finite number of
operations.

4. Minimizing cycle time i.e. minimizing time difference between two
succeeding occurrences of operations.

5. Minimizing K-periodic cycles i.e. minimizing time difference be-
tween 1 -th occurrence and 1+K -th occurrence of an operation where
K -occurrence of an operation being processed in one period.

2.6 Classes of Cyclic Scheduling Problems

Static cyclic scheduling problems have fixed numbers of jobs, machines
and processing times. However in the case of dynamic cyclic scheduling
problem, stochastic factors are incorporated into the cyclic scheduling
problems.

Cyclic scheduling problem can be categorized into two main categories.
Firstly precedence relationship between tasks without resource con-
straints and the other with resource constraints.

2.6.1 Basic Cyclic Scheduling (BCS)

Basic Cyclic Scheduling (BCS) problem is one of the simplest form of cyclic
scheduling problem without resource constraints. In this problem, the
precedence constraints that dictate the order of processing the tasks are
uniform where when executing the generic tasks, the constraints has an
execution index that is a constant. Among the main objectives of BCS
problem is to maximize the throughput. Since no resource constraints
are considered, the number of machines are not limited. BCS with an
exact solution is proven to be of complexity O(n3logn) where n is the
number of tasks in the system [65]. Chretienne (1991) [32] also looked
into the use of expanded graph and latest schedule to solve the basic
cyclic scheduling problem. The other cyclic scheduling problem without
resource constraints is the Basic Cyclic Scheduling problem with Linear
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Precedence Constraints (BCSL). Some of the special cases of BCSL prob-
lem may be transformed into a BCS problem. According to Hanen and
Munier (1995) [65], these can be achieved by expanding the graph mod-
eling and the number of tasks of the cyclic problem.

2.6.2 Cyclic Scheduling Problem with Resource Con-
straints and Linear Precedence Constraints

An extension to the basic cyclic scheduling problem, Brucker and Kamp-
meyer (2005) [20] solved the cyclic scheduling problem with limited re-
sources and with linear precedence constraints. Here the constraints of a
machine only being able to process one operation per instant of time is
added into the problem.

2.6.3 Robotic Flow Shop

Also another type of cyclic scheduling problem is the robotic cell problem
or robotic flow shop (RFS). This particular type of problem involves a
robotic arm that functions as a transportation mechanism for moving the
work in progress parts between machines. The aim of the robotic arm is
to complete N − unit activity sequences where a sequence is a set of the
robot moves, to load and unload each machine exactly N times [92], [38]
to maximize the throughput of the tasks. The complexity of this cyclic
scheduling problem when identical parts are involved has been proven
to be O(m3) where m is the number of machines in the system and is
NP-Complete.

2.6.4 Hoist Scheduling Problem

The Hoist Scheduling Problem (HSP) is concerned with the use of hoists
to transport and submerge printed circuit boards into successive tanks to
be electro-plated. Restrictions on the hoist includes using only a particu-
lar track and collisions must be avoided. Infinite numbers of boards are
involved and usually there exists a lower and upper time limit in which
the boards can be submerged. The main objective is to minimize the cycle
time. It has been proven that it is NP-hard for a single hoist and unique
job of identical parts.
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2.6.5 Cyclic Scheduling Flexible Manufacturing Sys-
tems

This is normally used for medium to high volume production. Cyclic
scheduling is possible as the high volume normally comprises of a com-
bination of small number of identical quantities. So using the cyclic
scheduling allows for scheduling of a small number of operations in one
cycle. Followed by repeating the first cycle continuously to fill the re-
quired demand. The cyclic scheduling of the FMS is possible if the fol-
lowing holds:

• production of different types of parts are programmed by a cycle
with respect to specified ratios resources are shared by many oper-
ations,

• each part is routed on repeated sequence of production,

• manufacture of parts that consist of assembly or disassembly of sev-
eral components,

• a resource is associated with only one operation at any single period
of time and no preemption is allowed.

Further descriptions of this class of cyclic scheduling problem can be
found in [129], [96], [28], [149], [150], [104], [77], .

2.6.6 Cyclic Scheduling Flow Shop

Cyclic Scheduling Flow Shop is based on the properties that all the tasks
having the same machine loading sequence and same processing se-
quence. Minimal Part Set (MPS) that represents the smallest set having
the same proportions of the different item type as required to be pro-
duced, is commonly associated with flow shop and from the production
requirements of rl units of item type l, where l = 1, 2, · · · , L. MPS can
be expressed as [73]:

r∗ = (
r1

q
,

r2

q
, · · · rL

q
) (2.19)

where q is the greatest common divider for parameters r1, r2, · · · , rL.
Karabati and Kouvelis (1998) [90] studied the cyclic scheduling on the
flowline that assumes finite or infinite buffers between machines and
works to schedule jobs within the MPS before extending it to the α-MPS

35



to represent a cyclic schedule, where α is the integral constant of propor-
tionality and a divisor of q.

2.6.7 Cyclic Open Shop

Cyclic Open Shop [99] represents the cyclic version of open shop. How-
ever the cyclic schedule with no idle and waiting time allowed for tasks
and machines are known as compact cyclic open shop. This is more ob-
vious for use in metallurgy industries where the same product is repeat-
edly produced, but the part being processed is sensitive to delay. Both
cyclic open shop and compact cyclic open shop share similarities with
normal open shop with no precedence constraints considered. The cyclic
open shop is proven to be NP-Hard for 3 or more machines while it is
also NP-Hard for compact cyclic open shop of 2 or more machines, [99]
for the case of minimizing makespan.

2.6.8 Cyclic Job Shop

The cyclic job shop scheduling problem (CJSSP) is the cyclic version of
the job shop scheduling problem. Here the operations must be cycli-
cally processed in order to complete the infinite number of each jobs
required. Also all the jobs may also be processed for a infinite num-
ber of times. All the properties of the cyclic job shop remain the same
as the non-cyclic but with the addition of maximizing the throughput
through a minimum cycle time. Boussemart et. al. (2002) [18] intro-
duced the CJSSP with linear constraints, while Seo et. al. (2002) [141]
introduced the term cyclic job shop with overtaking or overtaking cyclic
job shop (OCJS) where the latency value for the cyclic schedule is more
than one. However the basic cyclic job shop (BCJS) have no overtaking
properties. Another form of cycle shop is the one introduced by Mid-
dendorf and Timkovsky (2002) [122]. This cycle shop is a special cyclic
version of a job shop, however having flow shop properties. All jobs in a
cycle shop have the same sequence of operations on the machines, but in
contrast to a flow shop, some operations may be repeated on particular
machines a number of times, as specified depending on the machine.
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2.7 Periodic/Cyclic Schedule

The cyclic schedule is periodic if the following holds true for any start
time of operation i of job j:

Sk
i; j = S0

i; j + τ(k) ∀k ∈ Z (2.20)

where occurrence ∀k ≥ 1, τ as average cycle time and S ≥ 0.

The cyclic scheduling problem that we shall be focused on, is the periodic
schedule. The periodic schedule here means that a particular schedule is
repeated using a certain period value. This period that equals to the cycle
time can be used to give the next iteration in the next cycle of a particular
operation within the cyclic schedule.

In solving the cyclic scheduling problems and generating the cyclic
schedules, the approaches normally include finding a schedule (frame-
work) that will adhere to precedence and disjunctive constraints and re-
peating that schedule found at the earliest possible time. These efforts
however may consider fixing a certain cycle time and generate the fea-
sible schedules from that if a minimum latency is required. But in the
case of minimizing the cycle time, fixing number of latency and generate
feasible schedules from that may also work.

Alternatively, the other approach involving optimization tools will fol-
low the sequence of finding a sequence for the operations, optimizing
the sequence through some optimization technique, that will not violate
any constraints set and using the objective of optimizing the set objective
criteria.

For deterministic cyclic scheduling problems, some information such as
number of jobs and their operations, the operations processing times,
the number of machines capable of processing the operations, the set-up
times and the restrictions involved in processing each operations, are vi-
tal for generating possible schedules. However whether the given sched-
ule is feasible or not, depends on the restrictions involved and the accu-
rate modelling of these restrictions. A feasible cyclic schedule must fulfill
all constraints requirements, but may not be the best cyclic schedule for
the problem. The best and optimum cyclic schedule will definitely maxi-
mize or minimize the criterion set, but in many cases due to the complex-
ity of the problem, only come close in reaching the lower bound or upper
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bound of the criterion available. The level of successfulness in attaining
this depends greatly on the approach used to solve the cyclic problem.

A cyclic schedule T is considered optimal or efficient if no other cyclic
schedule can match the cycle time and have a lower value of objective
value than the cyclic schedule T.

2.7.1 Transient State Research

The study of transient state in cyclic scheduling for especially FMS can
be found in [97]. The transient state occurs when the jobs are loaded
onto the machines before reaching the steady state i.e. known as pre-
production and also can be found when completing the production i.e.
post-production. The goal then is to minimize this transient state and max-
imize the steady state of the productions.

The upper bound of pre-production transient state can be calculated
(based on predetermined cycle time):

max j
{
τ ∗ np( j, BPL)− BDOS( j, BPL)

}
(2.21)

where τ is the cycle time, np( j, BPL) is the number of pallets used by the
job j at beginning date of periodic loading (BPL). BDOS( j, BPL) is the
start date of the job j for the beginning date of periodic loading (BPL).

The lower bound of the pre-production transient state is given by:

max
{

OT
(
Wj
)
(BPL)

}
(2.22)

where OT
(
Wj
)
(BPL) is the sum of all the operating times to be pro-

cessed for job j in the pre-production for pallet Wj with fixed BPL.

The post-production duration bounds can be calculated from the upper
bound:

max j {(N − 1) ∗ τ + EDOS( j, BPL)} (2.23)

with EDOS( j, BPL) as end date of operating sequence of job j at BPL of
the steady state and N as the total number of job j required to be pro-
duced.

The lower bound of post-production is as follows:

max j
{
(N − np( j, BPL)) ∗ τ + BDOS( j, BPL)

}
(2.24)
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[97] summarized that the transient state does not depend explicitly on
the number of operations of jobs to be cyclically scheduled. However the
importance of transient state diminishes compared to the importance of
minimizing the makespan when the number of operations increases.

2.8 Summary

In this chapter we have described the classification of scheduling prob-
lems and the framework to compare scheduling techniques based on pro-
duction system models, manufacturing scenarios, plant scenarios and
operational scenarios. We have also summarized the various charac-
teristics of the scheduling problem involving the tasks, machines, con-
straints and objective function of the problems. We also describes some
of the types of scheduling problems in terms of differences and special
features in relation to cyclic scheduling. In addition to fulfilling the objec-
tive function of cyclic scheduling problem, objectively cyclic scheduling
also aims to:

1. generate the maximum number of jobs within a certain period of
time,

2. leave least slack between operation of machines,

3. leave least time between cycle of schedules thus having least
amount of jobs hanging(or in progress).

According to Toguyéni et. al. (2005) [148], cyclic scheduling is by def-
inition deterministic and a viable option as breakdown of machines are
supposedly rare, with sufficiently large interval during which estimated
control can be fully exploited without interruption. Using both of these
assumptions, these will allow for reaching the expected optimal perfor-
mance and maintaining them over sufficiently long time. Deterministic
characteristics associated with cyclic scheduling is vital as this allows for
optimization of the flow of production while precise knowledge of the
system state, allows for constant control of production.

Cyclic scheduling is advantageous in the sense that it is easier to im-
plement as it is a matter of repeating a certain schedule infinitely or for
a fixed number of iteration, compared to non-cyclic/non-repeating ap-
proaches to reaching the goal of completing a fixed amount of jobs in
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minimum time. Referring to the complexity issue, cyclic schedule has
reduced complexity, as it is independent of the number of operations. In
terms of the production rate, the completed jobs and products period can
be continuously known. Cyclic scheduling also encourages predictable
shop behaviour as recurrent schedule is known to lead to more simpli-
fied flow control of products. This will then allow for smoother control
of level associated with finished products and inventories of parts [90].
Hall et. al. (1997) [61] quoted that better utilization or simultaneous uti-
lization of machines in processing the operations can be achieved with
cyclic scheduling. [63] also noted that the cyclic scheduling approach al-
lows for planning at a higher level being the ideal approach to planning
of production. This can be done by aggregating processes according to
similar routing and processing requirements.

However, the drawback of cyclic schedules is the existence of disruptions
in the system. Disruptions in the form of machine failure or part deliv-
ery issues. This must be compensated for by dynamic real-time control
to handle these uncertainties. [160] considered the stochastic program-
ming of unpredictable machine failures and considered buffered stock
and safety times to deal with these aspects.

This chapter has describe the cyclic scheduling problem and various pa-
rameters associated with this problem. This has also describe the dif-
ferent categories of the cyclic scheduling problem and various pieces of
research done to solve this problem.
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CHAPTER

THREE

Modelling Cyclic Scheduling
Problems

3.1 Introduction

The aspect of problem modelling plays a vital part in the approach used
in solving the scheduling problems. In order to capture all the equiv-
alent elements of the real life conditions and how the elements interact
and affect the behaviour of the problem, good modelling in mathemat-
ical terms, is necessary. The more complex a scheduling problem, the
more sophisticated the mathematical modelling involved will be. The
more parameters, variables and relationships between parameters in ex-
istence, the more helpful it is, in modelling the scheduling problems ac-
curately and in real term. This also presents the problem of how many
parameters are needed, and whether the parameters are necessary and
accurate enough. Over the decades, researchers have tried to efficiently
model the scheduling problem, in order to not only understand how the
systems work, and interact but also in a way to validate their modelling
characteristics.

After describing and discussing the individual characteristics of the
scheduling elements in the previous chapter, we describe the relationship
between the elements and how the system changes over time. The rela-
tionships between elements will help us understand how the scheduling
system behave, and present a way of how to measure its performance
and analyze its behaviour. This is important to assist in preparing the
scheduling problem in a form that is suitable for applying a solving tech-
nique. An efficient modelling of the scheduling problem can help to re-
duce the effort in solving the problem and allow the solving approach to
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fully utilize its potential in reaching a correct or optimal solution(s).

Two main representations of the scheduling problems exist:

1. Constraint Satisfaction Problems (CSPs) model,

2. Constraint Optimization Problems (COPs) model.

CSPs considers time limit as a constraint as regards to solving the
scheduling problem while COPs consider the scheduling problem to be
optimized using time limit as an objective function [18].

3.2 Modelling description

3.2.1 Problem formulation

A scheduling problem is formulated as one of the following objective
functions.

The completion time, Ci associated with a task i, is the end time of the
task processed by the last machine. The completion time of the task,
defined by the following equation, is generally used to define the other
objective functions and affect the sequencing of other tasks on machines.

Ci ≥ 0 (3.1)

Keeping the completion time of each tasks to a minimum, this will not
only make the completed job available sooner but it will also allow for
the resource (i.e. machines) to be available sooner to process other jobs.

The makespan, Cmax: is the time when the last job is completed and exit
the system. Mathematically, the makespan of a system is the maximum
completion time of the set of jobs required to be processed by the ma-
chines, defined by

Cmax = max(C1, C2, · · · , Cn) (3.2)

Another objective that define the scheduling problem is when the jobs
have predefined due date, d j with completion time C j, is lateness from:

L j = C j − d j (3.3)
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This measurement of lateness is positive if the job is late but negative if
it is completed early.

Tardiness, Tj: is defined as the difference between the actual completion
time and the desired completion time for a particular task (i.e. taking the
positive value of lateness):

Tj = max(C j − d j, 0) = max(L j, 0) (3.4)

The direct opposite of lateness is earliness, E j when the job is completed
early. This is defined as follows:

E j = max(d j − C j, 0) (3.5)

The total completion time of all jobs is the flow time, Fj defined by the
difference between completion time and the time at which the task was
released to the production shop.

Fj = ∑ C j (3.6)

The waiting time, Wj is the sum of all the non-active time which the job
is waiting between being processed, defined by:

Wj = C j − r j −
N

∑
j=1

p j (3.7)

where r j and p j are release time and processing time respectively.

All the above objective functions are generally subjected to precedence
and disjunctive constraints.

3.3 Scheduling problems - Complexity

To understand how difficult it is to solve the scheduling problem, con-
sider a scheduling problem with N jobs to be processed on M machines.
The M machines must process the N jobs. There are N! permutations of
sequences possible on each machine and (N!)M possible sequences for all
the machines. However the (N!)M sequences may not contain all feasible
solutions as some may violate the precedence or disjunctive constraints.
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The hard problem is compounded by the fact that if N or M increases,
the combinatorily explodes from a non-polynomial complexity!

As such the Complexity Theory is used to classify the difficulty of the
scheduling problem. Basically, whether it is possible to solve the schedul-
ing problem depends on the efficiency of the algorithms used. The effi-
ciency of the algorithm is measured by its complexity or the maximum
number of computational steps required in seeking out the solutions.
Generally in the scheduling problem, the inputs to the problem are taken
as the number of jobs (or number of operations). So using these inputs,
the algorithm can be executed in polynomial time, O(nk) where n is the in-
put size with k a constant value. The scheduling problem solved with this
algorithm is then considered as polynomial solvable. Scheduling prob-
lems may also be pseudopolynomial solvable when the input is decoded as
unary values [52].

The scheduling problems is classified as hard or easy, based on com-
plexity P , NP-hard, NP-complete [52], and can also be classified as
either optimization problem or decision problems. Class P problems
are decision problems solvable in polynomial time while NP (or non-
deterministic polynomial time) problems can be solved in polynomial
time where the correct answer can be determined from a proper clue
or solvable by non-deterministic turing machine. NP-Hard problems
are when the NP optimization or decision problems can be reduce to P
problems. Strongly NP-Hard problems is when no polynomial time al-
gorithm exists. The other classification is the NP-Complete which also
belong to set NP and is at least as difficult as any other problem in NP .

Scheduling problems are part of the Constrained Optimization Problems
(COPs) and generally these problems are NP-Hard [22]. Surveys by
Brucker et. al. (2007) [21] revealed that in the case of job-shop scheduling
problems, where it has been proven to be NP-Hard in case of N ≤ 2, is
solvable in polynomial time but there is no guarantee that an optimal
solution can be found using the most efficient algorithm for N ≥ 3.

Using the complexity theory of problem reduction, researchers have been
able to classify the complexity of solving the common scheduling prob-
lems. Brucker [23] managed to track the latest findings to these complex-
ities using a customized program called CLASS. Some major examples
associated with complexities, can be shown in the Table 3.1. More de-
tailed description of complexities associated with shop scheduling prob-
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Problems Specifications Complexities
Single machine 1|prec; pi = p; ri|∑ Ci polynomial solvable [101]

1|prec|∑ Ci NP-Hard [108]
Parallel machine P2||Cmax NP-hard [110]
Flow shop F|prec; pi; j = 1|C −max NP Hard [111]
Job shop J2||Cmax NP-hard [109]

J3|n = 3|Cmax NP-hard [144]

Table 3.1: Some Example of Complexity of Scheduling Problems

lems can be found in Brucker et. al. (2007) [21].

3.3.1 Cyclic Scheduling Complexity

For cyclic scheduling from the job shop to FMS, the complexity issue
plays a large part in the ability to solve them especially with the addi-
tional cyclic attributes [142]. Chretienne (1991) [32] proved that basic
cyclic scheduling problem can be solved in polynomial time. The com-
plexity for basic cyclic scheduling problem can be solved with periodic
schedule in O(n3logn) for n tasks [65].

In the job shop cyclic scheduling, it has been proven to be solvable in
polynomial time for 1 machine with a maximum number of operations
less or equal to 2, [82]. However, according to Hall et. al. (2002) [62]
the 2-machine job shop is also polynomially solvable in time. This is
only true for the maximum number of operations per job equal to 2. Fur-
ther research have also proven that when the number of operation is a
maximum of 3, this is binary NP-hard. Where as job shop with cyclic
scheduling with 3 machines and maximum operations per job of 3 are
unary NP-Hard [110].

The combination of complex resource flexibility shown by FMS and
cyclic attributes push these cyclic problems to remain NP-Hard accord-
ing to Serafini and Ukovich (1989) [142], [78].

So far the complexity issues on flow shop and open shop cyclic schedul-
ing are not well known. Lee and Posner (1997) [106] proved that there
exists a stable schedule that minimises the cycle time in flow shop,
that is independent of the number of job sets and can be computed in
O(∑ j∈N n j) time.

As a summary, the complexity of the cyclic scheduling problem for
two or more machines are mostly proven to be NP-Hard, hence meta-
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Problem n m Optimal
makespan

First researchers to obtain opti-
mal solutions

BCL|n|τ O(n3logn) 6 55 Hanen,Munier(1995) [66]
J|n j ≤ 2|τ Polynomial 6 55 Balas (1969) [12]
J2|n j ≤ 3|τ Binary NP-Hard 10 930 Lageweg (1984)
J2|n j ≤ k|τ NP-complete k > 3 1165 McMahon and Florian

(1975) [119]
JM|n j ≤ k|τ Strongly NP-complete k > 3 M ≥ 2 Hall et. al.(2002) [62]

Table 3.2: Complexities for Cyclic Job Shop Problems

heuristic approaches are the best computationally efficient method avail-
able. Table 3.2 shows a summary of the complexity associated with each
job shop cyclic scheduling problem.

3.4 Solving Scheduling Problems

The past research into solving the scheduling problem are generally split
into two main categories - approximation or optimization technique and
further into constructive or iterative. As described in Section 3.3, due to the
complexity of the scheduling problems, the approximation approaches
have the ability to deliver good results (but not global optimum) in an
acceptable time frame. Ignoring the computational time in some way, the
optimization approaches are more relentless in seeking the global opti-
mum solution, although this tend to require massive computational ef-
fort. Digging deeper into these two types of techniques, the constructive
approach builds the schedule from scratch using the information given
whereas the iterative techniques will continuously reorder the initial fea-
sible schedule to create better schedules.

The effectiveness of the two mentioned approaches depends greatly on
the complexity of the particular scheduling problem. This effectiveness
may be in terms of accuracy of solutions or speed in obtaining the opti-
mal solution. Generally, with increasing number of operations and ma-
chines, the computational time required to solve it will increase tremen-
dously except for special cases of scheduling problem that can be solved
in polynomial time.

As well, the approaches to solve the scheduling problem may depend
on the readiness knowledge of the pertaining scheduling information.
Where categorically, off-line scheduling or static scheduling which gen-
erate a solution according to the known information provided on the
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jobs and available resources over a planned period. In the case of on-
line scheduling or dynamic scheduling, the approach is intrinsically able
to alter an existing schedule to cater for new changes in demand or even
completely regenerate a new schedule [132], [153].

3.4.1 Survey on scheduling techniques

There have been quite a few surveys done into the techniques used to
solve the scheduling problems. Among them are Yahyaoui (2006) [156]
who surveyed research papers that covered approaches in solving the
job shop scheduling problem. These papers covered are based on the
three main categories of approaches covering Heuristic Rules, Classical
optimization techniques and Neural network optimization systems.

Recently Proth (2007) [133] extended the survey by Panwalkar et. al.
(1978) [130] on Scheduling Rules. As the initial survey concentrated on
113 rules used in Priority Rules, heuristics and scheduling rules, Proth
listed the following as the most popular in the past decade:

• Shortest Processing Times (SPT) where tasks with the smallest pro-
cessing times have the highest priority to be scheduled, followed by
tasks with next smallest processing time.

• Largest Processing Times (LPT) is the reverse version of SPT where
tasks with the largest processing times must be scheduled with
highest preference.

• First In First Out (FIFO) rule dictates that the earlier the task arrive,
the earlier it must be processed or scheduled.

• Last In First Out (LIFO) is the direct reverse of FIFO where the last
tasks arriving will have highest priority.

• Shortest Setup Time (SST) is relevant when setup times are fixed and
known, the scheduling priority is based on the tasks with the least
amount of setup time required.

• Largest Setup Time (LST) rule is similar to SST in characteristics, but
the tasks with largest setup time will be given preference over the
other tasks.

• Shortest Processing and Setup Time (SPST) is the combined version of
SPT and SST.
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• Largest Processing and Setup Time (LPST) is the combined version of
LPT and LST.

• Earliest Due Date (EDD) rules that tasks with nearest due dates must
have highest priority.

• Latest Due Date (LDD) is the reverse version of EDD, hence highest
priority is for tasks with latest due dates.

Proth (2007) [133] also described the concept of dynamic scheduling
approach and how the real time assignments used in solving schedul-
ing problems, takes a different approach in the form of meeting new
scheduling demands, through rescheduling of the whole schedule when
required. Another effective approach used is the Branch and Bound ap-
proach that utilizes the dynamic tree representation of the solution space
representing the scheduling problem. This enumerative approach will
search the space of all feasible schedules. This formulation procedures
and rules will remove large portions of the tree until a lower bound as-
sociated with the optimal solution is found. This approach has been suc-
cessful in solving single machine by Chang (1999) [29] and general shop
scheduling problems by Kindt et. al. (2004) [147].

Also the Shifting Bottleneck procedure from Adams et. al. (1988) [2] is one
of the most popular heuristics proposed for solving the job shop schedul-
ing problems. The actual strategy involves considering the M machine
problems and solving each subproblem. The solutions obtained on each
machine are ranked, with the largest lower bound is identified as the
bottleneck machine. The scheduling of the jobs are done based on this
bottleneck machine.

Tabu search (TS) [54] algorithms is also one of the most effective ap-
proaches for solving scheduling problems. As TS utilizes the principle
of neighborhood structures and move evaluation strategies, these princi-
ples have been proven successful in obtaining optimum solution within
a fast period of time. Among the researchers that have developed Tabu
Search approaches for solving the job shop scheduling problem are Now-
icki and Smutnicki (2005) [128] and Zhang et. al. (2007) [159].

One of the latest technique used is the fuzzy logic, that has the inclusion
of uncertainty characteristics infused in the approach. The modelling is
based on fuzzy logic consisting of ”IF-THEN” rules to represent the re-
lations between input and output variables of the scheduling problem.
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One example was developed by Bilkay et. al. (2004) [15] who devel-
oped a fuzzy logic-based decision-making algorithm to determine the
scheduling priorities for part types in the flexible manufacturing system
problem.

Another variation to the local search methods is the Genetic Algorithm
(GA) inspired by the process of Darwinian evolution. GA utilizes a pop-
ulation of solutions in its search based on survival-of-the-fittest step of
mutation and crossover in generating new solutions until the best solu-
tion is found. Researchers such as Gonçalves et. al. (2005) [56], Park
et. al. (2003) [131] and Mattfeld et. al. (2004) [118] were successful in
applying the GA in solving the job shop scheduling problem.

3.5 Modelling The Cyclic Job Shop Schedul-

ing Problem

As already briefly described in previous chapter, the Cyclic Job Shop
Scheduling Problem (CJSSP) is an extension of the job shop schedul-
ing problem (JSSP) that is a combinatorial optimization problem with
a complexity of NP-Hard. The job shop scheduling problem involves the
scheduling of jobs that comprise of a definite number of operations. The
objective associated with this problem is normally minimizing the sched-
ule length to complete all the jobs. The case of cyclic version of job shop
scheduling problem involves iterative repetition of jobs to be solved. The
objective when solving the scheduling problem involved is slightly dif-
ferent where generally it is the cycle time that is to be minimized. This is
based on k occurrences of the jobs. Among the first research into CJSSP
are work by Roundy (1992) [136] on finite machines processing multi-
ples of the same job while minimizing the cycle time whilst Draper et.
al. (1999) [39] utilized constraints satisfaction to find minimum cycle
time and work in progress in the CJSSP. Also [64] developed a branch
and bound approach in solving the generalized version of the cyclic job
shop, by incorporating the precedence constraints, but in the context of
computer pipeline.

Modelling-wise, the cyclic job shop scheduling problem is extendable
from the non-cyclic job shop scheduling problem based on work done
by Hanen (1994) [64] and Brucker and Kampmeyer (2005) [19]. A cyclic
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system can be implied to the disjunctive graph (from Section 2.1.6.2) by
inserting the source and sink operations and creating an arc from sink
node to source node. Also the arc is defined with delay Lsink;source = 0
and height Hsink;source = 1. This arc defines that no processing time is
associated between the sink and source. It is proven that Hsink;source = 1
for the cyclic job shop scheduling problem will mean that the optimal
cyclic time is equal to the optimal makespan of the equivalent non-cyclic
job shop scheduling problem [64].

An extension to the general cyclic job shop, was researched by Kamp-
meyer (2006) [89] includes the cyclic job shop problems with job repetition
where Hsink;source ≥ 1. This will mean that there will be more than
one occurrence of the operation per cycle time cyclic job shop problem
with machine repetition utilizing the minimal part set (MPS) from Hitz
(1979) [73]. This minimal part set (MPS) defines the minimal set of op-
erations necessary to include in a cycle and which must be repeated a
certain number of times to complete the whole production order. This
scenario still aims to find the minimal cycle time with all MPS having
the same machine processing order. Another extension to the cyclic job
shop problem is the cyclic job shop problem with blocking from Brucker and
Kampmeyer (2005) [19]. In this case the operations Oi and Oi′ are block-
ing. In the case of machine repetition with blocking, the two blocking
operations Oi and Oi′ which are both processed on machine MOi and
MOi′

, cannot be released from their machines unless the succeeding cor-
responding operations Oi+1 and Oi′+1 can be loaded on their machines
MOi+1 and MOi′+1

.

In this section we will describe the parameters in the cyclic job shop prob-
lem and propose an approach to model the cyclic job shop scheduling
problem that is non-blocking. The approach will then model the prob-
lem as a Linear Programming (LP) Problem.

The cyclic job shop is generally characterized by the following: More
precisely the systems is defined as follows:

• A set of M = m1, m2, . . . , mM machines.

• A set of N = j1, j2, . . . , jN Jobs,

• Each job has N j cyclic operation, Oi; j = O1; j, O2; j, . . . , ON j ; j.

• A machine can execute only one operation at a time, and in any
given time frame.
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• The operations are linked by the Precedence constraints.

• The operations are to be processed and assigned to a particular ded-
icated machine from a Set M.

• Each machine may have a set of operations that has to be processed.

• Each job has its own unique route through the machines, indepen-
dent of any other jobs.

• Each task is assigned to one and only one machine. (This will be
extended to a group of machines).

• Each task must be processed on the assigned machine with uninter-
rupted processing time without any preemption.

1,1 1,2

2,1 2,2

3,1 3,2

Sr Sk

1,3

M1 M2
M3

M3

Precedence constraints between operations

Disjunctive constraints according to machines

J,O Operation O of job J with processing time P

6

1

5

5

2

3

3

P

M3

Figure 3.1: Example of a Cyclic Job Shop

An example of a cyclic job shop can be seen in Figure 3.1 that consists of
3 jobs. Job 1 has 3 operations (i.e. (1,1), (1,2) and (1,3)), Job 2 has 2 oper-
ations(i.e. (2,1) and (2,2)) and Job 3 also has 2 operations (i.e. (3,1) and
(3,2)). Processing times for each operation are deterministic and known
prior to processing, where for (1,1), (1,2), (1,3), (2,1), (2,2), (3,1) and (3,2),
the processing times are defined by 6, 5, 3, 1, 2, 5, 3 respectively. In our
example here, there are only 3 machines available in the job shop, M1,
M2, M3. Here operations (1,1) and (3,1) can be processed on machine
M1, while operations (2,1) and (1,2) can be processed on machine M2.
Lastly operations (3,1), (1,3) and (2,2) can be processed on machine M3.
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The required processing precedence relations are (1,1) precedes (1,2), op-
eration (1,2) precedes (1,3), operation (2,1) precedes (2,2) and operation
(3,1) precedes (3,2). However due to the cyclic nature of this particular
job shop these relationship are cyclic and can be repeated in the schedule.

3.5.1 The Proposed Approach

The system consists of a set of machines and a set of operations or tasks
assigned to each machine. The whole system is governed by two types
of constraints; conjunctive and disjunctive constraints. The conjunctive
constraints deal with the precedence relations between different opera-
tions and the disjunctive constraints deal with the operations that are
assigned to the same machine.

3.5.1.1 Model Assumptions

Our approach is based on the following assumptions or conditions for
application:

Assumption 3.5.1 The information relating to the jobs and machines is readily
available.

Assumption 3.5.2 The processing time required by the operations are deter-
ministic and known.

Assumption 3.5.3 All jobs and operations are available at time zero.

Assumption 3.5.4 Unlimited storage space is available, so no penalties associ-
ated with jobs waiting.

Assumption 3.5.5 The jobs with fixed number of operations to be completed in
a predetermined given order.

Assumption 3.5.6 All set-up times on the machines are included in the pro-
cessing time.

Assumption 3.5.1 is vital to ensure that knowledge on the number of ma-
chines, the jobs and corresponding characteristics of all the operations
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are known prior to modelling the scheduling problem. From Assump-
tion 3.5.2 and Assumption 3.5.6, the deterministic nature of the processing
time of the operations eliminate a stochastic effect to the modelling, and
allow for inclusion of setup time (if any exists) into the processing time.
Whereas Assumption 3.5.3, by allowing for the availability of all the jobs
and operations at time zero, we allow for the operations or jobs to be
selected to start immediately when the machines are available, thus min-
imizing slack time or unnecessary waiting time on the machines. This
condition of minimum waiting time on machines from immediate pro-
cessing of the waiting operation can be assumed from Assumption 3.5.4.
Assumption 3.5.5 defines the cyclic job shop with predetermined order
which the operations must be processed in order to complete each job.
All the above assumptions are vital to allow for an accurate modelling
and representation of the cyclic job shop problem.

3.5.1.2 The Proposed Model

We define Sk
i as the starting time of the occurrence k of the Operation

Oi, and let pi be the its processing time. Based on the availability of ma-
chines in the cyclic job shop to process the required operation, disjunctive
constraints for every machine are defined between operations Oi and O j

where i 6= j using the following expression:

(Sk
i + pi) ≤ Sl

j ∨ (Sl
j + p j) ≤ Sk

i Si, S j ∈ T; k, l ∈ Z (3.8)

So from above it is deduced that Sk
i + pi ≤ Sl

j is true if the Operation Oi is
processed before O j while Sl

j + p j ≤ Sk
i becomes true in the reverse case.

In cyclic job shop cases, jobs are composed of operations. Using unit
time as a standard to prevent overlapping of operations being processed
on each machine, we assume that each machine can only process one
operation per unit time. From this, we can assume that only one part
of Equation 3.8 can hold true. We assume this knowledge of the list of
operations to be processed on particular machine m is known prior to
starting the scheduling process. So any operations not being processed
on machine m at a particular time must be in a waiting state.

This can be rewritten in an alternative expression, by introducing the
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parameter δik jl as follows:

δik jl(Sk
i − Sl

j + pi) ≤ 0 Si, S j ∈ T; k, l ∈ Z (3.9)

(1− δik jl)(Sl
j − Sk

i + p j) ≤ 0 Si, S j ∈ T; k, l ∈ Z (3.10)

where δik jl as the Kronecker symbol that will ensure only one condition
is true, given by

δik jl =

{
1 if Sk

i − Sl
j ≤ 0

0 otherwise
(3.11)

As we are considering the cyclic version of the job shop scheduling prob-
lem, we also consider the disjunctive constraints in relation to operation
from different iterations. This is obvious from denotation of k and l de-
picting two different iterations, associated with the operation i and j. In
the case when considering operations from the same iteration, then iter-
ation k = l.

The above expressions are based on several assumptions made on the
machines. These include:

1. Each machine is uniform and have same processing speed.

2. Each machine has predefined loading abilities, as such it can only
accommodate one operation per unit of time or be in a waiting state
if operation are unavailable to be loaded.

3. Each machine is not subjected to any interruptions that may render
the machine breaking down, during the entire time the operation is
being processed on the machine.

4. No corresponding set-up time relating to the operations occur on
each machine and if there exist any set-up time required on the ma-
chine, this would have included in the processing time of the oper-
ation.

5. Once the operation has been loaded on the machines, the operations
may not be stopped and re-continue i.e. no preemption allowed for
each operation.

To illustrate the above disjunctive constraints, we consider the example
given in Figure 3.1, in the case for Machine M3, where 3 operations (3,1),
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(1,3), (2,2) can be processed on that particular machine. As such the con-
straints involved are defined as follows:

δ(3,1)(1,3)(Sk
(3,1) − Sl

(1,3) + p(3,1)) ≤ 0

(1− δ(3,1)(1,3))(Sl
(1,3) − Sk

(3,1) + p(1,3)) ≤ 0

δ(3,1)(2,2)(Sk
(3,1) − Sl

(2,2) + p(3,1)) ≤ 0

(1− δ(3,1)(2,2))(Sl
(2,2) − Sk

(3,1) + p(2,2)) ≤ 0

δ(1,3)(2,2)(Sk
(1,3) − Sl

(2,2) + p(1,3)) ≤ 0

(1− δ(1,3)(2,2))(Sl
(2,2) − Sk

(1,3) + p(2,2)) ≤ 0

As such for a particular cycle, there would exist Nm!
(2)!(Nm−2)! disjunctive

constraints per machine with Nm operations allowed to be processed on
it.

Based on the above notations, the precedence constraints (or conjunc-
tive constraints) for operations from same job between tasks, can be ex-
pressed as:

Si − S j + pi ≤ 0 (3.12)

Therefore, we can say that the operation i precedes the operation j. Note
that any occurrences of operations i and j can also be constrained such
that the model can encompass any combination of the occurrences in or-
der to respond to the system output. So from above constraint 3.12, the
number of precedence constraints depends on the number of operations
required to complete that particular job. For example, in the case of a
job with 3 operations (i.e (1,1), (1,2), (1,3) and (1,4)), the precedence con-
straints for a particular cycle can be defined as:

S(1,1) − S(1,2) + p(1,1) ≤ 0

S(1,2) − S(1,3) + p(1,2) ≤ 0

S(1,3) − S(1,4) + p(1,3) ≤ 0

Generally, in the case of a particular job requiring N j operations to be
processed in order to complete that job, there would exist (N j − 1) num-
ber of precedence constraints.

A model using linear constraints between occurrences is proposed in
Munier (1996) [124] where an occurrence i for task k at cycle n is rep-
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resented as i = αkn + βk, where α and β are natural numbers. This will
be further discussed in Section 4.3 where a approach is proposed to solve
the CJSSP with linear constraints.

The end of a particular schedule before being utilized as a cyclic schedule
is taken as the point of the completion time of the last operation. This is
taken as the maximum completion of the jobs. The completion time of a
particular job j can be calculated from

C j = SN j ; j + pN j ; j (3.13)

Taking the maximum completion time from all the jobs, from expression:

Cmax
j =

N
max

j=1

{
C j
}

(3.14)

This can also be calculated from maximum completion from the full list
of operations in the CJSSP.

Cmax
i; j =

N
max

j

{
SN j ; j + pN j ; j

}
(3.15)

The cycle time can then be calculated from the difference of maximum
completion time of operations to the earliest start time.

τ = Cmax
i; j − Smin

i; j (3.16)

The above Equation 3.16 yields a feasible solution, however it may not
yield the most optimal cycle schedule. This can be further achieved if the
next iterated schedule cycled can be started at an earlier time, pending
on no violations in constraints. This global shift of the defined schedule
will reduce the cycle time.

Hence using expression Sk+1
i; j − Sk

i; j as the objective function, will give us
the optimal and feasible cyclic schedule.

This linear formulation represents the shift between occurrences of tasks
which are linked by a precedence constraint. The general problem we
want to optimize can be formulated as follows:

Minimize f (S) =
N

∑
j=1

N j

∑
i=1

(Sk+1
i; j − Sk

i; j) = CT ~Sn (3.17)
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Subject to

Si − S j + pi ≤ 0 (i, j) ∈ C (3.18)

Sk
n ≥ 0 n ≥ 0 k > 0 (3.19)

δik jl(Sk
i − Sl

j + pi) ≤ 0 (i, j) ∈ D (3.20)

(1− δik jl)(Sl
j − Sk

i + p j) ≤ 0 (i, j) ∈ D (3.21)

Where C is the set of operations, which are conjunctive constrained and
D a set of couples of operations, which are assigned to the same ma-
chines. Also k = αn + β for occurrence of task i in cycle n.

The problem (3.17) is called a Linear Programming (LP) Problem with
inequality constraints. The constraint (3.18) above represents the prece-
dence rule. Here task i precedes task j. The constraint (3.19) ensures that
start times for all tasks will start at or after time zero. Constraints (3.20)
and (3.21) represent the disjunctive rule for tasks j and i which require
the same machine. Depending on whether δik jl is conditioned as in (3.11),
only one of the task is processed on the machine at any instant of time.

In order to be able to use Neural Network technique, the problem
(3.40) should be transformed to its equivalent unconstrained optimiza-
tion problem. This transformation is accomplished through modification
of the objective function so that it includes terms that penalize every vi-
olation of the constraints.

The inequality constraints described in the problem (3.17) can be rewrit-
ten as

rk(Sn) = Smn ,i − Smn , j + pi ∀n ≥ 0 (i, j) ∈ C (3.22)

rΓ+k(Sn) = Smn1 ,i + Smn2 , j + pi (i, j) ∈ D (3.23)

where Γ =| C | = Cardinality of C, and ϕ =| D |. We denote ξ = Γ +ϕ.
From equation (3.22), Smn ,i depicting start times of task i occurring at
αin + βi and Smn , j for task j occurring at α jn + β j at cycle n.Also from
equation (3.23), Smn1 ,i for task i occurring at αin1 + βi and Smn2 , j for task
j occurring at α jn2 + β j.
However for simplicity in formulating the initial energy function, we
assumed that αi, α j equals 1 and βi, β j as 0 in both equations (3.22)
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and (3.23). Thus the resulting equations become as follows:

rk(Sn) = Sn,i − Sn, j + pi ∀n ≥ 0 (i, j) ∈ C (3.24)

rΓ+k(Sn) = Sn1 ,i + Sn2 , j + pi (i, j) ∈ D (3.25)

In the following, we formulate a suitable energy function that can be eas-
ily solved by a Neural Network. The energy function needs to be con-
structed so that it penalizes every violation of the inequality constraints.

Consider an energy function defined as

E(Sn,k) = F(Sn) + KP(Sn) (3.26)

where F(Sn) is the cost function expressed as CT Sn, P(Sn) is the penalty
function given by ∑

ξ
i=1 ϕ[ri(Sn)] and K is the penalty factor. Giving the

following:

E(Sn,k) = CT Sn + K
ξ

∑
i=1

ϕ[ri(Sn)] (3.27)

βi is considered to be = 0; i = 1, · · · , N

ϕ[ri(Sn)]

{
= 0 if ri(Sn) ≤ 0
> 0 if ri(Sn) > 0

(3.28)

and Sn,k ≥ 0; ∀n ≥ 0; k = 1, · · · , N (3.29)

The function ϕ(ϑ) has been chosen so that the property (3.28) is fulfilled.
K is a positive parameter that controls the scaling factor between the cost
term and the penalty term of the unconstrained optimization problem
in (3.26). The scaling factor should be chosen such that the optimal solu-
tion can be reached and the constraint violation is also penalized. It can
be easily shown that the two problems become equivalent as (K → +∞).
For that reason, K is commonly selected as a sufficiently large positive
number.
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3.6 Modelling The Cyclic Flexible Manufac-

turing Systems Scheduling Problem

Flexible manufacturing systems (FMSs) are widely applied in manufac-
turing floor with high variety of part types to be manufactured. There is
also the application of a transportation system that connects all the ma-
chines. Compared to the job shop, FMS has the flexibility of job shops
while approaching the efficiency of transfer lines. Scheduling in FMSs
differs from that in a conventional job shop because of the availability of
alternative manufacturing resources resulting in routing flexibility. Also
FMS machines increase output by eliminating the bottlenecks. Bottleneck
machines often occur when alternate routes are not feasible.

Machines in all FMSs are able to produce several types of parts simul-
taneously. This is due to the tooling system on the machine that allows
for quick changeover and the ability to hold a number of tools per ma-
chine hence capable of performing a number of different operations. A
FMS is also characterized by non-preemptive operations, which means
that each machine has to finish the operation it has started before free-
ing the part from Chretienne et. al. (1995) [33]. Following the reasons
mentioned, the flexibility characteristics of FMS allows for the choice of
one or more machine for each operation and one or more processes to
manufacture each part type, thus different part types can be produced
simultaneously. These mentioned characteristic have a great influence
on the productivity and workloads of the machines/work stations.

In the case of acyclic Flexible Manufacturing Systems, a global optimiza-
tion of the demand must be found through the effective scheduling of all
operations. Cyclic Flexible Manufacturing Systems (CFMS) however, are
based on the cyclic version of the deterministic FMS where a framework
schedule is repeated for a number of occurrences in order to reduce the
number of scheduled operations and to fulfill the required demand. By
computing a single schedule in a cycle, this approach in solving the cyclic
version, reduces the combinatorial complexity. This particular cycle will
then be scheduled and repeated until all quantities of the part types are
fulfilled.

As like any other shop environment, FMSs are greatly influenced by cir-
cumstances and disruptions caused by unforeseen machine breakdowns,
increased order priorities, rush order arrival and order cancellations.
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In order to formulate the FMS problem, the objective is to find a feasi-
ble schedule for a given set of part types so that some criteria can be
optimized. The criterion may be chosen from the number and type of
jobs, number of tasks in each job, number and types of machines avail-
able, processing and setup times of tasks on machines, order due dates,
release time of jobs into the shop floor and performance criterion to be
chosen.

Among the common objective function associated with scheduling in
cyclic FMS are: minimum mean flow time for part types to be processed:

Mean flow time =
1
N

N

∑
j=1

N j

∑
i=1

Ci; j (3.30)

minimum mean tardiness:

Mean tardiness =
1
N

N

∑
j=1

N j

∑
i=1

Ci; j − di; j (3.31)

maximum average resource utilization for the machines in the FMS.

Average Utilization =
1
M

M

∑
k=1

N j

∑
i=1

Total busy Time
max(C j)

(3.32)

Hillion and Proth (1989) [72] concluded that it is always possible to max-
imize the productivity of a cyclic FMS, by fully utilizing the bottleneck
resource. This can be completed by acquiring enough Work in Progress
(WIP) in the system. Hence by keeping WIP values at a minimum, pro-
ductivity is maximized. The Work in Progress (WIP) are the parts await-
ing to be processed while the machines are busy.

The cyclic behavior of the FMS will reduce the complexity of the general
scheduling problem. By working to find a solution that will minimize
the Work in Progress (WIP), we will satisfy the economical constraints
related to storage space and cost while adhering to resource constraints
of the shared resources in the FMS.

We can base our approach on a fixed cyclic time horizon. Using this
horizon as a hard constraint in pursuing our objective as maximizing
throughput is done by keeping the cycle time of the system to the min-
imum. We try to solve the minimization of the Work in Progress (WIP)
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from the determination of a cyclic characteristic that is based on the opti-
mal speed of the system. By settling on the optimal speed of the system
we maximize throughput of the system.

3.6.1 The Proposed Approach

3.6.1.1 The Proposed Model

This problem is slightly different from the classical cyclic job scheduling
where the cycle time is to be minimized subject to some conjunctive and
disjunctive constraints. In this problem we want to minimize the WIP
subject to the same constraints, but the cycle time is known and fixed and
it is deduced from the most loaded machine in the system. Therefore, the
load of a machine k in the cyclic FMS is denoted by Lk and is given by:

Lk =
N

∑
i=1

Ni

∑
j=1

δk
i, j pi; j ∀k ∈ {1, 2, · · · M} (3.33)

where δk
i, j is a Kronecker symbol indicating whether the operation Oi; j is

assigned to the machine k or not (δk
i, j = 1 if mi, j = k).

The cycle time CT of the system is defined as the maximum time needed
for the critical machine to process all operations assigned to it without
any slack time. All subsequent patterns of a schedule should be repeated
based on this minimal cycle time.

CT = max
k=1,2,...,M

(Lk) (3.34)

To further describe our approach in more detail, we use the FMS example
from Figure 3.2. In this example, there are three jobs with Job A compris-
ing of 6 operations, Job B from 5 operations and Job C with 4 opera-
tions. The operations in the example are labelled as (Job, Operation) in
the Gantt chart. Using our approach, by maximizing the makespan, we
need to locate the critical machine:

Step 1. Locate critical machine (or bottleneck machine). Using the above
equation 3.33. We find that the loads are Lk = 6, 10, 4, 9, 6. So taking
the maximum load of the 5 machines, we see that Machine 2 has the
most load of 10 unit time. So the bottleneck machine is Machine 2.
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Figure 3.2: FMS Example with Machine 2 as Bottleneck Machine.

Step 2. Identify cycle time for FMS. Now we know that the bottleneck ma-
chine is Machine 2, using equation 3.34, cycle time is the sum of
processing time of all operations to be processed on the bottleneck
machine. Cycle time is 10 unit of time. So using this cycle time,
we can identify the Work in Progress of the FMS by scheduling all
operations within this time range.

3.6.1.2 The Constraint Cycle

In addition to precedence and resource constraints, which characterize
the formulation of the scheduling problem, we introduce the notion of a
constraint cycle as we are only focusing on the cyclic nature of the FMS
scheduling problems. The constraint cycle will guarantee that the starting
times of all operations are within the cycle time. Some operations may
start within the current cycle and end within the following cycle. These
operations are called overlapping operations. Therefore, an operation Oi; j

is said to be overlapping if the completion time exceeds the cycle time
range, expressed by Si; j + pi; j > CT.

3.6.1.3 Disjunctive Constraints

Similar to the approach proposed in CJSSP, the disjunctive constraints, also
called resource constraints, are defined between the operations assigned
to the same machine. Given two operations Oi; j and Oi′ ; j′ assigned to the
same machine k; mi; j = mi′ ; j′ = m. If the operation Oi; j is processed be-
fore Oi′ ; j′ , then Oi; j cannot be an overlapping operation by being loaded
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on the machine k; Si; j + pi; j ≤ Si′ ; j′ .

In the case where the operation Oi, j is performed after Oi′ ; j′ , the inequal-
ity Si′ ; j′ + pi′ ; j′ ≤ Si; j will hold true, so in this case Oi′ , j′ can be an over-
lapping operation. For every machine m, there exists disjunctive sets
h = 1, 2, · · ·ζm where h represents sets of couples of operations assigned
to machine m. Therefore, its conformity with respect to the start time
of the next occurrence of Oi′ , j′ has to be checked;

(
Si, j + pi, j

)
mod CT ≤

Si′ , j′ . Based on this analysis, disjunctive constraints can be defined as
follows:

(δi j,i′ j′)[(Si′ ; j′ + pi′ ; j′ ≤ Si; j)∧
(ωi; j)

{
(Si; j + pi; j) mod CT ≤ Si′ ; j′

}
]

(1− δi j,i′ j′)[(Si; j + pi; j ≤ Si′ ; j′)∧
(ωi′ ; j′)

{
(Si′ ; j′ + pi′ ; j′) mod CT ≤ Si; j

}
]

where parameter ωi; j indicates whether the operation Oi; j is overlapping
or not; (ωi; j = 1 if Si; j + pi; j > CT), and δi j,i′ j′ indicates which operation
of Oi; j and Oi′ ; j′ is started first within a given schedule (δi j,hl = 1 if Si′ ; j′ <

Si; j).

3.6.1.4 Conjunctive Constraints

Although the FMS environment allows for flexible routing of process-
ing, the consideration of conjunctive constraints may not be a major con-
straint due to the simultaneous processing ability of the machines. We
consider this constraint in preparation to measure the WIP in the system.
The conjunctive constraints (or precedence constraints), have been defined
between the operations of a job. For each job in the system an order in
which the operation should be executed is defined. For the sake of clarity,
the operations of a job are indexed according to their order of execution.
Defining the occurrence of an operation as the instance when the opera-
tion is being processed (k = 1, 2, . . . ∞). So two consecutive operations
Ok

i; j and Ok
i; j+1 with start times Si; j, Si; j+1 and with the same occurrence

(k) are linked by the following precedence constraint:

Sk
i; j + pi; j ≤ Sk

i, j+1

∀i ∈ {1, 2, · · ·N}, ∀ j ∈ {1, 2, · · ·Ni}
(3.35)
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The effect in violation of the conjunctive constraints on the WIP will be
describe further in the chapter.

3.6.1.5 The Objective Function

The Work in progress (WIP) is defined to be the sum of WIPs from each
individual job in the system. The WIP Ei of a job i is the number of jobs of
type i which have started and have not yet terminated during the current
cycle time.

Here we associate the use of the conveyor or pallets as the transporta-
tion system with the WIP of the FMS. Note that in cyclic task scheduling
the system will deliver one piece of each product type or job. This will
make available the conveyors or pallets carrying the terminated occur-
rences of each job. These conveyors or pallets can then be used to start
new occurrences of different jobs in the system during the current or next
cycle. A measurement of the number of WIPs depends on the number of
dedicated conveyors or pallets required.

Several assumptions has been made in modelling the cyclic FMS. As re-
gards to the FMS production characteristics, such as operating times are
deterministic, and all parts or jobs are available at time zero. We also
assume that a dedicated conveyor or pallet are allocated for a part, one
machine at any one time to eliminate the existence of structural dead-
locks. Although generally the machines in FMS can process a variety of
processes simultaneously, in our model, each machine is unique and has
its own set of dedicated operations.

In order to accurately measure the WIP, the conjunctive constraints are
considered in the objective function. If a conjunctive constraint is not sat-
isfied, the two operations involved are not considered to be in the same
occurrence. The WIP will be increased by one, as each occurrence deals
with one piece of the product. Let Ci, j be the WIP variable between two
successive operations oi, j and oi, j+1. Ci, j is defined as follows:

Ci, j =

{
0 if Si, j + pi, j ≤ Si, j+1

1 otherwise
(3.36)

∀i ∈ {1, 2, · · ·N}, ∀ j ∈ {1, 2, · · ·Ni}

The WIP variable, Ci,Ni , between the last and the first operations should
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also be considered. Ci,Ni will be used to model the notion of linked oc-
currences. Two occurrences are said to be linked when one occurrence
is finished and another occurrence of the same job is started during the
same cycle.

Some operations may overlap between two consecutive cycle-times. An
extra WIP should be added when the overlapping operation is not fin-
ished before the start of the next operation. Let C̃i, j be the WIP variable
between an overlapping operation j and its successor j + 1. It is given by
the following:

C̃i, j =

{
0 if 0 ≤ Si, j + pi, j − CT ≤ Si, j+1

1 otherwise
(3.37)

∀i ∈ {1, 2, · · ·N}, ∀ j ∈ {1, 2, · · ·Ni}

When the last operation of a job is overlapping, the constraint C̃i,Ni is
defined for the same reasons as Ci,Ni .

Hence in order to calculate the overall WIP in the FMS, we sum all the
WIP from each job as denoted as follows:

≡ WIP =
N

∑
i=1

Ni

∑
j=1

(
Ci, j + ωi, jC̃i, j

)
(3.38)

The following Figures 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 show six common ex-
amples of WIP calculated from the different FMS cases.
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Figure 3.3: Number Of Work In Progress In Case 1

In Fig. 3.9, the FMS example has 3 jobs (A, B, C) running on 5 ma-
chines illustrating a cyclic aspect of a scheduling problem. Job A has

65



Machine 1

Machine 3

Machine 2

30 21 54 87 1096

W.I.P. 1

W.I.P. 4

W.I.P. 3

W.I.P. 2

30 21 54 87 1096 11

131211 1514 1817 201916

Cycle k

Time
232221 2524 2827 302926 31 3332 3534 3837 403936 41

A,1

B,1

Time

W.I.P. 5

B,2

Cycle (k+1) Cycle (k+2) Cycle (k+3) Cycle (k+4) Cycle (k+5)

B,1A,1

B,3

B,2

B,2

B,2

B,1A,1

B,3

B,2

B,1A,1

B,3

B,2

B,1A,1

B,3

B,1A,1

B,3

B,1A,1

B,3

B,2

B,1A,1

B,3

B,2

B,1A,1

B,3

B,2B,2

B,3

Figure 3.4: Number Of Work In Progress In Case 2
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Figure 3.6: Number Of Work In Progress In Case 4

6 operations (A1, A2, · · · , A6) with their corresponding processing times
(1, 5, 4, 3, 2, 1). The job B consists of 5 operations (B1, B2, · · · , B5) with
the following processing times (1, 3, 5, 2, 1). Job C has 4 operations
(C1, C2, · · · , C4) having the corresponding processing times (1, 2, 4, 1)
respectively. The WIP is calculated as the total number of Ci, j + ωi, jC̃i, j

occurrences of each job during that cycle. In the example, we have two
occurrences of both jobs A and B and only one occurrence of job C and
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Figure 3.8: Number Of Work In Progress In Case 6

the cycle time is 10, given by machine 2. The value of the WIP is 5 be-
cause the conveyors or pallets freed during the cycle are used to start
one occurrence of each job during the same cycle. The occurrences n− 2
and n of each job are linked occurrences because the (n− 2)th occurrence
finished before the nth occurrence started. In this case the linked occur-
rences will be counted only once in WIP.

Korbaa et. al. (2002) [98] found that by considering each job sepa-
rately, the lower bound for WIP can be calculated as from Campos et. al.
(1992) [24]. The lower bound is the sum of the number of cycles needed
for all jobs without taking into account the conjunctive constraints. For
each job, the number of cycles needed to complete one occurrence, is cal-
culated. This can be expressed by the following:

WIP ≥
N

∑
i=1

⌈
1

CT

Ni

∑
j=1

pi, j

⌉
(3.39)

Given a schedule within a cycle time, the WIP of the system is the sum of
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Figure 3.9: Cyclic FMS example with three Linked Occurrences.

all Work In Progress of each job Ei. The formulation of the cyclic schedul-
ing FMS problem can then be summarized as follows:

min
{Si, j∀N,Ni}

f (S) ≡ WIP =
N

∑
i=1

Ni

∑
j=1

(
Ci, j + ωi, jC̃i, j

)
(3.40)
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Subject to:

(δi jhl)(Sh,l + ph,l ≤ Si, j)
(1− δi jhl)(Si, j + pi, j ≤ Sh,l)

(δi jhl)ωi, j(Si, j + pi, j − CT ≤ Sh,l)
(1− δi jhl)ωh,l(Sh,l + ph,l − CT ≤ Si, j)

0 ≤ Si, j < CT

i = 1, 2, · · · , N, j = 1, 2, · · · , Ni

The problem (3.40) can be transformed into an unconstrained optimiza-
tion problem form by defining a penalty function of the constraints. Let
dk be the number of operations assigned to machine k. Let ok

i be the op-
eration i on machine k. The four disjunctive constraints can be further
combined into two general forms, first the non-overlapping disjunctive
constraints to obtain constraint rk

i, j and second, the overlapping disjunc-
tive constraints represented by Rk

i, j. The constraints can be rewritten as
follows:

rk
i, j = max{0, δk

i, j

(
Sk

j + p j − Sk
i

)
+(1− δk

i, j)
(

Sk
i + pi − Sk

j

)
}

Rk
i, j = max{0, δk

i, jω
k
i, j

(
Sk

i + pi − Sk
j − CT

)
+(1− δk

i, j)ω
k
i, j

(
Sk

j + p j − Sk
i − CT

)
}

(3.41)

k = 1, . . . , M i = 1, . . . , dk − 1 j = i + 1, . . . , dk

Given the following relaxed problem, which accommodates the penalty
function to relax the constraints, the energy function L(S, µ) is

L(S, µ) =
n
∑

i=1

mi
∑

j=1

(
Ci, j + ωi, jC̃i, j

)
+ 1

2 K
M
∑

k=1

ζk
∑

h=1
µh,k

(
rk

h(S) + Rk
h(S)

)2
(3.42)

where K is the penalty parameter for disjunctive constraints, ζk disjunc-
tive sets for machine k, and µh,k is Lagrange multiplier for disjunctive
set(h, k). The above form can then be used in mapping to a neural net-
work in order to be solved in Section 4.2.
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Hsu et. al. (2007) [78] found that number of admissible solutions for each
problem is given by

Ns =
m

∏
k=1

ϕk (3.43)

where m is the machines in the FMS and

ϕk =
n

∑
i=1

n j

∑
j=1

{
(pi, j − 1) • (n fk + nk − 1)

n fk

}
(3.44)

Here, the number of operations per machine k, using the following:

∑
n
i=1 ∑

n j
j δi, j where δi, j = 1 if k = mi, j and calculating the number of

operations possible to fill the cycle time:n fk = τ −Wk where in the cy-
cle time τ , the workload of the machine, Wk = ∑

n
i=1 ∑

n j
j=1 δi, j ∗ pi, j where

δi, j = 1 if k = mi, j but δ = 0 otherwise.

3.7 Solving The Cyclic Scheduling Problem

3.7.1 Petri Nets

The Petri Net (PN) approach has also been used for scheduling problems.
The modeling of the cyclic scheduling problem is done through the ob-
jects places and transition of the Petri Net. Tokens in the places are moved
along the circuit when the transitions are fired and the state of the system
can be known from the location of the various tokens.

Timed Event Graph, one of the sub class of the Timed Petri Nets
[126], [95] has been used for the cyclic scheduling problem. This PN has
exactly one input and one output transition and the weight on each arcs
(connecting places to transitions) equals one.

Hillion and Proth (1989) [72] described three circuits that are possible to
be used for modelling the scheduling problem: process circuits where
the tokens model the products, resource circuits where in each circuit
one token models a machine, and hybrid circuits which contain parts of
the process and resource circuits. The operating sequences of a job may
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be represented by some elementary circuits, and this will also give the
optimal schedule when PN reaches the optimal state. The order of load-
ing the operations onto the resources are determined from linking the
transitions by circuits. Further description of the use of Petri Net in solv-
ing the cyclic scheduling problems can be found in Hanzalek (1998) [68],
Nakamura et. al. (2000) [127] and Lee et. al. (2001) [105]

3.7.2 Genetic Algorithm

Another optimization technique that has been used to solve cyclic
scheduling problems is the genetic algorithm technique [27], [77]. The
schedules must firstly be encoded appropriately using either direct en-
coding or indirect encoding. In direct coding [157] the chromosome rep-
resents the schedule that may require complex genetic operators. How-
ever the indirect encoding [14] only uses certain rules for constructing
the schedule required.

Selection of the proper encoding must not only map the whole search
space, yet be able to represent the optimal solutions [78]. In cyclic
scheduling, a finite string of the chromosome corresponds to a point in
the search space whereas the sub-chromosome (or gene) is an entity of
the schedule e.g. operation number or machine number. The optimiza-
tion process begins with a preset iteration threshold or a number of gen-
erations known in advance. A set of solutions are selected at random to
form the initial population. A fitness value is calculated for each indi-
vidual that reflects the quality of the solution i.e. makespan, completion
time or cycle time.

Using a probability proportional to fitness, a set of individuals (or par-
ents) are selected. Then using genetic operators e.g. mutation or
crossover, the set of individuals are reproduced giving new sets of so-
lutions. New solutions (or children) may takeover the previous solution
and the new fitness of the individuals is calculated. This continues until
the threshold value is reached.

The crossover involves creating two new chromosomes from two parents.
By swapping gene in sides before and after the cutting side among the
parent chromosome, the new chromosomes are created. Mutation in-
volves a simple swap that exchanges the positions or values of some
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genes of the chromosome. Both genetic operators are described in de-
tail in Hsu et. al. (2008) [78].

Nakamura et. al. (2006) [126] quoted that solving the cyclic scheduling
problem is effective as better fitness chromosomes are more frequently
produced for every generation, whilst less fit chromosomes occur less.
However the success of this approach does depends on the initial popu-
lation size, number of new individuals in each generation, the number of
generations to be created, probability used in the genetic operators and
selection of variant of genetic operator of the cyclic scheduling problem.

3.7.3 Tabu Search

An extension to local search (LS) metaheuristic, tabu search approach
was proposed by Glover (1989) [54], [55]. Incorporating short term mem-
ory ability into the deterministic oriented search procedure, the Tabu
search has a Tabu list of restricted solutions. This list forbids search steps
in the neighbourhood from returning into either duplicate solution or
less favourable solutions. However, this approach also includes the flex-
ibility of escaping from the restriction through the aspiration criteria that
allows a move into the Tabu if the step attains a pre-determined level of
quality.

A search space must first be defined to cover all possible solutions pos-
sible and the neighbourhood solution will contain the next solution gen-
erated. There is a limit to the number of moves this approach is allowed
to make through a predefined maximum number of iterations. The Tabu
list is initially empty but will be populated as the search progresses, and
may be updated if the list is finite in size.

Brucker and Kampmeyer (2005) [19] used the Tabu search approach to
minimize the cycle time for the cyclic job shop and flow shop. The search
space explored, adhered to the precedence and disjunctive height values
from the disjunctive graph while the neighborhoods populated using the
findings strategies of the best-fit and first-fit strategy. This best-fit strat-
egy used, selected a neighbor with the best solution value by systemat-
ically analyzing all neighbors while the first-fit strategy chose the first
neighbor with a better solution value than the current one.
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3.7.4 Artificial Neural Networks

There is a lack of research using artificial neural network (ANN) specif-
ically into the area of cyclic scheduling, although the area of scheduling
has attracted more focus. From Section 3.4, most ANN researches have
focused on single machine, parallel machines, flexible manufacturing
systems, job shop scheduling and its extensions. The common types of
ANN approach include Hopfield Network, back-error propagation net-
work and augmented neural network. In next section, we will describe
in more detail the types of neural network approach, specifically applied
in solving the scheduling problem, and their research evolution.

3.7.5 Other Approaches

Other approaches that have tackled and successfully solved the men-
tioned cyclic scheduling classes include branch and bound. Various suc-
cessful heuristics were also researched and applied. A summary of the
approaches are shown in Table 3.3. This summary is based on: (a) types
of cyclic scheduling problems and (b) types of approaches (on problems)
over the years.

3.8 Neural Network Approach To Scheduling

Problems

The artificial neural network (ANN) as it is commonly known is based
on the human brain that has information processing abilities. The struc-
ture of the ANN is similar to information processing systems, compris-
ing of largely interconnected processing units (or neurons) connected in
a network. ANN mimics the human ability to learn through examples in
order to solve problems. The artificial neural networks are categorized
based on:

• Types of connections between neurons,

• The types of processing done by the neurons,

• The way the information is transmitted through the network,

• The method by which the network learns and the learning rate used.
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Basic Cyclic Scheduling
Chretienne (1991) [32]

Branch and Bound Hanen and Munier (1995) [65]
Basic Cyclic Scheduling with Linear Constraints
Branch and Bound Munier (1996) [124]
Tabu Search Brucker and Kampmeyer (2005) [20]
Periodic Job Shop
Branch and Bound Roundy (1992) [136]

Draper et. al. (1999) [39]
Hanen (1994) [64]
Seo and Lee (2002) [141]
Nakamura et. al. (2006) [126]

Cyclic Flexible Manufacturing Systems
Lee et. al. (2001) [105]
Chaieb et. al. (2001) [28]
Korbaa et. al. (2002) [98]

Benchmarks Cyclic FMS Lee (2002) [103]
Trouillet et. al. (2002) [149]
Toguyeni and Korbaa (2005) [148]
Lee and Korbaa (2006) [104]
Korbaa and Camus (2006) [95]
Trouillet et. al. (2007) [150]
Hsu et. al. (2008) [78]

Cyclic robotic production line
Kats and Levner (2002) [92]
Dawande et. al. (2005) [38]
Gultekin et. al. (2006) [60]

Cyclic scheduling Flow shop
Stochastic Flowshop Lee and Seo (1998) [107]
Blocking Flowshop Kamal Abadi et. al. (2000) [1]
Hybrid Flowshop Munawar et. al. (2003) [123]
Cyclic Open shop

Kubate and Nadolski (2005) [99]
Complexity and Classification on Cyclic Scheduling Problems

Middendorf and Timkovsky (2002) [122]
Cyclic Production System Per-
formance Tradeoff

Herrmann (2003) [69]

Kampmeyer (2006) [89]
Marchetti and Munier (2006) [117]

Table 3.3: Researches into Cyclic Scheduling Problem
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Generally the neurons in the network will transmit information by calcu-
lating and generating overall output values. This is done by combining
an input function, activation function and output function on the net in-
put of each neuron to generate an output value. The connections between
neurons in the layers have associated numerical values or ”weights”.
These adjustable weights holds the learned information when training
is done to configure the correct output required.

The neurons in the network may be grouped as layers or unlayered. Lay-
ered neural networks consist of interconnection of input layers, hidden
layers and output layers. The information being processed by the ANN
are pass through the layers. However depending on whether the neural
network is a feedforward or feedback (recurrent) type, the information
may only pass through the network once. The latter allows data to be
looped back from output to input layers giving ”feedback”.

The neural network architecture is known prior to any use, consisting
of the structure of connections, the number of layers and the number
of neurons in each layer. And also prior to training, the weights in the
interconnection are initialized to random values or predefined values.
These will then be adjusted accordingly until the network has learned
the relationship between variables.

The learning process, is commonly known as training, is done through
introducing an example of output to ANN. This involves iteratively
changing the initial weight values of the interconnections then using the
final weight values as the trained ANN for testing. Supervised learning
of the network depends on the required sample input and desired output
data. In the case of backpropagated learning, the error between output
and desired values are looped back into the preceding layers to change
the value of the weights, thus minimizing the error. Once the squared er-
ror values are minimized to acceptable values, the values of the weights
are fixed and the network is ready for use, as it is now trained.

In the case of unsupervised learning (or self organizing learning), there
are no desired outputs present. This means that the network will try to
self organize input data and discover the correlations between input and
output data. Normally learning rules of correlation (synaptic weights ad-
justed according to Hebb’s learning rules) and competitive (output neu-
rons compete until there is a winner) were implemented to achieve this.
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Figure 3.10: Nonlinear model of artificial neuron

The extension to supervised learning is the reinforcement learning where
in this special case of supervised learning, the exact desired output is
unknown but the outcome is based on whether or not the actual output
is correct.

The most important part of the learning is the learning rules. These rules
will determine how the weights are adjusted. Among the common learn-
ing rules are the Hebbian rule, anti-Hebbian rule and Competitive learn-
ing rule.

The basic model of an artificial neuron is shown in Figure 3.10. The out-
put yq of neuron q is calculated from the transfer (or activation) function

yq = f

(
n

∑
j=1

w jx j −θ

)
(3.45)

with inputs x, weights w and threshold θ of that neuron.

The activation function [135] used in neural network consists of either
the (i.) linear function, (ii.) hard limiter function, (iii.) symmetric hard
limiter function, (iv.) signum function, (v.) saturating linear function,
(vi.) symmetric saturating linear function, (vii.) binary sigmoid function
or (viii.) hyperbolic tangent sigmoid function.

3.8.1 Feedforward Network

3.8.1.1 Single Layer Perceptron

Single layer feedforward perceptron generally comprises of 2-states and
discrete time state neurons. These are the simplest neural networks. As-
sociated with each input, x to the neuron is the synaptic weight, w. The
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weights have both positive and negative values, influencing the associ-
ated inputs as exhibitory or inhibitory. The introduction of threshold θ

will determine if the output of the neuron, y will fire (exhibitory state)
when y = 1 or be quiet (inhibitory state),y = 0.This simple network has
not been found to be successful in solving scheduling problems, due to
its requirement for supervised training and limited optimization abili-
ties.

3.8.1.2 Multi-layered Perceptron

Among the most common architecture of neural networks used in solv-
ing the scheduling problem is the multi layered perceptron (MLP) net-
work. Neurons are organized into layers with unidirectional connections
between layers. There normally exist a few hidden layers in the network
where signals are propagated forward from the input layer to the output
layer. This type of network may have full connections between neurons
or be partially connected. This network is normally trained by the back-
error propagation (BEP) (or back propagation) learning algorithm.

Back propagation provides the means for adjusting the weights in an
MLP when presented with a set of training data. The gradient of the
error function is calculated and these error values are then propagated
backwards through the network layers. There will also be small changes
made to the weights in each layer. The cycle is repeated until the overall
error value is below some pre-determined threshold.

Figure 3.11 shows an example of a MLP network. The output of the net-
work is defined by:

yn
i = gi(∑

j
W(i j)g j(∑

j
w( jk)xn

k )) (3.46)

with weights in hidden layers,W(i j) efficiently updated using last steps
error adjustments:

∆W(i j)(t + 1) = −η
∂E

∂W(i j)
+α∆W(i j)(t) (3.47)

where η is a learning constant. The measure of error is calculated be-
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Figure 3.11: Multi Layer Neural Network

tween desired output di and output values:

E =
1
2 ∑

in
(dn

i − xn
i )2 (3.48)

The Back propagation network generally requires a training set with a
desired output values in order to determine the values of the weights.
BPN generally are used efficiently as recall/generalization for solving
scheduling problems.

3.8.2 Recurrent Neural Network

The recurrent neural network is a modification to the feedforward neu-
ral network with the network recurrently working on the internal states.
This types of network will utilize feedback that will include the initial
and past state, based on a serial processing nature. The common recur-
rent neural networks are the Hopfield networks, competitive networks,
Self-Organising-Map (SOM) and Constraints Satisfaction Adaptive Neu-
ral Networks.
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3.8.2.1 Hopfield Networks

The Hopfield and Tank (1985) [76] network has a single layer of neurons
that feeds the output state back to inputs recurrently. As there is only
one layer, all neurons function as inputs and outputs. There are weights
associated between neurons to represent the strength between neurons,
where large weight values dictate strong connection between neurons.
The threshold/bias in the Hopfield network for each neuron controls the
excitation of each neuron state. The Hopfield network has a discrete or a
continuous version.

The discrete version of Hopfield Network is based on time step change
in neuron output:

u(k+1) = Tv(k) + ib (3.49)

where the states of the neurons, u depends on output v, offset bias ib

while T containing the weights of the connections between neurons. The
output function of the Hopfield network is commonly defined as:

g(u(k+1)
i ) = sign(u(k+1)

i ) (3.50)

When neurons are updated stochastically (or asynchronously) and the
connection matrix is symmetric (i.e. weights matrix of connections is
symmetric), Hopfield (1984) [75] showed that Step version of Hopfield
network has Lyapunov function that represents the gradient descent of
the quadratic energy function of:

E = −1
2

vtTv− (ib)tv (3.51)

The continuous version of Hopfield Network is represented as follows:

u̇ = −u
τ

+ Tv + ib (3.52)

with an output function:

g(ui) = tanh(
ui

u0
) (3.53)
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and with Lyapunov Function:

E = −1
2

vtTv− (ib)tv +
1
τ

N

∑
i

∫ vi

0
g−1(x)dx (3.54)

The recurrent characteristic of the Hopfield network has been success-
fully used to solve optimization problems as the network dynamics al-
low the network to achieve a stable state.

Back propagation networks generally require a training set in order to
determine the values of the weights prior to being used.

3.8.2.2 Competitive Networks

This type of neural networks differs from Hopfield networks in the sense
that although the input neurons are all connected to the output layer
neurons, there exist inhibitory links between all output neurons in the
same layer. As such, a competitive nature occurs among output neurons
where the most active neuron will be the only neuron to remain active,
while all the other neurons in the layer will slowly be deactivated. The
competitive network is commonly comprosed of two neural networks,
as shown in Figure 3.12:

1. Hemming network calculates a weighted sum of the input values,

2. Maxnet neurons in the competitive layer compete against each other
by sending out inhibiting signals to each other. All neurons con-
verge to zero except for the neurons with the maximum initial value.
In this way the Maxnet network identifies the neuron with the max-
imum value.

 

 

 

 
Competitive
 Layer

Input 
Layer

Figure 3.12: Example of Competitive Network
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The Winner-take-all rule is applied to the neurons of a particular column
x in the matrix:

sxy =

{
1 if Netxy = Maxi=1Netiy

0 otherwise

where Netxy =
N
∑
x

(N)
∑
y

WxI,yJsxy − ϑxy and the Maxi=1Netiy denotes the

maximum total neuron output.

The Competitive Hopfield Neural Network (CHNN) [31] is a competi-
tive version of the Hopfield network. This network is based on the algo-
rithm:

Step 1. Randomly set the initial neurons states,

Step 2. Define the weight and threshold values according to Hopfield func-
tions,

Step 3. Calculate the total neuron input, impose the winner-take-all rule to
decide the output neuron state based on the initial value,

Step 4. Replace random initial state with output neuron states obtained
from previous states.

Step 5. Repeat iteration using Step 3 and Step 4 until no change in state in
any iteration is found,

One of the major advantages of competitive networks is that the compet-
ing nature of the output neurons allows for the unsupervised network to
detect irregularities and compensate for corrections in the input vectors.

3.8.2.3 Self-Organising-Map (SOM) Networks

The Self-Organising-Map (SOM) Network [93]is different from other
neural networks in terms of its ability to classify the inputs of the net-
work. SOM achieved this by taking inputs in the form of vectors and
classifying these inputs into different groups. This is done with the in-
tention for each group to have some similarities to their input values.

A weight vector is initially defined for each classification group. The dy-
namic of SOM is based on an comparing each input vector to all weight
vectors. So the weight vector representing the classification group most
similar to the input vector currently considered, is classified as the win-
ner. As such, the weights in this particular weight vector will be adjusted
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accordingly. Neighbouring weight vectors adjacent to the winner also
have their weights adjusted to be more similar to the input vector of in-
terest, but to a lesser degree. This process is repeated until a convergence
of the weight vectors are found.

An example of SOM used for solving a scheduling problem can be found
in McMullen (2001) [120]. The SOM network in this case was devel-
oped for solving JIT production-sequencing problem with set-ups min-
imization and material usage stability. Although the experimental re-
sults were promising, the inferiority of SOM network developed was the
large number of epochs and iterations chosen, necessary to ensure that
weight convergence is obtained. This approach was competitive with the
search heuristics such as simulated annealing, tabu search and genetic al-
gorithms (GAs).

3.8.2.4 Constraints Satisfaction Adaptive Neural Network

Witkowski et. al. (2004) [155] used the Constraints Satisfaction Adaptive
Neural Network (CSANN) to solve a production scheduling problem.
This particular type of neural network was mapped from the constraints
of a scheduling problem into its architecture and attempted to remove
the violation of the mapped constraints in order to satisfy the constraints.
The CSANN adaptively adjusts its connection weights and bias of neu-
ral network depends on the violations of the constraints present during
processing.

Yang and Wang (2000) [158] proposed the CSANN which contains three
kinds of neurons (or units): ST-units, SC-units and RC-units for the job
shop scheduling problem. Each ST-unit represents the start time of an
operation, while SC-units and RC-units represent whether the sequence
constraints and resource constraints are respectively satisfied. As the
ST-units are dependent on the weighted activations of the SC-units, RC-
units and also the previous activation state of the ST-units, all these allow
for feedback adjustments on the network. The two layers of the CSANN
consist of ST-units while the second layer comprises of RC-units and SC-
units representing the constraints. The dynamic of the network will ad-
just the weighs to reduce all the RC-units and SC-units to zero activations
(i.e. no violations in constraints) hence converging to an optimal feasible
solutions.
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3.9 Evolution of Neural Network use in

Scheduling Problems

Several researchers [121], [137], [79] have tried to review the use of neu-
ral networks for solving the scheduling problem. However, this may
not specifically imply the use of neural network in the cyclic scheduling
problems though. Many of this review done focused on the types of neu-
ral network used in either for production or manufacturing scheduling
problems.

Here we list the characteristics of the artificial neural network (ANN)
that have been proven effective in solving the scheduling problems:

• ANN is able to capture the complex relationship between input and
output variables used to define the scheduling problem. This in-
cludes how these variables relate to performance measures and the
operational policy of manufacturing systems. Using these and also
the connections between the job characteristics and performance
measures in the scheduling system, ANN is able to find the near-
optimal solutions for the scheduling problems.

• In the case of a static scheduling environment, it is possible to ob-
tain optimal or near optimal schedules through the use of mathe-
matical modelling and dynamic programming.However ANN can
allow for dynamic scheduling cases, thus eliminating rescheduling
when changes in variables are presented.

• Although simulation softwares are widely used to simulate and
some form of solution is deduced from the effort, some ANN may
be used as an alternative to simulation software.

• Back-Propagation Network would be able to select the appropriate
scheduling rules or manufacturing strategy in order to achieve ac-
curate estimation of parameters in the scheduling problems. The
parameters that can be affected include estimating system perfor-
mance measures such as mean utilization, mean job tardiness, mean
flow time, etc.

• Optimizing network, namely recurrent network i.e. Hopfield net-
work and its extension are involved directly in the optimization
of the scheduling problem. This is achieved by mapping both the

83



scheduling objective functions to be optimized and constraints of
the problems on to these networks.

• The competitive neural networks can detect irregularities and corre-
lations in input information and adapt the output responses accord-
ingly.

The evolution of research in neural network applied on scheduling prob-
lems can be generally categorized according to the architecture of the
network and type of scheduling problem being solved. Using this two
main criteria, the networks can be categorized mainly into:

1. Hopfield network and its extension,

2. Competitive network, and

3. Back-propagation network.

3.9.1 Hopfield Network And Variations

Hopfield Network [76] is one of the most successful neural network ap-
proach in solving scheduling problems. This is especially due to the
modelling of the scheduling problem that is defined by the quadratic
form of the problem, with the energy function stabilizing at minimum
point. The effective cost function also contributes to the Hopfield net-
work success. Although the network performed gradient descent on en-
ergy function to update solutions, it can also easily be trapped in local
minima state. However, the solutions to the scheduling problem can be
determined from critical points determined by critical values of penalty
and network parameters.

Since Hopfield and Tank (1985) [76] successfully applied the Hop-
field network to solve the Traveling Salesman Problem (TSP) using the
quadratic form of the optimization problem, this network has been ex-
tended to solve the job shop problem as found in Foo et. al. (1988) [47],
[48]. Foo and Takefuji (1988a) [47] introduced a two dimensional Hop-
field network to model the job shop. The (mn + 1) × (mn) matrix was
mapped from the n jobs and m machines. Simulated annealing(SA) was
however used to assist in optimizing the solution. These stochastic op-
timization techniques was selected to prevent the network from being
trapped in the local minima, but able to arrive at near optimum solu-
tions. Foo and Takefuji (1988c) [49] further improved from previous
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work with integer linear programming neural network (ILPNN). Rather
than use the quadratic version of the Hopfield energy function, a linear
function was used. The number of neurons in the system was reduced to
(nm)(nm+1)

2 . Using the energy function in the form of:

E =
A
2

mn

∑
x=1

mn+1

∑
i=1

mn+1

∑
j=1, j 6=i

(
νxiνx j

)
+

B
2

(
mn

∑
x=1

mn+1

∑
i=1

νxi −mn

)2

(3.55)

with m machines, n number of jobs, ν representing the output of the
Hopfield Network and A,B as positive constants.

To eliminate the limitation associated with the quadratic function of
Hopfield network, Zhou et. al. (1991) [162] utilized the linear cost func-
tion rather than the quadratic cost function in Hopfield. The linear cost
function improved the scaling properties of the network and reduced
need for integer linear programming methods that requires excessive
control variable. This feature is also a simpler integer programming rep-
resentation of problem with the number of neuron required equaling the
number of operations hence the interconnection between neurons grows
linearly with total number of operations.

Research into improving the convergence properties of the Hopfield in-
cludes modifying the energy function as described by Aiyaer et. al.
(1990) [3]. Aiyaer et. al. investigated into the findings of valid subspace
approaches relating to the performance of the Hopfield model. Effort
was also done to improve the Hopfield convergence to valid solutions by
alteration in penalty parameter and reducing search space through pre-
calculations of the solutions in the job shop scheduling problem [154].

Although Hopfield network’s output will converge to a solution, it may
not guarantee good and feasible solution. As such researchers have
added the stochasticity characteristics in Hopfield Network. Arizono et.
al. (1992) [11] solved the single machine scheduling problem by incorpo-
rating the gaussian machine to minimize the total actual flow time. The
stochastic characteristics used to avoid convergence to local minima in-
cluded a noise-like zero-mean normal random variable. This is valued at
N(O, Temp2/n), where Temp is a temperature parameter in the Gaussian
machine model which allows for change in temperature of overall decre-
ment in the energy function. This research was applied in Just In Time
(JIT) scheduling and was successful for problem size of 50.
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Huang and Chen (1999) [80] applied the combined Hopfield neural net-
work and the normalized mean field annealing technique, applied to
the n job m machines scheduling problem including resource and tim-
ing constraints. The mean field annealing (MFA) algorithm here was
derived from Simulated Annealing by applying the mean field approxi-
mation technique. The MFA formulation is a stochastic neural network
based on the Boltzmann state-transition rule, that included a spin inter-
connection and input parameter that replaced the weights and threshold
of the Hopfield network. However the approach was not suitable for
large problems.

Another extension of Hopfield network was proposed by Satake et. al.
(1994) [140] to minimize the makespan of the job shop scheduling prob-
lems. Only one constraint is included in the energy function, while
the threshold values represent the other constraints of the system. The
threshold values are revised at each transition of neurons, and the Boltz-
mann machine effect was also integrated into the dynamics of the dis-
crete Hopfield model with the simulated annealing methodology giving
optimal or near optimal solutions.

Liansheng et. al. (2000) [112] introduced a unified Hopfield neural net-
work algorithm that included a petri net model to represent active model,
with an additional priority penalty term. Their modifiable goal and con-
straint function was used to solve different job shop schedule mode prob-
lems that included priority, dynamic scheduling and JIT scheduling.

Akyol et. al. (2005) [5] described a gradient based extension to Hopfield
network for a multi machine scheduling problem. The six neural net-
works developed mainly modelled the penalties from the energy func-
tion with the objective of minimizing the weighted earliness and tardi-
ness of the problem. The lack of simulation results included meant that
the proposed approach was not fully evaluated.

Chen and Dong (1999) [30] used the Hopfield network as the optimiza-
tion tool in solving the scheduling problems in a specific Surface Mount
Technology (SMT) production problem. The problem aimed to minimize
the total setup cost in producing different products. This was achieved
through a nonlinear mixed integer programming model that was then
converted into a continuous nonlinear programming formulation with
added constraint equations. This model was then mapped into the Hop-
field network and a sequential algorithm simulating the network was
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developed to successfully solve a 4 lot example problem.

Wang et. al. (2003) [152] further improved the Hopfield network to solve
the job shop scheduling problem by introducing a new energy calcula-
tion function for the Hopfield Network. This included all the constraints
within the permutation matrix of mn × (mn + 1) where m jobs, n opera-
tions that represented the schedule. A simulated annealing feature was
added to help the system stabilize and successfully avoid local minimum
when tested on a 4 job, 3 machine job shop problem.

Maheswaran et. al. (2004) [116] used Hopfield network to solve the
weighted total tardiness problem on a single machine. A binary rep-
resentation of the schedule that relates to the probability of whether the
operation start time is greater than the total tardiness factor TF was intro-
duced. Their approach was tested on 10 job problems, and found to out-
perform the dispatching rules of earliest due date and weighted shortest
processing times.

Akyol and Bayhan (2007) [6] proposed a dynamical gradient Hopfield
neural network comprising of two maximum neural networks, of type
piecewise linear and log-sigmoid network that interacted with each
other. A time varying penalty coefficient is also included when applied to
solving the non-identical multi machine scheduling problems, was able
to minimize the sum of weighted earliness and tardiness of the problems.

3.9.2 Competitive Networks

Fang and Li (1990) [41] applied the competition neural network on single
machine total tardiness problems. Limiting the single neuron activation
per row and per column, the equation of motion was developed for the
energy function that allows for convergence of the neural state.

Another researcher Sabuncuoglu and Gurgun (1996) [138] solved the sin-
gle machine scheduling problem and job shop scheduling problem using
the competitive characteristics. In the network, the neurons representing
the jobs will compete with each other in order to be sequenced in the
schedule. The performance of the competitive network was compared
with the Wilkerson and Irwin (WI) algorithm, by comparing mean tardi-
ness and the computation time. The proposed network produced better
quality solutions than WI.
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Chen and Huang (2001) [31] used the competitive Hopfield neural net-
works (CHNN) in multiprocessor scheduling problems. A 3-dimension
Hopfield Network containing job, time and processors was developed
and based on dateline and limited resource execution time constraints.
The job shop problem was initially composed as a Hopfield Energy
function prior to combining with a competitive learning mechanism.
Through the experimental results, the CHNN was able to obtain feasi-
ble schedules from randomly initialized schedule and the rate of conver-
gence is initial-state dependent, sometimes with a random distribution.

3.9.3 Back-propagation Networks

The back-propagation networks (BPN) consists of feedforward network
or multilayer perceptrons comprising of sets of neurons connected by
weight links. The dynamics of this type of network generally involved:

1. initializing the weights randomly before training,

2. applying the inputs and desired outputs,

3. comparing the calculated output against the desired output for error
calculation,

4. the errors calculated are then propagated backward through net-
work and weights adjusted by magnitude correlating to negative
gradient of error function (normally equal to sum of squared error),

5. the steps are repeated to minimize the difference between actual and
desired output

Successful application of BPN network in job shops scheduling includes
Chryssolouris et. al. (1991) [34] who combined BPN and simulation
to determine the number of machines and operational policy required
for each work station in manufacturing systems. The performance mea-
sures used included the mean flow time and mean tardiness in job shop
scheduling environment.

Feng et. al. (2003) [43] used BEP network to design, develop and im-
plement a scheduling system, incorporating special data encoding for
processing times and sequences with heuristic to revise initial output in
a real job shop scheduling problem. Their research was able to solve a 6
job 5 machine problem.
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The use of Back propagation network in the single machine scheduling
problem was researched by Sabuncuoglu et. al. (1996) [138], for finding
the relationship between problem data (e.g. processing times, due dates,
etc.) and properties of optimal solutions (e.g. schedules). The approach
managed to solve the common due dates, total tardiness, and flow time
of the scheduling problems but the results greatly depended on the size
of the problem.

Researchers also improved the effectiveness of the BPN by modifying the
network, e.g. Jain and Meeran (1998) [84] modified the BPN for minimiz-
ing makespan in job shop problems. Although the modified BEP net-
work optimized the job shop scheduling problem, the network has ad-
ditional features to assist the search i.e. momentum parameters, jogging
parameter and learning parameter to avoid local minima, eliminated the
generalized learning capabilities to map the input and output for NP-
hard problem. The limitation of this modified BEP network is that size
of network still increases with the size of the problem but works more ef-
fectively than the three other dispatches rules (SPT, MWR, FCFS, shifting
bottleneck procedure from Adam et. al. (1988) [2] and in less computa-
tional time.

Sabuncuoglu and Touhami (2002) [139] used BPN as a simulation meta-
model in estimating manufacturing system performances of a job shop
problem They however used training sets from simulation software e.g.
ARENA, SIMAN, ProMODEL and deduced that the results were as good
as from simulation software. The simulation metamodel was the subset
of the actual simulation work possible on a system.

Another use of the BPN is for the design of manufacturing systems.
Cakar and Cil (2004) [4] used the performance measures of mean flow
time, mean tardiness, maximum completion time, machine utilization
rate of each work center and percentage of late parts as inputs to the
network. Their research were aimed at using the BPN to generate the re-
quired number of machines in each work center as the optimized result
for that particular manufacturing system.

So from the review of work researched on back-error propagation net-
work, the descriptions of this network includes:

• has good generalization to correlate relationship between input and
output variables in scheduling problems.
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• generally does not optimize except in the case of modification Jain
and Meeran (1998) [84].

• can be used as a metamodel simulation model for design of manu-
facturing systems.

However the back-error propagation network falls short in terms of re-
quiring large training sets and are commonly incorporated in heuristic or
metaheuristic techniques. Also the BPN network risks being trapped in
local minima when trained by gradient based search technique. The Back
propagation networks solve the scheduling problems above based on a
generalization phase, (except the study by Jain and Meeran (1998) [84])
and are not directly involved in the optimization problem.

3.10 Summary

In this chapter, we describe the modelling of the elements associated with
the scheduling problems. In order to fully incorporate the real life con-
ditions in manufacturing environment the problem formulation must be
modelled correctly. All constraints should also be included. Without a
full formulation of the scheduling problem, and constraints, the solving
approach may be limited in terms of problem variants and its perfor-
mance.

A description of the complexities associated with the different types of
scheduling problem has also been given. Finally we summarized some
of the approaches that are either approximation or iterative approaches
that had been used for the scheduling problem.

We then introduced the parameters associated with cyclic job shop
scheduling problem necessary for an accurate modelling of the schedul-
ing problem. It was vital for us to define the constraints between op-
erations and mathematically model these constraints.We later described
our approach in modelling the cyclic job shop scheduling problem with
the objective of achieving minimum cycle time of the problem. Hence we
have prepared the modelling of the cyclic job shop in the linear program-
ming form which will then be utilized to be solved by our later recurrent
neural network approach.

We also described the approach in calculating the Work in Progress
when modelling the cyclic Flexible Manufacturing System(FMS) based
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on overlapping and non-overlapping conjunctive constraints. We also
showed several examples from figures on how this approach can be uti-
lized. Finally we presented an unconstrained optimization problem form
of the cyclic FMS problem, by incorporating the objective of minimizing
WIP subjected to described constraints.

Finally in this chapter we have described several popular neural network
models. We also described the neural network’s characteristics and some
of the architecture required for solving optimization problems. The evo-
lution of research of neural network in solving the scheduling problem
mainly concentrated on the Hopfield Network, Competitive networks
and multi-layered back propagated neural network. As found from the
research done on neural network, Hopfield network and competitive net-
work are capable of generating feasible and optimal schedules. This
of course involved supervised learning using already known optimal
schedule for selected scheduling problems. Multi-layered back prop-
agated neural networks use more of its generalization characteristics.
This network is mainly used to select from scheduling policies or prede-
fined rules. The neural network approach depends on the availability of
ready optimal solutions in the form of schedules for particular problems
in some cases. Although neural network has been proven successful in
solving scheduling problem, the lack of emphasis on cyclic scheduling
problems has prompted this research.
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Part II

Approach



CHAPTER

FOUR

Approaches in Solving the
Cyclic Scheduling Problems

In this chapter, we present the Recurrent Neural Network incorporat-
ing combined special phases as a very viable approach in solving cyclic
scheduling-related problems. We then extend this Recurrent Neural Net-
work to include the Lagrange relaxation and Lagrange multipliers. We
will also present the advanced Hopfield Network model to be used as a
viable approach to solve the cyclic FMS problem.

4.1 Recurrent Neural Network Model and

CJSSP

4.1.1 Recurrent Neural Network Model

This recurrent neural network model is an extension from the Cichocki
et. al. (1996) [35]. Our approach will include the Competitive Dispatch
Rule Phase (CDRP) and PostProcessing phase that will be shown to im-
prove the results obtained. Both phases proposed are intended to allow
for flexibilities when solving cyclic scheduling problems and also com-
pliment the Recurrent Neural Network’s solutions.

We will combine this Recurrent Neural Network approach with the mod-
elling approached used in the cyclic job shop scheduling problems, in
solving the cyclic job shop problem and achieving the optimal solutions.
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4.1.1.1 Motivation

The Recurrent Neural Network was chosen as a viable approach in solv-
ing the cyclic scheduling problem, based on the following characteristics:

1. has the advantages of feedforward and feedback neural network,

2. ability to optimize a problem,

3. allows for unsupervised approach,

4. considers the previous state of the systems together with the initial
state,

5. allows for infusion of additional functions into the activation func-
tion.

4.1.2 Recurrent Neural Network Dynamics and Archi-
tecture

The Recurrent Neural Network model [35] greatly depends on the math-
ematical modelling of the problem to be solved. In this case, in order to
solve the cyclic job shop problem, we need to convert the mathematical
modelling of the cyclic scheduling problem into the form of an equiva-
lent Linear Programming (LP) problem. The linear programming form
generally consists of the cost function declared, while subjected to a lim-
ited number of inequality constraints. Precise modelling of the problem
represented by the linear programming form will then be mapped to
the appropriate energy function to be solved using the Recurrent Neu-
ral Network approach.

Initially, the input layer of the RNN functions to take in input schedule.
As this RNN is recursive in the sense that the decision variables (i.e. start
times of the operations) are recursively updated or improved, the input
layer functions as integrator layer for this previous state value. The cal-
culations of the decision variables are streamed through the network,
where some change is applied to the initial solutions. The penalty func-
tion in the network that encompasses the constraints will help to dictate
the direction of change for the output values of the decision variables (i.e.
start times).

The recurrent neural network is modelled from the energy function de-
duced from the cyclic scheduling problem itself. This energy function
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encompasses the two other functions which are the cost function and
penalty function. The combination of both functions helps the recurrent
neural network to optimize the solutions to the cyclic scheduling prob-
lems, while considering all conditions to the problem. The cost function
is generally the function that is required to be minimized or maximized.
As such, from the model, the objective function of the cyclic scheduling
problem is chosen as the cost function. Ignoring the effect of the penalty
function for example, a cost function with high value will give a high
level of energy associated with the RNN model. This in turn is good if
the objective was to maximize the objective of the problem. However, a
low level of energy in the RNN model from a low valued cost function,
will mean that the RNN model is far from the optimal solution required
to maximize the outcome.

In this recurrent neural network, the energy function with K as penalty
factor, is described as follows:

E(S̃) = C(S̃) + KP(S̃) (4.1)

Considering that the cost function C(S̃) and penalty function P(S̃) are
composed of a set of decision variables for the cyclic scheduling problem.
The set S̃ = {Si; j|i = 1, 2, . . . , N j| j = 1, 2, . . . , N}.

So when applied in solving the cyclic job shop problem, parameter C(S̃)
is mapped from the objective function vector ∑

N
j=1 ∑

N j
i=1(Sk+1

i; j − Sk
i; j). The

objective of this neural network model is to minimize the overall energy
function. Hence, if ignoring the parameter KP(S̃), from Equation 4.1, the
minimum energy value, E(S̃)min is found from C(S̃)min.

In the case of the choice of penalty function, this depends on the con-
straints associated with the cyclic scheduling problem. In the case of
optimal solution associated with low valued energy state, a high valued
penalty function is not acceptable. This is because a high value penalty
function dictates large violations of the constraints, hence will result in
infeasible solutions. The best case is if the penalty function value is equal
to zero, that means that no constraints are violated.

The penalty function P(S̃) is a combination of constraint equations in the
system, if there are a total of Nc constraints to be modeled. The penalty
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function can be expressed as follows:

P(S̃) =
Nc

∑
c

Φ[rc(Si; j)] (4.2)

The expression rc(Si; j) represent each constraints equation, while func-
tion Φ[rc(Si; j)] conserves the feasible form of these constraint. So the
penalty function P(S̃) will add a positive penalty value into the energy
function if any of the constraints are violated.

Φ[rc(Si; j)] =

{
1
2(rc(Si; j))2 if rc(Si; j) > 0
0 otherwise

(4.3)

The above characteristics can be modeled by using a linear activation
function to guarantee positive linear values for function Φ[rc(Si; j)].

Again, mapping the constraint function from the constraints of the cyclic
job shop problem modelled is equivalent to P(S̃) = ∑

Nc
c Φ[rc(Si; j)] where

Nc is the total number of conjunctive and disjunctive constraints that ex-
ist in the problem.

We then use the steepest descent method to update the solution of deci-
sion variable with learning rate µ:

Sk+1
i; j = Sk

i; j −µ
∂E(Si; j)

∂Si; j
(4.4)

The
∂E(Si; j)

∂Si; j
can be expressed from

∂E(Si; j)
∂Si; j

= ∂

∂Si; j

{
C(S̃) + K ∑

Nc
c Φ[rc(Si; j)]

}
= ∂C(S̃)

∂Si; j
+ K ∑

Nc
c

∂Φ[rc(Si; j)]
∂Si; j

= c̃i; j + K ∑
Nc
c

∂Φ[rc(Si; j)]
∂rc(Si; j)

∂rc(Si; j)
∂Si; j

(4.5)

where denoting function Ψ[(Si)] = ∂Φ[rc(Si; j)]
∂rc(Si; j)

with Φ[rc(Si; j)] defined
from Equation 4.3:

Updating the solution of decision variable involves the use of the steep-
est descent method and learning rate µ. This update on the decision vari-
able will utilize a dynamic learning rate from Darken et. al. (1990) [37],
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defined by:

µ =
µ0

log(1 + K)
(4.6)

here parameter K is set at a fixed value to allow for the model to reduce
the learning rate at particular intervals. Generally the learning rate is set
at a high value and is dynamically reduced.

The output layer that reveals a certain solution is then recursively ap-
plied back to the input layer. So in the next state, the improvement of the
solutions depends on the change applied, considering the difference in
correlated values between previous state input schedule and generated
output schedule.

Network Output: The output of the network is obtained by:

Sk+1
j = Sk

j −µ j

{
c̃ j + K ∑ Ψ[(Si)]

∂rc(Si; j)
∂Si; j

}
(4.7)

The solution being updated with every iteration is subjected to the in-
clusion of a schedule perturbation phase. Prior to starting the Recurrent
Neural Network a threshold value is defined, and with every iteration,
the energy value is saved in a vector set defined by (E(n−2), E(n−1), E(n)).
By evaluating these values against the threshold value, the schedule per-
turbation phase will be activated based on their differences in value. Sec-
tion 4.1.4 will describe this phase in more detail.

The continuous evaluation of the acceptance of the decision variable de-
pends on the limitations set on the RNN model. Two distinct limita-
tions are the maximum iterations allowable and maximum computa-
tional time allowed. These characteristics are introduced to limit the
system from entering a continuous non-improving state if non-optimal
solutions can be reached.

So if Soutput is the generated schedule from the output layer, Itermax is
the maximum iteration allowed and CompTimemax is the maximum com-
putational time allowed per execution. So if Itercurrent < Itermax and
CompTimecurrent < CompTimemax, then the Soutput is recursived into the
input layer. But if Itercurrent is equal to Itermax or CompTimecurrentis equal
to CompTimemax, then the Soutput is taken as a solution for the execution.
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4.1.3 Recurrent Neural Network Parameters Selection

The selection of penalty factor K is generally chosen to be a large positive
value. This factor is used to approximate the penalty function to the
linear programming form of the mathematical modelling of the cyclic
scheduling problem.

Learning Rate µ is another factor that affects the update on the decision
variable. The good selection of value will help the recurrent neural net-
work to reach the solution accurately. A low valued learning rate will
slow down the seek rate of the network. From Equation 4.6, the learn-
ing rate is dynamically changing from large and fixed value. The µ will
decrease at fixed interval K from the adaptive adjustments. Typically
µ0 > 0 is set.

4.1.4 Schedule Perturbation Phase

In order to improve the solutions found as well as with the aim to im-
prove the capability of the Recurrent Neural Network described above,
we incorporate a schedule perturbation phase into the Recurrent Neural
Network. This proposed perturbation phase is similar to the associated
perturbation in the Simulated Annealing approach. However in our ap-
proach, the perturbation phase is only activated based on a specific con-
dition. This condition is when the system is identified to be trapped in a
local minima state. Trapped in local minima is defined as stabilizing into
a state that may not necessarily be the global optimum state.

We introduce this addition to the Recurrent Neural Network model in
solving the cyclic scheduling problems because the constrained problem
contains local minimas that jeopardize the search for optimal solutions.
This schedule perturbation phase functions explicitly as follow:

Phase 1 Assess for local minima reached. This is done by comparing
the energy value attained from previous iterations. Setting a thresh-
old value that constitute when this condition has been met, conse-
quently activating the perturbation phase.

Phase 2 Generate a corresponding perturbed factor,

Phase 3 Unsettle the current state of the solution by incorporating the
perturbed factor into solution,
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Phase 4 Release new generated solution to the Recurrent Neural Net-
work to be further iterated.

Phase 1 constitutes the use of a set containing previous solutions, and
energy value. This set will contain three previous solutions with energy
values E(n−2), E(n−1), E(n). When E(n−1) − E(n−2) < Threshold ∧ E(n) −
E(n−1) < Threshold, the perturbation phase will be activated.

Utilizing the linear function Γ(−π pi; j, π pi; j), a perturbed factor for the
processing time of the operation Oi; j is generated. The π is a constant
value with pi; j as processing time for a particular operation.

p∗i; j = pi; j + Γ(−π pi; j, π pi; j) (4.8)

S∗i, j = Si; j + p∗i; j(G(1−Ω)) (4.9)

Here in the first stage of the perturbation algorithm the processing time
is updated to a particular range. This range is a subset of the processing
time range that is normally allocated to that cyclic scheduling problem.
The chosen parameters π will not invoke a perturbed factor that may
jeopardize the whole current schedule but merely spike the schedule to
push the state out of the identified local minima.

A large perturbation may invoke or undo search steps done, thus render-
ing the optimization steps prior to perturbation unbeneficial. This large
perturbation on the schedule may also increase the optimization effort
after the new perturbed schedule has been generated.

Too small of a perturbed step however, may not be beneficial in releasing
the system state out of the local minima. So a balance has to be found
that will release the system from trapped local minima, and enough to
allow for continuing effort in the optimization approach to seek out new
optimal solutions.

The second stage of Equation 4.8 involved a particular decision variable
updated with the perturbed factor. We introduce a stochastic character-
istic into the application of the perturbed factor, using G(1 − Ω) as a
stochastically affect to determine if the perturbed factor is incorporated
or not. This is helped by the Ω parameter which is a random number in
the range of [0 : 1]. The schedule perturbation phase is shown in Figure 4.1.
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Input: List of Schedule S at iteration n, Set E(n−2), E(n−1), E(n), parameter π ,
parameter Threshold

Output: Schedule with perturbed start times
if (E(n−1) − E(n−2) < Threshold) ∧ (E(n) − E(n−1) < Threshold) then1

foreach operation o in List S do2

Apply processing time, p∗i; j = pi; j + Γ(−π pi; j, π pi; j) ;3

Apply start times,s∗i, j = si; j + p∗i; j(G(1−Ω)) ;4

Update start time to List S ;5

end6

end7

Figure 4.1: Perturbation Schedule Algorithm

4.1.5 Competitive Dispatch Rule Phase (CDRP) Phase

Although the Recurrent Neural Network has been infused with the per-
turbation phase, to reduce the trapping of the system in local minima, we
also introduce a preprocessing phase known as Competitive Dispatch
Rule Phase (CDRP) prior to feeding the initial schedule into the RNN
model. The purpose of this CDRP is to:

1. generate an initial schedule that is viable,

2. generate an initial schedule that has minimum constraints viola-
tions,

3. reduce the search space for the Recurrent Neural Network ap-
proach.

This preprocessing phase allows for selection of competitive dispatch
rules applied on the initial schedule prior to being fed into the RNN
model. This Competitive Dispatch Rule Phase (CDRP) comprises of
a selection from:

Weighted shortest processing time (WSPT) The WSPT rule is one of the
simplest and most effective in design. This rule is commonly used to
minimize total completion time, mean flow time and percentage of
tardy jobs [36]. The WSPT rule has been identified in the literature
to perform very well in terms of minimizing the weighted mean
flow time, as well as reducing the percentage of tardy jobs, espe-
cially under highly loaded conditions. Comparative studies have
listed WSPT as one of the most consistent rules in solving job shop
problems.
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Input: List of Schedule S
Output: Schedule with WSPT Algorithm
Initialize StartTime S;=0 ;1

Initialize CompletionTime job= j; = 0;2

foreach job j from List S do3

foreach operation o in job j do4

Find the operation o with smallest processing time, pi; j ;5

Place in assigned machine Mm=o from List M ;6

StartTime = max{CompletionTime job= j, CompletionTimeMm=o};7

Update CompletionTime job= j = StarTime + pi; j;8

Update CompletionTimeMm=o = StarTime + pi; j;9

Assign operation to beginning of list S;10

end11

end12

Figure 4.2: Weighted Shortest Processing Time Algorithm

Weighted longest processing time (WLPT) As opposed to the WSPT
rule, this rule will load the operations with the largest processing
time from the jobs onto respective machines.

The two dispatching rules were selected based on getting the best options
from the dispatching rules characteristic based on properties associated
with the job or operation.

Competitive Dispatch Rule Phase (CDRP) works through a parallel sin-
gle run of each dispatch rule. This will generate three viable sched-
ules. The competitive characteristic based on the objective function of the
cyclic scheduling problem will then select the best initial solution. This
objective function may vary depending on the type of the cyclic schedul-
ing problem being considered (i.e. minimum cycle time for CJSSP or
minimum WIP for CFMSSP) to choose the best among the two schedule
generated to be fed into the Recurrent Neural Network.

An example of the CDRP used for a cycle job shop is shown in Figure 4.4.
It consists of 4 jobs. Applying the CDRP shows that schedule from WSPT
rule in this case has cycle time of 23, thus being selected to be fed into the
RNN model.

Alternatively to using the CDRP, we also employ the Randomized Sched-
ule Generation Phase (RSGP). This schedule generation phase is based
on allocating a start time to the individual operations based on a certain
predefined range. The Algorithm 4.5 describes this phase.
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Input: List of Schedule S
Output: Schedule with WLPT Algorithm
Initialize StartTime S;=0 ;1

Initialize CompletionTime job= j; = 0;2

foreach job j from List S do3

foreach operation o in job j do4

Find the operation o with largest processing time, pi; j ;5

Place in assigned machine Mm=o from List M ;6

StartTime = max{CompletionTime job= j, CompletionTimeMm=o};7

Update CompletionTime job= j = StarTime + pi; j;8

Update CompletionTimeMm=o = StarTime + pi; j;9

Assign operation to beginning of list S;10

end11

end12

Figure 4.3: Weighted Longest Processing Time Algorithm

4.1.6 Schedule Postprocessing Phase

This Postprocessing phase (PPP) is introduced to compliment the solu-
tions obtained through the Recurrent Neural Network (RNN) model.
Due to some limitations associated with the quality of solutions (that
does not guarantee feasibility), it is important for the entire scheduling
process to adapt through this proposed phase.

In addition to guaranteeing feasible solution, we introduce the Postpro-
cessing Phase (PPP) that aims to achieve the following stages:

1. Checking and eliminating any minor violations associated with re-
source (or disjunctive) constraints. This is completed using the Ad-
here Disjunctive Algorithm.

2. Checking and eliminating any minor violations associated with
precedence (or conjunctive) constraints. This is achieved through
the Adhere Conjunctive Algorithm.

3. Transitioning any optimal solutions obtained through RNN, to the
earliest start time state using Algorithm Compact Schedule

The effect of introducing this Postprocessing Phase (PPP) is vital in en-
suring the generation of assignment of operation start times that adhere
to discrete time.
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Figure 4.4: CDRP illustrated using (a) WSPT rule and (b)WLPT rule. Schedule
from WSPT is chosen in this case.

Input: List of Operations, List of Jobs, List of Machines, List of Constraints
Output: Schedule of Start Times, S̃
Initialization of processing range, Start Time Range ;1

foreach job j from Job List do2

foreach operation o from Operation List do3

Get Random start time from Start Time Range ;4

Assign random start time So to operation o ;5

Update Schedule of Start Times, S̃ ;6

end7

end8

Figure 4.5: Randomized Schedule Generation Algorithm

4.1.7 The Evaluations

In order to evaluate the accuracy and optimization abilities of the Recur-
rent Neural Network with special phases, we tackle the three benchmark
problems from Fisher and Thompson (1963) [45] denoted as FT06, FT10
and FT20. These three different problems have sizes as 6 jobs × 6 ma-
chines, processing time in interval [1, 10], 10 jobs × 10 machines with
Processing time in interval [1, 99] and 20 jobs × 5 machines with pro-
cessing times in interval [1, 99]. Table 4.1 shows the results found using
the Recurrent Neural Network (RNN). The results clearly show that the
RNN is effective to be used to solve the three problem with best optimal
results obtained. The optimal schedule for large problems with 100 oper-
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Input: Start Times
Output: Schedule adhering to Disjunctive Constraints
for Machine m:=1 to M do1

for OperationOnMachinem O(m) = 1 to N(m− 1) do2

if StartTimeO(m)+1 − (StartTimeO(m) + pO(m)) < 0 then3

∆:=StartTimeO(m)+1 − (StartTimeO(m) + pO(m)) ;4

for OperationOnMachinem O(m) = 1 to N(m) do5

StartTimeO(m + 1):=StartTimeO(m + 1) + ∆;6

end7

end8

end9

end10

Figure 4.6: Adhere Disjunctive Algorithm

Input: Start Times
Output: Schedule adhering to Conjunctive Constraints
s∗:=s;1

for Job J:=1 to N do2

for Operation O j = 1 to N j do3

if StartTimeO( j)+1 − (StartTimeO(m) + pO(m)) < 0 then4

∆∗:=StartTimeO( j)+1 − (StartTimeO( j) + pO( j)) ;5

for Operation O j = 1 to N j do6

StartTimeO( j + 1):=StartTimeO( j + 1) + ∆∗;7

end8

end9

end10

end11

Figure 4.7: Adhere Conjunctive Algorithm

Problem N M O CToptimal CTbest
RNN %Dev Iterationbest CPU(s)

FT06 6 6 36 55 55* 0 336 0.62
FT10 10 10 100 930 930* 0 18815 34.62
FT20 20 5 100 1165 1165* 0 8092 14.89

Table 4.1: Solution found for benchmarks FT06, FT10, FT20 [45] from RNN
model
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ations (i.e problems FT10 and FT20) were solved between 14 and 34s. To
further simulate our RNN approach against other benchmarks for cyclic
job shop scheduling problems, more experimentation results will be dis-
cussed in Chapter 5.

4.2 Lagrangian Relaxation Recurrent Neural

Network and The CFMSSP

4.2.1 Lagrangian Relaxation Approach

As a mathematical technique used to solve constrained optimization
problems, one of the earliest uses of Lagrangian relaxation in solving
scheduling problems involved Luh and Hoitomt (1993) [114].

The Lagrangian relaxation technique (prior to addition to Recurrent neu-
ral network) will decompose each problem into the smaller subproblem
whether at job-level or operation-level [46]. The relaxing of complicated
coupling constraints e.g. machine capacity constraints using Lagrange
multipliers, will allow for the smaller subproblems which are much eas-
ier to be solved, before solving the upper level harder problems. Once
the subproblems have been solved, the Lagrange multipliers are adjusted
at a higher level to satisfy the constraints of the harder problem. The
additional cost of solving the subproblems, will only add minor addi-
tional computational time but will allow for better feasible solutions to
be found.

The Lagrangian relaxation component in the recurrent neural network
maximizes the corresponding dual of the cyclic scheduling problem.
This dual problem is generated from associating the constraints with the
Lagrange multipliers set and including these to the objective function. To
solve this dual form of the problem, the Lagrange multipliers are selected
and initialized allowing the problem to be separated. These multipliers
are then minimized with respect to problem variables and updated. The
second stage then will hold the problem variables as constant and dual
function maximized with respect to dual variables. The maximization
phase will help to satisfy the constraints associated with the problem.
The process is repeated to conclude when a maximum dual and mini-
mum decision variables are found. Normally the Lagrangian multipliers
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are updated using subgradient technique.

The limitation of introducing Lagrangian relaxation into the recurrent
neural network is the possible generation of infeasible near optimal or
optimal solutions. Hence the use of our proposed Postprocessing Phase
described in Section 4.1.6 will be helpful.

Early Lagrange relaxation work came from researchers Fisher (2004) [46],
Hoogereen and Van De Velde (1995) [74]. Several researchers like Luh et.
al. (2000) [115], Fang et. al. (2000) [42] have successfully solved the gen-
eral job shop scheduling problem while Zhang et. al. (2000) [161], Tang
et. al. (2006) [146] have applied this Lagrangian Relaxation approach to
mixed model assembly line and flow shop scheduling quite successfully.

In this section, we introduce the combined Lagrangian relaxation ap-
proach into our Recurrent neural Network known as Lagrangian Re-
laxation Recurrent Neural Network (LRRNN). We will describe this ap-
proach in solving the cyclic flexible manufacturing system scheduling
problem specifically based on the modelling technique specifically for
cyclic FMS.

4.2.2 Lagrangian Relaxation Recurrent Neural Network
Dynamics and Architecture

The Lagrangian Relaxation Recurrent Neural Network (LRRNN) model
utilizes the addition of Lagrange relaxation and Lagrange multipliers
into the energy equation of the Recurrent neural network. Here we will
redefine the Lagrangian function and its corresponding constraints. The
Lagrange multipliers function as scaling factors in the function. The gen-
eral Lagrangian function is defined by:

L(S̃, λ) = C(S̃) +
Nc

∑
c

λcrc(Si; j) (4.10)

This Lagrangian function is the combination of the objective function,
C(S̃) to be minimized/maximized and the appended constraints de-
noted in penalty function ∑

Nc
c λcrc(Si; j) with Lagrange multipliers λc.

Since this LRRNN approach is considered to solve the CFMSSP, the ob-
jective function and constraints here relate to the linear programming
form of Equation 3.40 and 3.41:
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min
{Si, j∀N,Ni}

f (S) ≡ WIP =
N

∑
i=1

Ni

∑
j=1

(
Ci, j + ωi, jC̃i, j

)
Subject to:

(δi jhl)(Sh,l + ph,l ≤ Si, j)
(1− δi jhl)(Si, j + pi, j ≤ Sh,l)

(δi jhl)ωi, j(Si, j + pi, j − CT ≤ Sh,l)
(1− δi jhl)ωh,l(Sh,l + ph,l − CT ≤ Si, j)

0 ≤ Si, j < CT

i = 1, 2, · · · , N, j = 1, 2, · · · , Ni

The constraints rc(Si; j) that are considered in scheduling problem in-
clude the precedence constraints and disjunctive constraints that will be
relaxed using the nonnegative Lagrange multipliers λc. Somewhat dif-
ferent from the Recurrent Neural Network approach where the penalty
factor is fixed, here the Lagrange multipliers λc will change allowing for
a dynamic Recurrent Neural Network.

When we consider the above Equation 4.10 to solve the CFMSSP, we have
the objective function C(S̃) = ∑

N
i=1 ∑

Ni
j=1

(
Ci, j + ωi, jC̃i, j

)
with a slightly

modified penalty function, as follows:

L(Sn, λ) = C(S̃) +
Nc

∑
i=c

λcϕ[rc(Sn)] (4.11)

where penalty function is defined as

ϕ[ri(Sn)]

{
= 0 if ri(Sn) ≤ 0
> 0 if ri(Sn) > 0

(4.12)

and Sn ≥ 0; ∀n ≥ 0 (4.13)

In the above, there will a total of N decision variables in the form of
start times for all the operations from all the jobs and Nc unknowns con-
straints. For Lagrangian in Equation 4.11, the stationary conditions can
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be found from:

∂L(Sn ,λ)
∂Sn

= ∂

∂Si; j

{
C(S̃) + ∑

Nc
c λcrc(Sn)

}
= ∂C(S̃)

∂Sn
+ ∑

Nc
c λc

∂rc(Sn)
∂Sn

= 0

(4.14)

∂L(Sn ,λ)
∂λc

= ∂

∂λc

{
C(S̃) + ∑

Nc
c λcrc(Sn)

}
= ∂rc(Sn)

∂λc

= 0

(4.15)

Both Equations (4.18) and (4.19) will give a total of (N + Nc) equations
to be solved.

The optimal solution S̃∗ will give the solution with the minimum WIP
value when ignoring the constraints.

4.2.2.1 Lagrangian Relaxation Recurrent Neural Network Dynam-
ics

Updating the solution of decision variable and Lagrange multipliers in-
volve the use of steepest descent method as in recurrent neural network.

Sk+1
n = Sk

n −µ
∂L(S̃, λ)

∂Sn
(4.16)

λk+1
c = λk

c + µλ
∂L(S̃, λ)

∂λc
(4.17)

∂L(Sn ,λ)
∂Sn

= ∂

∂Sn

{
C(S̃) + ∑

Nc
c λcrc(Sn)

}
= ∂C(S̃)

∂Si; j
+ ∑

Nc
c λc

∂rc(Sn)
∂Sn

(4.18)

∂L(Sn ,λ)
∂λc

= ∂

∂λc

{
C(S̃) + ∑

Nc
c λcrc(Sn)

}
= ∂rc(Sn)

∂λc

(4.19)

here both learning rates, µ > 0 and learning rates for the Lagrange multi-
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pliers, µλ > 0 will assist in accurate convergence to an optimal solution.

The solutions generated at every iteration are generally infeasible. This is
due to the continuous Lagrange multipliers used and relaxed constraints.
As such, we use the AdhereDisjunctive Algorithm to modify, if required,
the sequence found into a feasible one.

So from the modelling of the cyclic scheduling problem, the inclusion
of Lagrangian relaxation helps in solving the problem more efficiently
through solving the smaller operation level subproblems first before
tackling larger job-level problems. This will help the recurrent neural
network in considering less constraints. We consider that each cyclic
scheduling problem compose of resource/disjunctive constraints and
precedence constraints. Here we use Lagrange multipliers to relax the
resource constraints for each machine, while the precedence constraints
can be relaxed, using another set of distinct multipliers.

From the Lagrange Relaxation of the Recurrent Neural Network, the La-
grange multipliers are iteratively adjusted and the subproblems are itera-
tively solved. This iterative process continues until the model converges
to an optimal solution, with minimum or zero violation in penalty func-
tion. In a case when an infeasible solution is found, the PostProcessing
Phase will generate a feasible solution.

4.2.3 Modified Competitive Dispatch Rule Phase (MC-
DRP)

Prior to applying the LRRNN approach on the cyclic flexible manufac-
turing systems scheduling problem, we employ the Modified Compet-
itive Dispatch Rule Phase (MCDRP). Although this MCDRP is similar
to the CDRP used with RNN, but it is specific for the cyclic flexible man-
ufacturing systems based on the minimum cycle time constraint. The
MCDRP will generate and evaluate two schedules prior to feeding the
initial schedule into the LRRNN model. The main purpose of this MC-
DRP is to reduce the search space for the LRRNN approach but also to
present an initial schedule with minimum constraints violations.

Although similar to CDRP in cyclic job shop scheduling problems, this
phase differs in considering the operations based on each machine with
no slack time to appear between operations. This Modified Competitive
Dispatch Rule Phase (MCDRP) still comprises of a selection from WSPT
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(Weighted shortest processing time) and WLPT (Weighted longest pro-
cessing time) rules. A further description can be found from Figure 4.9
and 4.8.

Modified Competitive Dispatch Rule Phase (CDRP) runs a parallel single
run of each dispatch rule and will generate two viable schedules. The
schedule with the minimum objective function will be chosen to be fed
into the Lagrangian Relaxation Recurrent Neural Network.

Input: List of Schedule S
Output: Schedule with WSPT Algorithm
Initialize StartTime S;=0 ;1

Initialize CompletionTimeMm=o ; = 0;2

foreach machine m from M do3

foreach operation o in job j on machine m do4

Find the operation o with shortest processing time, pi; j ;5

StartTime = CompletionTimeMm=o ;6

Update CompletionTimeMm=o = StartTime + pi; j;7

Assign operation to beginning of list S;8

end9

end10

Figure 4.8: Weighted Shortest Processing Time Algorithmfor CFMS.

Input: List of Schedule S
Output: Schedule with WLPT Algorithm
Initialize StartTime S;=0 ;1

Initialize CompletionTimeMm=o ; = 0;2

foreach machine m from M do3

foreach operation o in job j on machine m do4

Find the operation o with largest processing time, pi; j ;5

StartTime = CompletionTimeMm=o ;6

Update CompletionTimeMm=o = StartTime + pi; j;7

Assign operation to beginning of list S;8

end9

end10

Figure 4.9: Weighted Longest Processing Time Algorithm for CFMS.

Figure 4.10 shows an example of applying the MCDRP where 4 jobs exist
in the CFMS. MCDRP shows that the WSPT rule will generate a schedule
with cycle time of 8 and WIP of 10, while WLPT has WIP of 10 also, hence
any of the schedules can be selected.
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Figure 4.10: MCDRP illustrated using (a) WSPT rule and (b)WLPT rule.

4.2.4 The Evaluations

The Lagrangian Relaxation Neural Network with special phases is used
to solved the Cyclic flexible manufacturing systems (FMS) problem. We
chose the problem from Hillion et. al. (1987) [70]. The FMS in this prob-
lem consisted of 4 machines with 4 jobs. Each job consists of 4,4,3,4 op-
erations respectively. The objective in this problem is to solve the CFMS
problem to obtain the minimum Work in Progress (WIP) possible based
on the minimal cycle time constraints. In this case Machine 1 and Ma-
chine 3 are bottleneck machines hence the schedule has cycle time of 8.
The MCDR phase has generated two schedules as shown in Figure 4.10.
Using initial Lagrange multipliers values of 0.50, learning rate of 100.00
and learning rate for Lagrange Multipliers of 100.00, with maximum iter-
ation set as 10000, an optimal solution was obtained, reducing the initial
schedule to the optimal schedule with minimum WIP of 5. Table 4.2
shows the best results in solving the HIL87 problems obtained in 31.8
seconds, compared to the genetic algorithm by Hsu et. al. (2007) [78],
while Figure 4.11 shows the optimal schedule with the minimum WIP of
5.

Although our LRRNN approach was only simulated for HIL87 problem
only in this section, further experimental simulations conducted on a
number of other cyclic flexible manufacturing scheduling problems will
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FMS Benchmarks
Problem N M O CT W.I.P.LB GA GA LRRNN LRRNN LRRNN

WIPbest CPUbest WIPbest IterationBest CPUbest
HIL87 4 4 15 8 5 5 ∼1 5 9654 31.8

Table 4.2: Best Result for FMS test problems HIL87 by LRRNN.
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Figure 4.11: Optimal solution for CFMS problem HIL87 [70]

be described in Chapter 5.

4.3 Solving The CJSSP With Linear Constraints

The Basic Cyclic Scheduling problem with Linear Precedence Constraints
(BCSL) has been researched by Munier (1996) [124]. This only covers
the case of cyclic scheduling problems without any resource constraints.
From modeling the problem as a linear graph, Munier deduced the ex-
pansion of the graph into equivalent uniform graph. This expansion
graph would preserve the same number of constraints as the linear con-
straints. ni and n j duplicate generic operations are created from opera-
tions i and j, based on the conditions:

ni

β
=

n j

β′
= s (4.20)
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where s, as the equivalent uniform constraints expanded from linear con-
straints (i, j).

As already briefly described in Section 2.6.2, the basic cyclic scheduling
(BCL) problem with linear precedence constraints differs in the form
of linear form of precedence constraints. The uniform precedence con-
straints would be the special case of linear precedence constraints.

The linear precedence constraint that govern the generic tasks i and i′ can
be defined as follows from Munier (1996) [124]:

S
(βi,i′n+δi,i′ )
i + pi ≤ S

(β′i,i′n+δ′i,i′ )
i′ ∀n > 0 (4.21)

The βi,i′ and β′i,i′ are two positive natural numbers while δi,i′ and δ′i,i′ are
just two natural numbers. If the above Equation 4.21 holds true and lin-
ear precedence constraints between operations i and i′ are denoted by
parameters (pi, β, δ, β′, δ′), this means that βn + δ occurrence of opera-
tion i must be completed before occurrence β′n + δ′ of operation i′.

This linear relationship can be represented graphically by a directed
graph G = (T, E) with nodes T and arcs E as in Figure 4.12. The nodes
represent the operations while the arcs represents the linear constraints.
An example from Figure 4.13 shows the linear precedence constraints
effect on the cyclic occurrences of both operations i and i′. Here the
linear precedence constraints denoted by (2, 3, 1, 2, 0) or S(3n+1)

i + 2 ≤
S(2n)

i′ ∀n > 0.

i i'
(p

i
,β,δ,β',δ')

Figure 4.12: Linear Precedence Constraint.
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Figure 4.13: Gantt Chart for Linear Precedence Constraints (2,3,1,2,0)

113



Hanen and Munier (2008) [67] proposed the reduction of the BCS with
linear precedence constraints into BCL with uniform precedence con-
straints. Hence according to Munier (1996) [124], some linear precedence
cyclic scheduling problems (with objective of minimizing the cycle time)
can be reduced into uniform scheduling problems, especially from the
form of:

Minimise τ s.t. (4.22)

S
(αi,i′n+βi,i′ )
i + pi ≤ S

(γi,i′n+δi,i′ )
i′ ∀n > 0 (4.23)

into the equivalent form of (in the directed graph):

Minimise τ s.t. (4.24)

Si′ − Si ≥ Li,i′ − τHi,i′ ∀(i, j) ∈ E (4.25)

provided the graph G is strongly connected. This means that for all cycles
c of graph G, the combined weight of the arcs ∏

γ
α = 1. This is assuming

that the weight for each arc (i, i′) is
γi,i′
αi,i′

.

From [67], it is proven that the periodic schedule holds true for linear
precedence constraints for all arcs (i, i′) ∈ E if:

S0
i + (αi,i′k + βi,i′)τi + Li,i′ ≤ S0

i′ + (γi,i′k + δi,i′)τ ′i (4.26)

where S0
i is the start time for operation i, S0

i′ is the start time for operation
i′, τ ′i and τi, are two positive numbers while Li,i′ represents the length of
the arc or processing time of operation i.

Several researchers that had investigated the linear precedence con-
straints in cyclic scheduling problem are Munier (1996) [124], Hanen and
Munier (2008) [67] and Cavory et. al. (2005) [27].

4.3.1 Cyclic Job Shop with Linear Constraints

The Cyclic Job Shop Scheduling problem is the extension to the BCS with
linear precedence constraints. This problem have resource constraints
where the processing of operation on each machine cannot overlap at
any point in time. Here the operations and jobs are processed cyclically in
order to fulfill the demand quantities. The linear constraints only apply
to the precedence constraints.
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Based on the linear precedence constraints between operations i and i′,
the ordering of the start times relating to both the operations can be de-
noted by:

S(βn+δ)
i + pi ≤ S(β′n+δ′)

i′ ∀n > 0 (4.27)

where both operation Oi and Oi′ are ordered through parameters (βn +
δ) and (β′n + δ′). So occurrence (β′n + δ′) of Operation O′

i cannot start
until occurrence (βn + δ) of Operation Oi has been completed, while all
disjunctive constraints are met.

An extension to the basic cyclic scheduling problem, Brucker and Kamp-
meyer (2005) [20] formulated the cyclic scheduling problem with limited
resources and with linear precedence constraints. Here the constraints of
a machine only being able to process one operation per instant of time is
added into the problem.

Whereas in the case of Cavory et.al. (2005) [27], petri-net modelling and
approaches from Hanen and Munier (2008) [67] of reducing the graph
from linear constraints to be unitary were combined to formulate the
mixed integer linear program of the cyclic job shop with linear con-
straints.

When representing the cyclic job shop in the linear graph, the lin-
ear precedence constraints are represented by the arc with parameters
(pi, β, δ, β′, δ′), between two operations that are represented by two
nodes. The corresponding resource constraints can be shown as well as
directed (once a schedule is determined) arcs between operations to be
processed on the same machines.

Among the properties of the cyclic operations in the CJSSP with lin-
ear constraints are that the tasks cannot be interrupted once it has
been placed on the machine to be processed (commonly known as non-
preemptive characteristics). The operations are also non-reentrant where
the operations are not repeated on the same machine at any point in time,
after being processed on a particular machine. Also all information as
regards to release time, machine required to process the operation and
processing time required for each operation is known prior to starting
the scheduling.

The main objective of solving this CJSSP with linear precedence con-
straints is to find a cyclic schedule that will not only adhere to all prece-
dence and disjunctive constraints but also aim to have the minimum cy-
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cle time.

Munier and Hanen (2008) [67] found that for an infinite existence of the
cyclic schedule to exist, certain parameters must be satisfied. This is in
relation to the linear parameters between operations for each job. For
each job, the ∏

β
β′ must be equal to 1.

Also in order to eliminate the possibility of deadlock in the system, the
condition upon which an operation can start come into play. Munier
and Hanen (2008) [67] deduced that the start for operation j from equa-
tion 4.27 for previous occurrence of β′ + δ′ − 1 can be anytime > 0 and
already been processed prior to the effectiveness of the Equation 4.27.

4.3.2 Modelling CJSSP with Linear Constraints

In order to accurately model the cyclic job shop problem, the objective
function is set as to minimze the cycle time, τ . This is subjected to linear
precedence constraints between operations, generally held by parame-
ters (pi, β, δ, β′, δ′), with pi as processing time of initial operation. And
by considering the disjunctive constraints in the machines where only a
single operation can be processed at any period of time, hence denoted
by:

(Sk
i + pi ≤ Sl

j) ∨ (Sl
j + p j ≤ Sk

i ) (4.28)

for when operations i, j (i 6= j)are to be processed on the same machine
m. Combining all the above, the cyclic job shop problem can be depicted
in the form of:

Minimise τ

Subject to:

S
(βi,i′n+δi,i′ )
i − S

(β′i,i′n+δ′i,i′ )
i′ + pi ≤ 0 ∀n > 0

δik jl(Sk
i − Sl

j + pi) ≤ 0 Si, S j ∈ T; k, l ∈ Z

(1− δik jl)(Sl
j − Sk

i + p j) ≤ 0 Si, S j ∈ T; k, l ∈ Z

Si, j ≥ 0

The constrained problem has been shown to be equivalent to a mixed in-
teger linear program. Brucker and Kampmeyer (2005) [20] proofed this
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equivalence based on the Extended Euclidean Algorithm. Hence using
their results, our approach in solving this cyclic job shop with linear con-
straints involves the reduction of the linear constraints into their equiva-
lent uniform constraints through using a delinearization technique. Pre-
serving all disjunctive constraints, we then proceed to solve this equiv-
alent cyclic job shop problem using the Lagrangian Relaxation recurrent
Neural Network (LRRNN) approach.

4.3.2.1 Conditions for Linear Graph

For a linear graph to exist that can accurately depict a cyclic scheduling
problem with linear precedence constraints, several conditions must be
fulfilled. These are mainly:

1. No deadlock in graph during the cyclic processing of the operation.
This is achieved through the first occurrence of the operation to be
started at anytime [67].

2. To guarantee no overlap between executions of a particular generic
task in a cyclic schedule.

3. Consistency of the graph that will allow for infinite schedule to
be created. Munier and Hanen (1997) has proven this case where

∏
β
β′ = 1 can guarantee this for a particular circuit of linking linear

constraints.

4. Enclosed circuit depicting a cyclic behaviour where the schedule
generated is cyclic in nature.

4.3.3 Solving CJSSP with Linear Constraints

Phases in solving the CJSSP with linear precedence constraints involve:

Step 1 Assess the CJSSP with linear constraints

Step 2 Generate duplicate operations through delinearilization

Step 3 Generate associated precedence constraints and disjunctive con-
straints

Step 4 Combine all duplicate operations and constraints to form CJSSP
with uniform precedence constraints

Step 5 Solve the CJSSP with Lagrangian Relaxation Recurrent Neural Net-
work (LRRNN) approach.
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4.3.3.1 Delinearization Algorithm

Before we can implement the delinearization algorithm, the conditions
from the linear precedence constraints parameters of (pi, β, δ, β′, δ′) that
will allow for delinerization can be found from Munier (1996) [124]. Here
the equivalence of the uniform constraints to the linear constraints de-
pends on the condition that must be respected as:

nuci

β
=

nuci′

β′
= s (4.29)

where nuci and nuc′i are the number of uniform generic operation i and
i′ respectively to be generated.

In this Delinearization algorithm, we will determine the number of
equivalent number of generic tasks in a linear constraint from operation
i to i′, with linear precedence constraint (pi, β, δ, β′, δ′). Here based on
a job with N operation required to complete the job. The steps are as
follows:

Step 1 Start at last precedence constraint of the particular job, e.g opera-
tion O(n) and O(n−1) Based on Equation 4.29, taking the number of
uniform generic operation O(n) as nucO(n)

= β′, we obtain the num-

ber of uniform generic operation O(n−1) as nucO(n−1)
= β×

nucO(n)
β′ .

Here nucO(n)
is defaulted at 1 for a single occurrence of operation i′,

unless specified otherwise.

Step 2 Take previous linking constraint, between operation O(n−1) and
O(n−2) where by considering nucO(n−1)

= β′ this time, we obtain
the number of uniform generic operation O(n−2) as nucO(n−2)

=

β ×
nucO(n−1)

β′ . So the value of nucO(n−1)
is found from the previous

step.

Step 3 Repeat above step for the next previous linking constraint for the job
until the last linear precedence constraint between operation O(1)

and O(2) is found.

Here in each step of the delinearization algorithm, the equivalent nuci

uniform precedence constraints are generated while each identical oper-
ation i generated will inherit the equivalent disjunctive constraints.

An example to show the above condition can be fulfilled, is shown in Fig-
ure 4.14. Here this particular job has 5 operations with linear constraints
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between each pair of operations. Working backwards from operation
(G, 4) to (G, 5) with linear constraints (2, 1, 0, 1, 0) determined that one
operation of (G, 4) is required for one operation (G, 5) to be started. Con-
sidering the previous linear constraint between operation (G, 3) to (G, 4),
with linear constraint (2, 2, 0, 1, 0) will show that two operations (G, 3)
are to be completed before we can start on operation (G, 4). Then fur-
ther considering linear constraint (2, 1, 0, 1, 0) between operations (G, 2)
to (G, 3) will require four operations (G, 2) to fulfill the two operation
(G, 3). Now since we already require four operations of (G, 2), taking
the last linear constraint between operation (G, 1) to (G, 2), we found
that for two operations (G, 2), two operations (G, 1) must be completed.
So we then require a total of four operation (G, 1). In Figure 4.14, the
delinearized form of the graph will have uniform precedence constraints
between the operations.

G,1
(1,2,0,2,0)

G,3G,2 G,4 G,5
(2,1,0,1,0) (2,2,0,1,0) (2,1,0,1,0)

M2 M5 M3 M1 M4

G,1 G,3G,2 G,4 G,5

G,1 G,2

G,1 G,3G,2
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M2
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2

2

2

21
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2

2

Linear Precedence 
Constraints

Uniform Precedence 
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Processing 
time

Figure 4.14: Delinearization Algorithm Done On Five Operations.

After the delinearization process is completed and the uniform prece-
dence constraints and disjunctive constraints are determined and de-
clared, next we will try to solve this cyclic job shop scheduling prob-
lem. Here the objective is to find the minimum cycle time for the cyclic
scheduling problem. We then revert to our previously described La-
grangian Relaxation Recurrent Neural Network (LRRNN) approach to
solve the completed uniform version of the Cyclic Job Shop Scheduling
problem with linear constraints.

The already described Lagrangian Relaxation Recurrent Neural Network
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(LRRNN) approach can be summarized by the following steps:

Step 1. Apply the delinerization algorithm on all the jobs in the cyclic job
shop problem with linear precedence constraints between opera-
tions. This will result in an equivalent cyclic job shop with identical
uniform operations, uniform precedence constraints and disjunctive
constraints.

Step 2. Construct an energy function for the considered problem using a
penalty function approach based on Equation 4.30.

L(S̃, λ) = C(S̃) +
Nc

∑
c

λcrc(Si; j) (4.30)

where penalty function defined as

ϕ[ri(Sn)]

{
= 0 if ri(Sn) ≤ 0
> 0 if ri(Sn) > 0

(4.31)

and Sn ≥ 0; ∀n ≥ 0 (4.32)

Step 3. Initialize schedules based on the Competitive Dispatch Rule Phase
(CDRP) Phase from Section 4.1.5 and select the schedule based on
a minimum cycle time.

Step 4. Select required initial Lagrange multipliers λ0, learning rate µ0 and
learning rate for Lagrange multipliers µ0

λ and maximum iteration
permitted.

Step 5. Start iteration of LRRNN by updating the Lagrange multipliers us-
ing Equation 4.34 and start times for operations using Equation 4.34:

Sk+1
n = Sk

n −µ
∂L(S̃, λ)

∂Sn
(4.33)

λk+1
c = λk

c + µλ
∂L(S̃, λ)

∂λc
(4.34)

Step 6. Check if perturbation phase described in Section 4.1.4 is activated
with every iteration and activated if conditions are met.

Step 7. Repeat Step 5 to Step 6 until required criterion (i.e maximum itera-
tion) is met.
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Step 8. If the energy has stabilized to an optimal solution, employ the Post-
Processing phase as described in Section 4.1.6 to ensure feasibility
and optimality.

4.3.4 The Evaluations

In order to evaluate and validate our modelling and approach in this spe-
cial cyclic scheduling case, we tested our approach on several problems.
These problems were taken from Dupas (2001) [40]. The problems are
detailed by m n where m is the number of machines for the CJSSP while
n is the jobs. The problems tested consisted of:

1. Problem 5 5: This is CJSSP with 5 jobs and 5 machines, with associ-
ated 5 generic operations per job.

2. Problem 5 10: This is CJSSP with 10 jobs and 5 machines, with asso-
ciated 5 generic operations per job.

3. Problem 6 6: This is CJSSP with 6 jobs and 6 machines, with associ-
ated 6 generic operations per job.

4. Problem 6 12: This is CJSSP with 12 jobs and 6 machines, with asso-
ciated 6 generic operations per job.

For all the above problems, we model the problems, apply the delin-
earization algorithm, and the corresponding uniform precedence and re-
source constraints. We then solve the problems using the Lagrangian
Relaxation Recurrent Neural Network approach. The objective is to de-
linear the linear precedence constraints associated with the CJSSP and
obtain cyclic schedule with the minimum cycle time for each problem of
the cyclic scheduling problem. We consider the resource constraints in
each problems as well.

The Problem 5 5 can be illustrated from Figures 4.15. The linear con-
straints between operations are denoted (pi, β, δ, β′, δ′) where pi is the
processing time of the operation. A circuit will denote a job comprising
of operations with their corresponding precedence constraints. For Prob-
lem 5 5, the delinearization of the linear precedence constraints resulted
in additional equivalent operations to satisfy the required constraints.
For example, in job A, the application of the algorithm resulted in an ex-
tra 4 operations, in job B with an extra 11 operations, job C has an extra 2
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Problem 5 5 5 5 25 15.90 26.10 26.5 26.4 25.4 26.00 912913 3005.1
Problem 5 10 10 5 50 19.73 62.44 63.4 N/A N/A 65.00 1404480 4623.3
Problem 6 6 6 6 36 17.57 32.72 32.9 37.0 36.83 34.00 3245755 10684.4
Problem 6 12 12 6 72 20.29 69.9 70.2 N/A N/A 72.00 4897424 16121.4

Table 4.3: Solution found for benchmark Dupas (2001) [40]

operations, job D has an extra 5 operations and job E has an extra 2 oper-
ations. A cyclic schedule is then to be generated that will solve and fulfill
all the linear constraints. The Problem 5 10 is shown in Figures 4.16.
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M3 M1 M5 M2 M1
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Figure 4.15: Problem 5 5 of CJSSP with Linear Constraints

From Table 4.3, we compare the results obtained from our approach to
several previous techniques that included Genetic Algorithm [27], Con-
straint Satisfaction Problem (CSP) and Constraint Optimization Problem
(COP) [18]. The lower bound [27] quoted is defined without consider-
ing any resource constraints in the cyclic job shop, and is not necessarily
the most optimal solution. As there is no exact exact optimal cycle time
quoted in Dupas (2001) [40] specified for problems, the results do show
that our approach is comparable in terms of results obtained against
other approaches used.
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Figure 4.16: Problem 5 10 of CJSSP with Linear Constraints

4.4 Advanced Hopfield Network Model and

CFMSSP

The recurrent nature of the Hopfield Network has many advantages in
solving optimization problems, notably the Traveling Salesman Prob-
lem. Hopfield and Tank (1985) [76] successfully demonstrated these
advantages. In the case of scheduling problems, Foo and TakeFuji
(1988) [49, 47, 48] managed to solve the job shop problem with the Hop-
field network. However Cavalieri (1998) [25] proposed solving the FMS
problem with a modified Hopfield Network that encompasses the addi-
tional Petri Nets and varying bias current units. A summary of advance-
ment of Hopfield neural network researched in solving the scheduling
problem has already been described in Section 3.9.1 in Chapter 3.

In this section we examine and propose the Hopfield Network as a vi-
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able approach to solving the cyclic FMS problem. This includes using
the Hopfield Network characteristics of solving optimization problems
and combining cyclic problem formulations, scheduling generating al-
gorithms, and search space optimization into inner workings of the net-
work.

Prior to applying the Hopfield Network to solving this constrained
scheduling optimization problem, several considerations must be
achieved. First and foremost the construction of the Hopfield network
must accurately represent the problem. In other words, a correspond-
ing relationship between neuron, neurons states and the parameters to
be optimized, must be built. Secondly, an energy function must be built
that truly reflects the objective function and the constraints and being
able to reduce this function to the symmetric quadratic form. Thirdly,
the weights that influence the connection and threshold associated with
the activation of the neurons must be determined. Both parameters re-
late the Hopfield energy function to the particular energy function. Next
is determining the dynamics which the weight coefficient in the penalty
function and corresponding threshold for each neuron are to be updated.
This is important to locate the optimal solution with every change in the
change in neuron state in corresponding time steps.

Convergence of the energy function can be described from the dynamics
of the energy function. The recurrence of the dynamic feedback along
with the successive iterations of the change in the output state will bring
the energy function to an equilibrium state [76]. Here the equilibrium
state will equate to the optimum solution of the scheduling problem.
This can also be classified by the state when all outputs eventually be-
come constant, after successive iterations. As such, the Hopfield network
is worked through by the following two main steps of storage phase and
searching phase:

1. define the memory synaptic weights and threshold values;

2. according to values calculated in the neurons, with each iteration,
the neuron state will be updated based on the initial value until no
state change occurs at any iteration.
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4.4.1 Advanced Hopfield Network Architecture

The architecture of Advanced Hopfield Neural Network comprises of a
recurrent form of the neural network. The output states of the single lay-
ered neurons are fed back into the input of the network. Connections
between neurons are based on the Hopfield’s weights matrix which is
symmetric. In each neuron, as the output values are applied, an exter-
nal fixed bias is also included giving a new output value. The change
in output and corresponding input is iteratively measured, where the
dynamics of the neurons follow a gradient descendant of the quadratic
energy function, known as the Lyapunov function until an equilibrium
state is achieved.

We propose selecting the parallel dynamics of the network against the
sequential (each neuron changed at each iteration) or stochastic dynam-
ics (a neuron at random is chosen to change its state). The neurons in our
case are updated simultaneously as this will reduce computational time
in achieving the optimal solution.

The stabilized outputs of the Hopfield network will give the solution to
the optimization problem. Generally the influencing conditions of the
optimization are identified and will be expressed in the Hopfield energy
function. These influencing conditions in the cyclic scheduling problem
will include constraints and other parameters relevant to schedule.

4.4.2 Problem Formulation to be Solvable

Several assumptions to the system are vital to accurately describe the
cyclic FMS problem. Most importantly, each job, j has a finite number
of operations, i j to be processed prior to completing the whole job. Each
operation will be required to be processed on particular machines with
limited machines available in the system. The processing time for each
operation is finite, fixed and known prior to solving the cyclic FMS prob-
lem. The concept of work in progress and approach in calculating this
parameter has been described in Section 3.6.1.5. A Disjunctive set exists,
that holds sets of operations that are to be scheduled on a particular ma-
chine. Each pair of operations in this set will have disjunctive constraints.

The objective in solving this cyclic FMS problem is to find an optimum
schedule. This optimum schedule will adhere to all constraints relat-
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ing to resource relationships and can be turned into a cyclic schedule
that will then determine a minimum work-in-progress. This optimized
schedule will be obtained from the Hopfield network simulation results.

The formulation of the cyclic scheduling FMS problem can be summa-
rized as follows from Section 3.6.1:

min
{Si, j∀N,Ni}

f (S) ≡ W.I.P. =
N

∑
i=1

Ni

∑
j=1

(
Ci, j + ωi, jC̃i, j

)
(4.35)

Subject to

(δi jhl)(Sh,l + ph,l ≤ Si, j)
(1− δi jhl)(Si, j + pi, j ≤ Sh,l)

(δi jhl)ωi, j(Si, j + pi, j − CT ≤ Sh,l)
(1− δi jhl)ωh,l(Sh,l + ph,l − CT ≤ Si, j)

0 ≤ Si, j < CT

i = 1, 2, · · · , N, j = 1, 2, · · · , Ni

Mapping the above equations into the form containing all the objective
function and constraints, we obtain the following:

rk
i, j = max{0, δk

i, j

(
Sk

j + p j − Sk
i

)
+(1− δk

i, j)
(

Sk
i + pi − Sk

j

)
}

Rk
i, j = max{0, δk

i, jω
k
i, j

(
Sk

i + pi − Sk
j − CT

)
+(1− δk

i, j)ω
k
i, j

(
Sk

j + p j − Sk
i − CT

)
}

(4.36)

k = 1, . . . , M i = 1, . . . , dk − 1 j = i + 1, . . . , dk

Given the following relaxed problem, which accommodates the penalty
function to relax the constraints, the energy function L is

L =
n
∑

i=1

mi
∑

j=1

(
Ci, j + ωi, jC̃i, j

)
+ 1

2 K
M
∑

k=1

ζk
∑

h=1
µh,k

(
rk

h(S) + Rk
h(S)

)2
(4.37)
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or

L =
n
∑

i=1

mi
∑

j=1

(
Ci, j + ωi, jC̃i, j

)
+ 1

2 K
M
∑

k=1

ζk
∑

h=1
µh,k

(
max{0, δk

i, j

(
Sk

j + p j − Sk
i

)
+(1− δk

i, j)
(

Sk
i + pi − Sk

j

)
}

+ max{0, δk
i, jω

k
i, j

(
Sk

i + pi − Sk
j − CT

)
+(1− δk

i, j)ω
k
i, j

(
Sk

j + p j − Sk
i − CT

)
}
)2

(4.38)

Successful application of Hopfield network in solving the cyclic FMS
problem requires the mapping of the Equation 4.37 to the Hopfield en-
ergy function.

4.4.2.1 Energy Function

The Hopfield network’s algorithm is based on a gradient-type technique.
From the theory of dynamic systems, the Lyapunov function discovered
from Hopfield, or the energy function shown in Equation 4.39 has ver-
ified that stable states exist and can be achieved. As such this function
has been used in Hopfield neural network to guarantee the convergence
of the network system.

Ehop f ield = −1
2

N

∑
x=1

N

∑
y=1

N+1

∑
I=1

N+1

∑
J+1

WsxIsyJ +
N

∑
x=1

N+1

∑
I

ϑxI SxI (4.39)

Where syJ , sxI denotes neuron states, the weight between two particular
neurons is defined as W and the threshold is defined as ϑ. This weight
will constitute the strength of connection between neurons, and in each
individual neuron, the threshold will determine whether the neuron is
active or non-active.

However, even before the Hopfield network can be mapped, we need to
formulate the cyclic flexible manufacturing systems problem in the form
solvable by Hopfield network. This format of the schedule generally re-
quired us to define the problem in a two dimensional matrix. This matrix
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would generally consist of 1, 0 values. Each value or element of the ma-
trix would define some sort of relationship that can be decoded into a
solution or schedule.

Based on the matrix N × N + 1 as rows × column or x × I, the matrix
would represent the schedule. N here is the total number of operations
in the scheduling problem. Even though the jobs in the scheduling prob-
lem comprise of predetermined operations, in this matrix these opera-
tions are re-classified consecutively. The first column (denoted by ST in
Figure 4.17(b)) of the matrix would indicate the operations that will be
firstly scheduled on the individual machines. The corresponding opera-
tions in a columns would indicate the preceding operations to the row of
the matrix. From this matrix we can deduce the sequence of all the oper-
ations on their individual machines. For example the following schedule
can be defined as the matrix form as shown in Figure 4.17.

Machine 1

Machine 4

Machine 3

Machine 2

B,5A,1

B,3

C,3

C,1

A,3

B,2

A,5

A,4

A,2

B,1

30

C,4A,6

Machine 5 C,2 B,4

21 54 87 1096

Cycle Time

Time

(a) A schedule for the cyclic FMS problem

Time

1
1
1
1
0
0
0
0
0
0
0
0
1
0
0

ST
A1
A2
A3
A4
A5
A6
B1
B2
B3
B4
B5
C1
C2
C3
C4

0
0
0
0
0
0
0
0
0
0
0
1
0
0

A1

0

0
0
0
0
0
0
0
0
1
0
0
0
0
0

A2

0

0
0
1
0
0
0
0
0
0
0
0
0
0
0

A3

0

0
0
0
0
0
0
0
1
0
0
0
0
0
0

A4

0

0
0
0
0
0
0
0
0
0
0
0
0
1
0

A5

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

A6

1

0
0
0
0
0
0
0
0
0
0
1
0
0
0

B1

0

0
0
0
0
0
0
0
0
0
0
0
0
0
1

B2

0

0
1
0
0
0
0
0
0
0
0
0
0
0
0

B3

0

0
0
0
0
1
0
0
0
0
0
0
0
0
0

B4

0

0
0
0
0
0
1
0
0
0
0
0
0
0
0

B5

0

0
0
0
0
0
0
1
0
0
0
0
0
0
0

C1

0

0

0
0
0
0
0
0
0
0
0
1
0
0
0
0

C2

0

0
0
0
1
0
0
0
0
0
0
0
0
0
0

C3

0

1
0
0
0
0
0
0
0
0
0
0
0
0
0

C4

0

(b) Matrix showing corresponding schedule

Figure 4.17: A cyclic FMS schedule represented in (a) Gantt chart and its cor-
responding (b) 2D matrix form.

From this matrix a sequence can be obtained for each machine. This se-
quence has no start time allocated to each operation yet, merely an or-
der in which to arrange the operations. Here we introduce a procedure
to generate the complete schedule from the sequence. We name it as
Schedule-Generating Algorithm. This is described in Figure 4.18. As such
the Hopfield matrix would be used indirectly to define a cyclic sched-
ule consisting of a particular start time for each operation in the system.
Relatively speaking, a feasible schedule will be obtained from elements
defined in the Hopfield matrix and the Work-In-Progress value can be
calculated based on parameters described in Section 3.6.1.5.

Procedure in obtaining the schedule can be outlined as follow:

128



1. Sequence obtained from within elements sxI of the Matrix. This se-
quence pertains to individual machines, where working from col-
umn elements to corresponding row elements, any element with
value 1 will show a preceding relationship that can place the op-
eration on the machines in a particular order.

2. An algorithm will work on the sequence to obtain the start times,
Si j of each operation by generating a feasible schedule. This Algo-
rithm 4.18 is known as Schedule-Generating Algorithm.This is based
on the known processing times of the all the operations. Using this
information, the load of each machine can be calculated. In the case
of cyclic flexible manufacturing systems, the highest load of all the
machines will be used as the cycle time.

3. Calculation of the relevant value of the parameters associated to the
work-in-progress, C,C̃,rk

i, j and Rk
i, j.

4.4.2.2 Mapping

It is required that the energy function and constraints from the cyclic
scheduling problem be mapped into the Hopfield Energy function. This
would enable the network to fully iterate in solving the problem dis-
cussed. Generally the cyclic scheduling problem will be formulated
as the Lyapunov function associated with the Hopfield Network: L =
Lob j + Lconstraint1 + Lconstraint2 + Lconstraint3 + · · · .

From the matrix defined, some restrictions to the elements of the matrix
must be adhered to. This is important to set the matrix accurately to the
constraints in the cyclic FMS problem. In the first column (I = 1), the
total number of elements with value 1 will be equal to the number of
machines, M in the system. This will ensure that only a maximum of M
number of operations can be sequenced initially on the machines. Any
number larger than M number of operations will not denote a feasible
solution. Hence: (

N

∑
x=1

sx1 − M

)2

(4.40)

Also in each column after the first column, the total number of elements
with value 1 is only one. The rest of the elements in that particular col-
umn will be 0. This will limit the number of preceding relationship be-
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Input: Sequence from matrix, Job List, Operation List, Processing Time,
Machine List

Output: Schedule per machine for each job and operation
for job j := 1 to J do1

for operation i := 1 to i j do2

if on Seq = 1 of sequence list of machine Mi then3

StartTime :=4

max{CompletionTimeoperationseq−1 , CompletionTimeoperationi−1, j} ;
end5

else if on Seq = n of sequence list of machine Mi, only if operationseq−1 is6

scheduled then
StartTime :=7

max{CompletionTimeoperationseq−1 , CompletionTimeoperationi−1, j} ;
StartTime = CompletionTimeopprevious, if after scheduling, foreach8

Seq+1 in the Sequence do
IfStartTimeOperationSeq+1 =9

StartTimeOperationSeq + ProcessingTimeOperationSeq > CycleTime
StartTime =
min{CompletionTimeoperationSeq−1 , CompletionTimeoperationi−1, j}

end10

else11

keep operations and all subsequent operations on Unscheduled12

set;
end13

end14

end15

Retrieve operations in Unscheduled set;16

Repeat steps ;17

Figure 4.18: Schedule Generating Algorithm
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tween operations on a particular machine to one. This can be termed
as:

N+1

∑
I=1

(
1−

N

∑
x

sxI

)2

(4.41)

To ensure that the schedule is a cyclic scheduling type, the total number
of preceding relationships is equal to the total number of operations in
the system. This means that, by summing all the elements in the matrix
except for the first column (I = 1), this should equate to N. Thus the
following term is required:

(
N+1

∑
I=2

N

∑
x

sxI − N

)2

(4.42)

The above restrictions in the matrix will replace the disjunctive con-
straints described in Equation 4.38 above.

However, in this cyclic flexible manufacturing system problem, the ob-
jective is to minimize the work-in-progress therefore we would include
the objective function defined in Equation 4.35 into the combined func-
tion. We also would include the constraints that ensure that no overlap
between operations occur over cycles.

By combining all the functions detailed above, we have the following:

L =

A
2

(
N

∑
x=1

sx1 − M

)2

+
B
2

N+1

∑
I=1

(
1−

N

∑
x

sxI

)2

+
D
2

(
N+1

∑
I=2

N

∑
x

sxI − N

)2

+

n

∑
i=1

mi

∑
j=1

(
Ci, j + ωi, jC̃i, j

)
+

F
2

M

∑
k=1

ζk

∑
h=1

µh,k

(
max{0, δk

i, j(Sk
j + p j − Sk

i ) + (1− δk
i, j)(Sk

i + pi − Sk
j)}+

max{0, δk
i, jω

k
i, j(Sk

i + pi − Sk
j − CT) + (1− δk

i, j)ω
k
i, j(Sk

j + p j − Sk
i − CT)}

)2

(4.43)

In order to ascertain the weight and threshold function, we expand the
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associated objective functions to their quadratic form:

Lconstraint1 =
A
2

(
N

∑
x=1

sx1 − M

)2

=
A
2

(
N

∑
x=1

N

∑
y=1

sx1sy1 − 2M×
N

∑
x=1

sx1 + M2

)

=
A
2

N

∑
x=1

N+1

∑
I=1

N

∑
y=1

N+1

∑
J=1

φ1
I JsxIsyJ − AM×

N

∑
x=1

N+1

∑
I=1

φ2
I sxI +

A
2

M2

(4.44)

where

φ1
I J =

{
1 if I=1 or J=1
0 if otherwise

and

φ2
I =

{
1 if I=1
0 if otherwise

with

Lconstraint2 =
B
2

N+1

∑
I=1

(
1−

N

∑
x

sxI

)2

=
B
2

N+1

∑
I=1

(
1− 2×

N

∑
x

sxI +
N

∑
x

N

∑
y

sxIsyI

)

=
B
2
− B

N+1

∑
I=1

N

∑
x

sxI +
B
2

N+1

∑
I=1

N+1

∑
J=1

N

∑
x

N

∑
y

ρI JsxIsyI (4.45)

where

ρI J =

{
0 if I 6= J
1 if I = J
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with

Lconstraint3 =
D
2

(
N+1

∑
I=2

N

∑
x

sxI − N

)2

=
D
2

(
N+1

∑
I=2

N

∑
x

N+1

∑
J=2

N

∑
y

sxIsyJ − 2N ×
N+1

∑
I=2

N

∑
x

sxI + N2

)

=
D
2

N+1

∑
I=1

N

∑
x

N+1

∑
J=1

N

∑
y

$1
I JsxIsyJ − DN ×

N+1

∑
I=1

N

∑
x

$2
I sxI +

D
2

N2

(4.46)

where

$1
I J =

{
0 if I=1 or J=1
1 if otherwise

and

$2
I =

{
0 if I=1
1 if otherwise

Equating the function L to Energy function of the Hopfield Network,
Ehop f ield:

L =
A
2

N

∑
x=1

N+1

∑
I=1

N

∑
y=1

N+1

∑
J=1

φ1
I JsxIsyJ − AM×

N

∑
x=1

N+1

∑
I=1

φ2
I sxI +

A
2

M2

B
2
− B
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∑
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N

∑
x
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B
2
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∑
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N+1

∑
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N

∑
x

N

∑
y

ρI JsxIsyI +

D
2

N+1

∑
I=1

N

∑
x

N+1

∑
J=1

N

∑
y

$1
I JsxIsyJ − DN ×

N+1

∑
I=1

N

∑
x

$2
I sxI +

D
2

N2 +

n

∑
i=1

mi

∑
j=1

(
Ci, j + ωi, jC̃i, j

)
+

F
2

M

∑
k=1

ζk

∑
h=1

µh,k

(
max{0, δk

i, j(Sk
j + p j − Sk

i ) + (1− δk
i, j)(Sk

i + pi − Sk
j)}+

max{0, δk
i, jω

k
i, j(Sk

i + pi − Sk
j − CT) + (1− δk

i, j)ω
k
i, j(Sk

j + p j − Sk
i − CT)}

)2

(4.47)

We can take the summarized version of the constraints containing pa-
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rameters start times, S from calculation of the constraints. This is due
to the fact that the start times are actually generated optimally from the
Schedule-Generating Algorithm based on the sequence obtained from the
Hopfield matrix.

L =
A
2

N

∑
x=1

N+1

∑
I=1

N

∑
y=1

N+1

∑
J=1

φ1
I JsxIsyJ − AM×

N

∑
x=1

N+1

∑
I=1

φ2
I sxI +

A
2

M2

B
2
− B

N+1

∑
I=1

N

∑
x

sxI +
B
2

N+1

∑
I=1

N+1

∑
J=1

N

∑
x

N

∑
y

ρI JsxIsyI +

D
2

N+1

∑
I=1

N

∑
x

N+1

∑
J=1

N

∑
y

$1
I JsxIsyJ − DN ×

N+1

∑
I=1

N

∑
x

$2
I sxI +

D
2

N2 +

n

∑
i=1

mi

∑
j=1

(
Ci, j + ωi, jC̃i, j

)
+

F
2

M

∑
k=1

ζk

∑
h=1

µh,k

(
rk

h(S) + Rk
h(S)

)2
(4.48)

Thus in order to determine the weights and threshold, the Hopfield en-
ergy function is:

Ehop f ield = −1
2

N

∑
x=1

N

∑
y=1

N+1

∑
I=1

N+1

∑
J+1

WxI,yJsxIsyJ +
N

∑
x=1

N+1

∑
I

ϑxI SxI (4.49)

with weights defined between neuron (xI) and (yJ) as:

WxI,yJ = −
(

Aφ1
I J + BρI J + D$1

I J

)
(4.50)

and threshold for each neuron in the network as:

ϑxI = −
(

AMφ2
I + B + DN$2

I

)
(4.51)

So here the function L equals to Ehop f ield accurate to a constant:

E = L−
n

∑
i=1

mi

∑
j=1

(
Ci, j + ωi, jC̃i, j

)
− F

2

M

∑
k=1

ζk

∑
h=1

µh,k

(
rk

h(S) + Rk
h(S)

)2
(4.52)

Here the values of constants A, B, D and F are empirically determined.
Each coefficient has a weighting influence on the term it is attached to,

134



when all these terms are summed up into the overall function. However
each term in the function links the constraints appropriately to the inner
dynamics of the Hopfield Network.

4.4.2.3 Energy Function Convergence

The dynamic of the energy function can be calculated as:

∆Ehop f ield = −
(

N

∑
y=1

N+1

∑
J

WxI,yJsyJ − ϑxI

)
∆sxI (4.53)

Thus, the negative convergence from Equation 4.53 with every iteration
of change in parameter sxI will bring the state of the system lower, de-
scending eventually settling in a stable, optimal position.

The element in the matrix will be updated according to :

duxI

dt
= −uxI

υ
+

N

∑
y

(N+1)

∑
J

WxI,yJsyJ + ϑxI (4.54)

where constant υ is a decaying constant.

s(k+1)
xI = g(uk

xI +
duxI

dt
) (4.55)

The above function will guarantee that the value of sxI is fixed either as 0
or 1. In order to restrict the generation of possible schedules in the asso-
ciated Hopfield matrix in each iteration, it is vital for us to optimally con-
trol the assignment of values to the elements, especially in the case where
the disjunctive constraints should not be violated. A master set that con-
tains the sets of operations per machine is identified. These operations
in the set with disjunctive relationship are enforced. Overall, this will
eliminate the possibility of the matrix having unrecognizable disjunctive
links between operations that are to be processed on different machines.
In order to control this, the function g(u) will identify operations from
a disjunctive set, the function g(u) will then null the ability of particular
neurons, not in disjunctive set to activate.

g(sk
xI) =

{
0 if xxI is not in Disjunctive set
sgn(sk

xI) if xxI is in Disjunctive set
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generally sxI in next iteration is determined from:

s(k+1)
xI =


1 if uk

xI > ϑxI

0 if uk
xI < ϑxI

sk
xI if uk

xI = ϑxI

4.4.3 Solving Cyclic Scheduling Problem with Ad-
vanced Hopfield Network

In order for the mapped Hopfield network to effectively solve the cyclic
problem, we include the simulated annealing, based on a schedule de-
caying Temperature T effect to obtain the optimal solution. This optimal
solution will correlate with the minimum energy function. The effect of
the simulated annealing will also help the Hopfield network to release
the system from local minimum states and transcend to the most global
optimum state.

Based on the probability Pr(x(k+1)), this will determine if we continue to
keep state x or continue to change.

Pr(x(k+1)) =

{
1 if ∆Ehop f ield < 0
e−

∆E
T if ∆EHop f ield ≥ 0

In the case when the state changes from a low level to a higher level
energy state, Pr(x(k+1)) = e−

∆E
T is dependent on whether Pr(x(k+1)) cal-

culated is greater than a random number, η from a uniform distribution
of range [0, 1]. If Pr(x(k+1)) > η, then the new state is accepted. The tem-
perature T is initialized to a high value prior to starting the simulation
but changes based on fixed iteration k value:

T =
T0

log(k)
(4.56)

Algorithm 4.19 describes the simulated annealing algorithm used with
the Hopfield network. The simulated annealing here will force the sys-
tem to assess its state, using a high value of initial Temperature T0, with
a slow enough decaying rate, so the numbers of iteration assessed at that
particular decaying Temperature can be controlled and evaluated to fi-
nally return an optimum solution.
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Steps in Advanced Hopfield Network in solving the cyclic FMS schedul-
ing problem can be summarized as follow:

• Initialize neuron matrix with initial schedule form,

• Define initial Temperature, T0 and predefined value k to modify the
Temperature,

• Compute value from energy function,

• Calculate and change the value of the element from the matrix,

• Calculate the change in energy value,

• Evaluate using the Simulated Annealing Algorithm depending on
value of change in energy value,

• If energy function improves, accept new state otherwise reuse pre-
vious state,

• Repeat computation of energy function value and interchanging un-
til predetermined iteration is achieved,

• Find minimum value for energy function,

• Calculate the minimum work-in-progress schedule.

Input: Schedule S, Change in Energy Value ∆ E, Temperature T
Output: Schedule conforming to Simulated Annealing effect
i := 0 ;1

Obtain schedule S and ∆ E ;2

s∗:=s;3

if ∆ E ¡ 0 then4

Pr(x(k+1)) = 1;5

s∗:=s;6

else7

if random [0,1] <
{

exp(−∆E
T )
}

then8

s∗:=s;9

end10

end11

Figure 4.19: Simulated Annealing Hopfield Algorithm

4.4.4 Experimental Results

We developed the advanced Hopfield network and simulated the ap-
proach using the JAVA language on 2GHz Intel processor, 512Mb mem-
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FMS Benchmarks
Problem N M O CT Feasible W.I.P.LB W.I.P.best IterationBest CPU(s)

solutions Advanced Hopfield
HIL87 4 4 15 8 1.6E+7 5 5 9020 16.6s
HIL88 4 3 9 6 1.1E+4 5 5 6530 12.3s
VAL94 3 5 13 11 7.9E+7 5 5 9870 18.2s

Table 4.4: Solution for CFMS benchmarks with Minimum WIP using Ad-
vanced Hopfield Network

ory computer. To show the practicality of our approach, we tested 3 ma-
jor test problems associated with the cyclic FMS problem. The problems
are HIL87 [70] with 4 jobs and 4 machines, HIL88 [71] with 4 jobs and 3
machines and VAL94 [151] with 3 jobs and 5 machines.

The parameters selected for the simulation were with values of
A=200,B=400,D=100,F=100. These parameters were determined empir-
ically and a decaying rate of 500 iterations was set. The maximum it-
erations for which the network to iterate to, was set at 10000 iterations.
Results from advance Hopfield Neural Network Approach can be seen
in solving the cyclic flexible manufacturing system scheduling problem
shown in Table 4.4. The results show that our approach was successful
in solving the three problems. The optimal solution was fond in the cpu
time of between 12s and 18s. Further experimental results are published
in Chapter 5 when this Advanced Hopfield network approach is com-
pared to the RNN and LRRNN approach for solving more benchmark
problems.

4.5 Conclusions

In this chapter, we proposed the Recurrent Neural Network approach.
A description of the dynamics of the network is given that is based on
the modelling of the cyclic job shop scheduling problem found in Sec-
tion 3.5. This RNN approach utilizes the schedule generated from the
Competitive Dispatch Rule Phase (CDRP). We applied the CDRP as an
option to ensure a viable schedule is fed into the recurrent neural net-
work. This will also reduce the search space to which the RNN to look
for the optimum solution.

Given that the recurrent neural network have the characteristic of being
trapped in local minima states during iteration, we include a Schedule
Perturbation Phase into the activation function. This will ”bounce” the
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energy state into a new state to continue in the search space, once it is de-
tected that the energy state has stabilized below the predefined threshold
value. Finally we included the Postprocessing Phase that will ensure that
the end optimal schedule generated, is feasible in terms of non-violation
of constraints.

In this chapter we also described the Lagrangian Relaxation approach in
solving constrained optimization problems. We also developed the com-
bined Lagrangian Relaxation Recurrent Neural Network (LRRNN) technique
specifically for solving the cyclic flexible manufacturing system schedul-
ing problem.

We then described the Modified Competitive Dispatch Rule Phase (MD-
CDP) to present initial schedules that are viable to the LRRNN. Combin-
ing this phase with the Postprocessing Phase, both approach will be able
to the handle the difficulties of infeasibilities in solutions. We also simu-
lated the approach on a benchmark HIL87 and the numerical results for
the problem showed that LRRNN is able to generate optimal schedules,
compared to the genetic algorithm approach. Although this LRRNN has
been developed to solve the CFMSSP, it is easily extended to solve the
cyclic job shop problem.

We have also described the cyclic job shop with linear constraint with a
delinearization approach. We then applied the Delinearization algorithm
on four test problems. By analyzing the numerical results of the model
and solving approach against the Genetic Algorithm approach [27], con-
straint satisfaction problem (CSP) approach [18] and a constraint opti-
mization Problem (COP) approach [18], we deduced that this approach
is comparatively efficient and able to solve the cyclic scheduling prob-
lems with linear precedence constraints.

Finally in this chapter, we introduced the advanced Hopfield network.
The energy function, related parameters and dynamics associated with
this neural network specified to solve the cyclic flexible manufacturing
systems scheduling problem were described in detail.

Our motivation in applying the Advanced Hopfield network in this par-
ticular cyclic scheduling problem stemmed from the lack of research on
cyclic FMS problem from this type of neural network.

We are able to solve the cyclic scheduling problem using new advanced
Hopfield approach. Using Lyapunov equation of the Hopfield network,
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the most effective weights and bias values are deduced. We also devel-
oped a new binary representation of the cyclic FMS scheduling problem
in a matrix form that the Hopfield network can be mapped to. We have
shown the application of the Schedule-Generating Algorithm that can de-
code the matrix into a viable schedule. This has thus allowed the Work
in progress of the FMS to be calculated. Also by incorporating the Simu-
lated Annealing effect into the inner dynamics of the Hopfield Network,
the iterated solutions obtained through the Hopfield Network, will avoid
the numerous local minima but eventually converge to a global minima.

Also we verified our approach on three important test problems and the
results found confirmed its accuracy. So our approach uses the inter-
nal optimization of the Hopfield network to solve the cyclic scheduling
problem. However one concern associated with our approach is the size
of the network that depends on the number of operations of the prob-
lem. Further research into the effectiveness of out Hopfield approach in
the case of larger and more complex test problems will be discussed in
Chapter 5
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Part III

Experiments



CHAPTER

FIVE

Experimental Results

5.1 Benchmark Problems

Several benchmark problems were used in evaluating and comparing
our proposed approaches. These benchmark problems consist of mainly
cyclic modification on acyclic benchmark problems. The reason this is
done is because of the lack of actual benchmark problems representing
the cyclic scheduling problem.

Brucker et. al. (2005) [19] described how the cyclic job shop schedul-
ing problem is comparative to the acyclic scheduling problem with the
addition of source and sink operations in disjunctive graph. When we
consider the precedence graph of Vertices T and Arcs E, the CJSSP has
additional precedence constraints between the sink and source opera-
tion to denote a cyclic state. The delay Li;i′ is equivalent to the processing
time of the operation and Height Hi;i′ = 0 for all arcs. However setting
Hsink:source = 1 will set all operations in the k− th period to be completed
before operations of period k + 1 can start. Hence, the cyclic problem to
minimize the cycle time is equivalent to the non-cyclic makespan mini-
mization problem. This will allow us to compare CJSSP results with the
non-cyclic scheduling benchmark results. The objectives when solving
these benchmarks are to seek the best optimal cycle time in the case of
CJSSP problems and the best optimal WIP in the case of CFMSSP.

142



5.2 Test Data for Cyclic Job Shop Scheduling

Problem

For CJSSP problems, the benchmarks were formulated from papers pub-
lished by Fisher and Thompson (1963) [45], Lawrence (1984) [102],
Adams et. al. (1988) [2], Applegate and Cook (1991) [10] and Storer
et. al. (1992) [145]. To fully understand the significance of testing our ap-
proach to solve the cyclic scheduling problem, we list some descriptions
of the benchmark problems as follow:

FT06,FT10,FT20 These Fisher and Thompson (1963) [45] benchmarks
consist of 6 Jobs×6 Machines,10 Jobs×10 Machines and 20 Jobs×5
Machines. The processing times for the operations are in the range
of [1, 99]. Table 5.1 shows the details for these problems.

LA01-LA40 These 40 problem instances from Lawrence (1984) [102] con-
sist of 10 Jobs×5 Machines,15 Jobs×15 Machines,20 Jobs×5 Ma-
chines,10 Jobs×10 Machines,15 Jobs ×10 Machines,20 Jobs×10 Ma-
chines,30 Jobs×10 Machines and 15 Jobs×5 Machines. The process-
ing times for the operations are in the range of [5, 99]. Table 5.2
shows the details for these problems.

ABZ5-ABZ9 Adams et. al. (1988) [2] generated 5 problem instances
consisting of 10 Jobs×10 Machines and 20 Jobs×15 Machines. The
processing times for the operations are in the range of [50, 100],[25,
100] and [11, 40]. Table 5.3 shows the details for these problems.

ORB01-ORB10 The 10 instances from Applegate and Cook (1991) [10]
consist of 10 Jobs×10 Machines. The processing times for the opera-
tions are in the range of [1, 99]. Table 5.4 shows the details for these
problems.

5.3 Preparation of Benchmark Problems

Given the information regarding the:

i Number of jobs per cyclic scheduling problem,

ii Number of machines per cyclic scheduling problem,

iii Processing times of each operation,
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we deduced the precedence constraints and disjunctive constraints be-
tween operations. Initializing the cyclic scheduling problems based on
the specification of the authors involves two stages. Firstly, using Com-
petitive Dispatch Rule Phase (CDRP), a schedule is selected for the indi-
vidual cyclic job shop scheduling problems. This schedule lies in a preset
time range and forms the initial solution for the cyclic scheduling prob-
lem to be worked on.

Several assumptions are taken when solving the cyclic job shop schedul-
ing problems:

1. Once the operation has been started on the machine, it must not be
preempted (i.e. no preemption is allowed).

2. The latency considered in each solution is based on latency equal to
1.

3. The solutions were obtained from best, optimal and feasible solu-
tions from 20 runs.

5.4 Experiments Set-up

To fully evaluate our approach, a RNN and LRRNN approach was de-
veloped on a JAVA program on 2GHz Intel Pentium 4 processor, 512Mb
memory computer running a Linux (i.e Fedora Core 6) operating sys-
tem. The problems were modelled and instances were loaded onto the
RNN and LRRNN model. These solutions were evaluated based on the
following criteria:

1. Speed or computational time to obtain optimal solution,

2. The accuracy of solutions found against known optimal results,
measured from Percentage deviation of solution (i.e. MRE(%)
where:

%Dev =
{

(Best Solution Found)− (Optimal Solution)
(Optimal Solution)

× 100
}

(5.1)

3. Percentage improvements between the Recurrent Neural Network
(RNN) with special phases and LRRNN approach in terms of CPU
processing time and number of iterations to reach optimal solution.

144



No. of No. of No. of No. of No. of
Problem jobs machines operations Conjunctive Constraints Disjunctive Constraints
FT06 6 6 36 30 90
FT10 10 10 100 90 450
FT20 20 5 100 80 950

Table 5.1: Benchmark CJSSP Problem from Fisher and Thompson (1963) [45]

These problems were tested by initially generating schedules using the
Competitive Dispatch Rules Phase (CDRP) prior to being fed into the
RNN and LRRNN model. The best solutions were then treated with the
Schedule Postprocessing Phase to guarantee feasibility.

5.4.1 Termination Criteria

The experiments were executed with several termination criteria. The
execution will stop after a maximum iteration is reached. In the cases
above, the upper limit for maximum execution was fixed prior to starting
the experiments at 10e6 executions. There is however no computational
time limit set for the execution to end.

5.5 Results for Cyclic Job Shop Scheduling

Problems

In this section, we present the computational results for the different
benchmarks of the cyclic job shop scheduling problem.

We also will show the optimal solution found for each instance of the
problem. Furthermore we will also analyze the performance of both ap-
proaches. We will compare our solutions against best results from vari-
ous other researchers.

The best results for the cyclic job shop are given in Table 5.6 showing
results obtained for problems LA01-LA40 from Lawrence (1984) [102].
Table 5.5 shows best results obtained for problems FT06, FT10 and FT20
from Fisher and Thompson (1963) [45]. While Table 5.7 shows results
obtained for problems ABZ5-ABZ9 from Adams et. al. (1988) [2]. Finally
Table 5.8 shows results obtained for the 10 problems ORB01-ORB10 from
Applegate and Cook (1991) [10]. We have printed the best results in blue
if the best result is equal to the known computed lower bound, which
means that we have found the optimal solution.
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No. of No. of No. of No. of No. of
Problem jobs machines operations Conjunctive Constraints Disjunctive Constraints
LA01 10 5 50 40 225
LA02 10 5 50 40 225
LA03 10 5 50 40 225
LA04 10 5 50 40 225
LA05 10 5 50 40 225
LA06 15 5 75 60 525
LA07 15 5 75 60 525
LA08 15 5 75 60 525
LA09 15 5 75 60 525
LA10 15 5 75 60 525
LA11 20 5 100 80 950
LA12 20 5 100 80 950
LA13 20 5 100 80 950
LA14 20 5 100 80 950
LA15 20 5 100 80 950
LA16 10 10 100 90 450
LA17 10 10 100 90 450
LA18 10 10 100 90 450
LA19 10 10 100 90 450
LA20 10 10 100 90 450
LA21 15 10 150 135 1050
LA22 15 10 150 135 1050
LA23 15 10 150 135 1050
LA24 15 10 150 135 1050
LA25 15 10 150 135 1050
LA26 20 10 200 180 1900
LA27 20 10 200 180 1900
LA28 20 10 200 180 1900
LA29 20 10 200 180 1900
LA30 20 10 200 180 1900
LA31 30 10 300 270 4350
LA32 30 10 300 270 4350
LA33 30 10 300 270 4350
LA34 30 10 300 270 4350
LA35 30 10 300 270 4350
LA36 15 15 225 210 1575
LA37 15 15 225 210 1575
LA38 15 15 225 210 1575
LA39 15 15 225 210 1575
LA40 15 15 225 210 1575

Table 5.2: Benchmark CJSSP Problem from Lawrence (1984) [102]

No. of No. of No. of No. of No. of
Problem jobs machines operations Conjunctive Constraints Disjunctive Constraints
ABZ5 10 10 100 90 450
ABZ6 10 10 100 90 450
ABZ7 20 15 300 280 2850
ABZ8 20 15 300 280 2850
ABZ9 20 15 300 280 2850

Table 5.3: Benchmark CJSSP Problem from Adams et. al. (1988) [2]

No. of No. of No. of No. of No. of
Problem jobs machines operations Conjunctive Constraints Disjunctive Constraints
orb01 10 10 100 90 450
orb02 10 10 100 90 450
orb03 10 10 100 90 450
orb04 10 10 100 90 450
orb05 10 10 100 90 450
orb06 10 10 100 90 450
orb07 10 10 100 90 450
orb08 10 10 100 90 450
orb09 10 10 100 90 450
orb10 10 10 100 90 450

Table 5.4: Benchmark CJSSP Problem from Applegate and Cook (1991) [10]
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FT Problems, 6 Jobs × 6 Machines, 36 Operations
RNN LRNN

Problem CTLB DisjConstr ConjConstr CTBest IterationBest CPU(s) MRE(%) CTBest IterationBest CPU(s) MRE(%) %Improvement
FT06 55 30 90 55 336 0.62 0 55 339 0.62 0% 0%
FT Problems, 10 Jobs × 10 Machines, 100 Operations
FT10 930 90 450 930 18815 34.62 0 930 19087 35.12 0% 0%
FT Problems, 20 Jobs × 5 Machines, 100 Operations
FT20 1165 80 950 1165 8092 14.89 0 1165 8210 15.10 0% 0%

Table 5.5: Best Results found for benchmark Fisher and Thompson (1963) [45]

La
RNN LRNN

Problem CTLB CTBest IterationBest CPU(s) MRE(%) CTBest IterationBest CPU(s) MRE(%) %Improvement
10 Jobs × 5 Machines, 50 Operations

LA01 666 666 4947 9.12 0.0% 666 5023 9.26 0.0% 0.0%
LA02 655 655 11896 21.93 0.0% 655 12043 22.20 0.0% 0.0%
LA03 597 597 133883 246.80 0.0% 597 135409 249.62 0.0% 0.0%
LA04 590 590 130742 241.01 0.0% 590 132337 243.95 0.0% 0.0%
LA05 593 593 2042 3.76 0.0% 593 2078 3.83 0.0% 0.0%

15 Jobs × 5 Machines, 75 Operations
LA06 926 926 5026 9.26 0.0% 926 5129 9.45 0.0% 0.0%
LA07 890 890 5929 10.93 0.0% 890 6047 11.15 0.0% 0.0%
LA08 863 863 17746 32.71 0.0% 863 17931 33.05 0.0% 0.0%
LA09 951 951 3337 6.15 0.0% 951 3418 6.30 0.0% 0.0%
LA10 958 958 54967 101.33 0.0% 958 56126 103.46 0.0% 0.0%

20 Jobs × 5 Machines, 100 Operations
LA11 1222 1562 7970 14.69 27.8% 1222 8334 15.36 0.0% 21.8%
LA12 1039 1039 3416 6.30 0.0% 1039 3542 6.53 0.0% 0.0%
LA13 1150 1150 4829 8.90 0.0% 1150 4955 9.13 0.0% 0.0%
LA14 1292 1487 3691 6.80 15.1% 1292 3778 6.96 0.0% 13.1%
LA15 1207 1402 12132 22.36 16.2% 1207 12735 23.48 0.0% 13.9%

10 Jobs × 10 Machines, 100 Operations
LA16 945 982 231645 427.02 3.9% 957 235050 433.30 1.3% 2.5%
LA17 784 784 369062 680.34 0.0% 784 375963 693.06 0.0% 0.0%
LA18 848 848 416176 767.19 0.0% 848 422169 778.24 0.0% 0.0%
LA19 842 859 451512 832.33 2.0% 842 459368 846.81 0.0% 2.0%
LA20 902 1052 677898 1249.65 16.6% 908 690032 1272.02 0.7% 13.7%

15 Jobs × 10 Machines, 150 Operations
LA21 1046 1248 277687 511.89 19.3% 1074 289905 534.42 2.7% 13.9%
LA22 927 1047 718493 1324.48 12.9% 932 748957 1380.64 0.5% 11.0%
LA23 1032 1059 883393 1628.46 2.6% 1054 925707 1706.47 2.1% 0.5%
LA24 935 1024 877567 1617.72 9.5% 944 920392 1696.67 1.0% 7.8%
LA25 977 1049 385552 710.73 7.4% 984 405523 747.55 0.7% 6.2%

20 Jobs × 10 Machines, 200 Operations
LA26 1218 1322 208088 383.59 8.5% 1224 259669 478.68 0.5% 7.4%
LA27 1235 1276 766889 1413.70 3.3% 1249 1168739 2154.48 1.1% 2.1%
LA28 1216 1287 1197488 2207.47 5.8% 1235 1506440 2777.00 1.6% 4.0%
LA29 1152 1458 1377908 2540.06 26.6% 1249 1824350 3363.04 8.4% 14.3%
LA30 1355 1396 776778 1431.93 3.0% 1355 1022706 1885.28 0.0% 2.9%

30 Jobs × 10 Machines, 300 Operations
LA31 1784 2189 150373 277.20 22.7% 1855 162613 299.76 4.0% 15.3%
LA32 1850 2478 114252 210.61 33.9% 1947 123312 227.32 5.2% 21.4%
LA33 1719 2416 100510 185.28 40.5% 1840 111707 205.92 7.0% 23.8%
LA34 1721 2441 108363 199.76 41.8% 1849 109880 202.55 7.4% 24.3%
LA35 1888 2511 83628 154.16 33.0% 1994 88930 163.94 5.6% 20.6%

15 Jobs × 15 Machines, 225 Operations
LA36 1268 1468 1911586 3523.86 15.8% 1299 2455623 4526.75 2.4% 11.5%
LA37 1397 1574 1619023 2984.54 12.7% 1405 2225509 4102.55 0.6% 10.7%
LA38 1196 1369 1647812 3037.61 14.5% 1257 2238717 4126.90 5.1% 8.2%
LA39 1233 1548 1264812 2331.58 25.5% 1302 1843413 3398.18 5.6% 15.9%
LA40 1222 1325 1589312 2929.77 8.4% 1320 1903138 3508.28 8.0% 0.4%

Table 5.6: Best Results found for benchmark Lawrence (1984) [102]
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ABZ Problems, 10 Jobs × 10 Machines, 100 Operations
RNN LRNN

Problem CTLB CTBest IterationBest CPU(s) MRE(%) CTBest IterationBest CPU(s) MRE(%) %Improvement
ABZ5 1234 1455 84898 156.50 17.9% 1297 91367 168.12 5.1% 10.9%
ABZ6 943 1032 675548 1245.32 9.4% 978 721147 1326.91 3.7% 5.2%
ABZ Problems, 20 Jobs × 15 Machines, 300 Operations
ABZ7 656 748 1229878 2267.18 14.0% 694 1325808 2439.49 5.8% 7.2%
ABZ8 645 745 554231 1021.68 15.5% 697 585157 1076.69 8.1% 6.4%
ABZ9 661 786 588761 1085.33 18.9% 694 620554 1141.82 5.0% 11.7%

Table 5.7: Best Results found for benchmark Adams et. al. (1988) [2]

ORB Problems, 10 Jobs × 10 Machines, 100 Operations
RNN LRNN

Problem CTLB CTBest IterationBest CPU(s) MRE(%) CTBest IterationBest CPU(s) MRE(%) %Improvement
ORB01 1059 1076 77898 143.60 1.6% 1061 83834 154.25 0.2% 1.4%
ORB02 888 923 85452 157.52 3.9% 888 86067 158.36 0.0% 3.8%
ORB03 1005 1022 94556 174.31 1.7% 1005 101761 187.24 0.0% 1.7%
ORB04 1005 1019 76523 141.06 1.4% 1005 82354 151.53 0.0% 1.4%
ORB05 887 892 39006 71.90 0.6% 887 41557 76.46 0.0% 0.6%
ORB06 1010 1018 77898 143.60 0.8% 1029 83694 154.00 1.1% -1.9%
ORB07 397 402 66578 122.73 1.3% 397 68708 126.42 0.0% 1.2%
ORB08 899 913 88009 162.24 1.6% 921 95842 176.35 2.4% -0.9%
ORB09 934 956 75447 139.08 2.4% 966 78125 143.75 3.4% -1.0%
ORB10 944 959 66591 122.76 1.6% 969 69035 127.02 2.6% -1.0%

Table 5.8: Best Results found for benchmark Applegate and Cook (1991) [10]

As we can see, both RNN and LRRNN approaches compute very good
results for test problems FT06,FT10,FT20 and test problems LA01 to
LA10. The LRRNN approach managed to compute best results for prob-
lems LA11 to LA15, while performed competitively for large problems
containing 100 operations and 150 operations as shown in results for
LA16 to LA28. In the case of problems ORB01 to ORB10, the LRRNN ap-
proach managed to outperform the RNN approach by finding the best re-
sults for 5 out of the 10 problems (i.e. ORB02, ORB03, ORB04, ORB05 and
ORB07). However both RNN and LRRNN approach under-performed in
solving the 5 ABZ problems.

Although our RNN approach performed well for cyclic job shop prob-
lems with cycle time up to 1165 (i.e. in the case of problem FT20 and to-
tal number of constraints up to 585, this particular approach was under-
performing for larger problems with lower bound cycle time above this
value. This is obvious in the case of problems with 300 operations (i.e.
problems LA31-LA35 where the RNN approach produced an average de-
viation from the optimal results of 34.4%. However this could have been
greatly influenced by the fact that these problems have the largest total
number of constraints, among all the test problems tested, comprising of
270 conjunctive constraints and 4350 disjunctive constraints.
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The LRRNN approach is most efficient for problems with up to 100 oper-
ations but is not competitive in the case of problems with 300 operations
(i.e average MRE(%) of 5.86%) or with lower bound cycle time greater
than 1784 (i.e problems [LA31-LA35].

Table 5.9 shows the performance analysis of both our RNN and LRRNN
approaches. We find that by analyzing the computational time for our
two approaches in reaching the optimal solution, we can see that in the
case of the RNN approach, it will require an average of 104 seconds of
CPU time. However the RNN approach may retire at an early stage of
the iteration if the problem is complex (e.g. stuck at average of 205s for
problems LA31-35 with MRE(%) of 34.43%), possibly trapped in a local
minima that the perturbationphase is unable to release the model from.

On the other hand, in the case of LRRNN, this approach may also suf-
fer from the same setback of retiring early for very complex problems
without reaching the optimum solution (e.g. stuck at average of 219s
for problems LA31-35 with MRE(%) of 5.86%). Although this could be
problem specific as in the case of nearly similar problems of ABZ7-AB9
(of 300 operations), the LRRNN had taken a average of 1552s to obtain
the best solution with MRE(%) of 6.28%. When we analyze the computa-
tional time it takes for both approaches to reach optimal solution in small
problems, the RNN approach is stronger as this approach will reach op-
timal solution is less time than the LRRNN approach. This is obvious in
the case of FT06, FT10 and FT20 where RNN was 1.61%, 1.44% and 1.48%
faster compared to the LRRNN approach.

Overall, the LRRNN approach outperform the RNN approach in all the
CJSSP problems by an average of 5.14%. Figures 5.1,5.2 and 5.3 graphi-
cally show the deviation from the optimum solutions for all CJSSP bench-
marks when comparing RNN and LRRNN approaches.

5.6 Test Data for Cyclic Flexible Manufactur-

ing Scheduling Problem

In order to further analyze our approaches in solving the cyclic flexible
manufacturing systems scheduling problem, we list some descriptions of
the following eight benchmark problems from FMS literature:
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RNN LRNN
Number of Number of Average Average Average Average Average Average

Problem N M O ConjConstr DisjCons CPU(s) MRE(%)RNN CPU(s) MRE(%)LRRNN %Improv %ImprComT
FT06 6 6 36 30 90 0.62 0.00% 0.63 0.00% 0.00% -1.61%
FT10 10 10 100 90 450 34.62 0.00% 35.12 0.00% 0.00% -1.44%
FT20 20 5 100 80 950 14.89 0.00% 15.11 0.00% 0.00% -1.48%
LA01-LA05 10 5 50 40 225 104.53 0.00% 105.77 0.00% 0.00% -1.19%
LA06-LA10 15 5 75 60 525 32.08 0.00% 32.68 0.00% 0.00% -1.87%
LA11-LA15 20 5 100 80 950 11.81 11.81% 12.29 0.00% 11.81% -4.06%
LA16-LA20 10 10 100 90 450 791.3 4.51% 804.68 0.39% 4.12% -1.69%
LA21-LA25 15 10 150 135 1050 1158.66 10.35% 1213.15 1.41% 8.94% -4.70%
LA26-LA30 20 10 200 180 1900 1595.35 9.46% 2131.7 2.32% 7.14% -33.62%
LA31-LA35 30 10 300 270 4350 205.4 34.41% 219.9 5.86% 28.55% -7.06%
LA36-LA40 15 15 225 210 1575 2961.47 15.38% 3932.53 4.35% 11.03% -32.79%
ABZ5-ABZ6 10 10 100 90 450 700.91 13.67% 747.51 4.41% 9.26% -6.65%
ABZ7-ABZ9 20 15 300 280 2850 1458.07 16.15% 1552.67 6.28% 9.87% -6.49%
ORB01-ORB10 10 10 100 90 450 137.88 1.67% 145.54 0.98% 0.69% -5.56%

Table 5.9: Performance Analysis for CJSSP benchmarks for RNN and LRRNN
approaches
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Figure 5.1: Percentage Deviation From Optimal Solution for LA Problems

HIL87 This Hillion et. al. (1987) [70] benchmarks consist of 4 Jobs×4
Machines. Jobs (A, B, C, D) require (4, 4, 3, 4) operations each.

HIL88 This 4 Jobs×3 Machines problem comes from Hillion and Proth
(1988) [71] where Jobs (A, B, C, D) require (3, 2, 2, 2) operations each.

VAL94 Valentin (1994) [151] generated a 5 Jobs×3 Machines cyclic FMS
problem. The Jobs (A, B, C, D, E) require (3, 3, 3, 2, 2) operations
each.

OHL95 The Ohl et. al. (1995) [129] problem consists of 2 Jobs×6 Ma-
chines. Jobs (A, B) have (6, 4) operations each.
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Figure 5.3: Percentage Deviation From Optimal Solution for ORB Problems

KORBAA98a The particular complex cyclic FMS problem from Korbaa
(1998) [94] consists of 7 Jobs×9 Machines. Jobs (A, B, C, D, E, F, G)
require (3, 3, 3, 4, 4,3, 3) operations each.

KORBAA98b This Korbaa (1998) [94] problem contains 2 Jobs (A, B)
with (9, 14) operations each. This problem contains 2 Jobs×9 Ma-
chines.

FT06 An instance from Fisher et. al. (1963) [45] consists of 6 Jobs×6
Machines. The processing times for the operations are in the range
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of [1, 99]. Each Job (A, B, C, D, E, F) has 6 operations each.

LA04 The instances from Lawrence (1984) [102] consists of 10 Jobs×5
Machines. The Jobs (A, B, C, D, E, F, G,H, I,J) have 5 operations
each.

In all the above problems, the objective is to find the optimum cyclic
schedule with minimum Work in progress (WIP). We performed all
the experiments to analyze the following:

• Performance analysis between the Recurrent Neural Network
(RNN), Lagrangian Relaxation Neural Network (LRNN) and
Advanced Hopfield Network approaches in solving the CFMS
problems.

• Speed or computational time to obtain optimal solutions for the
RNN, LRRNN and Advanced Hopfield Network.

• The accuracy of solutions found against known optimal results
and other known techniques such as Genetic Algorithm ap-
proach,

To accurately compare our three approaches of RNN, LRRNN and
Advanced Hopfield, some assumptions and set-up were agreed for
all three models prior to running the experimental problems. These
are:

• No time restrictions on the simulation run.

• Restriction of maximum iteration of 15e51500000 iterations for
Problems HIL87, HIL88, VAL94, OHL95, KORBAA98a, KOR-
BAA98b. However due to the complexity of problems FT06 and
LA04, a larger maximum iteration is imposed, which is 10e8 (i.e.
100000000) iterations.

• All the cyclic FMS test problems will have a minimum cycle
time imposed as hard constraints, determined from the bottle-
neck machine.

• Application of Modified Competitive Dispatch Rule Phase
(MCDRP) for generating the initial solutions for all three ap-
proaches.

The RNN, LRRNN and Advanced Hopfield approaches were de-
veloped on a JAVA program on 2GHz Intel Pentium 4 processor,
512Mb memory computer running a Linux (i.e Fedora Core 6) oper-
ating system.
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FMS Benchmarks
Problem N M O CT Feasible W.I.P.LB W.I.P.best W.I.P.best W.I.P.best

solutions RNN LRRNN AdvHopfield
HIL87 4 4 15 8 1.6E+7 5 5 5 5
HIL88 4 3 9 6 1.1E+4 5 5 5 5
VAL94 3 5 13 11 7.9E+7 5 6 5 5
OHL95 2 6 10 28 3.5E+10 4 5 5 5
KORBAA98a 7 9 23 24 8.6E+10 12 14 14 14
KORBAA98b 2 9 23 24 8.6E+10 9 12 10 9
FT63(FT06) 6 6 36 43 4.4E+38 7 9 7 7
LA84(LA04) 10 5 50 537 3.9E+71 10 12 12 10

Table 5.10: Solution for FMS Test Problems with Minimum W.I.P.
FMS Benchmarks

Problem W.I.P.LB GA GA RNN RNN RNN LRRNN LRRNN LRRNN Advanced Hopfield Advanced Hopfield Advanced Hopfield
WIPbest CPUbest WIPbest IterationBest CPUbest WIPbest IterationBest CPUbest WIPbest IterationBest CPUbest

HIL87 5 5 ∼1 5 4530 13.9 5 9654 31.8 5 9020 16.6
HIL88 5 5 ∼1 5 3490 10.7 5 7340 24.2 5 6530 12.3
VAL94 5 5 ∼1 6 13420 41.2 5 31069 102.3 5 9870 18.2
OHL95 4 5 ∼1 5 1320155 4056.0 5 288716 950.4 5 29098 53.5
KORBAA98a 12 13 ∼10 14 1327966 4080.0 14 391090 1287.4 14 366848 675.0
KORBAA98b 9 9 ∼60 12 1230322 3780.0 10 877174 2887.5 9 1020652 1878.0
FT63 (FT06) 7 8 ∼48hours 9 45111803 138600.0 7 37183062 122400.0 7 44152174 81240.0
LA84 (LA04) 10 12 ∼72hours 12 60930228 187200.0 12 56300635 185331.6 10 94558000 173880.0

Table 5.11: Comparison of Solutions for FMS test problems

5.7 Results for Cyclic Flexible Manufactur-

ing Systems Scheduling Problems

Table 5.10 summarized the best results found where for problems,
the corresponding number of jobs N, machines M, operations O,
and minimum cycle time is shown. Table 5.11 analyzes and com-
pare the computational times in which all three approaches man-
aged to find the best optimum results against the Genetic Algorithm
approach from Hsu et. al. (2007) [78].

The total number of feasible solutions for each problem was calcu-
lated by Hsu et. al. (2007) [78] from Equation 3.43 and 3.44.

The results show that the Advanced Hopfield approach is the most
effective among all three approaches. This is evident as the Ad-
vanced Hopfield approach was able to obtain best results (that is
equivalent to the optimum lower bound result) in 6 out of the 8
problems tested. The second most effective approach which is the
LRRNN approach managed to find the optimum solutions for 4 out
of the 8 problems. Where else, the RNN approach only managed to
be successful in two smaller problems of HIL87 and HIL88. Com-
pared to the alternative Genetic Algorithm approach, only the Ad-
vanced Hopfield approach managed to outperform this particular
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Figure 5.4: Solution for CFMS problem HIL88 [71] from Advanced Hopfield
Approach.

approach.

Without restricting time limit on the iterations of all three ap-
proaches, this decision proved vital when we analyzed the individ-
ual approaches in more detail. This is evident as the Advanced Hop-
field managed to solve the large and complex FT06 and LA04 prob-
lems only after over 48 hours had elapsed. This could be influenced
by the fact that both test problems had 4.4 × 1038 and 3.9 × 1071
possible feasible solutions. Surprisingly, the LRRNN approach is
able to obtain the minimum WIP of value 7 for problem FT06 after
over 37× 106 iterations.

Figure 5.4 shows the schedule with minimum WIP of 5 obtained
from the Advanced Hopfield approach, after 6530 iterations.

5.8 Discussion of Results

In this chapter, we have introduced several test problems from
cyclic job shop scheduling problems modified from acyclic job shop.
Based on these test problems, we utilized the Recurrent Neural Net-
work (RNN) and Lagrangian Relaxation Neural Network (LRRNN)
approaches in simulating and solving these problems. We then ana-
lyzed the results obtained based on the three criteria of accuracy of
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results, speed of computations and performance between these two
approaches.

We have concluded that the RNN and LRRNN approaches are able
to solve cyclic job shop scheduling problems with up to 100 oper-
ations. There are however some concerns when classifying cyclic
job shop with 100 operations as this may vary in terms of number
of jobs or number of machines. As seen in Figure 5.5, for a fixed
number of machines in a cyclic job shop, the number of constraints
compares less than for a fixed number of jobs when number of ma-
chines increases. Hence could means less complexity for a small job
large machine compared to large job, small machines type of cyclic
job shop problems.
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Figure 5.5: Graph showing number of constraints for a n jobs m machine job
shop.

The RNN and LRRNN performed poorly for problems with more
than 200 operations due to the complexity of constraints involved.
The constraints in the problems are a combination of conjunctive
constraints and disjunctive constraints. Overall, in solving the cyclic
job shop scheduling problem, we have found that the RNN is faster
in computing the optimum solution compared to the LRRNN ap-
proach. Although with this increased computational effort required,
the LRRNN performed better for larger problems.

In the case of cyclic flexible manufacturing systems scheduling
problems, we presented several test problems from FMS literature
in order to analyze our three approaches of RNN, LRRNN and Ad-
vanced Hopfield. Based on a feasible initial schedule generated by
our Modified Competitive Dispatch Rule Phase, and maximum iter-
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ation restriction, our approaches were found to be effective in solv-
ing the problems. The Advanced Hopfield approach clearly out-
perform the RNN and LRRNN approaches. We have found that,
without time restriction, the Advanced Hopfield approach has the
potential to search a large part of the search space before stabilizing
at a minimum energy level. There could be the factor of how mod-
elling the cyclic schedule was done, that may hold an advantage
over the LRRNN model used. However when comparing between
recurrent networks, the use of changing weights in the form of La-
grange multiplier versus fixed weights in the case of RNN, was able
to help LRRNN pursue a more optimum solution.
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Part IV

Discussions



CHAPTER

SIX

Conclusions

6.1 Outcomes of The Thesis

In this concluding chapter, we will summarize the main points cov-
ered in this thesis, while analyzing the critical properties of all our
approaches when solving the cyclic scheduling problems. We will
also present suggestions for future research work.

In the first part of this thesis, we described the general scheduling
problem. The scheduling problems depend on the type of manu-
facturing environment being considered. The different variations
of these manufacturing environments hold their own advantages in
dealing with the different products being manufactured and opera-
tions being processed. As such, each task or operation, or machines
has their own characteristics and constraints.

We then reviewed the cyclic scheduling problems where we high-
light the advantages of the cyclic scheduling against the non-cyclic
scheduling approach. A review on the evolution of the cyclic
scheduling problem as a whole was presented that included re-
search literature that have worked on this type of scheduling prob-
lem. We also surveyed in terms of the types of problems in exis-
tence and their associated complexities, hence presenting a case for
the reason our research is based on analyzing and solving the NP-
Hard cyclic job shop and flexible manufacturing systems scheduling
problem.

We then described in Chapter 3, the modelling techniques used in
scheduling problems. The accurate modelling of the scheduling
problem must involve constraints in the system and the objective
for which the system is to be optimized for. We also summarized
from complexity research literature that the scheduling problems
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are generally NP-Hard problems and are difficult to solve in poly-
nomial time with conventional optimization approaches.

In Section 3.5, we proposed the modelling of the cyclic job shop
scheduling problem. Here the model showed how the cycle time
can be calculated, with the inclusion of the constraints between op-
erations of the job and constraints that the machines must adhere
to. The cyclic job shop problem was modelled based on the as-
sumption that generated schedule would be repeated into a cyclic
schedule based on the optimum cycle time. Our research focused
on minimizing the cycle time associated with the cyclic job shop
(compared to the more common minimizing tardiness or maximiz-
ing the makespan) and finally presenting our modelling approach
in a linear programming form.

Extending the cyclic scheduling further into the flexible manufac-
turing systems, we studied and modelled the scheduling problem in
Section 3.6 that described the cyclic schedule based on the minimal
cycle time constraint. The model included a function to accurately
calculate the number of Work in progress (WIP) in the schedule and
used this criteria as the objective function.

The common types of neural network and their use as an effec-
tive optimization approach suitable for solving the cyclic schedul-
ing problem has been analyzed in Section 3.8. The evolution of neu-
ral networks that were successfully used by researchers in solving
the scheduling problem fall into 3 main groups, Hopfield type net-
works, competitive networks and the backpropagation network.

In order to solve the cyclic scheduling problem using the models
developed, we propose the Recurrent Neural Network (RNN) ap-
proach. This RNN approach finds the optimum solution by mini-
mizing the energy state of the network and is based on the steepest
descent method. We then extended this RNN technique into the
Lagrangian Relaxation Neural Network (LRRNN) approach where
the abilities of the recurrent neural network are enhanced with the
Lagrange multipliers. One of the major characteristics of this LR-
RNN is the relaxation of the constraints of the cyclic scheduling
problem using Lagrange Relaxation, which reduces the complexity
of the problem.

We then extended our study of the cyclic job shop problem into the
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linear constraints version of the problem. Based on the research
found from Munier (1996) [124], Hanen (2008) [67], we presented a
Delinearization algorithm that is able to transform the linear prece-
dence constraints in the cyclic job shop into their equivalent uni-
form form. Due to a lack of test problems specific in this case, we
managed to evaluate this approach on several test problems from
Dupas (2001) [40]. We show proof that our approach of deliner-
ization and solving the problem using our LRRNN approach is as
competitive as the Genetic Algorithm, Constraint Satisfaction Prob-
lem (CSP) and Constraint Optimization Problem (COP) approaches.

In order to improve our approach in solving the cyclic flexible
manufacturing systems scheduling problem, we developed the Ad-
vanced Hopfield Network approach. This particular approach was
mapped from the model that represented the cyclic schedule in a
2D matrix and using the Schedule Generating Algorithm to gen-
erate the cyclic FMS schedule. Similar to the RNN and LRRNN
approaches, this Advanced Hopfield network approach iteratively
finds the optimum solution by minimizing the energy function of
the network.

Finally from the experimental simulation results, our RNN, LRRNN
and Advanced Hopfield approaches were evaluated against bench-
mark problems that showed the potential and the effectiveness of
our approaches, not only in terms of the ability to optimize to a
minimum state but also within a competitive computational time
period.

The critical features of our three approaches can be summarized as
follows:

1. The optimum schedules were obtained from the minimum en-
ergy state of the recurrent neural network,

2. The modelling approach developed of the cyclic scheduling
problem effectively included cost function and the penalty fac-
tor effect on the problem.

3. Our approaches considered constraints violations of generated
solutions to compensate for un-beneficial direction of the search
path,

4. Constantly adjusting generation on schedule thus reflecting a
cyclic generation ability based on cyclic constraint adjustments,
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5. Always ensuring that feasibility of the final optimum solution
obtained through the application of the postprocessing phase,

6. Placements of operations within generated schedules is pro-
gressive (far from complete randomness) and allows for inter-
action of all operations placement has on effect on the overall
schedule rather than individual effect,

7. The characteristic of recovering the schedule from being cap-
tured in local minima state. This is possible through a sensi-
tivity measure of the system state (e.g. energy value stuck in
range on steady value) that will allow for activation of pertur-
bation algorithm), transforming the energy state of the system
and kick starting the search path,

8. The cost function modelled included a learning ability of the
system as the system goes fourth in the search path. This
allows for more accurate adjustments to solutions formula-
tions/searches,

9. The Modified/Competitive Dispatch Rule Phase (CDRP or MC-
DRP) will encapsulate and reduce search space that is un-
beneficial prior to employment of the recurrent neural network
approaches, thus reducing computational time associated with
unrealistic search paths.

Our main contributions through this research work can be summa-
rized as follows:

• Analyzed the overall cyclic scheduling problem.

• Effectively modelled the cyclic job shop scheduling problem.

• Presented the recurrent neural network and Lagrangian relax-
ation neural network as viable, effective approaches in solving
the cyclic job shop scheduling problem due to the lack of neural
networks research as an approach in solving the cyclic schedul-
ing problem.

• Effectively modelled the cyclic flexible manufacturing system
scheduling problems.

• Proposed the advanced Hopfield network, combined with a
modified competitive dispatch rule phase (MCDRP) in effec-
tively solving the cyclic flexible manufacturing system schedul-
ing problem.
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• Modelled, delinearized with the Delinearization Algorithm and
presented a LRRNN approach to the cyclic job shop problem
with linear precedence constraints problem.

This research has focused on the cyclic scheduling problem itself.
We focused on a modelling approach that can accurately depict the
problem and allow that model to be solved by the recurrent neural
network approaches.

6.2 Suggestion for Future Research

As this thesis has shown from the experimental results on cyclic job
shop and cyclic flexible manufacturing system scheduling problems
that our neural network techniques are effective in solving these
cyclic problems, an extension of this research would involve re-
searching to solve other types of cyclic scheduling problems that
may include robotics problems, hoist problems, cyclic flow shop
problem or cyclic open shop problem. This will greatly enhance the
application of our RNN, LRRNN and Advanced Hopfield further
into the field of cyclic scheduling problems.

Another possible extension of our neural network approaches is
research into the sensitivity of our neural network approach to
stochasticity in cyclic scheduling problems. Based on machine re-
lated issues (e.g. machines with bottleneck, linear, maintenance re-
lated issues, non-uniform speed) or load variation on production
lines, the modelling of these issues would allow for our approach to
move a step closer to modelling real-life cyclic scheduling problems.

One areas of future research that could improve the computational
time of our neural network approaches would be the inclusion of
other optimization approaches. These optimization approaches that
could include tabu search, swarm optimization, fuzzy logic, petri
net or genetic algorithm, could be allowed to work in parallel with
the neural network approaches without jeopardizing the efficiency
to obtain optimal solutions. Hence these hybrid approaches will be
able to combine the strengths from each of the infused optimization
approach in tackling the combinatorial problem. One other method
to reduce the computational time in solving the scheduling prob-
lems could be by using the parallelism approach of agents. These
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agents would be be able to represent the dynamics of the neural
networks.

As our RNN, LRRNN and Advanced Hopfield approaches were de-
veloped in a JAVA program, the advancements in the form of hard-
ware, web based online scheduling and real-time cyclic scheduling
approaches would be an interesting aspect to look into. These inte-
grations may also allow for user-modifiable characteristics and ex-
pert inputs into neural network models.
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Université de Lille1., 1998.

[95] O. Korbaa and H. Camus. Cyclic productions planning. Com-
putational Engineering in Systems Applications, IMACS Multi-
conference on, pages 1110–1117, 2006.

[96] O. Korbaa, H. Camus, and J.-C. Gentina. Heuristic for the
resolution of the general FMS cyclic scheduling problem. In
IEEE International Conference on Systems, Man, and Cybernet-
ics, 1997. ’Computational Cybernetics and Simulation’., volume 3,
pages 2903–2908, 1997.

[97] O. Korbaa, H. Camus, and J.-C. Gentina. Transient state study
for cyclic schedules: bounds and optimization. In IEEE Inter-
national Symposium on Assembly and Task Planning (ISATP 97),
pages 188–193, Marina del Rey, CA, USA, August 1997.

[98] O. Korbaa, H. Camus, and J.-C. Gentina. A new cyclic
scheduling algorithm for flexible manufacturing systems. In-
ternational Journal of Flexible Manufacturing Systems, 14:173–
187, April 2002.

[99] M. Kubale and A. Nadolski. Chromatic scheduling in a
cyclic open shop. European Journal of Operational Research,
164(3):585–591, August 2005.

[100] T. Ladhari and M. Haouari. A computational study of the
permutation flow shop problem based on a tight lower bound.
Computer and Operations Research, 32(7):1831–1847, July 2005.

[101] E.L. Lawler. Optimal sequencing of a single machine subject
to precedence constraints. Management Science, 19(5):544–546,
January 1973.

[102] S. Lawrence. Resource constrained project scheduling: an ex-
perimental investigation of heuristic scheduling techniques (Sup-
plement). Graduate School of Industrial Administration,
Carnegie-Mellon University, 1984.

[103] J.-K. Lee. Benchmarking study of the cyclic scheduling analy-
sis methods in FMS. Systems, Man and Cybernetics, 2002 IEEE
International Conference on, 3:6 pp., 6-9 Oct. 2002.

[104] J.-K. Lee and O. Korbaa. Scheduling analysis of FMS: an un-
folding timed petri nets approach. Mathematics and Computers
in Simulation, 70(5):419–432, 2006.

[105] J.-K. Lee, O. Korbaa, and J.-C. Gentina. Modeling and analysis
of cycle schedule using petri nets unfolding. In IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, 2001.

[106] T.-E. Lee and M.E. Posner. Performance measures and sched-
ules in periodic job shops. Operations Research, 45(1):72–91,
1997.

[107] T.E. Lee and J.W. Seo. Stochastic cyclic flow lines: non-
blocking, Markovian models. Journal of the Operational Re-
search Society, 49(5):537–548, May 1998.

171



[108] J.K. Lenstra and A.H.G. Rinnooy Kan. Complexity of
scheduling under precedence constraints. Operations Research,
26(1):22–35, January-February 1978.

[109] J.K. Lenstra and A.H.G. Rinnooy Kan. Computational com-
plexity of discrete optimization problem. Annals of Discrete
Mathematics, 4:121–140, 1979.

[110] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity
of machine scheduling problems. Annals of Discrete Mathemat-
ics, 1:343–362, 1977.

[111] J.Y.-T. Leung, O. Vornberger, and J.D. Witthoff. On some vari-
ants of the bandwidth minimization problem. SIAM Journal
on Computing, 13(3):650–667, 1984.

[112] G. Liansheng, S. Gang, and W. Shuchun. Intelligent schedul-
ing model and algorithm for manufacturing. Production Plan-
ning and Control, 11:234–243(10), 1 April 2000.

[113] R. Linn and W. Zhang. Hybrid flow shop scheduling: A sur-
vey. Computers & Industrial Engineering, 37(1–2):57–61, Octo-
ber 1999.

[114] P.B. Luh and D.J. Hoitomt. Scheduling of manufacturing sys-
tems using the Lagrangian relaxation technique. IEEE Trans-
actions on Automatic Control, 38(6):1066–1080, July 1993.

[115] P.B. Luh, X. Zhao, Y. Wang, and L.S. Thakur. Lagrangian re-
laxation neural networks for job shop scheduling. Robotics and
Automation, IEEE Transactions on, 16(1):78–88, 2000.

[116] R. Maheswaran, S.G. Ponnambalam, D.N. Samuel, and A.S.
Ramkumar. Hopfield neural network approach for single ma-
chine scheduling problem. Cybernetics and Intelligent Systems,
2004 IEEE Conference on, 2:850–854, 2004.

[117] O. Marchetti and A. Munier-Kordon. A polynomial algorithm
for a bi-criteria cyclic scheduling problem. In The 25th Work-
shop of the UK PLANNING AND SCHEDULING Special Interest
Group, (PlanSIG 2006), 14th - 15th December, 2006, ENGLAND,
December 2006.

[118] D.C. Mattfeld and C. Bierwirth. An efficient genetic algorithm
for job shop scheduling with tardiness objectives. European
Journal of Operational Research, 155(3):616–630, 2004.

[119] G. McMahon and M. Florian. On scheduling with ready times
and due dates to minimize maximum lateness. Operations Re-
search, 23(3):475–482, May–June 1975.

[120] P.R. McMullen. A Kohonen self-organizing map approach
to addressing a multiple objective, mixed-model jit sequenc-
ing problem. International Journal of Production Economics,
72(1):59–71, 2001.

[121] K. Metaxiotis and J. Psarras. Neural networks in production
scheduling: Intelligent solutions and future promises. Applied
Artificial Intelligence, 17(4):361–373, 2003.

172



[122] M. Middendorf and V.G. Timkovsky. On scheduling cycle
shops: classification, complexity and approximation. Journal
of Scheduling, 5(2):135–169, March 2002.

[123] S.A. Munawar, M. Bhushan, R.D. Gudi, and A.M. Belliappa.
Cyclic scheduling of continuous multiproduct plants in a hy-
brid flowshop facility. Industrial And Engineering Chemistry Re-
search, 42(23):5861–5882, 2003.

[124] A. Munier. The basic cyclic scheduling problem with lin-
ear precedence constraints. Discrete Applied Mathematics,
64(3):219–238, February 1996.

[125] J. F. Muth and G. L. Thompson. Industrial Scheduling. Prentice-
Hall, Inc., Englewood Cliffs, N. J., 1963.

[126] M. Nakamura, K. Hachiman, H. Tohme, T. Okazaki, and
S. Tamaki. Evolutionary computing of petri net structure for
cyclic job shop scheduling. IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Sciences, E89-
A(11):3235–3243, November 2006.

[127] M. Nakamura, H. Tome, K. Hachiman, B.M. Ombuki, and
K. Onaga. Cyclic job-shop-scheduling based on evolutionary
petri nets. In 26th Annual Conference of the IEEE on Industrial
Electronics Society (IECON 2000), 2000.

[128] E. Nowicki and C. Smutnicki. An advanced Tabu Search algo-
rithm for the job shop problem. Journal of Scheduling, 8(2):145–
159, 2005.

[129] H. Ohl, H. Camus, E. Castelain, and J.-C. Gentina. A heuris-
tic algorithm for the computation of cyclic schedules andthe
necessary WIP to obtain optimal cycle time. In Fourth Inter-
national Conference on Computer Integrated Manufacturing and
Automation Technology, New York, USA, October 1994.

[130] S.S. Panwalkar and W. Iskander. A survey of scheduling rules.
Operations Research, 25(1):45–61, January - February 1977.

[131] B.J. Park, H.R. Choi, and H.S. Kim. A hybrid genetic algo-
rithm for the job shop scheduling problems. Computers & In-
dustrial Engineering, 45(4):597–613, 2003.

[132] M. Pinedo. Scheduling Theory, Algorithms, and Systems. Pren-
tice Hall, second edition, 2002.

[133] J.-P. Proth. Scheduling: New trends in industrial environment.
Annual Reviews in Control, 31(1):157–166, 2007.

[134] U.S. Rao and P.L. Jackson. Estimating performance measures
in stochastic cyclic schedules. IIE Transactions, 28:929–939,
1996.
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APPENDIX

A

Appendix

Example of for evaluating the benchmarks for the cyclic flexible
manufacturing systems problems comprises of:
Benchmark [HIL87] This Hillion et. al. (1987) [70] benchmarks con-
sist of 4 Jobs×4 Machines. Jobs (A, B, C, D) require (4, 4, 3, 4) oper-
ations each.
A description of the benchmark is as follows:

• Job A: (A,1),M1,1; (A,2),M2,4; (A,3),M3,3; (A,4),M4,3.
• Job B: (B,1),M4,1; (B,2),M2,2; (B,3),M1,3; (B,4),M3,1.
• Job C: (C,1),M1,2; (C,2),M3,1; (C,3),M4,1.
• Job D: (D,1),M3,3; (D,2),M1,2; (D,3),M2,1; (D,4),M4,2.

Machine 1

Machine 4

Machine 3

Machine 2

A,1 B,3

C,3

C,2

A,3

B,2

A,4

A,2

B,1

30

J,O Processing time for 
operation O of job J

Idle time of 
machines

Processing 
time length

Start time Completion time

C,1 D,2

B,4

21 54 87 1096 11

W.I.P. 1

W.I.P. 4

W.I.P. 3

W.I.P. 2

30

W.I.P. 5

21 54 87 1096 11

Cycle Time

D,3

D,1

D,4

A,1

B,3

C,1

D,2

B,2

A,2

D,3

C,3

A,4

B,1

D,4

C,2A,3 B,4D,1

A,1 B,3

C,3

B,2

A,4

A,2

B,1

C,1 D,2

D,3

D,4

C,2A,3 B,4D,1

1413 161512
Time

Time

Figure A.1: Solutions for HIL87 Benchmark.

The dual gantt chart in Figure A.1 shows the solution found for the
benchmark.
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Benchmark [HIL88] This 4 Jobs×3 Machines problem comes from
Hillion and Proth (1988) [71] where Jobs (A, B, C, D) require (3, 2, 2,
2) operations each.
A description of the benchmark is as follows:
• Job A: (A,1),M1,1; (A,2),M2,3; (A,3),M3,3.
• Job B: (B,1),M3,1; (B,2),M2,2.
• Job C: (C,1),M1,2; (C,2),M3,1.
• Job D: (D,1),M1,2; (D,2),M3,1.

Machine 1

Machine 3

Machine 2

A,1

B,2A,2

B,1

30

J,O Processing time for 
operation O of job J

Idle time of 
machines

Processing 
time length

Start time Completion time

C,1

D,2

21 54 87 1096 11

W.I.P. 1

W.I.P. 4

W.I.P. 3

W.I.P. 2

30

W.I.P. 5

21 54 87 1096 11

Cycle Time

C,2A,3

D,1

1413 161512

A,1

B,2A,2

B,1

C,1

D,2 C,2

D,1

A,1

C,1

D,1

B,2

A,2

B,1

D,2

C,2

Cycle Time

A,3 A,3

A,3

Time

Time

Figure A.2: Solutions for HIL88 Benchmark.

The dual gantt chart in Figure A.2 shows the solution found for the
benchmark.
Benchmark [VAL94] Valentin (1994) [151] generated a 5 Jobs×3 Ma-
chines cyclic FMS problem. The Jobs (A, B, C, D, E) require (3, 3, 3,
2, 2) operations each.
A description of the benchmark is as follows:
• Job A: (A,1),M1,2; (A,2),M2,3; (A,3),M3,2.
• Job B: (B,1),M1,2; (B,2),M2,3; (B,3),M3,2.
• Job C: (C,1),M1,2; (C,2),M2,3; (C,3),M3,2.
• Job D: (D,1),M2,1; (D,2),M1,2.
• Job E: (E,1),M2,1; (E,2),M1,2.

The dual gantt chart in figure A.3 shows the solution found for the
benchmark.
Benchmark [OHL95] The Ohl et. al. (1995) [129] problem consists
of 2 Jobs×6 Machines. Jobs (A, B) have (6, 4) operations each.
A description of the benchmark is as follows:
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30

J,O Processing time for 
operation O of job J

Idle time of 
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Processing 
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21 54 87 1096 11
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Figure A.3: Solutions for VAL94 Benchmark.

• Job A: (A,1),M1,18; (A,2),M3,14; (A,3),M2,12; (A,4),M3,14;
(A,5),M2,10; (A,6),M4,14.

• Job B: (B,1),M5,5; (B,2),M6,4; (B,3),M5,5; (B,4),M6,4.

Machine 3

Machine 6

Machine 5
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B,1

30

J,O Processing time for 
operation O of job J

Idle time of 
machines

Processing 
time length

Start time Completion time
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0
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Cycle Time
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1413 161512
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Time

17 2019 222118
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23 2625 282724
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Machine 4 A,6

321 54 87 1096 11 1413 161512 17 2019 222118 23 2625 282724

B,1 B,2 B,3 B,4

A,6A,5

A,4

A,3A,2

A,1

Figure A.4: Solutions for OHL95 Benchmark.

The dual gantt chart in Figure A.4 shows the solution found for the
benchmark.
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Résumé

Un problème d’ordonnancement consiste à exécuter sur un horizon de temps donné un ensemble de taches 

au moyen de ressources en nombre limité. On rencontre ce problème dans divers domaines, comme 

l’industrie de production, dans les systèmes de transport ou encore dans les ordinateurs avec l’allocation 

des tâches. Dans cette thèse, nous nous concentrons a la fois  sur le problème d’ordonnance et le problème 

d’ordonnancement cyclique, en insistant sur ce dernier. La NP complexité du problème d’ordonnancement 

des tâches  a motivé notre travail de recherche  et nous a mené à développer une approche efficace utilisant 

les réseaux de neurones pour le résoudre. Cette thèse se concentre particulièrement sur le problème du Job 

Shop Cyclique et sur son utilisation dans le cadre des ateliers flexibles. Pour cela, nous avons développe 

des modèles pour résoudre le problème du temps cyclique minimum et du travail en cours. Néanmoins, 

dans cette thèse, nous proposons 3 variations autour des réseaux de neurones : un réseau de neurones 

récurrents (RNN), une relaxation Lagrangienne pour un réseau de neurones récurrents  (LRRNN) et un 

réseau Hopfield avancé. Plusieurs algorithmes sont combinés avec ces réseaux de neurones pour assurer 

que les solutions générées sont toutes possibles et pour réduire l’effort de recherche des solutions 

optimales. A travers des tests comparatifs et expérimentaux, nous sommes capable de démontrer la 

conformité et l’applicabilité  des approches utilisant des réseaux RNN, LRRNN et Advanced Hopfield 

comme des alternatives attrayantes par rapport à d’autres approches heuristiques traditionnelles pour les 

problèmes d’ordonnancement cyclique.

Mots clés : Ordonnancement, Ordonnancement cyclique, Réseau neuronal, Atelier flexible, Job shop,

Modélisation, Contrainte Précédence, Réseau Hopfield.

Abstract

Scheduling deals with the allocation of tasks requiring processing to limited resources over time in areas

including product manufacturing, computer processing and transportation. In this thesis we review the 

properties of both the general scheduling and cyclic scheduling problems with a focus on the cyclic version 

of the problem. The NP-Hard complexity of the cyclic scheduling problem has motivated this research 

work in developing an efficient neural network approach to solving this problem. This thesis focuses 

specifically on the cyclic job shop and cyclic flexible manufacturing system problems. Hence, models that 

will solve the minimum cycle time or work in progress of the problems are developed. Here, we develop 

and study three variations of the recurrent neural network approach. These are the Recurrent Neural 

Network (RNN), the Lagrangian Relaxation Recurrent Neural Network (LRRNN) and the Advanced 

Hopfield network approaches. Several algorithms are combined with these neural networks to ensure that 

feasible solutions are generated and to reduce the search effort for the optimum solutions. We also extend

the review to include the cyclic job shop problem with linear precedence constraints. A delinearization 

algorithm is developed to solve this problem; an approach based on transforming the linear constraints of 

the problem into its uniform constraints as proven in existing cyclic scheduling literature. Through 

computational and comparative testing, we are able to demonstrate the suitability and applicability of the 

RNN, LRRNN and Advanced Hopfield network approaches as attractive alternatives to traditional 

heuristics in solving these cyclic scheduling problems.

Keywords : Scheduling, Cyclic Scheduling, Neural Network, Flexible Manufacturing System, Job Shop,

Modeling, Precedence Constraint, Hopfield Network.




