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Abstract 
 

Nowadays, the increased human mobility combined with high use of private cars 

increases the load on environment and raises issues about quality of life. The 

extensive use of private cars lends to high levels of air pollution, parking problem, 

traffic congestion and low transfer velocity. In order to ease these shortcomings, the 

car pooling program, where sets of car owners having the same travel destination 

share their vehicles, has emerged all around the world. 

In the beginning of 20th century, the widespread use of internet and mobile phones 

has greatly helped car pooling to expand by enabling people to find, contact and 

arrange their car pool members more easily. However, the car pooling shows a lack of 

research on its optimization, since only very few works can be found in the literature. 

With such background, we present here our research on the long-term car pooling 

problem. In this thesis, the long-term car pooling problem is modeled and metaheuris-

tics for solving the problem are investigated. 

The thesis is organized as follows. First, the definition and description of the prob-

lem as well as its mathematical model are introduced. Then, several metaheuristics to 

effectively and efficiently solve the problem are presented. These approaches include 

a Variable Neighborhood Search Algorithm, a Clustering Ant Colony Algorithm, a 

Guided Genetic Algorithm and a Multi-agent Self-adaptive Genetic Algorithm. Ex-

periments have been conducted to demonstrate the effectiveness of these approaches 

on solving the long-term car pooling problem. Afterwards, we extend our research to 

a multi-destination daily car pooling problem, which is introduced in detail manner 

along with its resolution method. At last, an algorithm test and analysis platform for 

evaluating the algorithms and a car pooling platform designed for the students of 

Artois University are presented in the appendix. 

 

Key-words: optimization, car pooling problem, local search, metaheuristic, 

hyper-heuristic, multi-agent system. 
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Résumé 

 

La dispersion spatiale de l'habitat et des activités de ces dernières décennies a forte-

ment contribué à un allongement des distances et des temps de trajets domicile-travail. 

Cela a pour conséquence un accroissement de l'utilisation des voitures particulières, 

notamment au sein et aux abords des grandes agglomérations. Ce boom de la mobilité 

n'est pas sans conséquence et l'actualité nous le rappelle chaque jour: la pollution 

atmosphérique, les accidents de la route, les embouteillages, … Afin de réduire les 

impacts dus à l'augmentation du trafic routier, des services de covoiturage, où des 

usagers ayant la même destination se regroupent en équipage (un chauffeur et des 

passagers) pour se déplacer, ont été mis en place partout dans le monde. 

 Les avancées technologiques de ces dernières décennies de l'internet, de la télé-

phonie mobile et des systèmes de géolocalisation ont largement contribué à faciliter 

l'utilisation des systèmes de covoiturage, elles permettent plus facilement aux usagers 

de trouver, de contacter et de constituer les équipages. Toutefois, le problème du 

covoiturage semble être le parent pauvre de la famille des problèmes de tournées de 

véhicules: très peu de travaux concernent cette problématique. Néanmoins, on con-

state depuis quelques années, un intérêt accru pour ce problème, dû aux mouvements 

écologiques, à l'augmentation des prix du carburant, … Nous présentons ici nos 

travaux sur le problème de covoiturage régulier. Dans cette thèse, le problèmes de 

covoiturage régulier a été modélisé et plusieurs métaheuristiques de résolution ont été 

implémentées, testées et comparées.        

 La thèse est organisée de la façon suivante: tout d'abord, nous commençons par 

présenter la définition et la description du problème ainsi que le modèle mathématique 

associé. Ensuite, plusieurs métaheuristiques pour résoudre le problème sont présen-

tées. Ces approches sont au nombre de quatre: un algorithme de recherche locale à 

voisinage variable, un algorithme à base de colonies de fourmis, un algorithme gé-

nétique guidée et un système multi-agents génétiques auto-adaptatif. Des expériences 

ont été menées pour démontrer l'efficacité de nos approches. Nous continuons ensuite 

avec la présentation et la résolution d'une extension du problème de covoiturage 

occasionel comportant plusieurs destinations. Pour terminer, une plate-forme java de 

test et d'analyse pour évaluer nos approches et une plate-forme de covoiturage conçue 

pour les étudiants de l'Université d'Artois sont présentées dans l'annexe. 

 

Mots-clés: optimisation, problème du covoiturage, recherche locale, métaheuristique, 

hyper-heuristique, système multi-agents. 
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Introduction 
 

This Ph.D. thesis focuses on solving complex combinatorial problems and particularly 

logistic and transport problems. It presents the results of three years’ research held in 

laboratory LGI2A of Artois University in France. 

 Rising vehicle number and increased use of private cars have caused significant 

traffic congestion, noise and energy waste. Public transport cannot always be set up in 

the non-urban areas. Car pooling, which is based on the idea that sets of car owners 

having the same travel destination share their vehicles, has emerged to be a viable 

possibility for reducing private car usage around the world.  

Nowadays, more and more information and communication systems become 

available to serve the real-world applications. The widespread use of World Wide 

Web, Geographic Information Systems (GIS), Global Positioning Systems (GPS), and 

mobile telephones makes the car pooling programs more and more popular and 

easy-to-implement. In spite of the interest in real-world applications, the research on 

the optimization of the car pooling problem is still limited. In the literature, only very 

few studies can be found for the car pooling problem. Especially, there is a lack of 

research for the long-term car pooling problem, which is however commonly used by 

large companies, public organizations and universities. 

During the last decade, metaheuristics are raising a large interest in optimization 

community and particularly in the transportation domain. They represent more gen-

eral approximate algorithms applicable to a large variety of optimization problems. 

They provide acceptable solutions in a reasonable time for solving hard and complex 

problems in science and engineering. The instances of problems are solved by explor-

ing a large solution search space, and the metaheuristics achieve this by reducing the 

effective size of the space and by exploring that space efficiently. 

 In this thesis, our research explores the use of metaheuristics to solve the long- 

term car pooling problem (LTCPP). In the LTCPP, each user has to act as both a 

server and a client and a solution is to define user pools where each user will in turn, 

on different days, pick up the remaining pool members. The objective is to minimize 

the amount of vehicles used and the total distance traveled by all users, subject to car 

capacity and time window constraints. The LTCPP can be considered as a combina-

tion of a clustering problem and a routing problem. It requires finding the car pool 

members relatively close to each other and identifying the route and schedule for each 

member in the car pool with respect to the car capacity and time window constraints. 

The long-term car pooling problem is NP-complete which indicates the high complex-

ity in solving the problem. Moreover, in real world application, large companies or 

universities usually have thousands of participants for a car pooling program, which 

provides large instances to solve. Although the long-term car pooling program focuses 
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on a long-term scheduling, the users in the real-world application always require their 

schedule to be generated in a short period of time, so they can examine the schedule, 

find the unsatisfactory and inconvenience, and then submit their requests of modifica-

tion. As a result, the organizer needs to respond to the users as soon as possible. Thus, 

the LTCPP requires fast and accurate algorithms to solve the instances, since nowa-

days only zero-delay systems can attract users and survive in the competition with all 

their rivals.  

 However, along with the lack of solving methods designed for the long-term car 

pooling problem, the existing approaches are either time consuming or lacking of 

solution quality for the real-world application. Among all the current literature found, 

none of the methods developed is cost-effective enough when dealing with large scale 

instances. Thus, more efficient and powerful meta-heuristics are still required to meet 

the practical requirements. These new approaches should be faster, easier to use and 

more robust. The goal of our current work is aimed at developing such metaheuristics 

to generate solutions with good quality for large-scale real-world applications.  

 The main goal of our research is listed as follows. 

 Create an accurate mathematical model for the long-term car pooling problem 

with respect to the real-world situation. 

 Develop metaheuristics which provide high solution quality. 

 Develop metaheuristics which can solve large instances efficiently. 

 Develop metaheuristics which ease the implementation in real-world. 

 Develop a car pooling platform for the students of the Artois University.  

The research presented in this thesis has progressed in three phases. In the first 

phase, state-of-art that covers a description and specificities of the problem is given. 

The solving methods for the problem and for the related problems are presented in 

order to provide a global view of the researches carried out in this domain. Besides, 

the benchmarks of the problem and their development are reported. 

The second phase, which is the main phase of our research, introduces the 

development of algorithms for the LTCPP. These algorithms cover the different 

classes of metaheuristics.  

Metaheuristics can be divided into two categories: trajectory-based metaheuristics 

and population-based metaheuristics. The main difference of these two kinds of 

methods relies in the number of tentative solutions used in each step of the iterative 

algorithm. A trajectory-based technique starts with a single initial solution. At each 

step of the search, the current solution is replaced by another solution found in its 

neighborhood. It is usual that trajectory-based metaheuristics allow quickly finding a 

locally optimal solution, and so they are called exploitation-oriented methods promot-

ing intensification in the search space. On the other hand, population-based algo-

rithms make use of a population of solutions. The initial population is normally 

randomly generated or created with a cheap algorithm, and then enhanced through an 

iterative process. At each generation of the process, the whole or a part of population 
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is replaced by newly generated individuals. These techniques are called exploration- 

oriented methods, since their main ability resides in the diversification in the search 

space. 

Our first attempt to solve the LTCPP with metaheuristics is by using trajectory- 

based metaheuristics. The most recent and popular approach in the field of trajectory- 

based metaheuristics is Variable Neighborhood Search (VNS). Its basic idea is sys-

tematic change of neighborhood within a local search in order to get different local 

optima and to escape from the current local optimum. In addition, the characteristic of 

changing the neighborhood structure might offer a higher probability in finding the 

global optimum. Since different neighborhoods generate different landscapes, a 

solution that is locally optimal on the search landscape with respect to a neighborhood 

is probably not locally optimal with respect to another one. 

For that purpose, we address in this thesis the class of trajectory-based metaheuris-

tics represented by a Variable Neighborhood Search particularly designed for the 

LTCPP. 

As abovementioned, the trajectory-based metaheuristics manage only one solution 

in each iteration. The solution obtained in each iteration is based on the previous 

iteration. This mechanism provides the trajectory-based metaheuristics good intensifi-

cation search ability; however, they are limited in diversity. Moreover, some good 

characteristics from the former solutions are lost since only one solution is conserved 

to the next iteration. Therefore, an efficient and effective algorithm should not only be 

able to focus on improving the current solution, but also be able to maintain a good 

diversity and memorize the good composition of the former solutions in the search 

process. 

Population-based metaheuristics provide a number of potential advantages for such 

purposes. They start from an initial population of solutions and iteratively generate a 

new population based on the current population, and then replace the current one with 

the new one. The new population can maintain some useful characteristics of the old 

population, so the fine solutions of previous iterations are always inherited and the 

solution quality of the population are improved.  

There are two main families in the population-based metaheuristics: swarm intelli-

gence metaheuristics and evolutionary metaheuristics. The swarm intelligence 

metaheuristics are typically made up of a population of simple agents interacting 

locally with each other and with their environment. The inspiration often comes from 

nature. The agents follow very simple rules, and there is no centralized control 

structure dictating how individual agents should behave, but the interactions between 

such agents lead to the emergence of an intelligent global behavior. The evolutionary 

metaheuristics use some mechanisms inspired by biological evolution: reproduction, 

mutation, recombination, and selection. Candidate solutions to the optimization 

problem play the role of individuals in a population, and the fitness function deter-

mines which individuals survive to the next generation. Evolution of the population 

takes place with repeated applications of the above procedure. 
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Based on the characteristics of the LTCPP, both the two families are considered 

interesting to be applied to solve our problem. In the swarm intelligence family, we 

select the most commonly used algorithm structure, Ant Colony Optimization, since it 

has been proven to be an effective solver for a broad range of transportation problems, 

and more important, its good ability in constructing path in a graph encourages their 

use for our problem, since identifying the routes for users is an importance phase in 

the LTCPP. 

 For this purpose, we present in this thesis a Clustering Ant Colony Algorithm for 

solving the long-term car pooling problem. The algorithm is based on the Ant Colony 

Optimization paradigm. A preference mechanism is designed to merge the clustering 

and routing operations together in order to gain a good ability to obtain high solution 

quality. The approach is proven to be able to track high quality solutions in the search 

space. 

 In the evolutionary algorithm family, our selection is the Genetic Algorithm. The 

Genetic Algorithm does not appear to have made a great impact so far on the car 

pooling problem, but grounding on the specification of the LTCPP, which is a 

combination of clustering and routing, we believe Genetic Algorithm is a suitable 

paradigm for solving this problem on the basis of its good exploration ability and 

flexible chromosome representation. 

 Therefore, we developed a Guided Genetic Algorithm for solving the long-term 

car pooling problem. In the Guided Genetic Algorithm, the composition of the better 

individuals will always be memorized and updated. Then this information will be used 

for guiding the genetic operators, in order to produce more feasible offspring solutions 

with high solution quality. Moreover, an adaptive parameter control is designed to 

maintain the balance between the intensity and the diversity of the search process. 

Although the two population-based metaheuristics are proven to be able to provide 

good solution quality, some weaknesses in solving the LTCPP appears during our 

research. First, although the use of metaheuristics allows to significantly reducing the 

computational complexity of the search process, the latter remains time or memory 

consuming for the large size instances. Second, the algorithm’s ability to explore 

other areas of the search space is significant decreased after the convergence to an 

optimum. Third, the population-based algorithms require a large number of accurate 

parameter settings in order to obtain good search ability, thus a complex and time 

consuming parameter testing phase is required. At last, the structures of the algo-

rithms are always fixed, thus the new operators or constraints are hard to insert into or 

remove from the system without modifying the algorithm structure. Therefore, an 

improved approach for solving the LTCPP is required.  

This can be achieved by a multi-agent system with hyper-heuristic. Multi-agent 

systems is a subfield of Artificial Intelligence research dedicated to the development 

of distributed solutions to complex problems regarded as requiring intelligence. It is 

designed to improve the computational speed and to maintain the diversity after the 

convergence by communicating among the agents. The hyper-heuristic is defined as 
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using heuristics to choose heuristics. The fundamental difference between metaheuris-

tics and hyper-heuristics is that most implementations of metaheuristics search within 

a search space of problem solutions, whereas hyper-heuristics always search within a 

search space of heuristics. Thus, hyper-heuristics are used to find the most suitable 

heuristic or sequence of heuristics in a given situation, so the design of each indi-

vidual heuristic becomes more flexible. Furthermore, with the hyper-heuristic, any 

new operator can be easily inserted into the system without modifying the system’s 

structure, since the hyper-heuristic will select the most appropriate heuristic to apply. 

Thus, we investigate in this thesis to merge a population-based metaheuristic with 

the multi-agent system and the hyper-heuristic. For this purpose, we elaborate a 

Multi-agent Self-adaptive Genetic Algorithm for solving the long-term car pooling 

problem. 

In the last phase of our research, we extend our work to the daily car pooling prob-

lem (DCPP). In the DCPP, a number of users declare their availability for picking up 

or bringing back other users on one particular day. Hence, these users are considered 

as servers, and the other users being picked up or bringing back are considered as 

clients. Then the problem becomes to assign clients to servers and to identify the 

routes to be driven by the servers. According to our observation to the daily car pool-

ing applications, we realized a fact that users going to different destinations normally 

are separated into different car pool projects even they live in the same neighborhood. 

In reality, different car pooling projects may have the destinations close to each other, 

but the current daily car pooling program will divide users according to their destina-

tions, only the users going to the same destination are pooled together, even a lot of 

servers travel pass other destinations before reaching their own destinations with an 

empty car. Servers are not able to pick up their neighbors because the neighbors go to 

different destinations, even these destinations will be passed by the servers during 

their journey. This situation greatly decreases the effectiveness of serving the users 

and potentially increased the travel cost of all the participants in the daily car pooling 

project, since if a server can pick up other clients who go to the destinations other 

than the server’s own one, the total travel cost can be greatly decreased.  

Thus, a new daily car pool model which includes multiple destinations in one pro-

gram is defined in this thesis. The server in multi-destination daily car pooling can 

pick up clients who go to different destinations as long as the server can accept the 

length of the detour he/she has to make. Two servers in the model can be given a 

transfer point, where the clients can change vehicles in order to reach their destina-

tions in time and avoid the server to make long detours. 

A resolution approach is also designed for the MDCPP. The method is a hybrid ap-

proach based on the Ant Colony Optimization paradigm. Experiments are performed 

to confirm the ability of the approach in solving the MDCPP. 

During our research, two platforms are developed. The first platform is designed 

for the test, demonstration, evaluation and comparison among all the approaches for 

solving the LTCPP. The parameters, solutions and result evaluations can be viewed in 
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a graphical interface, which aids and facilitates all the operations. The second plat-

form is a web based application designed for car pooling service of the students of 

Artois University. The car pooling participants can submit their requests and the 

platform generate the routes and schedules by using the metaheuristics introduced in 

this thesis. The platform integrates Google Map API, so the routes for the participants 

can be tracked and viewed graphically.  

All abovementioned aspects are addressed in this thesis, providing a holistic view 

on the challenges and opportunities of applying metaheuristics to the car pooling 

problem, and suitable novel approaches are developed for each aspect. 

The structure of this thesis is described as follows: 

• Chapter 1 gives a general overview on the long-term car pooling problem. The 

mathematical model for the problem is presented. Afterwards, existing approaches to 

the problem are introduced, as well as the resolution approaches to the problems 

related to the long-term car pooling problem. Finally, the benchmark sets used in our 

experimentations are introduced. 

• Chapter 2 deals with solving the long-term car pooling problem with trajectory- 

based metaheuristics. It begins with the common concepts of this class of metaheuris-

tics. Then, a Variable Neighborhood Search is proposed for solving the LTCPP. A 

comparison with respect to the solution quality and execution time of our approach 

and another existing approach is performed. 

• Chapter 3 concerns the design and implementation of the swarm intelligence 

family of the population-based metaheuristics for solving our problem. The common 

and specific search concepts of this class of metaheuristics are outlined. A Clustering 

Ant Colony Algorithm is proposed. Comparison is carried out to test the performance 

of the approach. 

• Chapter 4 introduces the design and implementation of the evolutionary algo-

rithm family of population-based metaheuristics for solving our problem. The com-

mon and specific search concepts of this class of metaheuristics are outlined. Then, a 

Guided Genetic Algorithm and a Multi-agent Self-adaptive Genetic Algorithm are 

presented. Experimental results are provided to show the efficiency and effectiveness 

of the two approaches. 

• Chapter 5 addresses to the multi-destination daily car pooling problem. The 

mathematical model of MDCPP will be presented at first. Then the resolution 

methods, a Hybrid Ant Colony Algorithm for the MDCPP, will be outlined. At last, 

experimental results are examined and compared in order to evaluate the performance 

of the resolution method.    

This thesis is concluded with a summary of our contributions and an outlook on the 

future work. In the appendix one, we demonstrates the platform designed for imple-

menting and evaluating the different approaches for solving the long-term car pooling 

problem, as well as the platform developed for a real-world long-term car pooling 
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service. The structure, detailed functions and graphical interface of each platform are 

presented.  
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Abstract 

In this chapter we give a general overview on the long-term car pooling problem. The 

mathematical model for the problem is presented. Afterwards, existing resolution 

approaches to the problem as well as the ones to the problems related to the long-term 

car pooling problem are introduced. Finally, the benchmark sets used in our experi-

mentations are introduced
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1.1 Background introduction 

Nowadays, along with the increase of population and the dispersion of habitation, 

public transport service is often incapable of effectively servicing the areas where 

cost-effective transportation systems cannot be set up. As a result, more and more 

people use private vehicles for their daily transportation. However, the high use of 

private vehicles combined with increased human mobility increases the load on the 

environment and raises transportation issues such as congestion, parking problem and 

low transfer velocity. 

In order to ease these issues, different innovative mobility services are emerging. 

Car pooling is a mobility service proposed and organized by large organizations, such 

as large companies, public administrations and universities. These organizations en-

courage their employees or students to pick up or take back colleagues or schoolmates 

while driving to or from a common site. The service tries to decrease the number of 

private vehicles travel on the road by improving the average car occupancy.  

In fact, the car pooling has existed for more than 60 years. It first became promi-

nent in the United States as a rationing tactic during World War II. It was popular in 

the 1970s due to the 1973 oil crisis and the 1979 energy crisis. At that time the first 

employee carpool programs were organized at Chrysler and 3M. However, since the 

1970s carpooling has declined significantly all around the world, it peaked in the 1980 

with a commute mode share of 19.7%. But since the 1990s, affected by the increasing 

cost of petrol and rising number of private vehicles, car pooling came back into the 

public eye. In the beginning of 20th century, the popularity of the Internet and mobile 

phones has greatly helped carpooling to expand by enabling people to find and con-

tact car pool members more easily. With such background, the car pooling service 

now is experiencing the most prosperous time.  

The reason why people join the car pooling system is that car pooling reduces 

travel costs by sharing journey expenses such as fuel, tolls and car rental between the 

travelers. It is also a more environmentally friendly and sustainable way to travel, as 

sharing journey reduces carbon emission, traffic congestion and requirement for park-

ing space. Car pooling can also decrease driving stress since each driver has only to 

drive in one or two days during one week. It also creates increased social interaction 

between friends, neighbors and colleagues. As a matter of fact, it can enhance the sense 

of connectedness within the community as a small social network.  

After several years of fast development, car pooling has already been considered 

as an important alternative transportation service throughout the world. As an effort to 

reduce traffic and encourage car pooling, some countries have introduced high occu-

pancy vehicle (HOV) lanes where only vehicles with two or more passengers are 

allowed to drive. In some countries it is also common to find parking spaces that are 

reserved especially for car poolers. Many companies and local authorities have intro-

duced car pooling schemes, often as part of wider transport programs.  
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Successful car pooling development has tended to be associated mainly with 

non-urban areas such as suburbs and more recently universities and other campuses. In 

the US, most of the universities have introduced the car pooling system to their stu-

dents. The Seattle Smart Traveler [Meyers et al., 1999] was a funded experimental 

study into the proposition of a car pooling scheme at the University of Washington. It 

followed from earlier work in Seattle on the Bellevue Smart Traveler [Blumenthal et 

al., 1997]. Also, the Zimride system is currently being used by nearly one hundred 

universities and colleges, and more than 30 universities and colleges in Boise state 

have applied the Zipcars system to their students and employees. In France, a large 

number of universities also has participated the car pooling program. The largest 

student car pooling website, provided by RoulezMalin Company, has currently more 

than 50000 participants. However, most of the car pooling systems use only simple 

matching rules instead of a global optimization process. 

The main goal of this chapter is to present an overview of the long-term car pool-

ing problem and methods from literature for its resolution. The structure of this chap-

ter is organized as follows. Section 1.2 describes the classification and definition of 

the car pooling problem. The mathematical representation of the long-term car pool-

ing problem is introduced in section 1.3. In section 1.4, we give a summary in two 

subsections. In the first subsection we present the existing works for solving the 

long-term car pooling problem, while in the second one we introduce some problems 

which are related to the long-term car pooling problem and their resolution methods. 

Section 1.5 presents the benchmarks used in our experimentations. Finally, section 1.6 

gives the conclusion of this chapter. 

 

 

1.2 Car pooling problem classification 

 According to the different procedures of using the car pooling service, we categorize 

car pooling problem into two different forms: Daily Car Pooling Problem (DCPP) and 

Long-term Car Pooling Problem (LTCPP).  

 In the DCPP, a number of users declare their availability for picking up or bringing 

back other users on one particular day. Hence, these users are considered as servers, 

and the other users being picked up or bringing back are considered as clients. Then 

the problem becomes to assign clients to servers and to identify the routes to be driven 

by the servers. Since in the DCPP, the servers and the clients are known in advance, 

the objective is to construct path starting from each server and going through as many 

clients as possible with respect to the car capacity and time window constraints, and 

to minimize the total travel cost. Based on this view, the DCPP can be considered as a 

special case of the Dial-a-Ride Problem (DARP) [Healy and Moll, 1995] or Vehicle 

Routing Problem with Time Windows (VRPTW) [Kallehauge et al., 2005].  
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 The DCPP model is based on daily schedule, so the participants change every day. 

It is a model normally used by the commercial website which organizes daily car pool 

service among different members. Figure 1.1 shows an example of the DCPP. 
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Destination
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Figure 1.1: An example of the DCPP. 

  

 On the contrary, in the LTCPP, each user has to act as both a server and a client and 

a solution is to define car pools where each user will in turn, on different days, pick up 

the remaining pool members. The objective becomes to minimize the amount of vehi-

cles used and the total distance traveled by all users, subject to car capacity and time 

window constraints. The LTCPP can be considered as a combination of a clustering 

problem and a routing problem. It requires finding the car pool members relatively 

close to each other and identifying the route and schedule for each member in the car 

pool. Figure 1.2 presents an example of LTCPP. 
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Figure 1.2: An example of the LTCPP. 



Introduction 

14 

 The LTCPP model is a more stable car pooling model, the users in LTCPP will 

not change frequently in a relatively long period of time. This model is usually used 

by large companies, organizations and universities which provide long-term car pool 

service for their employees or students.  

 In the academic point of view, based on the similarity between DCPP and DARP 

and the various successful implemented approaches for DARP, solving the DCPP can 

simply be done by adapting the approaches from DARP with modifications.  

 On the other hand, we believe the LTCPP is a more valuable topic for research, 

since it has its own characteristics which are different from other vehicle routing 

problem. For instances, the problem requires clustering users into car pools based on a 

long-term schedule, and each car pool member has to act as a server on a different day. 

Thus, the server of a car pool has different departure location on different days.  

 In spite of its research value, the LTCPP has so far received little attention from the 

optimization community. Only few researches have been carried out on this problem, 

however, these studies are either time consuming or lacking of solution quality when 

dealing with large scale instances. Therefore, based on the abovementioned considera-

tions, the LTCPP is chosen to be the focused car pooling type in our research. 

 

 

1.3 Mathematical representation 

In this section, we provide the definition and the mathematical formulation which are 

necessary for understanding the LTCPP. 

1.3.1 Mathematical model 

The LTCPP problem can be modeled by means of a directed graph G = (U∪{0}, A), 

where U is the set of users, and A={arc(i, j) / i∈U, j∈U∪{0}} is the set of arcs. 

Each user u∈U is associated with a home and node 0 represents the destination, 

respectively. A is a set of directed weighted arcs where each arc(i, j)∈A is associated 

with a positive travel cost costij and a travel time tij. Each user enlisted in the 

long-term car pooling specifies: the maximal driving time T that the user is willing to 

accept; the earliest time e for leaving home; the latest time r for arriving at work and 

the capacity Q of the user’s car. Note that pools are considered to be stable during a 

period of time and will not change frequently. This entails that the number of 

members in a pool will be at most equal to the capacity of the smallest vehicle among 

those owned by all pool members, since each member will eventually pick up all 

other ones. 

The LTCPP is a multi-objective problem, requiring minimizing the amount of car 

pools and the total travel cost of all users. However, we combine these two objectives 

in a single objective function by using a penalty concept. The LTCPP then can be 

formulated as an integrated program presented as follows. 
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Define a pool k of users and let |k| be the size of this pool. Each user of pool k, on 

different days, will use his/her car to pick up the remaining car pool members and 

then drive to the common destination. Thus each user has to find a Hamiltonian path 

starts at the node associated to his/her home, and then passes through all other nodes 

corresponding to his/her pool members’ homes exactly once and ends at the common 

destination, shown in figure 1.3. Let ham(i,k) be the above mentioned Hamiltonian 

path, starting from i∈k, connecting all j∈k\{i} and ending in 0. Suppose |k| ≤ Qk, 

where Qk being the smallest capacity of all the cars in pool k since each car will 

eventually pick up all other pool members and all users’ time window constraints are 

satisfied. The cost for a user driving to the destination directly from his/her home is 

denoted by costi0, while pi is a penalty value incurred when the user travels alone. 

Then, the cost of pool k is defined in Equation (1.1). 
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The total cost of a complete solution to the LTCPP is then defined to be the sum of 

the costs of all the pools, shown in Equation (1.2).  

    


Kk
ktKt coscos                          (1.2) 

where K is the set of all car pools.  
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Figure 1.3: Schedules of the participants of a car pool in the LTCPP. 

 

This view optimizes at the same time both objective functions. In our mathematical 

model, the penalty of a user driving alone is set to be much higher than the cost when he 
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drives directly from his/her home to the destination, so it is always more convenient to 

pool users together than to leave them alone. 

The LTCPP being NP is easily shown since guessing a partition is done in linear 

time and computing the validity of the constraints is done in polynomial time. In the 

paper of Varrentrapp et al. [2002], a NP-complete problem, Partition into Triangles 

Problem (PT), has been transformed into the LTCPP while preserving solutions, 

which proves the LTCPP to be NP-complete. 

 

1.3.2 Objective function 

The problem can be translated in a four index formulation considering the variables:  

 xij
hk : Binary variable equals to 1 if arc(i,j) is traveled by a server h of a pool k;  

 yik: Binary variable equals to 1 if user i is in pool k;  

 ξi: Binary variable equals to 1 if user i is not pooled with any other user;  

 Si
h: Positive variable denoting the pick-up time of user i by server h;  

 Fi
h: Positive variable denoting the arrival time of user i at the destination when 

traveling with server h;  

 costij: Positive value denoting the travel cost between users i and j; 

 tij: Positive value denoting the travel time between users i and j; 

 Qk: Positive value denoting the capacity of pool k; 

 Th: Positive value indicating the maximal driving time when user h acts as a 

server; 

 ei: Positive value indicating the earliest time for leaving home of user i; 

 ri: Positive value indicating the latest time for arriving at work of user i; 

 pi: Positive value indicating the penalty for user i when he/she travels alone; 

 K: Index set of all pools;  

 U: Index set of all users; 

 A: Index set of all arcs. 

 

The objective function is shown in Equation (1.3): 
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Equation (1.4) and (1.5) force a user i to be declared to be in pool k, if there is a path 

originated in h going from i to j or j to i; equation (1.6) is continuity constraint. 

Equation (1.7) forces each user to be assigned to a pool or to be penalized, while (1.8) 

and (1.9) are car capacity and maximal driving time constraints, respectively. Equation 

(1.10) and (1.11), where M is a big constant, collectively set feasible pick-up times, 

while (1.12) and (1.13) set minimum and maximum values of feasible arrival times, 

respectively. Constraints (1.14) to (1.16) are binary constraints while (1.17) and (1.18) 

are positivity constraints. 
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1.4 Related works 

We present an overview of the methods designed for solving the long-term car 

pooling problem in this section. Since the literature of long-term car pooling problem 

is very limited, in order to enhance the background knowledge and obtain a compre-

hensive understanding of our problem, we also studied a few problems which are 

related to the long-term car pooling problem, and the methods designed for solving 

these problems.  

 

1.4.1 Methods for solving the LTCPP 

On contrary to the popularity of its related problems, only a very small amount of 

literature can be found for the LTCPP. Different approaches to resolve the long-term 

car pooling problem in literature include a Saving Functions Based Algorithm [Ferrari 

and Manzini, 2003], an ANTS Algorithm [Maniezzo et al., 2004], a Simulation Based 

Approach [Correia and Viegas, 2008] and a Multi-Matching System [Yan et al., 2011]. 

In this section, we categorize the solving methods into two main types: heuristics and 

metaheuristics. 

 

1.4.1.1 Heuristics  

During the design of an approach, heuristics are usually combined with some author 

defined strategies. Generally, the strategy refers to the approaches with simple poli-

cies, which facilitate or aid the heuristics by categorizing the users with restricted con-

straints. In the LTCPP, strategies have been normally defined to divide users into sub-

groups based on geographical distances or departure time differences between users. 

The strategies are related to specific conditions, which can only provide a general 

categorization or decomposition of an instance. Then, heuristics are employed to im-

prove the performance and the solution quality of the approach.  

Heuristic refers to experience-based techniques for problem solving, learning, and 

discovery. When an exhaustive search is impractical, heuristic methods are used to 

speed up the process of finding a satisfactory solution. Heuristic is designed to solve a 

problem that ignores whether the solution can be proven to be correct, but which usu-

ally produces a good solution or solves a simpler problem that contains or intersects 

with the solution of the more complex problem. A heuristic method can accomplish 

its task by using search trees. However, instead of generating all possible solution 

branches, a heuristic is selective at each decision point, and it selects branches more 

likely to produce outcomes than other branches. It is intended to gain computational 

performance or conceptual simplicity, potentially at the cost of accuracy or precision. 

In heuristic, each successive iteration depends upon the step before it. Therefore, 

some possibilities will never be generated as they are measured to be less likely to 
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achieve a good solution. Heuristics essentially consists in constructive and improve-

ment procedures. Constructive heuristics create initial solutions, i.e., set of routes, 

from a graph. On the contrary, as support mechanisms, improvement procedures im-

prove previously constructed solutions by performing reassignment moves. The stud-

ies of the Saving Functions Based Algorithm, the Simulation Based approach and the 

Multi-Matching System fall into the categorization of heuristic. 

 In the Saving Functions Based Algorithm [Ferrari and Manzini, 2003], a heuristic 

data processing routine is designed to support efficient matching in car pool schemes. 

These are based on savings functions and belong to two distinct macro classes of 

algorithms to give two different modeling of this problem. The work is highly focused 

on modeling the problem instead of the solving phase. The solving methods are 

relatively simple by matching different users with the support of the car pool model. 

The approach is proven to be able to provide a large percentage in saving the travel 

distances in real applications. However, the approach highly depends on the distribu-

tion of the users, only the benchmarks with cluster distributed users were able to 

obtain good results. 

 The simulation-based method [Correia and Viegas, 2008] uses a divide-and-con-

quer approach. The heuristic that is used in the divide stage is the K-means clustering 

algorithm [Macqueen, 1967] which allows classifying objects based on attributes into 

a number of groups. The grouping is done by minimizing the sum of squares of 

distances between the users and the corresponding cluster centroid. The authors 

believe that geographic proximity does not guaranty for itself a good match between 

users, thus the departure and arrival time of the users was also considered as part of 

the distance between the users and the corresponding cluster centroid. The process 

starts with using the K-means clustering algorithm to divide all the users into small 

clusters such that each small cluster can be processed by the optimization software in 

an acceptable period of time. Then, all the small clusters are sent to the optimization 

software to search for the possible group combinations. The users that were not able 

to find a match in the previous iteration are set together for another iteration. The 

approach is tested on real-world cases. Since the approach solves the problem with the 

aid of optimization software, it has the ability to provide good quality solutions. 

However, in the real-world instances presented by the authors, the large differences 

between the users’ time windows greatly decrease the matching rate among users. 

 In the study of Multi-Matching System [Yan et al., 2011], authors develop a 

many-to-many OD matching model, in order to perform fast grouping among the car 

pool users. In the model, authors define several constraints based on the geographical 

distance, ideal departure time difference and ideal arrival time difference between 

each two users, the model also requires some additional characteristics from users, 

such as smoking habit and gender, in order to facilitate the grouping among users. For 

instances, some non-smoking users require only non-smoking car pool members, 

some female users require only female car pool members, etc. Then, the authors 

develop a heuristic algorithm based on Lagrangian relaxation [Fisher, 1981] with 
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subgradient method [Yan, 1996] to solve the problem. The Lagrangian relaxation with 

subgradient method is used for the approximation of near-optimal solution. Firstly, a 

few constraints are relaxed to construct a Lagrangian problem, which is then solved to 

procure a lower bound for the optimal solution. Secondly, a Lagrangian heuristic is 

applied to solve for the upper bound of the optimal solution. A sub-gradient method is 

then utilized to revise the Lagrangian multipliers, by iterating the lower and upper 

bounds, until an acceptable convergence result is reached, or until the number of 

iterations exceeds a preset number. According to the experimental results, the model 

is proven to be an effective tool to group car pool members promptly. However, the 

computing time for large size instances usually exceeds several hours, which is 

considered too time-consuming for the real-world application. 

  

1.4.1.2 Metaheuristics  

Metaheuristic designates a computational method that optimizes a problem by itera-

tively trying to improve a candidate solution with regard to a given measure of quality. 

Metaheuristics make few or no assumptions about the problem being optimized and 

can search very large spaces of candidate solutions. They can temporarily accept 

some worse solutions during the optimization procedure. Thus, it is possible to drive 

the search out of local optima. The rules for accepting the worse solutions are termed 

diversifications. With the diversification mechanism, metaheuristics can generate 

global optimum and are insensitive to initial solutions. However, metaheuristics do 

not guarantee an optimal solution is ever found. Moreover, metaheuristics contain 

many case-sensitive empirical parameters, which may cause some difficulties for 

practical implementations. 

 The Acronym of Approximated Non-deterministic Tree Search (ANTS) algorithm 

[Maniezzo et al., 2004] is the only metaheuristic can be found in the literature for 

solving the LTCPP.  

 The authors firstly define several reduction rules, and use these rules to remove 

from the graph representing the LTCPP problem a number of arcs which cannot 

belong to any feasible solution, in order to reduce the complexity of the problem. 

Then, to solve the problem, the authors apply the ANTS algorithm, which is an 

extension of the Ant Colony Optimization [Dorigo et al., 1996]. The authors specify 

some under defined elements of the original ACO algorithm, such as the attractive-

ness function to use or the initialization of the trail distribution. This turns out to be a 

variation of the general ACO framework that makes the resulting algorithm similar in 

the structure to tree search algorithms. At each stage, the algorithm has a partial 

solution which is expanded by branching on all possible offspring; a bound is then 

computed for each offspring, possibly fathoming dominated ones, and the current 

partial solution is selected among that associated to the surviving offspring on the basis 

of lower bound considerations.  
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 Further components of the algorithm include a local search procedure, imple-

mented as a Variable Neighborhood Search. The procedure consists of a main loop 

considering in turns each neighborhood. Each neighborhood is used to obtain its local 

optimum, and then the next neighborhood is considered. The optimization stops when 

no neighborhood is capable of improving the current solution.  

 The approach provides good solution quality, but the structures of the tree-search 

and the variable neighborhood search result in less efficiency when dealing with large 

scale instances. 

 

 

1.4.2 Related problems and solving methods 

1.4.2.1 Daily car pooling problem 

The daily car pooling problem is structurally different from the long-term car pooling 

problem. Unlike the LTCPP which each user has to act both as a server and a client, 

the roles of a server and a client are fixed and known beforehand at the beginning. 

Therefore, the DCPP focuses on constructing the routes start with each existing server. 

The methods of assigning clients to servers in the DCPP can be interesting for the 

LTCPP. Thus, the approaches for solving the DCPP become valuable in our research.  

 The DCPP is NP-hard since in a special case it contains the Vehicle Routing 

Problem with unit client demands, which is known to be NP-hard in the strong sense. 

Some authors [Kothari, 2004; Vargas et al., 2008; Maurizio et al. 2011] define a few 

simple matching rules to build car pools in order to obtain fast matching speed; 

however, a good solution quality cannot be guaranteed.  

 For instance, in the work of Kothari [2004], a multi-agent car pooling system 

called Genghis system is developed. The system is designed through the Gaia 

methodology and implemented on a FIPA-compliant Jade platform. In the car pool 

building phase, two primitive pool types are built, and the authors define a few 

fundamental constraints for choosing reasonable matches between clients and servers. 

An algorithm is developed to generate route proposals for the users. The algorithm 

picks a client only once and continues matching the client to proposed servers until all 

the proposed servers are examined. The proposed server is selected based on the 

distance between the client and the direct route from the server to the server’s destina-

tion. For each client, the algorithm proposes a maximum 5 available drivers, then for 

each proposed driver, the algorithm matches him to the client in a hierarchy of 4 

Levels. Each level consists in a matching constraint, such as user preference, distance 

constraint, time window constraint and cost constraint. The client may be rejected at 

any level of the matching. Each match will be evaluated and rated, and the matching 

which has the highest rating will be selected. Then the algorithm will select another 

client and continue the matching process until all the clients are matched with servers 
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or all servers’ capacities are reached. The Genghis system is designed for solving 

small size instances in an efficient way, but minimizing the total travel cost is not 

taken into consideration in this system. 

 To obtain a good solution quality, other authors use heuristics and exact algo-

rithms to solve the DCPP. The interesting studies include a distributed geographic 

information system [Calvo et al., 2004] and an exact algorithm based on Lagrangian 

Column Generation [Baldacci et al., 2004]. 

 In the distributed geographic information system, the authors present an integrated 

system for the organization of a car pooling service. The core of the system is an 

optimization module which solves heuristically the specific routing problem. The 

procedure includes a construction phase and a local optimization phase. The algorithm 

starts with no employee routed and an idle fleet of vehicles. A number of new routes 

equal to the number of servers are initialized as direct paths from each server to the 

destination, then, as long as possible, single clients are inserted into existing routes with 

a greedy algorithm. Then, from the initial solution produced by the procedure de-

scribed above, better ones are obtained by means of a local search algorithm.  

 In the study of the exact algorithm based on Lagrangian Column Generation, 

authors propose an exact method for the car pooling problem. This method is based 

on two integer programming formulations of the DCPP. The first formulation is a 

commodity flow formulation using three-index variables, while the second formula-

tion models the DCPP as a set-partitioning problem whose variables correspond to 

feasible paths or to clients to be left unserved. A valid lower bound on the optimal 

DCPP cost is computed as the cost of a feasible dual solution of the LP relaxation of 

the set-partitioning problem; the solution is obtained by combining three different 

relaxations of the two formulations. The dual solution and a valid upper bound 

obtained by a heuristic algorithm based on the bounding procedure are then used to 

eliminate feasible paths that cannot belong to any optimal solution; thus the resulting 

reduced set-partitioning problem can be solved by a branch-and-bound algorithm. The 

main contributions of this research are the new bounding procedures for computing a 

feasible dual solution of the set-partitioning formulation and the method for generat-

ing a reduced set-partitioning problem that is used to find an optimal solution.  

 

1.4.2.2 Dial-a-ride problem 

The dial-a-ride problem (DARP) involves designing vehicle routes and schedules to 

satisfy a set of travel requests. The vehicle fleet departs from one or several depots. A 

travel request consists of picking up a certain client at a predetermined pickup loca-

tion during a specified departure time interval and transporting the client to a prede-

termined drop off location to be reached within a specified arrival time interval. The 

departure and arrival time windows are based on desired pickup or delivery time re-

quests specified by the client. The aim is to design a set of minimum cost vehicle 

routes capable of serving as many requests as possible, under a set of constraints. 
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Based on the modeling point of view, the DARP is a generalization of the capaci-

tated pickup and delivery problem with time windows (PDPTW), which was first 

studied by Wilson et al. [1971]. The DARP is similar to DCPP in many perspectives. 

Both of them have to define routes to pick up and drop off clients within predefined 

time windows. The main characteristics make DARP different from DCPP are the 

departure and arrival points of the vehicles. In DARP, all vehicles depart from one or 

several fixed depots and return to these depots after the service, whereas the servers in 

DCPP depart from their own homes which are random distributed and end the trip at a 

common destination of the passengers in the vehicles. In the literature, it is common 

to consider a DCPP as a special type of DARP, which makes the studies on DARP 

become interesting to our LTCPP research. 

Unlike DCPP and LTCPP, extensive studies were carried out on DARP research. 

DARP services may operate in a static or a dynamic mode. Since in practice the trans-

portation requests are usually known in advance, most of the researches have focused 

on static DARP. The DARP has been proven to be NP-hard [Healy and Moll, 1995], 

but efforts were still made to solve the problem with exact algorithms. Early ap-

proaches [Psaraftis, 1980] dedicate to solve single-vehicle problems using pure dy-

namic programming (DP) method. However, due to the complexity of the problem, 

the amount of vehicles is limited to one per problem. Then Desrosiers et al. [1986] 

introduced the concept of dominance to reduce intermediate states. This technique 

greatly improves the speed of the DP process if the problem is subjected to strong 

constraints. Based on this approach, some multi-vehicle problems can be exactly 

solved by the combination of the column generation method and the branch and 

bound process [Dumas et al., 1989]. But the exact approach still has a strong limita-

tion on the size of instances it can solve.  

Because of the complexity of the DARP and the large size instances in real ap-

plication, the most popular approaches are still heuristics. Sexton and Bodin [1985a; 

1985b] developed an insertion heuristic algorithm to solve the problem. The objective 

of the algorithm is to minimize a user’s inconvenience function, which is defined 

based on the weighted sum of two values. The first value measures the difference be-

tween the actual travel time and the direct travel time of a server. The second value 

calculates the difference between the willing drop off time and the actual drop off 

time of a passenger. Jaw et al. [1986] proposed a heuristic approach which selects us-

ers in the order of earliest feasible pickup time and gradually inserts them into vehicle 

routes in order to yield the least possible increase of the objective function. Other 

sequential insertions are also commonly used. For instance, in the work of Cordeau et 

al. [2001], the insertion is performed according to the nearest distance or the mini-

mum cost. Toth and Vigo [1997] have proposed a heuristic method. The method 

firstly assigns requests to routes by means of a parallel insertion procedure, and then 

performs intra-route and inter-route exchanges. The tests show significant improve-

ment, the exchange phase is very useful in optimize the solution obtained in the paral-

lel insertion phase.  
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Another well-known method, which is cluster first and route second [Bodin and 

Sexton, 1986] is also applied in solving the DARP. In the method, the geographically 

close clients are clustered together before applying the routing algorithm to each clus-

ter. In the first step, a large set of clusters is constructed and a set partitioning problem 

is then solved to select a subset of clusters serving each user exactly once. Then in the 

second step, feasible routes are enumerated by combining clusters, and a second set 

partitioning problem is solved to select the best set of routes covering each user ex-

actly once. Since the time windows could be different between the clients geograph-

ically close, the method of mini-clusters is developed [Ioachim et al., 1995]. The 

mini-clusters consider grouping the geographically close users who have the similar 

time windows.  

Calvo and Colorni [2002] have proposed a heuristic for a particular version of the 

DARP where the number of available vehicles is fixed as well as the time windows 

for picking up and dropping off passengers. The algorithm first attempts to service as 

many users as possible and then minimizes user inconvenience expressed as the sum 

of waiting time and excess travel time. The heuristic firstly constructs a set of routes 

and a number of sub-tours by solving an assignment problem. A routing phase is then 

performed to insert the sub-tours in the routes and to re-sequence the clients within 

the routes.  

Tabu search is also applied to the DARP by Cordeau and Laporte [2003]. The 

passengers have to specify a time window on the arrival time of their outbound trip 

and on the departure time of their inbound trip, and a maximum ride time is also 

associated with each passenger. Capacity and maximum route length constraints are 

imposed on the vehicles. The search algorithm iteratively removes a transportation 

request and reinserts it into another route. Infeasible solutions are allowed during the 

search by using a penalized objective function. Also, the minimum duration schedule 

associated with each candidate solution is computed. According to the experimental 

results, the approach can provide good solution for large size instances. 

 

1.4.2.3 Vehicle routing problem with time windows 

Generally, a vehicle routing problem with time windows (VRPTW) is to use a set of 

vehicles to serve a group of clients. The objective of a VRPTW involves delivering 

goods from a depot to a set of geographically scattered clients. The routes must be 

designed in such a way that each point is visited only once by exactly one vehicle 

within a given time interval; all routes start and end at the depot. The vehicles have 

limited carrying capacity and the total demands of all points on one particular route 

must not exceed the capacity of the vehicle. The VRPTW has multiple objectives 

which are to minimize not only the number of vehicles required, but also the total 

travel time or total travel distance incurred by the fleet of vehicles.  

The VRPTW is a well-known problem widely studied by the optimization com-

munity and has a huge number of publications. The methods developed for VRPTW 
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can be a very important asset to any transportation related problems. Because of the 

lack of literature in LTCPP, we studied the metaheuristics for solving VRPTW, in 

order to gain some inspiration for developing our approach for solving the LTCPP. 

Tabu search (TS) is a popular approach for solving VRPTW. It is a local search 

metaheuristic introduced by Glover [1986]. The initial solution of TS is normally cre-

ated with some simple insertion heuristic. The most common one is Solomon’s inser-

tion heuristic [Solomon, 1987]. Other insertion heuristics can also be easily found in 

literature. De Backer and Furnon [1997] use a savings heuristic; Tan et al. [2000] 

perform a modified Solomon’s insertion heuristic, and Cordeau et al. [2001] use a 

modified sweep heuristic. Lau et al. [2003] introduce the concept of a holding list, 

which is a data structure containing the unserved clients. In the beginning all clients 

are stored in the holding list, and simple relocate and exchange operators are then 

used to move clients up and down from the holding list.  

After creating an initial solution, the usual next step is to improve it using local 

search with one or more neighborhood structures. Most of the neighborhoods used are 

well known, such as 2-opt, Or-opt, relocate, and exchange. In order to reduce the 

complexity of the search, the authors usually propose their own special strategies for 

limiting the size of the neighborhoods. For instance, Garcia et al. [1994] only allow 

moves involving arcs that are close in distance. Taillard et al. [1997] decompose solu-

tions into a collection of disjoint subsets of routes by using the polar angle associated 

with the center of gravity of each route. Tabu search is then applied to each subset 

separately. A complete solution is reconstructed by merging the new routes found by 

tabu search. To maintain the diversity of their search, some authors allow infeasibili-

ties during the search, and the violations of the constraints are punished by using a 

penalty concept in the objective function. For instance, Lau et al. [2003] allow viola-

tion of the vehicle capacity and time windows constraints, but penalize the violations 

of constraints in the cost function. 

The genetic algorithm (GA) is the most favored approach on VRPTW. GA 

evolves a population of individuals encoded as chromosomes by creating new genera-

tions of offspring through an iterative process until some convergence criteria are met. 

The best chromosome generated is then decoded, providing the corresponding solu-

tion. Although theoretical results that characterize the behavior of the GA have been 

obtained for bit-string chromosomes, not all problems can be easily represented in this 

way. For the vehicle routing problem, an integer representation is more often selected, 

since it is more convenient in corresponding to the problem. Therefore, in most ap-

plications to VRPTW, the genetic operators are applied directly to solutions, repre-

sented as integer strings, thus avoiding encoding and decoding operations. The crea-

tion of a new generation of individuals involves four major steps: initialization, selec-

tion, recombination, and mutation. 

The initial population is typically created either randomly or using modifications 

of well-known construction heuristics. In the work of Thangiah et al. [1995], the cli-

ents are randomly clustered into separate groups and then a cheapest insertion heuris-
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tic is used to route clients within each group. Berger et al. [2003] modify a randomly 

generated initial population with exchanges and a re-initialization procedure based to 

create a population of solutions with the number of vehicles equal to the lowest found. 

The most typical selection method for selecting a pair of individuals for recom-

bination or mutation is the well-known roulette wheel selection mechanism. In this 

stochastic mechanism, the probability of selecting an individual is proportional to its 

fitness value. Tan et al. [2001a] and Jung and Moon [2002] propose the tournament 

selection. The basic idea is to perform the roulette wheel selection twice, and to select 

the better out of the two individuals identified by the roulette wheel selection mecha-

nism. The tournament selection becomes more and more popular recently since it has 

less stochastic noise, and has a constant selection pressure. 

The recombination, also called crossover, is the most essential part of a genetic 

algorithm. The traditional two-point crossover, which exchanges a randomly selected 

portion of the bit string between the chromosomes, is commonly used, while Tan et al. 

[2001b] use the well-known PMX and one-point crossovers. The basic idea in PMX 

crossover is to choose two cut points at random and, based on these cut points, to 

perform a series of swapping operations in the second parent. The one-point crossover 

switches two sets of clients to be serviced by two different routes. In the context of 

VRPTW, many authors have proposed specialized heuristic crossover procedures, 

instead of traditional operators. Potvin and Bengio [1996] propose a sequence-based 

and a route-based crossover. The sequence-based crossover first selects a link ran-

domly from each parent solution. Then, the clients that are serviced before the 

break-point on the route of one parent solution are linked to the clients that are ser-

viced after the break-point on the route of the other parent solution. Finally, the new 

route replaces the old one in the first parent solution. The route-based crossover re-

places one route of the second parent solution by a route of the first parent solution. In 

Berger et al. [2003], a removal procedure is first carried out to remove some clients 

from the solution. Then, an insertion procedure is locally applied to reconstruct the 

partial solution. Wee Kit et al. [2001] tries to change the order of the clients in the 

first parent by trying to create consecutive pairs of clients according to the second 

parent. The second crossover operator tries to copy common characteristics of parent 

solutions to offspring by modifying the seed selection procedure and cost function of 

an insertion heuristic. 

Another important strategy of the genetic algorithm is mutation. Mester [2002] 

uses a multi-parametric mutation that consists in removing a set of clients from a 

solution randomly, based on the distance to the depot or by selecting one client from 

each route. Then, a cheapest insertion heuristic is used to reschedule the removed 

clients. In Gehring and Homberger [2001] mutation is also used to reduce the number 

of routes by performing one or several subsequent relocate moves. Berger et al. [2003] 

present several mutation operators including the LNS, exchange of clients served too 

late in the current solution, and elimination of the shortest route. 
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Another metaheuristic used in solving VRPTW is simulated annealing. Tan et al. 

[2000] develop a fast simulated annealing method based on two-interchanges with 

best-accept strategy and a monotonously decreasing cooling scheme. After the final 

temperature is reached, special temperature resets based on the initial temperature and 

the temperature that produced the current best solution are used to restart the proce-

dure. Li et al. [2003] propose a tabu-embedded simulated annealing metaheuristic. 

Initial solutions are created by the insertion and extended sweep heuristics of Solo-

mon [1987]. Three neighborhood operators based on shifting and exchanging clients 

between and within routes are combined with a simulated annealing procedure that is 

forced to restart from the current best solution several times. Solomon’s insertion 

procedure is used to reduce the number of routes and to intensify the search by reor-

dering routes and trying to insert clients into other routes. Finally, the search is diver-

sified by performing some random shifts and exchanges of clients. 

The ant colony optimization (ACO) is also applied to solve the VRPTW. Gam-

bardella et al. [1999] use an ant colony optimization approach with a hierarchy of two 

cooperative ant colonies. The first colony is used to minimize the number of vehicles, 

while the second colony minimizes the total traveled distance. The two colonies co-

operate through updating the pheromone with the best found solution. When the new 

best solution contains fewer vehicles, both colonies are reinitialized with the reduced 

number of vehicles.  

Bräysy [2003] presents a new four-phase deterministic metaheuristic algorithm 

based on a modification of the variable neighborhood search (VNS). In the first phase, 

an initial solution is created using a construction heuristic based on the ideas of the 

works of Solomon [1987] and Russell [1995]. Routes are built one at a time in a 

sequential order. Then, after a number of clients have been inserted into the route, the 

route is reordered using Or-opt exchanges. Afterward, another operator is used to 

minimize the number of routes. In the third phase, the created solutions are improved 

in terms of distance using VNS oscillating between four new improvement procedures 

based on modifications to CROSS-exchanges of Taillard et al. [1997] and cheapest 

insertion heuristics. In the fourth phase, the objective function used by the local 

search operators is modified to also consider waiting time to escape from local op-

tima. 
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1.5 Benchmarks 

As no benchmark particularly designed for the LTCPP has been made public, we 

developed our own benchmark to aid our experiments. The benchmark used in our 

experiments includes three sets of structurally different problem instances. Two of 

them are transformed from the benchmark of a similar problem and the other one is 

obtained based on the real-world case. 

 The first two sets of instances were originally derived from the Pickup and 

Delivery Problems with Time Windows (PDPTW) instances by Li and Lim [2003]. 

We added and modified a few values in order to transfer them into LTCPP instances. 

Both of the two sets are composed of 9 instances with users from 100 to 400. The 

users in the first set are clustered distributed, so the set is named with C. The second 

set has the users allocated randomly, therefore is named with R.  

 For all the instances in these two sets, the depot in the original PDPTW of 100 

clients is considered as the destination, while the coordinates the users are kept from 

the original benchmark. The values of maximum travel time Tk, the penalty pi, the 

earliest departure and latest arrival time ei and li of each user, were generated 

according to the research on the real-world applications. The cost dij was computed as 

an integer value equal to edij, where edij is the Euclidean distance between user i and j. 

Travel times tij were assumed to be equal to the distances divided by 50 km/h (average 

travel speed). For each user, the car capacity Qk was set to 4, and the maximum ride 

time Tk was defined to be 1.5 times of the direct travel time from the user’s home to 

the destination. The penalty pi of each user was computed as two times of travel cost 

from user’s home directly to the destination. The latest arrival times li were uniform 

randomly selected in the interval from 8:30 am to 9:00 am, and earliest departure time 

of user i was computed as ei = li – max (ti0 + 0:30, 2ti0), where ti0 is the direct travel 

time from the user i’s home to the destination. 

 The last set of instances is obtained by real-world case. The data is collected from 

the car pooling program participants of the Artois University by using the car pooling 

platform presented in the appendix. The university is the destination in these instances. 

The participants defined their earliest departure time from their homes, latest arrival 

time at the university, their car capacity and the maximal travel time they were willing 

to take. However, the car capacity cannot be set less than 2, and the maximum driving 

time cannot be less than 1.2 times of the direct travel time from the user’s home to the 

university. The distances and travel time between each two users and between the user 

and the destination are obtained by Google Map API, which provides very accurate 

values for the instances. The collected data includes 565 participants. The data is first 

transformed into an instance with 565 users directly as well as two 400 users instances 

by selecting randomly 400 users from the data. Then three instances with 200 users 

are generated by each time randomly selecting 200 users from the data. Moreover, 

three instances with 100 users are also built by randomly selecting 100 users from the 

data. Thus, the last set contains 9 instances based on the real-world data. The bench-
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marks can be found at http://www.lgi2a.univ-artois.fr/agora/module_fichier/. 

 

 

1.6 Conclusion 

An overview of different aspects of long-term car pooling problem has been presented 

in this chapter. This problem is interesting in research as well as in real world applica-

tion because of its unique characteristics and the challenge it provides. 

The state-of-the-art presented in this chapter covers the description of the prob-

lem, the mathematical representation and the existing solving methods. The resolution 

methods for Daily Car Pooling Problem, Dial A Ride Problem and Vehicle Routing 

Problem with Time Windows are also introduced in detail in order to supplement the 

literature of LTCPP. The benchmark sets which are used for our algorithm experi-

mentations are presented in detail.    

According to all the literature we studied, we can conclude that a well-designed 

approach should not only focus on a given class of methods, but also has to take into 

account different features and mechanisms that have been employed to aid or support 

these methods.  

Next chapters will handle these open issues, we will expose our contribution in 

the field of long-term car pooling problem. The proposed approaches are designed by 

taking advantage of the best existing approaches for solving all related problems. 
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Abstract 

In this chapter we propose to solve the LTCPP with Variable Neighborhood Search 

approach which is a well-known member of the trajectory-based metaheuristic family. 

We believe that the characteristic of changing the neighborhood structure offers a 

powerful mechanism in finding good solutions. Experimental results are presented to 

show the performance of the approach. 
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2.1 Introduction 

In our first attempt to solve the long-term car pooling problem, we dedicated to de-

veloping and applying a simple method, because a simple method usually brings fa-

cilitation in implementation and robust in operation. Therefore, the trajectory-based 

metaheuristics are taken into our consideration. The trajectory-based metaheuristics 

typically normally process one solution at a time. They can trace out a path in the 

search space as the iterations continue. 

 One of the most recent approaches in the field of trajectory-based metaheuristics 

is Variable Neighborhood Search (VNS) [Hansen and Mladenović, 1997]. The me-

taheuristic is inspired by the fact that a local optimum related to a specific move type 

can often be improved by using another move type. To exploit this fact, the VNS de-

fines different move types and change the move type used once a local optimum has 

been obtained. The search space covered by a specific move type is called a neighbor-

hood, so the VNS adaptively changes the neighborhood and obtains different local 

optima. If we consider searching inside one neighborhood is an intensification search 

process, then the process of changing neighborhoods corresponds to a diversification 

search process. Different neighborhoods cover different search spaces, and the prop-

erties of one neighborhood are in general different from those of other neighborhoods, 

therefore the search strategies usually are different for each of them. When the neigh-

borhoods are well designed, a solution that is locally optimal to one neighborhood is 

usually not locally optimal to another neighborhood. So, the global optima can be 

found in the local optima of the neighborhoods. This characteristic provides to VNS a 

serious ability and reactivity to track the shifting optimum in optimization problems. 

Therefore, in this chapter a Variable Neighborhood Search approach is proposed for 

solving the LTCPP. We believe that the characteristic of changing the neighborhood 

structure offers a powerful mechanism in finding good solutions. 

The structure of this chapter is organized as follows: the fundamental explanation 

of trajectory-based metaheuristics is introduced in the Section 2.2. Section 2.3 presents 

our VNS-LTCPP in an incremental manner, with the representation, the definition of 

the neighborhood structure, the design of the initial solution, the evaluation function, 

and the dedicated algorithm. In Section 2.4, we discuss our experimental results, and 

provide an experimental result analysis. Finally, in section 2.5, we conclude with a 

summary of the main contributions reported in this chapter. 

 

 

2.2 Trajectory-based Metaheuristics  

As abovementioned, trajectory-based algorithm typically operates on one solution at a 

time, which will trace out a path in search space as the iterations continue. Paths are 
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performed by iterative procedures that allow moving from one solution to another one 

in the solution space. The walks start from a solution randomly generated or obtained 

from another optimization algorithm, called initial solution. In each iteration, the cur-

rent solution is replaced by another one selected from the set of its neighboring candi-

dates. A better move or solution is always accepted, while a not-so-good move can be 

accepted with certain probability, shown in figure 2.1. The steps or moves trace a tra-

jectory in the search space, with a non-zero probability that this trajectory can reach 

the global optimum. The search process is stopped when a given condition is satisfied, 

such as a maximum number of generations, finding a solution with a target quality, or 

no improvements for a given time, etc. This kind of metaheuristics performs the 

moves in the neighborhood of the current solution, so they have a perturbative nature.  

 

 
 

Algorithm 2.1: Trajectory-based Metaheuristic. 

 

Generate ( s0 ); /* Generate initial solution */ 

t = 0; /* Number of iterations */ 

st = s0; 
 

While not Termination Criterion ( st ) do 

st’ = GenerateMove ( st ); /* Exploration of the neighborhood */ 

if AcceptMove( st’) then 

st = ApplyMove ( st’ ); /* Replace incumbent with the new obtained solution */ 

t = t+1; 

End while 

 

 

 

Algorithm 2.1 illustrates the structure of a trajectory-based metaheuristic. It itera-

tively applies the generation and replacement procedures from the current single solu-

tion. In the generation phase, a candidate solution st’ is generated from the current in-

cumbent st. The candidate solution is generally obtained by local transformations of 

the solution. In the replacement phase, an evaluation is performed for the candidate 

solution st’ to replace the current incumbent st. If the candidate solution st’ is proven 

to be better than st, then st’ will be accepted and selected to become the new incum-

bent by replacing st. This process iterates until a given stopping criteria is met. In this 

algorithm, the generation and the replacement phases has no memory mechanism, the 

procedures are based only on the current incumbent. However, in some of the trajec-

tory-based metaheuristics, some experiences of the former searches stored in a mem-

ory can be used in the generation of the candidate list of solutions and the selection of 

the new solution.  
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The main concepts for the trajectory-based metaheuristics, which are the defini-

tion of the neighborhood structure and the determination of the initial solution, will be 

introduced in the next section. 

 

 

Figure 2.1: Main principles of the trajectory-based metaheuristic. 

 

2.2.1 Neighborhood 

The most basic and essential part of a trajectory-based metaheuristic is the definition 

of the neighborhoods. The structure of the neighborhood plays a crucial role in the 

performance of a trajectory-based metaheuristic. If the neighborhood structure is not 

adequate to the problem, the trajectory-based metaheuristic will either fail to solve the 

problem or provide low quality solutions. 

 

Definition 2.2.1  

If X is a search space and s is a solution in X, and all the solutions in X are connected 

with a defined mapping rule, then a neighborhood of s is a set N(s) ⊂ X containing the 

solutions where s can move to without leaving the search space. A solution sn ∈ N(s) 

is a neighbor of s. 

 

A neighbor is constructed by applying of a move operator which performs a small 

perturbation to the current solution. The main characteristic of a neighborhood is lo-

cality. Locality is the effect on the solution when performing the move in the repre-

sentation of the solution. The neighborhood is considered to have a strong locality, if 

when small changes are made in the representation, the solution is affected slightly. 

Hence, a trajectory-based metaheuristic will perform a meaningful search in the 

search space of the problem. Weak locality is characterized by a large effect on the 

solution when a small change is made in the representation of the solution. In the ex-

treme case of weak locality, the search will converge toward a random search in the 
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search space. The structure of the neighborhood depends on the target optimization 

problem. It has been first defined in continuous optimization. 

 

Definition 2.2.2  

In a discrete optimization process, the neighborhood N(s) of a solution s is repre-

sented by the set {sn / d(sn, s) ≤ ε}, where d represents a given distance that is related 

to the move operator. 

 

The definition of the neighborhoods strongly corresponds to the representation 

associated with the problem to solve. Normally in vehicle routing related problems, 

the neighborhoods are designed with traditional encodings; the users are represented 

in a sequence of numbers, called permutation. For permutation-based representations, 

a usual neighborhood is based on the swap operator that consists in exchanging the 

location of two elements si and sj of the permutation. For a permutation of size n, the 

size of this neighborhood is n(n − 1)/2. This representation may also be applied to 

other linear mathematical models. Figure 2.2 shows the neighborhood associated with 

a combinatorial optimization problem using a permutation encoding. In the figure, the 

neighbors of the solution (2, 1, 3) are: (2, 3, 1), (1, 2, 3), and (3, 1, 2).  

The distance between two elements is based on the swap operator. Once the con-

cept of neighborhood has been defined, the local optimality property of a solution 

may be given. 

 

Figure 2.2: An example of neighborhood for a permutation problem of size 3.  

 

Definition 2.2.3  

For a given neighborhood N(s), a solution s∈ N(s) is a local optimum if the solution 

quality is better than or equal to all its neighbors’ solution qualities, see figure 2.3. 

That is, Q(s) is better than Q(sn) for all sn ∈ N (s). Note that for the same optimiza-

tion problem, a local optimum for a neighborhood Ni may not be a local optimum for 

another neighborhood Nj. 

 

Definition 2.2.4  

For a search space X, a solution s∈ X is a global optimum if the solution quality is 

better than or equal to all others solution quality in the search space. That is, Q(s) is 
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better than Q(sn) for all sn ∈ X. Note that there may be many global optimal solutions 

in a search space. 

 

 

Figure 2.3: Local optimum and global optimum in a search space. 

 

2.2.2 Initial Solution 

To construct an initial solution, two strategies are normally used: a random procedure 

and a greedy approach. There is a lot to discuss between the selection of a random ini-

tial solution and a greedy initial solution, since a random initial solution is superior in 

terms of the computational time but is lack of solution quality, while a greedy initial 

solution does vice versa. The best answer to this trade-off will depend mainly on the 

efficiency and effectiveness of the random and greedy algorithms at hand, and the 

trajectory-based metaheuristic properties. For instance, the larger is the neighborhood, 

the less is the sensitivity of the initial solution to the performance of the trajec-

tory-based metaheuristics. Generating a random initial solution is a quick operation, 

but the metaheuristic may take much larger number of iterations to converge. To 

speed up the search, a greedy heuristic may be used. In fact, in most of the cases, 

greedy algorithms have a reduced polynomial-time complexity. Using greedy heuris-

tics often leads to better solution quality. Thus, the trajectory-based metaheuristic will 

require less iterations to converge toward a local optimum. Some approximation 

greedy algorithms may also be used to obtain a bound guarantee for the final solution. 

However, it does not mean that using better solutions as initial solutions will always 

lead to better local optima. 

 

2.2.3 Some Trajectory-based Metaheuristics 

Popular examples of trajectory-based metaheuristics are Hill Climbing (Russell and 

Norvig, 2003), Greedy Randomized Adaptive Search (Feo and Resende, 1989), Simu-
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lated Annealing (Kirkpatrick 1983, Cerny 1985), Tabu Search (Glover, 1990), and 

Variable Neighborhood Search (Hansen and Mladenovic, 1999). 

 Hill Climbing (HC) is a trajectory-based metaheuristic that normally starts with a 

random initial solution to a problem. Then in each iteration, HC will adjust a sin-

gle element in the current solution and determine whether the change improves 

the value of the solution. If the change produces a better solution, an incremental 

change is made to the new solution, repeating until no further improvements can 

be found. 

 The Greedy Randomized Adaptive Search Procedure (GRASP) typically consists 

of iterations made up from successive constructions of a greedy randomized solu-

tion and subsequent iterative improvements of it through a local search. The 

greedy randomized solutions are generated by adding elements to the problem's 

solution set from a list of elements ranked by a greedy function according to the 

quality of the solution they will achieve. To obtain variability in the candidate set 

of greedy solutions, well-ranked candidate elements are often placed in a re-

stricted candidate list, and chosen at random when building up the solution.  

 Simulated Annealing (SA) is a stochastic search method in which at each step, the 

current solution is replaced by another one that improves the objective function. 

The replacement is normally randomly selected from the neighborhood. SA uses 

a control parameter, called temperature, to determine the probability of accepting 

non-improving solutions. The objective is to escape from local optima, and so to 

delay the convergence. The temperature is gradually decreased according to a 

cooling schedule such that few non-improving solutions are accepted at the end of 

the search. 

 Tabu Search (TS) explores the search space by managing a memory of solutions 

or moves recently applied, called the tabu list. When a local optimum is reached, 

the search carries on by selecting a candidate worse than the current solution. To 

avoid the previous solution to be chosen again, and so to avoid cycles, TS dis-

cards the neighboring candidates that have been previously applied. 

 Variable Neighborhood Search (VNS) is a trajectory-based metaheuristic which 

explores successively a set of pre-defined neighborhoods to provide a better solu-

tion. It uses the descent method to get the local minimum of one neighborhood. 

Then, it explores either at random or systematically other neighborhoods. At each 

step, a solution is shaked from the current neighborhood. Then the current solu-

tion is replaced by a new one if and only if a better solution has been found. The 

exploration is thus re-started from that solution in the first neighborhood. If no 

better solution is found the algorithm moves to the next neighborhood, randomly 

generates a new solution and attempts to improve it. 
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2.3 Variable Neighborhood Search for the LTCPP  

In this section, we present our VNS-LTCPP approach designed for solving the 

long-term car pooling problem. The adaptation of the different components for the 

long-term car pooling problem is described and examined. 

 

2.3.1 Variable Neighborhood Search 

Variable Neighborhood Search (VNS) has been recently proposed by P. Hansen and 

N. Mladenovic (1999). Contrary to most other trajectory-based metaheuristics, VNS 

follows more than one trajectory. It explores increasingly distant neighborhood of the 

current incumbent solution, and it jumps from there to a new one if and only if an im-

provement was made. VNS exploits the fact that using various neighborhoods in local 

search may generate different local optima, and that provides the possibility to find 

the global optimum among the local optima of the given neighborhoods, since differ-

ent neighborhoods search different areas of the search space. Figure 2.4 shows the 

mechanism of a VNS with two neighborhoods. The first local optimum is obtained 

according to the neighborhood 1, while the second local optimum is obtained from 

neighborhood 2 based on the previous local optimum. In this way the favorable char-

acteristics of the incumbent solution will be kept and used to obtain promising neigh-

borhood solutions. 

 

 

Figure 2.4: Variable neighborhood search using two neighborhoods. 

 

In VNS, a finite set of pre-selected neighborhood structures Nk (k = 1, ..., n) are de-

fined. Then, each iteration of the algorithm consists in three steps: shaking, local 

search and move. A solution is firstly shaken from the neighborhood Nk of the current 

solution. For instance, a solution s’ is randomly selected in the current neighborhood 

Nk of current incumbent s. Then, a local search operator is applied to the solution s’ to 
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generate a local optimal solution s’’. The current incumbent s is replaced by the new 

solution s’’ if and only if s’’ is a better solution than s, that is the solution quality 

Q(s’’) is better than the solution quality Q(s). Afterward, the search procedure is re-

started with the new incumbent s. If the quality of the new solution Q(s’’) is worse 

than the solution quality Q(s), the algorithm moves to the next neighborhood. The 

procedure continues until some stopping condition is met, for instance, maximum 

number of iterations, maximum CPU time allowed, or maximum number of iterations 

between two improvements. Algorithm 2.2 presents the template of the basic VNS 

algorithm. 

 

 
 

Algorithm 2.2: Basic Variable Neighborhood Search Algorithm 

 

Define the set of neighborhood Nk ( k = 1, … , n ); 

Generate ( s0 ); /* Generate initial solution */ 

s = s0; 

Repeat  

k = 1; 

Repeat 

 Generate solution s’ at random from Nk(s); /* Shaking */ 

 s’’ = LocalSearch( s’ ); /* Apply local search to obtain local optimum s’’ */ 

 If Q( s’’ ) < Q( s ) then  

s = s’’; /* Move */ 

k = 1; /* Start the next search in the first neighborhood N1(s) of solution s */ 

Else 

k = k + 1; 

End if 

Until k = n 

Until stopping criteria is met 

 

 

2.3.2 LTCPP Solution Representation 

The aim to design a representation for the solution is to build a suitable mapping be-

tween our problem and the solution generated by the algorithm. Although both direct 

and indirect coding have been proven to be applicable for the representation of vehicle 

routing related problem, we favor to select the direct coding for the LTCPP, since the 
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time-consuming encoding and decoding phase of the indirect coding can be avoided. 

As mentioned in the introduction of the long-term car pooling problem, a solution to 

the LTCPP includes dividing users into clusters (car pools) and identifying the route 

for each member in each cluster when this member acts as a server. Given that the 

problem concerns both clustering and routing, it is necessary to have all the infor-

mation of each user in the representation, especially the routing is different when each 

user acts as a server. Thus, the representation is designed with two levels. The first 

level indicates the partition of users, while the second level records the routes of each 

member in the cluster when the member acts as a server. Moreover, in the second lev-

el, some other information is also collected and associated with each user, such as the 

total travel time and distance, the time schedule to pick up the cluster members when 

this user acts as a server, and whether a user is pooled with other users or travels 

alone.  

Therefore, as abovementioned, in the first level of the proposed representation, 

the solution of dividing users into car pools is expressed. The representation consists 

in a set of clusters S = {P1, P2, ..., Pm}, and each cluster Pi = {Cj, Ck, ... , Cn} is a se-

quence-non-important set includes the members assigned to a car pool. Note that the 

representation of each cluster may have different length, since the length is based on 

the number of members in the cluster.   

In the second level, for each user Cj in each cluster, the following information is 

associated: 

 The representation of the routing when this user acts as a server, this infor-

mation is shown as a permutation Rj: (Cj, Ck, ... ) of users who are the pooled 

in Cj’s car pool, started with Cj since his/her home is the start point of the 

route, then followed sequentially with the car pool members visited after. 

 The representation of pickup times Tj: (Uj, Uk, ... ) for all his/her car pool 

members when this user acts as a server. The sequence follows the same or-

der as the representation Rj. That is, the pickup time Uk in Tj corresponds to 

the user Ck in Rj. Note that the value Uj indicates the departure time of user Cj 

from his/her home. 

 The Boolean value ɸi indicates if user Cj has been pooled with other user or 

travels alone. 

 The value disj represents the total distance traveled by user Cj when this user 

acts as a server. 

 The value timj corresponds to the total travel time of user Cj when this user 

acts as a server. 

 The value arvj shows the arrival time of user Cj at the destination when this 

user acts as a server. 
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Figure 2.5: An example of the solution representation in VNS-LTCPP. 

 

Therefore, this representation provides all the information of a user in the long- 

term car pooling problem. It offers and contributes in a clear manner to design long- 

term car pooling problem solutions, as shown in figure 2.5. 

 

2.3.3 Initial Solution Heuristic 

A reasonably structured initial solution will evolve to high quality solutions in a rela-

tively small number of generations. In order to obtain a well-designed initial solution, 

we generate it with a two-steps approach introduced as follows. 

 The first step consists in selecting n users to construct n clusters. Each of these n 

users is considered as the representative of an individual cluster and the rest unse-

lected users will be assigned to these clusters in the second step. The selection pro-

ceeds as follows. All users are put into a list with random order. A user a is selected 

randomly from the list to construct a cluster, and then user a and the m users nearest 

to user a are removed from the list, where m is an integer obtained by averaging the 

car capacity of all users. Afterwards, the second user b is also selected randomly from 

the rest users in the list to construct a cluster, and then the user b and b’s nearest m 
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users in the list are also removed from the list. The procedure ends when all the users 

are removed from the list. This mechanism avoids selecting representatives too close 

to each other to build clusters, so the clusters are guaranteed to be evenly distributed, 

which provides a good basis for the next step. 

In the second step, a regret insertion procedure is applied. The procedure is based 

on the computation of a regret value for all users who are not selected as representa-

tive in the first step, in order to assign them to the constructed clusters. For each un-

selected user i and each representative j of a constructed cluster, the distance between 

i and j is computed by equation (2.1).  

jijijijiij eteyyxxd   22 )()(            (2.1) 

where xi, yi, xj, yj are the coordinates of the user i and user j respectively; ei and ej 

are the earliest departure time of user i and user j; α and β are adjusting parameters. 

Then, the regret of user i is defined to be the difference between the shortest and 

second shortest distance computed above, as shown in equation (2.2).  

regreti = dij – dik                        (2.2) 

where dij and dik are the second shortest and the shortest geographical distances 

between i and the representatives of the clusters constructed in the previous step, re-

spectively.  

The construction algorithm tries to assign each unselected user to its nearest rep-

resentative, considering the unselected users in the order of decreasing regrets. The 

users with the largest regret values are considered first, in order to avoid the large 

penalty associated with assigning him to the second nearest representative. Assign-

ments are conditioned by car capacity, forbidding the assignment of users to the clus-

ter which exceeds the car capacity of any member in this cluster. If the nearest repre-

sentative is not available, the algorithm tries sequentially the next nearest representa-

tive until no available representative can be found. The procedure stops either when 

all the unselected users are assigned to the representatives or when it is impossible to 

assign any unselected user to any representative, then the unassigned the users are set 

to travel alone.  

In order to reduce the complexity of the heuristic, the time window constraints are 

not checked during the assignment phase. Hence, a repair procedure is necessary to 

make sure the initial solution is feasible. After all car pools are built, the time win-

dows when each user acts as a server are verified. The car pools violate the time win-

dows will be divided into smaller car pools with minimum travel cost increase until 

no violations can be found.   

Algorithm 2.3 presents the structure of the initial solution heuristic, the complex-

ity of the algorithm is O(n2). 
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Algorithm 2.3: Initial Solution Heuristic. 

 

Compute the distance between each two users; 

Put all users in a list; 

While the list is not empty 

 Randomly select user k to build a new cluster and k is the representative; 

 Remove user k from the list; 

 Remove m k’s nearest in-list users from the list; 

End while 

For each unselected user i; 

 Calculate the distances between user i and the representative of each cluster; 

Sort the representatives by increasing distance and record the result; 

regreti = dij – dik ; /* j is the second nearest representative of a cluster, k is the 

nearest representative of a cluster*/ 

End for 

Sort the unselected users by decreasing regret value; 

For each unselected user i   

 While not all available representatives are tried 

Assign the user to the nearest available representative; 

 End while 

 If the user is not assigned 

  Set the user to travel alone; 

End for 

For each user i  /* repair procedure */ 

 Verify the time window when user i acts as a server; 

 While the time window is violated 

  Divide the current car pool(s) into two smaller car pools; 

  Verify the time window of obtained car pools; 

 End while  

End for   

 

 

2.3.4 Neighborhoods Design 

In order to adapt VNS for our particular long-term car pooling problem, it is necessary 

to define the set of neighborhood structures and to establish the search procedure that 

will be applied to the solutions. All our neighborhoods and the search procedure are 

related to specific operators designed for the long-term car pooling problem. We pro-

pose four different neighborhoods Nk(s) for our VNS-LTCPP algorithm. The neigh-
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borhoods are used sequentially in the algorithm. Each neighborhood corresponds to an 

operator. The neighborhoods of our VNS- LTCPP approach are defined as follows. 

 

Swap Neighborhood (N1) is the set of solutions which results of the swap operator. It 

consists in swapping any user i with any user j who can pick up and deliver each of 

user i’s car pool members within his/her maximum driving time. The two selected us-

ers i and j are deleted from their original clusters and inserted into the each other’s 

cluster. An example of the swap operator is shown in figure 2.6. User 9 and user 12 

from different clusters are simultaneously placed into the other cluster. 
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Figure 2.6: An ideal example in Swap Neighborhood. 

 

Chain Neighborhood (N2) is the set of solutions obtained by the chain operator. The 

operator applies the ejection chain idea. A list of all the car pools is first initialized as 

following. A car pool i is randomly selected as the first element of the list, and then 

car pool j whose gravity center is the closest to the gravity center of car pool i is in-

serted to the list. Afterwards, another car pool k which is nearest to car pool j will be 

inserted. The procedure continues until all car pools are inserted into the list. Note that 

only the car pools which are not on the list can be inserted, so there will no repetitive 

car pools in the list. Then, the operator consists in selecting any car pool on the list as 

the start point and proceeding with the following procedures. Suppose the kth pool of 

the list is selected, the user who is the farthest from the gravity center of the pool is 

moved to the k+1th pool of the list. Then, if the k+1th pool violates the car capacity 

constraint, the same procedure will be applied to it. The chain is designed to be cyclic, 

so the car capacity constraint is always satisfied. The gravity center of a car pool is 

calculated based on the distances calculated by equation (2.1) among the pool mem-

bers regardless the destination. The chain operator allows moving the users without 

affecting well-clustered users. An example of chain neighborhood is shown in figure 

2.7. Figure 2.8 presents the mechanism of the chain operator. 

 

Divide Neighborhood (N3) is the set of solutions provided by the divide operator, the 

operator consists in divide any car pool into two non-empty car pools with all possible 
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combinations. An example of divide operator is presented in figure 2.9. 
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Figure 2.7: An ideal example in Chain Neighborhood. 
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Figure 2.8: The mechanism of the Chain Operator. 
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Figure 2.9: An ideal example in Divide Neighborhood. 
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Merge Neighborhood (N4) is the set of solutions which results of the merge operator. 

The operator merges any two non-full car pools with respect to the car capacity con-

straint. Any non-full car pool i and non-full car pool j, which are able to satisfy the car 

capacity constraint after merging, are combined together by the operator. An example 

in merge neighborhood is presented in figure 2.10. 
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Figure 2.10: An ideal example in Merge Neighborhood. 

 

2.3.5 Solution Evaluation 

The evaluation of the objective function is usually the most expensive operation of any 

metaheuristic. For the long-term car pooling problem, a complete evaluation consists 

in calculating the cost and verify the car capacity and time window constraints for 

each car pool. Since the neighbor solutions of a solution s are only partially different 

from s, we provide a more efficient way to perform the evaluation of the solutions 

provided by the VNS-LTCPP and all our future approaches. Our evaluation proceeds 

based on the change E(s, m) of the current solution, where s is the current solution and 

m is the applied move. This is an important design in order to improve the efficiency 

and has been taken into account in the design of all our metaheuristics. It consists in 

evaluating only the transformation E(s, m) applied to a solution s rather than the com-

plete evaluation of the neighbor solution s’ where s’ = s + E (s, m). The definition of 

such an incremental evaluation and its complexity depends on the neighborhood used 

over the target optimization problem. In our case, the change only corresponds to at 

most two car pools for the Swap, Divide and Merge neighborhoods. For Chain 

neighborhood, the amount of related car pools varies. This evaluation mechanism can 

greatly increase the efficiency of our VNS-LTCPP approach, since the evaluation only 

focuses on a small amount of car pools.  

Note that, the time window constraints are examined before the evaluation, a 

generated neighbor solution which is infeasible with respect to the time window will 

be repaired by the same procedure used in the construction of the initial solution.  
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2.3.6 Main structure of the VNS-LTCPP 

As introduced above, our VNS-LTCPP consecutively makes use of four different 

neighborhoods of the current solution to achieve the variable neighborhood search 

structure. All orders of the neighborhoods are tested, and the one that yielded the best 

average output is chosen. The order of the neighborhoods applied is: Swap neighbor-

hood, Chain neighborhood, Divide neighborhood and then Merge neighborhood.  

The structure of VNS-LTCPP is given in the Algorithm 2.4. An initial solution is 

built according to the Regret Insertion heuristic. Then, the algorithm selects a random 

solution from the current neighborhood and applies the corresponding operator to ob-

tain a local optimum. For each operator, the first improvement policy is applied. That 

is, a move is performed as soon as the solution cost decreases. Note that the moves 

violating the time window constraint are repaired before the evaluation, so the ob-

tained local optimal is convincing. Afterwards, if the resulting solution is better than 

the incumbent, the algorithm moves to the resulting solution, and restart the search 

with the first neighborhood of the incumbent; otherwise the algorithm switches to the 

next neighborhood.  

The optimization procedure stops when no neighborhood is capable of improving 

the current solution or the maximum iteration number has been reached. 

 

 
 

Algorithm 2.4: The VNS-LTCPP Approach. 

 

Define the set of neighborhood Nk (k = 1, … , n ); 

s0 = RegretInsertionInitialSolution();   /* Generate initial solution */ 

s = s0; 

While the stop criteria is not met 

k = 1;  /* Start with the first neighborhood */ 

While k does not exceed n; 

s’ = pickRandom(Nk(s));  /* Select a solution from current neighborhood */ 

s’’ = MoveOperator(s’);  /* Apply operator to obtain local optimum*/ 

If Q(s’’) < Q(s)  

s = s’’; 

k = 1; 

Else 

k = k + 1; 

End while 

End while  

 

 

 



CHAPTER 2 Trajectory-based Metaheuristics for the Long-term Car Pooling Problem 

 

 
47 

 
 

2.4 Experimental Results and Analysis 

In order to provide an exclusive evaluation of the performance of our algorithm, our 

experimental results are compared with the simulation-based approach (SB) [Correia 

and Viegas, 2008]. Selecting the SB approach is because this approach solves the 

problem with the aid of the optimization software, which gives it high probability in 

providing high solution quality. As mentioned in the related works in chapter 1, the 

simulation-based method is a divide-and-conquers approach. The process starts with 

using the K-means clustering algorithm to divide all the users into small clusters such 

that each small cluster can be processed by the optimization program in an acceptable 

period of time. Then, all the small clusters are sent to the optimization program to 

search for the possible group combinations. The people that were not able to find a 

match in the previous iteration are set together for another iteration.  

Since the benchmarks and implementation environments of this work are differ-

ent from ours, in order to provide a fair and convincing comparison, we implemented 

the approach in our experiment environment and use it to solve our benchmarks pre-

sented previously. Note that the approach is implemented exactly as it is described in 

the literature with no modification. 

The two algorithms were implemented in our algorithm test and analysis platform, 

and all results were obtained running the code on a Windows Operating System with 

Intel Core i7 740QM 2.9 GHz CPU and 4 GB of RAM. Each algorithm has been ex-

ecuted 30 times for each instance. The state-of-the-art metaheuristics normally use the 

CPU time or total amount of iteration as stopping criterion. Since in the LTCPP, the 

CPU time and total amount of iterations vary for instances with different sizes, the SB 

approach uses a stop criteria when no new car pool can be formed. In corresponding 

with the SB approach, our approach ends when there is no improvements can be 

found. 

Table 2.1 compares the experimental results of the C set instances. The VNS- 

LTCPP outperforms the SB approach on 6 instances considering the average solution 

quality of 30 runs. Furthermore, the VNS-LTCPP’s best found solutions of 7 in-

stances are also better than the ones provided by the SB approach. Observe that, the 

execution of VNS-LTCPP is much less time-consuming than the SB approach, which 

denotes that our algorithm is reactive and is able to reach competitive solutions in a 

short time. 

 Table 2.2 shows the percentage the VNS-LTCPP outperforms the SB approach on 

set C instances, in the aspects of average solution quality and computing time. For 

each instance, the outperforming percentage is calculated as (SB’s value – VNS- 

LTCPP’s value) / SB’s value. Each value in table 2.2 is obtained by averaging the 

outperforming percentages of the three same-size instances. Comparing with the SB 

approach, the VNS-LTCPP can provide better solution quality in 13.6% of the 

computing time of the SB approach (1– 86.4% from table 2.2).  
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Inst Size 
VNS-LTCPP SB [Correia, 2007] 

Best Avg Time Best Avg Time 

C101 100 1644.9 1684.6 7 1647.4 1669.2 91 

C102 100 1729.2 1753.8 9 1717.5 1724.8 94 

C103 100 1545.9 1563.6 7 1532.2 1599.4 85 

C201 200 2676.9 2723.8 24 2761.7 2868.6 329 

C202 200 3070.7 3145.2 26 3081.7 3114.1 473 

C203 200 2935.1 2993.7 37 2975.1 3182.4 394 

C401 400 6024.5 6130.1 255 6174.2 6860.3 934 

C402 400 5055.9 5110.7 197 5383.7 5524.5 683 

C403 400 6079.6 6322.5 287 6675.2 6994.5 1257 

Total 30762.7 31428.0 849 31948.7 33537.8 4340 

Table 2.1: Experimental results of set C instances (clustered user distribution). 

  

Set Size Best  Average Time 

 100 -0.47% -0.12% 92.92% 

C 200 1.59% 3.33% 92.61% 

 400 5.81% 9.25% 73.67% 

Avg 2.31% 4.15% 86.40% 

Table 2.2: Solution quality and computing time comparison on set C instances. 

  

Ints Size 
VNS-LTCPP SB [Correia, 2007] 

Best Avg Time Best Avg Time 

R101 100a 2211.2  2286.6  8  2235.1  2265.4  100  

R102 100b 1856.7  1898.7  10  1832.8  2091.7  97  

R103 100c 2288.3  2379.8  7  2204.7  2418.5  80  

R201 200a 4349.2  4464.6  35  4425.0  4567.1  430  

R202 200b 3970.3  4162.0  27  3952.4  4283.3  231  

R203 200c 4118.5  4282.5  36  4092.4  4257.5  540  

R401 400a 8097.1  8398.4  316  8787.8  8993.8  1106  

R402 400b 6411.8  6975.0  196  7258.7  7417.5  896  

R403 400c 8312.1  8422.0  309  8841.9  8933.5  1037  

Total 41615.2  43269.6  944  43630.8 45228.3 4517  

Table 2.3: Experimental results of set R instances (random user distribution). 

 

 Table 2.3 presents the experimental results on the R set instances. The random 

distributed instances give the VNS-LTCPP some difficulties in constructing a good 

initial solution. However, the same problems are met by the K-means algorithm of the 

SB approach. On this set of instances, the VNS-LTCPP outperforms the other 

approach on 7 instances in average solution quality and 5 instances in best found 



CHAPTER 2 Trajectory-based Metaheuristics for the Long-term Car Pooling Problem 

 

 
49 

 
 

solution. Table 2.4 reveals the percentage of outperforming in the same manner as 

table 2.2. The computing time of the VNS-LTCPP is still significantly less than the 

other approach. 

 

Set Size Best  Average Time 

 100 -1.34% 3.30% 90.98% 

R 200 0.21% 1.50% 91.17% 

 400 8.51% 6.10% 73.25% 

Avg 2.46% 3.63% 85.13% 

Table 2.4: Solution quality and computing time comparison on set R instances. 

  

 

Inst Size 
VNS-LTCPP SB [Correia, 2007] 

Best Avg Time Best Avg Time 

W101 100 866.7  886.9  7 864.2 885.7 81 

W102 100 1007.0  1041.5  8 1007.5 1037.9 82 

W103 100 1118.9  1173.8  8 1100.5 1187.6 87 

W201 200 1614.4  1682.5  38 1717.1 1722.9 341 

W202 200 1943.5  2003.6  25 2014.3 2127.7 406 

W203 200 1733.7  1806.8  44 1860.5 1965.1 371 

W401 400 2975.2  3076.8  520 3168.4 3442.8 955 

W402 400 3625.6  3713.0  306 3633.5 3984.9 792 

W501 565 5105.2  5288.4  578 5377.5 5858.3 1621 

Total 19990.1  20673.3  1534  20743.5 22212.9 4736  

Table 2.5: Experimental results of set W instances (real world cases). 

 

 The experimental results for the set W instances (real-world instances) are 

presented in table 2.5. The VNS-LTCPP provides better solution quality on 7 in-

stances in both average and best found solution. The outperforming percentage is 

shown in table 2.6. 

 

Set Size Best  Average Time 

 100 -0.63% 0.23% 90.80% 

W 200 5.44% 5.41% 90.28% 

 400 5.63% 9.06% 57.09% 

Avg 3.48% 4.90% 79.39% 

Table 2.6: Solution quality and computing time comparison on set W instances. 

 

 Considering all three sets of instances, the solution quality of VNS-LTCPP is 

significant better than the other approach when dealing with the instances with 200 

and 400 users in all three sets. Moreover, the computing process of VNS-LTCPP is 
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much less time-consuming than the SB approach, which makes the VNS-LTCPP a 

good candidate for the real-world application.  

 

Instance 
VNS-LTCPP SB [Correia, 2007] 

Avg R R
2
 Avg R R

2
 

C101 1684.6 2 4 1669.2 1 1 

C102 1753.8 2 4 1724.8 1 1 

C103 1563.6 1 1 1599.4 2 4 

C201 2723.8 1 1 2868.6 2 4 

C202 3145.2 2 4 3114.1 1 1 

C203 2993.7 1 1 3182.4 2 4 

C401 6130.1 1 1 6860.3 2 4 

C402 5110.7 1 1 5524.5 2 4 

C403 6322.5 1 1 6994.5 2 4 

R101 2286.6 2 4 2265.4 1 1 

R102 1898.7 1 1 2091.7 2 4 

R103 2379.8 1 1 2418.5 2 4 

R201 4464.6 1 1 4567.1 2 4 

R202 4162 1 1 4283.3 2 4 

R203 4282.5 2 4 4257.5 1 1 

R401 8398.4 1 1 8993.8 2 4 

R402 6975 1 1 7417.5 2 4 

R403 8422 1 1 8933.5 2 4 

W101 886.9 2 4 885.7 1 1 

W102 1041.5 2 4 1037.9 1 1 

W103 1173.8 1 1 1187.6 2 4 

W201 1682.5 1 1 1722.9 2 4 

W202 2003.6 1 1 2127.7 2 4 

W203 1806.8 1 1 1965.1 2 4 

W401 3076.8 1 1 3442.8 2 4 

W402 3513 1 1 3984.9 2 4 

W501 5288.4 1 1 5858.3 2 4 

Avg 

 

1.25

925

9 

 

 

1.74

074

1 

 

Sum 

 

34 48 

 

47 87 

Table 2.7: Friedman test between the VNS-LTCPP and the SB approach. 

 

 A further evaluation of the performance among the two approaches has been 

conducted by using a Friedman test [Friedman, 1940]. The test consists in the average 

solution quality of the two approaches on all 27 instances used in our experiments. 

The detail information is presented in table 2.7, the detail calculation can be found in 

appendix 2. The Friedman statistic value T of table 2.7 is calculated to be 7.85, while 

the threshold for the F distribution with a significance level 0.01 is 7.72. Since T is 

greater than the threshold, it is proven that the VNS-LTCPP’s performance is signifi-

cant better than the SB approach.  
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 The accuracy of the VNS-LTCPP is examined by calculating the standard error 

(column Std) of the solutions obtained in 30 runs of each instance. The solution 

quality difference (column Diff) between the best found solution quality and the 

average solution quality of each instance in the previous tables is also calculated. 

Table 2.8 shows the average of the abovementioned values of the three same-size 

instances. The average differences between the best found solution and the average 

solution of the three sets of instances are 2%, 3.6% and 3.4%, respectively, which 

indicates the VNS-LTCPP approach can be considered to be accurate for a trajectory- 

based metaheuristic. 

 

Size 
C set instances R set instances W set instances 

Best Avg Std Diff(%) Best Avg Std Diff(%) Best Avg Std Diff(%) 

100 1640.0  1667.3  12.1 1.6  2118.7  2188.4  38.9 3.2  997.5  1034.1  18.4 3.5  

200 2894.2  2954.2  22.7 2.0  4146.0  4303.0  86.2 3.6  1763.9  1831.0  32.1 3.7  

400 5720.0  5854.4  79.2 2.3  7607.0  7931.8  121.4 4.1  3835.3  3959.4  67.3 3.1  

Avg 3418.1  3492.0  38.1 2.0  4623.9  4807.7  82.2 3.6  2198.9  2274.8  39.3 3.4  

Table 2.8: Evaluation of the accuracy of the VNS-LTCPP. 

 

 

2.5 Conclusion 

This chapter presented a Variable Neighborhood Search approach for solving the 

long-term car pooling problem. The main characteristic of this approach consists in the 

ability of moving from one neighborhood to another one throughout the optimization 

process. This ability offers an adaptive mechanism for tracking the optimum in the 

search space. For this proposal, different neighborhoods have been well designed to 

achieve a good search ability of the approach. 

The experiments of VNS-LTCPP have been performed on three sets of structurally 

different instances. Each set includes large scale instances. The experimental results 

are compared with the SB approach, which is a hybrid approach of K-means and 

CPLEX.  

The VNS-LTCPP is able to yield better results for a large number of instances. It 

provides remarkable performance especially on large scale instances. Comparing the 

computing time of the two approaches, the CPU time cost to obtain a solution by 

VNS-LTCPP are much less than the SB approach. Hence, the VNS-LTCPP approach 

can work as a useful method to solve the long-term car pooling problem. 

According to the literature of optimization, population-based metaheuristics are 

usually considered to be more effective in diversification ability than trajectory-based 

ones. However, in terms of intensification search, the trajectory-based metaheuristic is 

known as the more effective method. In general, the degree of success of these meth-
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ods on a given problem depends largely on their ability to strike a balance between 

exploration and exploitation. The ability of population-based metaheuristics to sample 

the search space and the fact that they simultaneously manipulate a group of solutions 

increase their potential solving ability for complex optimization problems.  

Therefore, in our next step, population-based metaheuristics are applied to solve 

the long-term car pooling problem. Considering the effectiveness the VNS-LTCPP 

approach, the operators will be adopted to the local search procedures of some of our 

population-based approaches which will be reviewed in the future chapters. 
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Abstract 

In this chapter we present a Clustering Ant Colony Algorithm to solve the LTCPP. The 

algorithm belongs to the swarm intelligence family, and is proven to have good ability 

to provide high quality solutions for the LTCPP instances. Experiments are conducted 

to verify the performance of the algorithm. 
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3.1 Introduction 

During the exploration to the search space, there usually remains some information 

from the past that can be used in the future. As mentioned in the previous chapter, the 

trajectory-based metaheuristics manage only one solution during iterations, and the 

solution is always obtained based on the one from the previous iteration. This charac-

teristic not only limits the diversification search ability of the trajectory-based me-

taheuristics, but also forbids the useful composition of the former solutions being 

passed to future solutions. Therefore, it is necessary to apply a methodology to track 

good solutions through the exploration in the search space. The required algorithm 

should not only be able to improve the solution in hand, but should also be able to 

conserve the good composition of the former solutions and use them in the future 

search.  

Population-based metaheuristics exhibit a number of potential advantages for 

such purposes. Both swarm intelligence family and evolutionary family of the popula-

tion-based metaheuristics have been considered by us to be applied in solving the 

LTCPP. In this chapter, the swarm intelligence family will be discussed, and the evo-

lutionary family will be presented in the next chapter. 

In the swarm intelligence family, we choose the Ant Colony Optimization (ACO) 

as the fundamental structure of our first population-based algorithm, since the ACO 

has a more flexible paradigm comparing with other swarm intelligence algorithms. 

Grounding on the characteristic of the LTCPP, which is a combination of clustering 

and routing, we believe ACO is a suitable for solving this problem based on its good 

exploration ability and flexible pheromone representation.  

In recent years, there have been increasing interests in using ACO in dealing with 

vehicle routing problems. The underlying principle of ACO is based on swarm intel-

ligence, hence it is expected to be capable of self-organization and be able to adapt to 

difference problems. In addition, ACO has been proven to be able to find good solu-

tion fast in the search space due to its ability to store and exploit previous solutions. 

One of the most appealing features is that, the behavior which the ants move among 

the nodes in a graph can be adapted into both the clustering operation and the routing 

operation of the LTCPP. Thus, it is possible to merge the clustering operation and the 

routing operation together by using the ACO structure. For this purpose, we present in 

this chapter a Clustering Ant Colony Algorithm (CAC) for solving the Long-term Car 

Pooling Problem. The main idea of the CAC is to cluster the car pool members of 

each car pool during the construction of the ant’s path. Furthermore, the clustering 

experiences are memorized to direct the search of the future ants. Thus, the classic 

ACO algorithm has been transformed into a method with both clustering and routing 

abilities. This chapter starts with an introduction to the swarm intelligence metaheu-

ristics and the common concepts related to these approaches. In Section 3.3 the classic 

ant colony algorithm is introduced. Section 3.4 presents our Clustering Ant Colony 

Algorithm for solving the LTCPP. The section consists in the preference and attrac-
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tiveness representations, the preference update mechanism, and the embedded local 

search procedure. In Section 3.5 our CAC approach is tested on the sets of bench-

marks we developed. In addition, the performances of our algorithm are assessed and 

discussed. Finally, in section 3.6, we conclude this chapter with a summary and in-

troduce the future step of this thesis. 

 

 

3.2 Swarm Intelligence Metaheuristics 

Swarm intelligence (SI) refers to the collective behavior of self-organized, decentral-

ized systems. The expression was introduced by Beni and Wang [1989], in the context 

of cellular robotic systems. The inspiration of the swarm intelligence often comes 

from nature, especially biological systems. Many different kinds of swarms in the na-

ture can perform some collective behavior without any individual controlling the 

group, or being aware of the overall group behavior. Although lacking individuals in 

charge of the group, the swarm as a whole can show high intelligent behaviors. This is 

the result of the interaction of spatially neighboring individuals that act on the basis of 

simple rules.  

SI metaheuristics typically consist in a population of simple agents interacting 

locally with their environment. The agents act on simple rules, and there is no cen-

tralized control structure dictating how individual agents should behave. However, the 

collective behaviors of agents interacting locally with their environment cause coher-

ent functional global patterns to emerge. An intelligent global behavior unknown to 

the individual agents thus is generated. SI metaheuristics provide a basis with which it 

is possible to explore collective or distributed problem solving without centralized 

control or the provision of a global model. Thus, the characterizing property of swarm 

intelligence metaheuristic is its ability to act in a coordinated way without the pres-

ence of a coordinator or of an external controller.  

The other common characteristics of the swarm intelligence metaheuristics can be 

categorized as follows. 

 They are composed of many individuals. The individuals are relatively homoge-

neous.  

 The behavior of each individual is described in probabilistic terms. Each individ-

ual has a stochastic behavior that depends on its local perception of the neigh-

borhood. 

 The interactions among the individuals are based on simple behavioral rules that 

exploit only local information that the individuals exchange directly or via the 

stigmergy. 

 The overall behavior of the system is obtained from the interactions of individu-
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als with each other and with their environment, which provides a self-organized 

system. 

Because of the above properties, the swarm intelligence metaheuristics are scala-

ble, parallel, and fault tolerant. 

Scalability means that a system can maintain its function while increasing its size 

without the need to redefine the way its individuals interact. Because in a swarm in-

telligence system, the individuals’ behavior is only influenced by the neighboring in-

formation exchange or the stigmergy, the number of interactions tends not to grow 

significantly when the overall number of individuals in the swarm increases. In me-

taheuristics, scalability is important because a scalable system can increase its per-

formance by simply increasing its size, without the need for any reprogramming. 

Parallel action is possible in swarm intelligence metaheuristic because individuals 

composing the swarm can perform different actions in different places at the same 

time. In metaheuristics, parallel action is desirable because it can help to make the 

system more flexible and provide faster computing speed by taking care simultane-

ously of different aspects of a complex task. 

Fault tolerance is an inherent property of swarm intelligence metaheuristics due 

to the decentralized, self-organized nature of their control structures. Because the sys-

tem is composed of many interchangeable individuals and none of them is in charge 

of controlling the overall system behavior, a failing individual can be easily dismissed 

and substituted by another one that is fully functioning. Also, the effect of the indi-

viduals which provide low quality solutions can be minimized. 

The well-known swarm intelligence metaheuristics include the ant colonies opti-

mization (ACO), the artificial bee colony algorithm (ABC), and the particle swarm 

optimization (PSO). 

The ant colony optimization (ACO) [Dorigo and Stützle, 2004] is a class of opti-

mization algorithms inspired by the actions of an ant colony. ACO methods are useful 

in problems that require constructing paths. To use ACO, the given optimization 

problem needs to be transformed into the problem of finding the minimum cost path 

on a weighted graph. Then, a set of agents called "artificial ants" can search for good 

solutions in the transformed graph. The artificial ants incrementally build solutions by 

moving on the graph. The solution construction process is stochastic and is biased by 

a pheromone value, that is, a set of parameters associated with the nodes or edges of 

the graph. The values are updated when the ants obtained new solutions. ACO has 

been successfully applied to many combinatorial optimization problems, as well as to 

discrete optimization problems that have stochastic or dynamic components. Exam-

ples are the application to vehicle routing problems and to the probabilistic traveling 

salesman problem. Ant colony optimization is probably the most successful example 

of the swarm intelligence metaheuristics with numerous applications to real-world 

problems. One variation on this approach is the artificial bee colony algorithm, which 

is more analogous to the foraging patterns of the honey bee. 

Artificial Bee Colony (ABC) algorithm is a swarm intelligence based metaheuris-
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tic introduced by Karaboga [2005], and simulates the foraging behavior of honey bees. 

The agents of ABC algorithm are assigned with three different roles: scout bee, leader 

bee and follower bee. In the beginning, the algorithm starts with the scout bees being 

placed randomly in the search space. Then, the fitnesses of the solutions provided by 

the scout bees are evaluated. The scout bees that have the highest fitnesses are chosen 

as leader bees, and some of the other scout bees are assigned to each leader bee to be 

their follower bees. The follower bees are intended to generate neighborhood searches 

to the solutions of provided by the leader bees. Searches in the neighborhood of the 

best solutions which represent more promising solutions are made more detailed by 

recruiting more follower bees than the other leader bees. Together with scouting, this 

differential recruitment is a key operation of the Bees Algorithm. At last, the remain-

ing scout bees in the population are assigned randomly around the search space 

scouting for new potential solutions. These steps are repeated until a stopping criteri-

on is met. The ABC algorithm has a well-balanced exploration and exploitation ability, 

since the different types of bees are able to maintain the intensity and the diversity at 

the same time.  

Particle swarm optimization (PSO) [Kennedy and Eberhart, 1995] is another 

swarm intelligence based stochastic optimization technique for the solution of con-

tinuous optimization problems. The algorithm is inspired by social behaviors in flocks 

of birds and schools of fish. The problems to be solved by PSO have to be trans-

formed into an n-dimensional space where the best solution has to be represented as a 

point or surface in the space. A set of agents called particles is used to search for good 

solutions to the given optimization problem. Each particle is a solution of the consid-

ered problem and uses its own experience and the experience of neighbor particles to 

choose how to move in the search space. In practice, in the initialization phase each 

particle is given a random initial position and an initial velocity. The position of the 

particle represents a solution of the problem and has therefore a value, given by the 

objective function. While moving in the search space, particles memorize the position 

of the best solution they found. At each iteration of the algorithm, each particle moves 

with a velocity that is a weighted sum of three components: the old velocity, a veloci-

ty component that drives the particle towards the location in the search space where it 

previously found the best solution so far, and a velocity component that drives the 

particle towards the location in the search space where the neighbor particles found 

the best solution so far. Over time, particles are accelerated towards those particles 

within their communication grouping which have better fitness values. The main ad-

vantage of such an approach over other global minimization strategies such as simu-

lated annealing is that the large numbers of members that make up the particle swarm 

make the technique impressively resilient to the problem of local minima. 
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3.3 Classic Ant Colony Algorithm 

As abovementioned, the ant colony optimization algorithm (ACO) is a well-known 

metaheuristic for solving computational problems which can be reduced to finding 

good paths through graphs. This algorithm was initially proposed by Dorigo [1992] in 

his doctoral thesis with the aim to search for an optimal path in a graph, based on the 

behavior of ants seeking a path between their colony and a source of food. 

In the natural world, the real ants move randomly at the beginning of their search 

for food. When the food source is found and the ants return to their colony, they lay 

down pheromone trails on the path they traveled. If other ants find such a trail, they 

are likely to follow the trail instead of continuing to travel randomly. Moreover, while 

returning to the colony, the ants reinforce the trail if they eventually find food corre-

sponding to this trail. 

The pheromone trail evaporates over time, results in reducing its attractive 

strength. The more time it takes for an ant to travel down the path and return to the 

colony, the more time the pheromones have to evaporate. Hence, a relatively short 

path will be travelled over more frequently by the ants, and thus the pheromone den-

sity becomes higher on shorter paths than longer ones. So after a period of time, most 

of the ants will be attracted to the shorter paths. Another advantage of the pheromone 

evaporation is to avoid the convergence to a locally optimum. If there were no evapo-

ration at all, the paths chosen by the first ants would tend to be excessively attractive 

to the following ones, and the attraction would only increase through time. In that 

case, the exploration of the solution space would be constrained. 

Thus, when one ant finds a short path from the colony to a food source, other ants 

are more likely to follow that path, and positive feedback eventually leads all the ants 

following a single path. The idea of the ant colony algorithm is to mimic this behavior 

with "simulated ants" walking around the graph representing the problem to solve. 

The environment is used by the ants as a medium of communication. They ex-

change information by depositing pheromones instead of communicating directly with 

each other. The information exchanged has a local scope, only an ant located where 

the pheromones were left has a notion of them. This system is called "Stigmergy" and 

occurs in many social animal societies. There are two kinds of feedbacks in the sys-

tem: positive feedback where the deposit of pheromone attracts other ants that will 

strengthen it and negative feedback where dissipation of the route by evaporation 

prevents the system from thrashing. Theoretically, if the quantity of pheromone re-

mained the same over time on all edges, no route would be chosen. However, because 

of feedback, a slight variation on an edge will be amplified and thus allow the choice 

of an edge. The algorithm will move from an unstable state in which no edge is 

stronger than another, to a stable state where the route is composed of the strongest 

edges. 

In the ACO algorithm, the same behavior as the nature ants has been followed. 

The basic philosophy of the algorithm involves the movement of a colony of ants 
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through the different states of the problem influenced by two local decision policies, 

pheromone trail and attractiveness. The pheromone trail refers to the similar concept 

in nature ant colony, while the attractiveness is the physical attraction of a state. Typ-

ically, the further the state is from the ant, the less attractiveness it can provide. 

Thereby, each artificial ant incrementally constructs a solution for the problem by it-

eratively adding solution components to the partial solution. When an ant completes a 

solution, the ant evaluates the solution and modifies the pheromone trail value on the 

components used in its solution. This pheromone information will direct the search of 

the future ants. Furthermore, the pheromone trail evaporates through time, and the 

evaporation reduces all trail values thereby avoiding any possibilities of the ants being 

trapped in a local optimum. The general structure of the ACO is shown in Algorithm 

3.1. 

 

 
 

Algorithm 3.1: Ant Colony Optimization Metaheuristic. 

 

Initial the attractiveness; 
 

While not Termination Criterion (st ) do 

For k = 1, m (m = number of ants) do 

 While a complete solution is not obtained do 

compute the probability to move to other states; 

choose the state j to move into; 

memorize the state j to the list of visited states; 

  End while  

evaluate the solution;  

update pheromone; 

End for 

End while 

 

 

 

As presented in Algorithm 3.1, each ant starts from its initial state and moves 

from its current state to a new state j corresponding to a more complete partial solution. 

The partial solution refers to one of the solution states.  

A roulette wheel selection is normally applied to the ants for probabilistically 

choosing the state to move. As abovementioned, the probability of the selection is in-

fluenced by two decision policies, which are the attractiveness of move, indicating the 

a priori desirability of that move and the pheromone trail, indicating the experiences 

left by the previous ants. The higher the pheromone and attractiveness associated to 

an expansion, the higher the probability an ant will move to it.  

 The kth ant moves from state i to state j with the probability calculated in equation 

(3.1). 
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 where N is the set of all possible moves between two states, τij is the value of 

pheromone deposited on the move from state i to j, α≥ 0 is a parameter to control the 

influence of τij, ηij is a priori knowledge of the move from state i to j and β ≥ 0 is a 

parameter to control the influence of ηij. The ηij is typically calculated as the reciprocal 

of dij, where dij is the distance between state i and state j, which refers to the cost of 

transition between the two states.  

 Once an ant completes its solution, it evaluates the solution, and then deposits the 

pheromone trails on the moves it took, so each move used by the ant receives an 

increasing of additional pheromone proportional, the value corresponds to the quality 

of the solution of the ant. In some ACO approaches, this procedure is done until all 

ants finish their solutions.  

 Another important behavior in the classic ACO is the pheromone evaporation, 

which means all the pheromone values are iteratively decreased by a certain 

percentage. This behavior decreases the intensity of the pheromone value which 

avoids a fast convergence towards the local optima. The system is designed to favor 

the new deposited pheromone information instead of the old ones. 

 The pheromone values are updated by equation (3.2). 

 

k
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 where ρ is the pheromone evaporation coefficient and Δτij
k is the additional amount 

of pheromone deposited. In a TSP, Δτij
k is normally calculated as equation (3.3).  
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 where Lk is the cost of the kth ant's tour and Q is a constant. 

 It is difficult to define precisely what algorithm is or is not an ant colony approach, 

because the definition varies according to the authors and applications. Generally 

speaking, each solution of the ACO is generated by an ant moving in the search space. 

Ants leave their pheromone trails on their solutions and in the meantime attracted by 

the previous pheromone information left by the ancestors. They can be seen as 

probabilistic multi-agent algorithms using a probability distribution to make the 

transition between iterations. The characteristic which distinguishes ACO algorithms 
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from other relatives, such as algorithms to estimate the distribution or particle swarm 

optimization, is precisely their constructive aspect. 

We introduce some of most popular variations of ACO Algorithms as follows. 

 Elitist ant system 

The global best solution deposits pheromone on every iteration along with all the 

other ants. 

 Max-Min ant system 

The Maximum and Minimum pheromone amounts are added to the system. Only 

the global best or the iteration best solution deposits pheromone.  

 Rank-based ant system 

All solutions are ranked according to their quality. The amount of pheromone 

deposited is then weighted for each solution, such that solutions with better qual-

ity deposit more pheromone than the ones with lower quality. 

 Continuous orthogonal ant colony 

By implementing an "adaptive regional radius" method, the algorithm can reduce 

the probability of being trapped in local optima and therefore enhance the global 

search capability and accuracy. 

 

 

3.4 Clustering Ant Colony Algorithm for LTCPP 

During our following research with the ant colony algorithm, we first tried using a 

“route first, cluster second” approach where the ACO is applied to search the shortest 

path connecting all users, then the path is divided into car pools according to car ca-

pacity and time window constraints; we also implemented a “cluster first, route second” 

approach where we use K-means algorithm to cluster the users into car pools, then 

construct route for each car pool. But the research reveals that the separation of routing 

and clustering leads to lots of difficulty in finding the good solution. No matter which 

mechanism is applied first, it limits the search space, to such an extent that it is very 

hard for the second applied mechanism to find a high quality solution. So in order to 

provide an effective and efficient method for LTCPP, in our Clustering Ant Colony 

Algorithm, the ant is vested the ability of clustering during its tour and memorizes its 

clustering experience to direct the search of the future ants. Thus, the classic ACO al-

gorithm has been transformed into a method with the ability of both clustering and 

routing. In this section, we introduce the structure and the concepts of the Clustering 

Ant Colony Algorithm (CAC) for the LTCPP.  
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3.4.1 Main Structure of the CAC 

In the CAC, the ants are able to cluster the users during its tour and memorize its 

clustering experience to direct the search of the future ants. To direct the clustering 

activity of the ant, we introduce a preference concept into the ant system to replace the 

traditional pheromone trail. The preference information is defined as the preference of 

pooling two users in the same cluster. When an ant starts a tour from a user, it starts to 

build a car pool in the meantime. The ant then behaves according to a roulette wheel 

selection based on the preference and the attractiveness. It can either visit a new user 

and insert him into its current car pool or end the current car pool and select a new user 

to start a new car pool. When all the users are visited by the ant, the tour of the ant is 

considered finished. After all ants finish their tour in the current iteration, several so-

lution with the best fitness value is selected to be applied a local search procedure. At 

the end of iteration, the preference information between the users in the same car pool 

of each selected solution will be increased. By this mechanism, the clustering experi-

ence is always memorized and updated to direct the search of future ants. The general 

structure of the CAC is specified as following Algorithm 3.2. 

 
 

Algorithm 3.2: Clustering Ant Colony Algorithm. 

Initialize preference and attractiveness. 

While the stop criteria is not met do 

For k =1, k ≤ the number of ants do 

  Repeat 

(a) Select a new user and build a new car pool; 

(b) Insert the current user into the current car pool; 

(c) Check car capacity constraint: 

If the car capacity is reached, go to step (a); 

Else continue; 

(d) Select next activity in probability based on preference and attractiveness: 

If visiting another user is chosen, check time window constraint: 

If time window is satisfied then go to step (b); 

Else go to step (a); 

Else if ending current car pool is chosen, go to step (a); 

  Until all users are visited; 

End for 

Select m best solutions; 

Apply local search; 

Update the preference values based on the composition of selected solutions; 

End while 
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The first step of the algorithm is to initialize the preference and attractiveness 

information. In the second step, the ant starts to construct a solution. The ant will first 

select a new user to start a new car pool, then if the car capacity and time window 

constraints are satisfied, it will continue search for pool members according to the 

probability based on the preference and attractiveness information. During the 

construction of the car pool, if the ant decides to end the current pool or the car capacity 

or time window constraints are violated, the ant will stop the current pool, and sto-

chastically search for a new user to start a new pool. The probability of finding a user 

is calculated based on the attractiveness information. Until all ants finish building their 

solution, several best solutions among them will be selected to be applied a local search 

procedure. The detailed structure and sequence of the local search will be introduced 

in section 3.4.5. At the end of iteration, the composition of the solutions will be used to 

update the preference information. Until the stop criteria are met, the algorithm will go 

to the next iteration. 

 

3.4.2 LTCPP Solution Representation 

A representation for the solution has to be designed in order to provide a suitable 

mapping between our problem and the CAC algorithm. As discussed in chapter 2, we 

favor to use the direct coding for the LTCPP, since the time-consuming encoding and 

decoding phase of the indirect coding can be avoided. In the CAC, the ants proceed 

with both clustering operation and routing operation. Therefore, it is necessary to 

cover both the clustering information and the routing information of each user in the 

representation. Thus, the representation is still designed with two levels as in our Var-

iable Neighborhood Search. The first level indicates the partition of users, while the 

second level records the total travel time and distance, the route and time schedule to 

pick up the cluster members when each user acts as a server. A detailed introduction 

can be found in section 2.3.2 of chapter 2. 

 

3.4.3 Preference Information 

Definition 3.4.1  

Between any user i and user j in the long-term car pooling problem, a non-negative 

value wij is associated. The value reveals the existing experience on the frequency of 

user i and user j being pooled in the same car pool. The value is named preference 

information, since it refers to the preference of pooling user i and user j together. 

  

The preference information can be considered as variant pheromone information. It 

is stored in an n×n matrix where n = |U| is the number of users in an instance. The 

weight values of the matrix indicate the preference level between each two users to be 

pooled together, as shown in figure 3.1. 
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Note that, in the preference matrix of the CAC, the value corresponding to a user i 

and the user itself is also calculated. This value is defined according to definition 

3.4.2.  

 

Definition 3.4.2  

For any user i in the long-term car pooling problem, a non-negative value wii is asso-

ciated. The value indicates the level of user i’s tolerance level of being pooled with 

other users. The value can be considered as preference of a user to himself/herself, 

and it shows the will of user to avoid new members being inserted to his/her car pool. 

 

U1 U2 U3 U4

1.3 0.5 0.1 0

0.5 1.8 2.4 2.7

0.1 2.4 1.5 0.2

0 2.7 0.2 1.7

U1

U2

U3

U4

Preference Matrix

U5 U6

1.5 0

0 0

0 0.9

0.8 1.2

1.5 0 0 0.8

0 0 0.9 1.2

U5

U6

2.1 1.7

1.7 1.4
 

Figure 3.1: An example of the preference matrix. 

 

In the initialization of the preference information, the time window constraints (3.4) 

to (3.7) are checked. The constants in the equations are the same as the ones in the 

mathematical model in chapter 1. Constraints (3.4) and (3.5) examine whether client i 

and client j are both able to arrive on time, if client i picks up client j before going to 

the destination. Constraint (3.6) checks if the pick-up time of client j is too late for 

client i to arrive at the destination on time. Constraint (3.7) guarantees the client j 

lives in the area which can be served by client i. If pooling user i and j together cannot 

satisfy the above-mentioned constraints, the preference wij is set to be zero, which 

means there is no probability that user i and j are pooled together by ants. By this 

procedure, we are able to remove some car pool combinations which do not belong to 

any feasible solution, so the complexity for the ants to search for pool members is 

significantly decreased. 

 

ij0iji rt+t+e 
                         (3.4) 

jj0iji rt+t+e 
                         (3.5) 

 ij0j rt+e 
                           (3.6) 
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ij0ij Tt+t                            (3.7) 

 

Then, if all the constraints are well satisfied, the preference values between two 

different users are initialized by the geographic distance and the time window differ-

ence between each two users as (3.8), and the preference values between the users and 

themselves are computed as (3.9).  
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              (3.8)  
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where dij and tij are the geographical distance and travel time between user i and j, 

respectively. ei, ej, ri and rj are the departure-arrival time window of user i and j. Ti is 

the maximal driving time of user i; ti0 is the direct travel time between user i and the 

destination; α, β and θ are weight factors. Note that the constants in the abovemen-

tioned equations have different units. dij is a distance value in kilometers, while ei, ej, 

ri, rj, tij, ti0 and Ti are time values in minutes, so the factors α, β and θ are designed to 

adjust them. Furthermore, all the denominators in equation (3.8) and (3.9) are limited 

to a minimum value σ, which replaces the denominators if their values are less than σ. 

This mechanism is designed to avoid generating too large preference values.  

Equation (3.8) achieves that, while more distance and time window differences 

between the two users, there is less preference between them. Equation (3.9) calcu-

lates a user’s tolerance level of having new members inserted into his/her car pool by 

evaluating the user’s extra driving time. If a user has a shorter extra driving time, the 

user is likely to have less car pool members since his/her service area of picking up 

group members is smaller.  

In another view, the value wii can be considered as the preference between one user 

and itself, and it is important for guiding the ants to end the current car pool. When the 

ant chooses the next user to visit from user i, it also has a probability to still select user 

i itself as the next location, in this case, the ant will end the current car pool. The 

purpose of this mechanism is to provide a reference for the ants. By comparing the 

preference values calculated by equations (3.8) and (3.9), the ants are able to decide it 

is better to continue searching for new pool members or to stop with the current 

members. Thus, the ants are given the probability to select a cost-effective opportunity 

to end the current car pool before reaching the car capacity. For instance, the ant has 

high probability to end the cluster, when the existing users in current car pool have 

relatively low preference values to other available users compared with the ones to 

themselves. This means that all possible users are not economical to be inserted into the 

current car pool, so the better behavior is to end the cluster rather than pool one more 
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user into it. This mechanism is essential in CAC as it is a key function to cluster users 

except the car capacity and time window constraints.  

The activities of ants in the CAC are shown in Figure 3.2. 

 

U1

U3

U2

U4

U5

U6

1. Select a user and 

start a car pool

2. Visit and insert a new user 

into the current car pool

3. End the current car pool 

before car capacity is reached

4. Select a new user to 

start a new car pool

5. Visit and insert new users 

into the current car pool

U7

6. End the car pool since 

the car capacity is reached

 Figure 3.2: Activities of the ants in the CAC. 

 

As abovementioned, the two functions of the preference information, inserting a 

new user into the current car pool and ending the current car pool, are controlled by a 

roulette wheel selection procedure. The probability for the ant to select a new user j to 

visit and insert it into the current car pool k is based on the preference and attractiveness 

between user j and car pool k. In CAC, the preference between a user j to a car pool k is 

defined as follows.  

 

Definition 3.4.3  

For any user j and car pool k, the preference between them is defined to be the sum of 

the preference values between user j and each existing member of car pool k, if none 

of the preference values between user j and each existing member of car pool k equals 

to zero. Otherwise, the preference between user j and car pool k equals to be zero.  

 

The formulation of definition 3.4.3 is shown in equation (3.10), where K is the set 

of existing members of car pool k. 

 






 
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otherwise

wifw
Ki Ki

ijij

jk

0

0
δ                      (3.10) 

 

A positive preference value gives the ant the probability to insert the user j into 

the car pool k. In order to maintain the feasibility after the insertion, all the existing 

users in the car pool k should have a non-zero preference to user j, so to prove that at 

least pooling any of them individually with user j is feasible. If any existing user in 

car pool k has a zero preference value to user j, which indicates pooling them together 

violates the time window constraints, the preference between user j and car pool k is 

set to be zero. So there is no probability for the ant to insert user j into car pool k. 
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However, even all the existing members of car pool k have positive preference to user 

j, the insertion may still cause violation of the time window. Thus, the time windows 

will be examined after each insertion, if there is a time window violation, the insertion 

will be cancelled and the ant will select another user to start a new car pool.  

Therefore, the probability for the ant to select a new user j to visit and insert it into 

the current car pool k is calculated as in equation (3.11). In like manner, the probability 

for the ant to end the current car pool is computed as the sum of preference values of the 

existing users in car pool k to themselves, as shown in (3.12).  
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where δjk and wii are the preference value between user j and car pool k and the 

preference value between user i and himself/herself; ηij and ηii are the attractiveness 

values between user i, j and the attractiveness value between user i and himself/herself, 

which will be introduced in next section. K is the set of existing users in the car pool k; 

H is the set of users who have positive preference value with car pool k, but haven’t 

been assigned to any car pool; while a and b are adjusting parameters.  

When all ants finish their tours, the first m best-fit solutions are selected to be 

applied a local search, and then these solutions are used to update the preference 

values. Before updating the preference values with the new solutions, all weight values 

wij in the preference matrix will decrease with an evaporate rate μ, in order to enlarge 

the influence of the new preference information obtained in current iteration. Then for 

each selected solution s, the preference values between the users in the same cluster 

consist in an update by value υs, computed as (3.12).  

 

   
avg

savg

s
f

ff
λ=


                         (3.12)  

 

where favg is the average fitness of the whole ant colony; fs is the fitness of current 

selected solution s. Factor λ is a weight factor used to keep a low value for factor υs in 

anterior iterations and a high value in posterior iterations, so that the ants are more 

freely to explore the solution space in the beginning iterations.  
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Thus, the new preference value will be calculated as shown in equation (3.13) 

where wij
’ is the preference value of the previous iteration and S is the set of all 

selected solutions. 

 

 
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
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                     (3.13)  

 

Figure 3.3 shows an example of preference matrix updating, where user 1, user 2 

and user 3 are pooled together in the selected solutions. 

 

 

U1 U2 U3 U4

0.2 1.5 1.1 0

1.5 0.1 1.4 0.7

1.1 1.4 0.1 0.2

0 0.7 0.2 0.2

U1

U2

U3

U4

Before

U5 U6

0.5 0

0 0

0 0.9

0.8 1.2

0.5 0 0 0.8

0 0 0.9 1.2

U5

U6

0.1 0.7

0.7 0.4

υs = 0.1

μ = 0.95

U1 U2 U3 U4

0.2 1.53 1.15 0

1.53 0.1 1.43 0.67

1.15 1.43 0.1 0.19

0 0.67 0.19 0.2

U1

U2

U3

U4

After

U5 U6

0.48 0

0 0

0 0.86

0.76 1.14

0.48 0 0 0.76

0 0 0.86 1.14

U5

U6

0.1 0.67

0.67 0.4


Ss

s
  

Figure 3.3: Updating the preference matrix 

 

 

 The preference value wii is also updated with equation (3.14). The update is based 

on the vacancy level vi of the vehicles in a car pool. The vacancy level corresponded 

to user i is calculated as the difference between the minimum car capacity of user i’s 

car pool and the amount of users being pooled in the car pool. For instance, for a car 

pool with minimum car capacity of four users, if three users have been pooled in the 

car pool, the vacancy level of each user in the car pool is one. Thus, a higher vacancy 

indicates the car pool has fewer users compared to its car capacity, which also reveals 

the users in the car pool have a low tolerance level of having other car pool members. 

In contrary, if a user has a lower vacancy level, the user is able to accept more other 

users being pooled together with him. Therefore in equation (3.14), where w’
ii is the 

ancient preference value, if the vacancy level of user i is greater than one in a selected 

solution s, the preference of user i to itself increases by value υs computed in (3.12).  

 












otherwisew

vifw
w

sii

iii
ii

'

' 1
                     (3.14) 



CHAPTER 3 Swarm Intelligence Metaheuristics for the Long-term Car Pooling Problem 

69 

 

3.4.4 Attractiveness 

The basic paradigm of ACO involves the movement of a colony of ants through the 

different states influenced by two local decision policies, pheromone and attractiveness. 

In the CAC, the pheromone is replaced by the preference information and the attrac-

tiveness η is defined using the equations (3.15) and (3.16). These two equations are the 

same ones for initializing the preference information; the difference is the attractive-

ness is computed between every two users, no time window constraint is checked and 

there is no update for it. 
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where dij and tij are the geographical distance and travel time between user i and j, 

respectively. ei, ej, ri and rj are the departure-arrival time window of user i and j. Ti is 

the maximal driving time of user i; ti0 is the direct travel time between user i and the 

destination; α, β and θ are weight factors. The same limitation value σ as in equation 

(3.8) and (3.9) are also applied to these two equations.  

The attractiveness becomes essential when the ant needs to build a new car pool. 

After the ant ends the current car pool, it will stochastically search for a new user to 

start a new car pool, the probability of finding a user is influenced only by the 

attractiveness. The preference information is ignored in this procedure, since the zero 

values in the preference matrix will disable the probability to select some users and 

affect the construction of a complete solution. 

So in like manner, the probability for the ant to search for a new user to start a new 

car pool is computed as the sum of attractiveness between new user j and every existing 

user in current car pool k, shown in equation (3.17).  
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 where ηij is the attractiveness values between user i and user j; K is the set of 

existing users in current pool; H is the set of all users who have not been pooled; and b 

is the adjusting parameter. 
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3.4.5 Local Search Procedure 

After each iteration step, several best solutions are selected to be improved by a local 

search procedure. The local search operators we used in the CAC are inherited from 

our VNS-LTCPP approach presented in chapter 2. In order to reduce the complexity 

of the procedure to gain extra computing speed, the mechanisms of the Divide, Merge 

and Swap operators are modified, and the Chain operator in VNS-LTCPP is replaced 

by a new Move operator. The main structure of the local search in CAC consists in a 

loop considering sequentially each operator, and it stops when no improvement made 

during x iterations. A forbidden list is built to record the unsuccessful attempts of each 

operator, in order to avoid repetitive runs of unnecessary operations, so the computing 

resources and time can be further saved. Each operator in the procedure will be applied 

on several selected car pools, and it moves to the next selected car pool as soon as an 

improvement is obtained on the current car pool. When all the car pools selected by 

the current operator are processed, the next operator is applied.  

 The general structure of the local search procedure is presented in Algorithm 3.3. 

 

 
 

Algorithm 3.3: Local search in CAC. 

 

Local_Search_Operators[] = { Divide, Merge, Swap, Move } 

Do 

 For each operator in Local_Search_Operators do  

Select car pools for the operator 

For each selected car pool do 

Check the forbidden list; 

     If not in the list, apply the operator; 

     If solution is improved, update the solution; 

Remove corresponding information of the current car pool from 

the forbidden list; 

     Else record the operation in the forbidden list; 

Else skip the operation; 

    End for 

 End for 

Until the stop criteria of the local search procedure are met. 

Clear the forbidden list. 

 

 

To be more specifically, for each operator, we firstly select one or several car pools 

according to the selection rules defined by each operator. Then, for selected car pools, 

we check the forbidden list. If there is corresponding information in the list, which 

means we applied the same operator to the same car pools in the past and made no 



CHAPTER 3 Swarm Intelligence Metaheuristics for the Long-term Car Pooling Problem 

71 

 

improvement, we will skip the operation. Otherwise, we apply the operator and see 

whether there is an improvement obtained. If the solution is improved, we update the 

solution and remove the corresponding information of the modified car pools from the 

forbidden list. Because the users in the car pools have been changed, the ancient infor-

mation becomes deprecated and useless. And if the solution is not improved, which 

indicates the operation on the current selected car pools is not useful. We will record 

this information in the forbidden list, in order to avoid repeating the same operation 

again to the same car pools.  

Divide operator 

The divide operator consists in dividing a selected car pool into smaller car pools with 

respect to the total travel cost. The operator selects n% of the car pools with relatively 

high intra travel cost; the intra travel cost indicates the total travel cost between each 

user excluding the costs between the users and the destination. The selection is per-

formed by a roulette wheel selection based on the travel cost of each car pool. The 

probability of car pool i is selected is calculated as equation (3.18).  
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where incosti is the intra travel cost of car pool i and K is the set of all car pools. 

Then, for each selected car pool i, the operator tries to pool any members of pool i 

into a new pool. If an improvement is obtained, the move is confirmed. 

Merge operator  

The merge operator tries to merge any non-full car pools with each other.  

For each non-full car pool i, other non-full car pools which are able to satisfy the 

car capacity constraints after merging are put into a list. In this list, the car pools are 

ordered by their amount of users already in pool; the fewer users in pool, the more 

frontal in the list. Then the operator tries to merge car pool i with each car pool j on the 

list, starting from the top of the list. If an improvement is obtained, the move is con-

firmed. 

Swap operator 

The swap operator tries to swap any two users in two car pools. It first stochastically 

selects q% of car pools which have high intra travel costs; the concept of intra travel 

cost is the same as in divide operator. The selection is performed by a roulette wheel 

selection based on the intra travel cost of each car pool. The probability of selecting car 

pool i is also calculated by equation (3.18).  
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 For each selected car pool i, the operator selects its nearest car pool j according to 

their gravity centers. Suppose gij is the distance between the gravity centers of car pool 

i and car pool j, then the smallest gij is selected to locate the car pool j for each car 

pool i. Then, it tries to swap every member in pool i with every member in pool j. If an 

improvement is obtained, the move is confirmed.  

Move operator 

The move operator tries to move a user from a selected car pool into a non-full car pool. 

It first stochastically selects k% of the pools. The selection is performed by a roulette 

wheel selection based on the intra travel cost of each car pool. Equation (3.18) is still 

used to calculate the probability of selecting car pool i.  

For each selected pool i, the operator selects its nearest non-full car pool j according 

to the gravity centers. In the like manner of swap operator, suppose gij is the distance 

between the gravity centers of car pool i and car pool j, then the smallest gij is selected 

to locate the car pool j for each car pool i. Then, the operator tries to move every 

member of pool i into pool j, one member for each attempt. If an improvement is 

obtained, the move is confirmed. 

Forbidden List 

The unsuccessful attempts of each operator are recorded in this forbidden list, shown in 

Figure 3.4.  

 

Target pool 1 Target pool 2 Operator 

12 — Divide 

3 4 Swap 

17 22 Move 

… … … 

Figure 3.4: An example of the forbidden list. 

 

For instance, in the second row of figure 3.4, the Swap operator tried to swap each 

user in car pool 3 and in car pool 4, and the evaluation of this operation shows no im-

provement of the sum of the cost of the two car pools, then this operation is considered 

as an unsuccessful attempt and will be recorded into the Forbidden list. The complexity 

of insert and remove operation made on this list is O(n). 

If a car pool is modified by any operator, in other words, the members in the car pool 

have been changed. Then the records in forbidden list concerning this car pool will be 

removed. Otherwise, if any operator tries to apply the same operation stored in the 

forbidden list to the same car pool or car pools, the operation will be skipped. The 

forbidden list will be cleared when the stop criteria of local search are met. This 

mechanism can significantly decrease the operation time of the local search procedure, 

since lots of unsuccessful attempts only have to be applied once. Based on our 
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experiments, the forbidden list can save 20% to 50 % of the computing time of the 

local search procedure. 

 

 

3.5 Computational Results 

Computational experiments have been conducted to compare the performance of the 

proposed approach with other existing metaheuristics for solving the LTCPP.  

 

3.5.1 Configuration 

Parameter setting for the investigated algorithm is specified in table 3.1. Given limited 

computational resources and combinatorial complexity, parameter values were deter-

mined empirically over a few intuitively selected combinations, choosing the one that 

yielded the best average output. 

 

Number of Ant 
Initialization Probability Preference Local search 

α β σ θ a b m λ(iteration) μ n q k x 

90 0.9 0.1 1 5 2 1 10 
0.1(<300) 

0.5(≥300) 
0.95 10 20 20 2 

Table 3.1: Parameter setting for the Clustering Ant Colony Algorithm. 

 

3.5.2 Experimental Results 

In order to provide an exclusive evaluation of the performance of our algorithm, our 

experimental results are compared with three other approaches for solving the LTCPP, 

the ANTS and the simulation-based approach (SB), as well as the VNS-LTCPP pre-

sented in chapter 2. The reason for selecting ANTS approach to compare with our 

approach is that, both ANTS and our approach are based on the ant colony structure, 

but very different in defining the pheromone and attractiveness concepts. Thus, we 

believe the ANTS could be a valuable reference to evaluate the performance of our 

approach. Since the benchmarks and implementation environments of the ANTS is 

different from the other approaches, in order to provide a fair and convincing com-

parison, we implemented both approaches in the same environment and use them to 

solve the benchmarks presented previously. Please note the ANTS approach is imple-

mented exactly as it is described in the literature with no modification.  

 The experiments consist in performing 30 simulation runs for each problem 

instance on Windows operating system with Intel Core i7 740QM 2.9 GHz CPU and 

4 GB RAM. The CAC are given 1000 iterations and then the ANTS generates the 
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same amount of solutions as the CAC, while the SB and VNS-LTCPP approaches are 

set to run until no improvements can be found. 

 Table 3.2 compares the experimental results of the C set instances. The CAC 

outperforms other approaches on 7 instances considering the average solution quality 

of 30 runs. Furthermore, the CAC’s best found solutions of all the instances are better 

than or equal to the ones provided by other approaches.  

 

 

Inst Size 
CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] VNS-LTCPP 

Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) 

C101 100 1585.5 1593.4 11 1585.5 1592.9 17 1647.4 1669.2 91 1644.9 1684.6 7 

C102 100 1706.8 1728.2 10 1711.4 1748.5 14 1717.5 1724.8 94 1729.2 1753.8 9 

C103 100 1508.6 1527.5 11 1512.6 1535.1 18 1532.2 1599.4 85 1545.9 1563.6 7 

C201 200 2703.1 2717.7 25 2784.4 2854.2 57 2761.7 2868.6 329 2676.9 2723.8 24 

C202 200 2879.2 2892.9 36 2936.1 3004.5 64 3081.7 3114.1 473 3070.7 3145.2 26 

C203 200 2769.3 2834.1 29 2845.9 3003.5 58 2975.1 3182.4 394 2935.1 2993.7 37 

C401 400 5533.3 5618.6 189 5833.5 6281.4 424 6174.2 6860.3 934 6024.5 6130.1 255 

C402 400 4518.2 4760.3 242 4893.5 5153.2 357 5383.7 5524.5 683 5055.9 5110.7 197 

C403 400 5930.7 6046.4 271 6125.6 6742.1 511 6675.2 6994.5 1257 6079.6 6322.5 287 

Total 29134.7  29719.1  824  30228.5 31915.4 1520  31948.7  33537.8  4340  30762.7  31428.0  849  

Table 3.2: Experimental results of set C instances (clustered user distribution). 

 

 

 Table 3.3 shows the percentage the CAC outperforms other approaches on set C 

instances, in the aspects of average solution quality and computing time. For each 

instance, the outperforming percentage is calculated as (other approach’s value – 

CAC’s value) / other approach’s value. Each value in table 3.3 is obtained by averag-

ing the outperforming percentages of the three same-size instances. Comparing with 

ANTS and SB, the CAC can provide better solution quality in much less computing 

time. The VNS-LTCPP’s solution quality has been improved 4.7% by the CAC with 

similar computing time (considering the summation of computing time in table 3.2).  

 

 

Set Size 
ANTS [Maniezzo, 2004] SB [Correia, 2007] VNS-LTCPP 

Cost Gap Time Gap Cost Gap Time Gap Cost Gap Time Gap 

 100 0.54% 34.25% 2.95% 88.11% 3.06% -41.80% 

C 200 4.71% 49.96% 7.77% 92.48% 4.53% -7.00% 

 400 9.50% 44.87% 15.16% 74.26% 6.52% 2.87% 

Avg 4.92% 43.03% 8.63% 84.95% 4.70% -15.31% 

Table 3.3: Solution quality and computing time comparison on set C instances. 
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 Table 3.4 presents the experimental results on the R set instances. The CAC 

shows some difficulties in solving the random distributed instances. It outperforms 

other approaches on only 4 instances in best found solution, and on 6 instances 

considering the average solution quality. Considering the total value in the bottom 

row, the CAC still provides better solution quality, and the computing time is still 

significantly less than other approaches. But the ANTS and the SB approach provided 

the best found solutions for most instances with 100 and 200 users, which indicates 

the CAC is not very competitive in solving small size instances with random distrib-

uted users. Table 3.5 reveals the percentage of outperforming in the same manner as 

table 3.3. 

 

 

Ints Size 
CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] VNS-LTCPP 

Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) 

R101 100a 2223.1 2283.2 12 2207.1 2281.5 18 2235.1  2265.4  100  2211.2  2286.6  8  

R102 100b 1841.4 1874.3 13 1834.6 1864.2 17 1832.8  2091.7  97  1856.7  1898.7  10  

R103 100c 2235.9 2313.4 11 2299.2 2438.7 21 2204.7  2418.5  80  2288.3  2379.8  7  

R201 200a 4156.1 4231.8 36 4101.5 4253.5 108 4425.0  4567.1  430  4349.2  4464.6  35  

R202 200b 3717.2 3824.2 29 3772.2 4071.9 84 3952.4  4283.3  231  3970.3  4162.0  27  

R203 200c 4164.7 4304.6 44 4368.5 4541.5 116 4092.4  4257.5  540  4118.5  4282.5  36  

R401 400a 7891.4 8033.7 358 8396.1 8580.4 581 8787.8  8993.8  1106  8097.1  8398.4  316  

R402 400b 6365.2 6559.7 304 6512.7 6893.3 479 7258.7  7417.5  896  6411.8  6975.0  196  

R403 400c 8023.4 8129.5 289 8113.1 8338.9 631 8841.9  8933.5  1037  8312.1  8422.0  309  

Total 40618.4  41554.4  996  42505 44663.9 2055  43630.8  45228.3  4517  41615.2  43269.6  944  

Table 3.4: Experimental results of set R instances (random user distribution). 

 

 

Size 
ANTS [Maniezzo, 2004] SB [Correia, 2007] VNS-LTCPP 

Cost Gap Time Gap Cost Gap Time Gap Cost Gap Time Gap 

100 1.51% 34.83% 4.65% 86.95% 1.41% -45.71% 

200 3.94% 64.74% 5.65% 90.31% 4.27% -10.83% 

400 4.57% 50.00% 10.41% 72.33% 4.59% -3.63% 

Avg 3.34% 49.85% 6.91% 83.20% 3.42% -20.06% 

Table 3.5: Solution quality and computing time comparison on set R instances. 

 

 

 The experimental results for the set W instances (real-world instances) are 

presented in table 3.6. The CAC provides better results on 8 instances both in best 

found solution quality and average solution quality. The outperforming percentage is 

shown in table 3.7.  
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Inst Size 
CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] VNS-LTCPP 

Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) 

W101 100 864.2 886.3 9 889.4 893.8 18 864.2 885.7 81 866.7 886.9 7 

W102 100 998.9 1008.5 11 1016.5 1020.3 18 1007.5 1037.9 82 1007 1041.5 8 

W103 100 1112.4 1134.8 10 1142.4 1168.1 20 1100.5 1187.6 87 1118.9 1173.8 8 

W201 200 1523.1 1557.6 46 1586.1 1601.8 97 1717.1 1722.9 341 1614.4 1682.5 38 

W202 200 1803.7 1812.9 22 1872.2 1919.2 104 2014.3 2127.7 406 1943.5 2003.6 25 

W203 200 1701.2 1784.4 40 1795.6 1907.5 85 1860.5 1965.1 371 1733.7 1806.8 44 

W401 400 2789.5 2848.4 356 2843.4 3066.4 481 3168.4 3442.8 955 2975.2 3076.8 520 

W402 400 3283.1 3360.1 324 3541.6 3692.9 441 3633.5 3984.9 792 3625.6 3713 306 

W501 565 4887.5 5056.2 515 5090.2 5224.9 697 5377.5 5858.3 1621 5105.2 5288.4 578 

Total 18563.6  18963.6  19449.2  1333  19777.4 20494.9 1961  20743.5  22212.9  4736  19990.2  20673.3  

Table 3.6: Experimental results of set W instances (real world cases). 

 

 

Size 
ANTS [Maniezzo, 2004] SB [Correia, 2007] VNS-LTCPP 

Cost Gap Time Gap Cost Gap Time Gap Cost Gap Time Gap 

100 1.62% 46.30% 2.40% 87.99% 2.19% -30.36% 

200 4.92% 61.45% 11.20% 90.10% 6.06% 0.01% 

400 6.45% 26.21% 15.55% 63.35% 7.11% 12.19% 

Avg 4.33% 46.45% 9.71% 80.48% 5.12% -6.05% 

Table 3.7: Solution quality and computing time comparison on set W instances. 

 

 Considering all three sets of instances, the solution quality of CAC is significant 

better than other approaches when dealing with the instances with 200 and 400 users 

in all three sets. However, the search ability on the instances of random distributed 

users needs to be improved. 

 A further evaluation of the performance among the four approaches has been 

conducted by using a Friedman test [Friedman, 1940]. The test consists in the average 

solution quality on all 27 instances used in our experiments. The detail information is 

presented in table 3.8, the detail calculation can be found in appendix 2.  

 The Friedman statistic value T of table 3.8 is calculated to be 24.63, while the 

threshold for the F distribution with a significance level 0.01 is 4.04. Since T is much 

greater than the threshold, it is proven that there exists at least one approach whose 

performance is significant different from at least one of the other approach. A paired 

comparison is then performed to decide which approaches are really different; the 

detail calculation is also presented in appendix 2. According to the paired comparison, 

for significance level 0.01 and 78 degrees of freedom, the critical value for a signifi-

cant difference between two approaches is 18.29. Table 3.9 shows the difference 

between the performances of every two approaches. We can see that our CAC 

approach provides the best performance. It outperforms significantly all the other 

approaches. 
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Instance 
CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] VNS-LTCPP 

Avg R R
2
 Avg R R

2
 Avg R R

2
 Avg R R

2
 

C101 1593.4 2 4 1592.9 1 1 1669.2 3 9 1684.6 4 16 

C102 1728.2 2 4 1748.5 3 9 1724.8 1 1 1753.8 4 16 

C103 1527.5 1 1 1535.1 2 4 1599.4 4 16 1563.6 3 9 

C

201 

2717.7 1 1 2854.2 3 9 2868.6 4 16 2723.8 2 4 

C202 2892.9 1 1 3004.5 2 4 3114.1 3 9 3145.2 4 16 

C203 2834.1 1 1 3003.5 3 9 3182.4 4 16 2993.7 2 4 

C401 5618.6 1 1 6281.4 3 9 6860.3 4 16 6130.1 2 4 

C402 4760.3 1 1 5153.2 3 9 5524.5 4 16 5110.7 2 4 

C403 6046.4 1 1 6742.1 3 9 6994.5 4 16 6322.5 2 4 

R101 2283.2 3 9 2281.5 2 4 2265.4 1 1 2286.6 4 16 

R102 1874.3 2 4 1864.2 1 1 2091.7 4 16 1898.7 3 9 

R103 2313.4 1 1 2438.7 4 16 2418.5 3 9 2379.8 2 4 

R201 4231.8 1 1 4253.5 2 4 4567.1 4 16 4464.6 3 9 

R202 3824.2 1 1 4071.9 2 4 4283.3 4 16 4162 3 9 

R203 4304.6 3 9 4541.5 4 16 4257.5 1 1 4282.5 2 4 

R401 8033.7 1 1 8580.4 3 9 8993.8 4 16 8398.4 2 4 

R402 6559.7 1 1 6893.3 2 4 7417.5 4 16 6975 3 9 

R403 8129.5 1 1 8338.9 2 4 8933.5 4 16 8422 3 9 

W101 886.3 2 4 893.8 4 16 885.7 1 1 886.9 3 9 

W102 1008.5 1 1 1020.3 2 4 1037.9 3 9 1041.5 4 16 

W103 1134.8 1 1 1168.1 2 4 1187.6 4 16 1173.8 3 9 

W201 1557.6 1 1 1601.8 2 4 1722.9 4 16 1682.5 3 9 

W202 1812.9 1 1 1919.2 2 4 2127.7 4 16 2003.6 3 9 

W203 1784.4 1 1 1907.5 4 16 1965.1 3 9 1806.8 2 4 

W401 2848.4 1 1 3066.4 2 4 3442.8 4 16 3076.8 3 9 

W402 3360.1 1 1 3692.9 3 9 3984.9 4 16 3713 2 4 

W501 5056.2 1 1 5224.9 2 4 5858.3 4 16 5288.4 3 9 

Avg 

 

1.30  

 

2.41  

 

3.41   2.89  

Sum 

 

35 55 

 

65 173 

 

92 344  78 238 

Table 3.8: Friedman test results. 

 

  

 

|Ri-Rj| ANTS [Maniezzo, 2004] SB [Correia, 2007] VNS-LTCPP 

CAC 30 57 43 

ANTS [Maniezzo, 2004] - 27 13 

SB [Correia, 2007] - - 14 

Table 3.9: Paired comparison results. 

 

 The accuracy of the CAC is examined by calculating the standard error (column 

Std) of the solutions obtained in 30 runs of each instance. The solution quality 

difference (column Diff) between the best found solution quality and the average 

solution quality of each instance in the previous tables is also calculated. Table 3.10 
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shows the average of the abovementioned values of the three same-size instances. 

The average differences between the best found solution and the average solution of 

the three sets of instances are 1.3%, 1.6% and 2.3%, respectively, which indicates the 

CAC approach can be considered to be accurate for a metaheuristic. 

 

Size 
C set instances R set instances W set instances 

Best Avg Std Diff(%) Best Avg Std Diff(%) Best Avg Std Diff(%) 

100 1601.6  1609.7  4.12 0.5  2033.5  2057.0  13.28 1.1  991.8  1009.9  9.08 1.8  

200 2797.2  2838.2  24.82 1.4  3942.7  4006.9  41.26 1.6  1676.0  1718.3  21.54 2.5 

400 5374.1  5475.1  65.66 1.8  7390.0  7541.0  92.59 2.0  3653.4  3754.9  49.32 2.7  

Avg 3257.6 3307.7 31.53 1.3 4455.4 4534.9 49.04 1.6 2107.1  2161  20.40 2.3 

Table 3.10: Evaluation of the accuracy of the CAC. 

 

 The stability of CAC is evaluated by modifying the number of ants but maintain-

ing same amount of solutions generated. Figure 3.5 shows the solution quality change 

when modifying the number of ants. From the figure, it is easy to notice that the 

solution quality stays stable during the change of the number of ants. Most of the best 

average solution quality is obtained with 90 ants, therefore this amount is chosen for 

the experimentations. 

 

 

Figure 3.5: Evaluation of the stability of the CAC by modifying the number of ants. 

  

 

3.6 Conclusion 

In this chapter we introduced CAC, a new clustering ant colony algorithm to solve the 

LTCPP. We defined a preference concept into the ACO system to replace the tradi-

tional pheromone information, which converts the classic ACO into a methodology 

with both clustering and routing abilities. In our approach, the preference information 

is used to guide the movement direction and the car pool construction behavior of the 

ants. Then, a local search is defined to further optimize the best solutions obtained 

during iteration.  
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The presented approach has been applied successfully for solving the long-term car 

pooling problem. Experiments have been performed to confirm the efficiency and the 

effectiveness of the preference mechanism. The CAC approach has been also com-

pared with other existing metaheuristics for solving the long-term car pooling prob-

lem. For the instances with clustered user distribution and the real-world instances, 

the CAC can provide significant better solution quality compared with other metaheu-

ristics. However, the performance of the CAC on random distributed instances is less 

preferable. The reason the CAC’s performance decreases on the instances with 

random distributed users is that the resolution ability of the ACO framework 

relatively depends on the distribution of the users. The clustered distributed users are 

easier for the ants to construct good quality clusters, since the differences between a 

user’s high preference values and the low ones are significant, which provide a strong 

guidance for the ants. In the other hand, the preferences among the random distributed 

users are relatively similar, which increases the difficulty for the ants to find high 

quality combinations of users. Thus, we believe the solution quality of the instances 

with random distributed users can be further improved by other metaheuristics, which 

drives us to further explore other population based metaheuristics. 

The mechanism of the genetic algorithm, which is based on applying recombina-

tion and mutation operations on the representation of the solution, is affected less by 

the distribution of the users. So we believe it is a good candidate for solving the 

LTCPP. In the next chapter, we will discuss our genetic algorithm based approaches.  
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Abstract 

In this chapter, a Guided Genetic Algorithm and a Multi-agent Self-adaptive Genetic 

Algorithm are introduced. The presented approaches have been applied successfully 

for solving the LTCPP. Experiments have been performed to confirm the efficiency 

and the effectiveness of the algorithms. 

 

4.1 Introduction 

The evolutionary metaheuristics belong to the population-based metaheuristic family. 

The underlying idea is that, given a population of individuals, the environmental 

pressure causes natural selection which results a rise in the fitness of the population. It 

typically uses some mechanisms inspired by biological evolution: reproduction, muta-

tion, recombination, and selection. Candidate solutions of an optimization problem 

play the role of individuals of the population, and the fitness function measures the 

solutions. Some of the better individuals are chosen to seed the next generation by ap-

plying recombination and mutation to them. Recombination is an operation applied to 

two or more selected individuals and results one or more new individuals. Mutation is 

applied to one individual and results in one new individual. Executing recombination 

and mutation leads to a set of new individuals, which also called offspring. The off-

spring and their parents are selected based on the fitness for a place in the next gener-

ation. Evolution of the population then takes place after the repeated application of the 

above operations.   

In the evolutionary metaheuristic family, we select the Genetic Algorithm (GA) as 

the basic paradigm to solve the LTCPP, since GA is the most selected for solving the 

optimization problems and its solution representation is most suitable for the LTCPP. 

The optimization mechanism of the GA, which is based on applying recombination 

and mutation operations on the representation of the solution, is affected very less by 

the distribution of the users, thus we believe it is a good candidate for solving the 

LTCPP.  

In recent years, the GA has become to be the most popular evolutionary metaheu-

ristic. The algorithm appears to be particularly appropriate for solving the routing and 

scheduling problems. It is often applied as an approach to find global optimization 

solutions. The GA is proven to be useful in problem domains that have a complex 

mixed fitness landscape. The combination of recombination and mutation operations 

is designed to move the population away from local optima that other algorithms 

might get stuck in. Based on the above mentioned reasons, we present firstly in this 

chapter a Guided Genetic Algorithm (GGA) for solving the Long-term Car Pooling 

Problem. In the Guided Genetic Algorithm, the composition of the better individuals 

will always be memorized and updated. Then this information will be used for aiding 
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the genetic operators, in order to produce more feasible offspring solutions with high 

solution quality. Furthermore, the GGA is designed with an adaptive control of the 

variation rates. The algorithm adapts the recombination rate and mutation rate dy-

namically, in order to maintain stable population diversity at a desirable level. 

However, some weaknesses with population based metaheuristics for the long- 

term car pooling problem appears during the research. First, although the use of me-

taheuristics allows to significantly reducing the computational complexity of the 

search process, the latter remains time or memory consuming for the large size in-

stances. Second, the diversity of the population decreases significantly after the con-

vergence to an optimum. Third, the population-based algorithms require a large num-

ber of accurate parameter settings in order to obtain good search ability. At last, the 

structures of the algorithms are always fixed, thus the new operators or constraints are 

hard to insert into or remove from the system without modifying the algorithm struc-

ture. Therefore, we are motivated to develop an improved approach for the LTCPP. 

This can be achieved by a multi-agent system with hyper-heuristic. The multi-agent 

system (MAS) is able to improve the computational speed and maintain the diversity 

after convergence by communicating among the agents. The hyper-heuristic is used to 

find the most suitable operator or sequence of operators, thus the design of each indi-

vidual operator becomes more flexible. Furthermore, with the hyper-heuristic, any 

new operator can be easily inserted into the system without modifying the system’s 

main structure, since the hyper-heuristic will select the most appropriate operator to 

apply. 

Thus, we investigate then in this chapter to merging the GA with the multi-agent 

system and the hyper-heuristic. For this purpose, we elaborate a Multi-agent Self- 

adaptive Genetic Algorithm for solving the long-term car pooling problem.  

This chapter starts with an introduction to classic genetic algorithm and the 

common concepts related to it. In Section 4.3 the Guided Genetic Algorithm is intro-

duced. The experimental results of the GGA approach are presented in section 4.4. 

Section 4.5 presents our Multi-agent Self-adaptive Genetic Algorithm for solving the 

LTCPP, while the performance of the AGA algorithm is assessed and discussed in sec-

tion 4.6. Finally, in section 4.7, we conclude this chapter with a summary and intro-

duce the future step of this thesis. 

 

4.2 Classic Genetic Algorithm 

There exists various approaches in the evolutionary metaheuristic family, but the dif-

ference among them is not very significant. The algorithms mainly differ in the repre-

sentation of the solution. Typically, the solutions are represented by string over a finite 

alphabet in Genetic Algorithms (GA) [Fraser and Burnell, 1970], real-valued vectors 

in Evolution Strategies (ES) [Schwefel, 1981], finite state machines in Evolutionary 

Programming (EP) [Fogel et al., 1966] and trees in Genetic Programming (GP) 
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[Cramer, 1985]. These differences have a mainly historical origin. An approach of the 

evolutionary metaheuristic family is selected for solving a problem is usually because 

it matches the given problem better, that is, it makes the encoding of solutions easier 

or more natural. For solving the LTCPP, the straightforward choice is to use the string 

representation, hence the most suitable evolutionary metaheuristic is the Genetic Al-

gorithm. 

 Because of the similarity among the approaches in the evolutionary metaheuris-

tics, we only present the classic GA as the representative of the whole family in this 

section. 

The principles of classic GA [Fraser and Burnell, 1970] are well known, it fol-

lows the typical procedure of the evolutionary metaheuristic. In GA, a population of 

strings, usually called chromosomes, which encodes candidate solutions, normally 

called individuals, to an optimization problem, evolves toward better solutions. The 

evolution usually starts from a population of randomly generated individuals and 

happens in generations. In each generation, the fitness of every individual in the pop-

ulation is evaluated; multiple individuals are stochastically selected from the current 

population based on their fitness. Then, the selected individuals are recombined and 

mutated to form offspring in order to generate a new population. The offspring exhibit 

some of the characteristics of each parent, and the new population is then used in the 

next iteration of the algorithm. Analogous to the biological processes, offspring with 

relatively good fitness levels are more likely to survive and reproduce, with the ex-

pectation that fitness levels throughout the population will improve as it evolves. Fig-

ure 4.1 shows the operations of a classic GA. Commonly, the algorithm terminates 

when either a maximum number of generations have been produced, or a satisfactory 

fitness level has been reached for the population. If the algorithm has terminated due 

to a maximum number of generations, a satisfactory solution may or may not have 

been reached. The structure of the GA is presented in Algorithm 4.1. 

 

 
 

Algorithm 4.1: Classic Genetic Algorithm. 

 

Initialize();  /* Generate initial population */ 

Evaluate();  /* Evaluate each individual in the population */ 

 

While not Termination Criterion () do 

 Selection();  /* Select the parent individuals */ 

Recombination();  /* Recombine the parent individuals */ 

Mutation();  /* Mutate some of the individuals */ 

Evaluation();  /* Evaluate each individual in the population */ 

Survival();  /* Update the population for the next generation */ 

End while 
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Figure 4.1: The general scheme of a genetic algorithm. 

 

There are a number of components that must be specified in order to define a par-

ticular Genetic Algorithm. They are introduced as follows. 

 

4.2.1 Representation 

The representation is the connection between the problem context and the problem 

solving space where evolution will take place. Both direct coding and indirect coding 

are commonly used in the solution representation of GA, but normally a standard rep-

resentation is a string. The main reason to use string representations is that their parts 

are easily aligned due to their fixed size, which facilitates simple recombination oper-

ations. 

 

4.2.2 Fitness Function 

The fitness function is defined over the genetic representation and measures the qual-

ity of the represented solution. It forms the basis for selection, and thereby it facili-

tates improvements. The fitness function is always problem dependent. If the original 

problem to be solved by a GA is an optimization problem, the fitness function can be 

identical to, or a simple transformation of the objective function of the given problem. 

 

4.2.3 Population 

The role of the population is to hold possible solutions. A population is a set of indi-

viduals, and it forms the evolution. Defining a population is simple; the only neces-

sary parameter to set is the size of the population.  

 As opposed to the recombination or mutation operators that act on one or two in-
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dividuals, the selection operators, which include both parent selection and survival 

selection, work at the population level. In GA, the population size is constant, not 

changing during the evolutionary search. 

 A very important concept to note is the diversity of a population. It indicates the 

number of different individuals in the population. A well-selected population should 

always maintain its diversity during the evolution. 

 

4.2.4 Selection 

There a two selection operations in the classic GA, the parent selection and the sur-

vival selection. 

 The role of parent selection is to distinguish among individuals based on their 

quality, in particular, to allow the better individuals to become parents of the next 

generation.  

 

Definition 4.2.1 

An individual is a parent if it has been selected to undergo variation in order to create 

new individuals, while the created individuals are considered as the offspring of the 

corresponding parents. 

 

 Together with the survival selection, parent selection is responsible for pushing 

the quality improvement of the population. In GA, parent selection is typically proba-

bilistic, thus high quality individuals get a higher probability to become parents than 

those with low quality. Nevertheless, low quality individuals are often given a small, 

but positive chance, in order to avoid the algorithm getting stuck in a local optimum. 

 The survival selection is to distinguish among individuals based on their quality. 

It is similar to parent selection, but it is used in a different stage of the evolutionary 

cycle. The survival selection is applied after creating the offspring of the selected 

parents. As previous mentioned the population size of a GA is constant, thus a choice 

has to be made on which individuals will be allowed in the next generation. This deci-

sion is usually made also based on the fitness value, favoring those with higher quali-

ty. 

 

4.2.5 Variation operators 

The variation operators aim to create new individuals from old ones. They are divided 

into two types: recombination and mutation.  

 The recombination operator is also called crossover operator. It merges character-

istics of two parents into one or two offspring. The choice of what parts of each parent 

are combined is normally stochastic. The main principal of recombination is simple. 

By mating two parents with different desirable features, we can produce an offspring 
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which combines both of those features, which may provide a higher fitness quality.  

 The mutation operator is applied to one individual and delivers a slightly modi-

fied mutant. The original idea to apply this operator is to connect the search space, 

that is, the mutation operator can move to anywhere during the evolution. However, 

the randomness of the move possesses limited practical importance. Hence, many im-

plementations of GA use a guided mutation procedure.  

These variation operators ultimately result that, in the next generation of popula-

tion, the individuals are different from the ones in the current generation. Generally 

the average fitness will have increased by this procedure for the population, since the 

individuals with higher quality have a higher probability to be selected for breeding. 

 It is important to note that variation operators are representation dependent. That 

is, for different representations different variation operators have to be defined. 

 

4.2.6 Initialization 

Initialization is kept simple in most GA applications. Typically, initial individual solu-

tions are randomly generated to form an initial population, allowing the entire range 

of possible solutions. In practice, problem specific heuristics can be used aiming at an 

initial population with higher fitness, however the search space may be limited and 

extra computational time is required. Whether this is worth the extra computational 

effort or not is very much depending on the optimization problem in hand.  

 

 

 

4.3 Guided Genetic Algorithm for the LTCPP 

As above mentioned, in classic GA, the offspring solutions are produced which exhib-

it some of the characteristics of each parent. However with a classic recombination 

operator, the process always generates a large amount of solutions with low solution 

quality. A proper amount of low quality solutions may enlarge the search of the solu-

tion space, but too many of them could decrease the probability to find a good solu-

tion close to the optimum. To improve the classic GA in solving the LTCPP, we adapt 

the preference mechanism from the CAC algorithm presented in chapter 3 into the 

genetic paradigm. In our Guided Genetic Algorithm (GGA), the composition of the 

better individuals will always be memorized and updated by the preference infor-

mation. Then this information will be used for aiding the recombination and mutation 

operators, in order to produce more offspring with high fitness. According to our ex-

periments, with this mechanism, fitness quality of the offspring is significantly in-

creased. Moreover, we propose an adaptive setting of the recombination and mutation 

rates in order to control the intensity and the diversity of our algorithm at a desirable 

level, so the algorithm can progress on the search space but does not converge easily.   
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4.3.1 Main Structure of the GGA 

The overall structure of the GGA is presented in algorithm 4.2. Our approach follows 

the paradigm of the classic GA as introduced in the previous sections. The initial pop-

ulation is generated in the beginning of the algorithm. Then, the information for guid-

ing the variation operators is also initialized, and the initial recombination and muta-

tion rates are set. In the next step, the algorithm creates new population by repeating 

the following procedures. First, pairs of parents are selected from the population. Se-

cond, with the previous defined rates, the variation operators proceed with the recom-

bination and mutation on the selected parents to breed offspring. Third, the new off-

spring are evaluated, and the compositions of better offspring are recorded by updat-

ing the preference information. At last, the survival selection is applied, and the indi-

viduals with better fitness will survive to form the new population. Then, the recom-

bination and mutation rates are adjusted according to the diversity level of the new 

population. 

 

 
 

Algorithm 4.2: Guided Genetic Algorithm. 

 

Generate initial population; 

Initialize the guidance information; 

Set initial recombination and mutation rates; 

Evaluate();  /* Evaluate each individual in the population */ 

 

While not Termination Criterion do 

 While not exceed the recombination rate do 

  Selection();  /* Select the parent individuals */ 

Recombination();  /* Recombine the parent individuals */ 

Mutation();  /* Mutate the offspring according to mutation rate */ 

 End while 

Evaluation();  /* Evaluate the generated offspring */ 

Update the guidance information; 

Survival();  /* Update the population for the next generation */  

Adjust the recombination and mutation rate; 

End while 

 

 

4.3.2 LTCPP Solution Representation 

The representation of a classic GA refers to encoding solutions in the form of a string. 

Individual positions within each chromosome are referred to as genes. In GAs, both 
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direct and indirect representations have obtained many successful implementations. 

Based on the structure of the solutions of LTCPP, we choose direct coding representa-

tion as our strategy. Same as the solution representations of the approaches presented 

in the previous chapters, the solution representation of the GGA is also designed with 

two levels. The upper level is the chromosome representation, which will be pro-

cessed by the variation operators. It is encoded as a serial of groups where each group 

represents a car pool, and each group is expressed by sequential integers where each 

integer indicates a user in this car pool. In the second level, some other information is 

collected and associated with each user, such as the total travel time, total travel dis-

tance, and the time schedule to pick up the car pool members when this user acts as a 

server.  

 

4.3.3 Selection 

Following the same procedure of the classic GA, two selection operations are con-

ducted in the GGA: parent selection and survival selection. 

During each successive generation, a proportion of the existing population is se-

lected to be parents in order to breed offspring. The amount of selected population 

corresponds to the recombination rate. To perform selection, both roulette wheel se-

lection and tournament selection mechanism [Miller and Goldberg, 1995] were tested 

during the design of the algorithm. The latter is finally chosen because its selection 

pressure is easily adjusted. Tournament selection involves running several tourna-

ments among a few individuals chosen at random from the population. The individual 

with the best fitness of each tournament has greater opportunity to be selected for re-

combination. Selection pressure is adjusted by changing the tournament size. If the 

tournament size is larger, weak individuals have a smaller chance to be selected. In 

GGA, two individuals are selected from the population as candidate solutions by the 

binary tournament method. Thus, they are chosen from the population at random. The 

one with the better fitness value is chosen to be the first parent. The process is repeat-

ed to obtain a second parent. The objective function of the LTCPP presented in chap-

ter 1 is used to evaluate the fitness of each individual. 

After new offspring are generated by the variation operators, they are put together 

with the ancient population to face a survival selection. The first 10% solution with 

the best fitness value always survives, and a binary tournament selection is performed 

to select the rest individual that can survive to the next generation. Similar to the pre-

vious parent selection, two individuals are selected randomly, and the one with better 

fitness is put into the new population and removed from the selection pool. The pro-

cess repeats until the new population obtains enough individuals.  
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4.3.4 Recombination 

Reproduction is one of the most crucial functions in the chain of genetic evolution. It 

serves the important purpose of combining the useful traits from parent individual and 

passing them onto the offspring. The recombination rate decides the percentage of the 

population that will be selected to breed the offspring, and it is adaptive to the diver-

sity of the population in GGA. 

 The two selected parent individuals are recombined by being applied with a re-

combination operator. In the representation of LTCPP, where each integer element 

appears only once in the chromosome, we decide to use the 2-point recombination, in 

which two points in the chromosome are chosen randomly, but each point must be a 

start or an end of a car pool. One offspring consists of the genes from the first parent 

which are between the two chosen points in the chromosome, along with the genes from 

the second parent which are to the left of the first point and to the right of the second 

point of the chromosome. After these two parts of genes have been selected, the 

duplicate users caused by the recombination will be removed from the second part; and 

the users which do not exist in any part of genes will be randomly selected and inserted 

in to the chromosome based on the preference information. New car pools can be 

created to prevent invalid offspring from being reproduced. A second offspring is 

produced by swapping round the parents then using the same procedure. The mecha-

nism of the recombination operator is graphically illustrated in figure 4.2.  

 

 

 Figure 4.2: Mechanism of the recombination operator. 
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In genetic process, the variation operators will modify the parent population in 

order to produce the offspring. During this procedure, the chromosome will be de-

composed and then recombined.  

In the context of the LTCPP, a classic 2-point recombination operator is very 

likely to produce offspring with low fitness quality if we want to maintain the feasi-

bility of the solution. With a large number of low fitness quality individuals in the 

population, the probability of reproducing high fitness quality offspring becomes 

smaller, and the evolution speed is also decreased. If more offspring with high fitness 

quality can be produced by the variation operators in each generation, then the effi-

ciency of GA can be greatly improved. However, a possible drawback is that such 

improvement mechanisms usually result in the production of similar offspring, which 

decreases the diversity of the population.  

In order to obtain a good balance between the fitness quality and the diversity of 

the offspring, we define the preference information between any two users to guide 

the operator. The concept is adopted from the CAC algorithm introduced in chapter 3. 

The mechanism is proven to be useful in aiding the variation operators to produce 

offspring with high fitness quality while maintaining the diversity of the population. 

The definition of the preference information in GGA follows the same manner of 

the one in CAC algorithm. At the end of each generation of GGA, after new popula-

tion is evaluated, m individuals with the best fitness quality are selected among the 

population, and their compositions are memorized to guide the variation operators in 

the future generations. The method to conserve the compositions is to add a positive 

value to the preference value between every two users in the same car pool.  

Thus, in the last step of the recombination, the operator tries to insert user i into 

the car pool s which has available car capacity with a roulette wheel selection based 

on the probability pis calculated in equation (4.1) where wis is the preference between 

user i and car pool s and N is the set of car pools which have available car capacities. 

The preference between a user and a car pool is also defined the same as it in the CAC 

algorithm. If the insertion satisfies the time window constraints, confirm the operation, 

otherwise, the recombination operator repeat the procedure without the previously 

ruled out car pool. If all possible car pools are not feasible for the insertion, that is, the 

time windows are violated after inserting user i, a new car pool will be created for the 

user. 

 
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4.3.5 Mutation 

Four mutation operators are used in GGA, named Divide, Merge, Swap and Reinsert. 

The Divide, Merge and Swap operators are adopted from the local search procedure 
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of the CAC algorithm. These three operators conserve the same search mechanism as 

they are in CAC, except in GGA they randomly select car pools to process instead of 

selecting based on a specific probability as in CAC, in order to provide larger diversi-

ty to the population. 

According to the mutation rate, offspring are mutated by applying these operators. 

Each operator is used with equal probability (25%).  

 

Divide mutation operator 

The Divide mutation operator consists in divide several selected car pool into smaller 

car pools with respects to the total travel cost. The operator selects randomly p% of 

the car pools. Then, for each selected car pool i, the operator pools any number of us-

ers of pool i into a new pool. The operation on car pool i ends as soon as the total cost 

decreases with a feasible result, and the next selected car pool will be processed. 

 

Merge mutation operator 

The Merge mutation operator tries to merge the non-full car pools. For each non-full 

pool i, the operator tries to merge it with any non-full car pool j which is able to satis-

fy the car capacity after merging. The car pool j is selected in random order, and the 

operation is confirmed as soon as a feasible solution with decreased total cost is ob-

tained. If no car pool j can be found, the operator will skip car pool i and move to the 

next non-full car pool. 

 

Swap mutation  

The Swap mutation operator chooses randomly q% of the car pools. For each selected 

car pool i, the operator selects its nearest car pool j according to their gravity centers. 

Then, it tries to swap every user of pool i with every user in pool j. The move is con-

firmed as soon as the total cost decreases with a feasible result. 

 

Reinsert mutation  

The Reinsert mutation operator randomly selects s% of car pools and randomly re-

moves one user from each car pool. Then the operator reinserts these users back into 

the car pools with the same insertion procedure of the recombination operator. The 

probability of selecting a car pool for a user to insert is calculated the same as in 

equation (4.1). New car pools may be created in order to maintain the feasibility. 

 

4.3.6 Adaptive Control 

In the classic GA, a good diversity level of the population can result in a better 

best-found solution. However, even with a flexible selection policy, the diversity of 

the population declines rapidly. There are many ways to control population diversity, 

but most of them are achieved by bringing large amount of random elements into the 
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algorithm. In the context of the LTCPP, the randomness plays a very limited role in 

generating better fitness individuals, since the car capacity and time window con-

straints are always violated by the random elements. 

 Therefore, in the GGA, we propose an adaptive control that is based on varying 

the recombination and mutation rates. The increase of recombination and mutation 

rates usually promotes the diversity of the population and delays the convergence of 

the algorithm. The changeable rates can maintain the diversity at a healthy level, a 

level at which search can progress but does not converge easily. The main idea of the 

mechanism is to increase the recombination and mutation rates when the population 

starts to lost its diversity, and decrease the rates when the diversity reaches its upper 

limit. 

 The typical way to measure the diversity of a population is to calculate the Ham-

ming distance between any two individuals. However, for our representation, the sim-

ple Hamming method is inaccurate, since two same car pools can be located at differ-

ent places in two individuals. Although a complex method can be designed to com-

pare the individuals, it will greatly increase the computational time, which is not 

cost-effective.  

According to our observation to the population composition when solving the 

LTCPP instances, a population with large diversity always results in large differences 

among the fitness values of the individuals in the population. The probability to have 

a large number of individuals with very different car pool compositions but similar 

fitness values is relatively very small. Therefore in GGA, we propose an evaluation of 

the diversity of population by measuring and comparing the mean fitnesses of differ-

ent portions of the population. This method requires no extra comparison of the indi-

viduals; all the needed values are obtained from the survival selection of the popula-

tion, thus there is no additional computational burden for the algorithm.  

 After the survival selection, the new population is used to perform the diversity 

measure, in order to adjust the recombination and mutation rates for the next genera-

tion where the new population will be used. The procedure consists in calculating the 

mean fitness f 
b

avg of the top 20% population which have the best fitness values as 

well as the mean fitness f 
w

avg of the bottom 20% population which have the worst fit-

ness values. Then, the mechanism modifies the recombination and mutation rates ac-

cording the comparison of the two mean fitnesses, as shown in equation (4.2). If the 

two mean fitnesses are close, the diversity of the population is considered to be low. 

Hence, the recombination and mutation rates will be increased with a small amount. 

Otherwise, the rates decrease.     
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where v = {vc, vm} and v’ = {v’c, v’m} are the new and the current recombination 

and mutation rates, η = {ηc, ηm} is the corresponding update value, and ρ is a fixed 

threshold for the difference between the two mean fitness values, respectively. 

 In order to avoid generating extreme values, the recombination and mutation rates 

are limited in control ranges [v 
min

c, v 
max

c] and [v 
min

m, v 
max

m].  

 

 

4.3.7 Initialization 

The initial population is created with a mix of random and structured individuals 

without duplication. The expectation is that an initial population of reasonably struc-

tured solutions will evolve to high quality individuals in a relatively small number of 

generations, and drive the search toward optimum. However, a possible drawback is 

that such a population will lack the diversity. Thus, the random generated initial solu-

tions have also been introduced into the population to prevent the evolution process 

from converging too quickly. 

The method used to generate a population of structured solutions is based on the 

Sweep Line Algorithm [Souvaine, 2008]. The users are sorted according to increasing 

order of their horizontal coordinates. To generate each population member, a user is 

chosen at random to start a new car pool, and then the vertical line sweeps to the right, 

shown in figure 4.3. The user being swept is allocated to the current car pool if time 

window and car capacity constraints are satisfied. Otherwise, a new car pool is created 

for the user. When there are multiple available car pools for a user to be allocated, the 

user is firstly assigned to the closest car pool. The distance between a user i and a car 

pool is defined to be the average of the distances between user i and every existing 

user j in car pool. If the assignment is not feasible, the algorithm tries the next closest 

one until all available car pools are checked. If the user is still not allocated, a new car 

pool is created for the user. The process stops temporarily when reach the rightmost 

user, and continues from the first selected user but sweeps to the left. The algorithm 

terminates when all users are swept and allocated. If a duplicate solution is obtained, a 

random car pool will be divided into smaller car pools in order to obtain a new solu-

tion. This method has been proved by our experiments to be an effective method of 

obtaining an initial population of reasonable quality solutions to problems where the 

users appear in both random and clusters ways.  

Note that, when calculating the distance between two users, if we only consider as 

attributes the coordinates, we are joining in clusters the users that have trips more close 

in space to each other. But geographic proximity does not guaranty for itself a good 

match between users because their time schedule may vary, thus the earliest departure 

time of the users were also introduced into the calculation of distance, shown in equa-

tion (4.3). 
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jijijijiij eteyyxxd   22 )()(           (4.3) 

where xi, yi, xj, yj are the coordinates of the user i and user j respectively; ei and ej 

are the earliest departure time of user i and user j; α and β are same as the ones for ini-

tializing the preference information. 

The sweep line algorithm was used to generate x percent of the initial population 

and the rest of the initial solutions are generated using a random based method. It first 

generates y one-user car pools formed from randomly selected users. Then, it tries to 

insert each one of the rest users into these car pools without violating car capacity and 

time window constraints. The selections of users and car pools are both random. If all 

existing car pools are infeasible for the user, a new car pool will be created. The same 

dividing procedure is used to avoid generating duplicate solutions. 

  

 

Start

Location
Current 

Location

Swept user Unswept user
 

 

Figure 4.3: Mechanism of the Sweep Line Algorithm. 
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4.4 Computational Results of GGA 

Computational experiments have been conducted to compare the performance of the 

proposed approach with other approaches.  

 

4.4.1  Configuration 

Parameter setting and simulation configuration for the investigated algorithm are 

specified as follows: 

 

 Population: 120; 

 Initial population: x = 80, y = 10; 

 Initial recombination and mutation rates: vc0 = 0.6, vm0 = 0.1; 

 Initialization of the preference information: α = 0.8, β = 0.2; 

 Update of the preference matrix: 10 best-fit individuals are selected; θ = 0.1;  

 Mutation operator setting: p = 20, q = 20, s = 20; 

 Adaptive control: ηc = 0.01, ηm = 0.02, ρ = 0.3; 

 Rate control ranges: vc [0.6, 0.9], vm [0.1, 0.4]. 
 

 Given limited computational resources and combinatorial complexity, parameter 

values were determined empirically over a few intuitively selected combinations, 

choosing the one that yielded the best average output.  

 

4.4.2  Experimental results 

In order to provide an exclusive evaluation of the performance of our algorithm, our 

experimental results are compared with three other approaches for solving the LTCPP, 

the ANTS and the simulation-based approach (SB), as well as the CAC algorithm 

presented in chapter 3. All the three approaches have been proven previously to have 

the ability to provide good solution quality for some of our benchmarks. Thus, the 

comparison with these three approaches will be convincing for the evaluation of the 

GGA.   

 The experiments consist in performing 30 simulation runs for each problem 

instance on Windows operating system with Intel Core i7 740QM 2.9 GHz CPU and 

4 GB RAM. During each run, the GGA is set to generate the same amount of 

solutions as the CAC approach and the ANTS approach did in chapter 3. The SB 

approach is still set to run until no improvements can be found, since it is CPLEX 

based approach, the amount of generated solution is uncountable. 
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Inst Size 
GGA CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] 

Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) 

C101 100 1585.5  1599.3  13 1585.5 1593.4 11 1585.5 1592.9 17 1647.4 1669.2 91 

C102 100 1701.9  1712.0  9 1706.8 1728.2 10 1711.4 1748.5 14 1717.5 1724.8 94 

C103 100 1513.7  1543.9  12 1508.6 1527.5 11 1512.6 1535.1 18 1532.2 1599.4 85 

C201 200 2672.2  2749.4  31 2703.1 2717.7 25 2784.4 2854.2 57 2761.7 2868.6 329 

C202 200 2836.7  2876.5  28 2879.2 2892.9 36 2936.1 3004.5 64 3081.7 3114.1 473 

C203 200 2716.0  2891.8  42 2769.3 2834.1 29 2845.9 3003.5 58 2975.1 3182.4 394 

C401 400 5489.4  5690.6  248 5533.3 5618.6 189 5833.5 6281.4 424 6174.2 6860.3 934 

C402 400 4548.3  4786.4  203 4518.2 4760.3 242 4893.5 5153.2 357 5383.7 5524.5 683 

C403 400 5909.6  6085.2  295 5930.7 6046.4 271 6125.6 6742.1 511 6675.2 6994.5 1257 

Total 28973.3  29935.1  881  29134.7  29719.1  824  30228.5 31915.4 1520  31948.7  33537.8  4340  

Table 4.1: Experimental results of set C instances (clustered user distribution). 

   

 Table 4.1 compares the experimental results of the C set instances. The GGA is 

able to provide new best found solutions for 6 instances. However, considering the 

average solution quality of 30 runs, the GGA outperforms other approaches on only 2 

instances. 

 Table 4.2 shows the percentage the GGA outperforms other approaches on set C 

instances, in the aspects of average solution quality and computing time. For each 

instance, the outperforming percentage is calculated as (other approach’s value – 

GGA’s value) / other approach’s value. Each value in table 4.2 is obtained by 

averaging the outperforming percentages of the three same-size instances. Comparing 

with ANTS and SB, the GGA can provide better solution quality with less computing 

time. However, with respect to the average of 30 runs, the GGA’s performance is 

worse than the CAC approach in both solution quality and the computing time. 

 

 

Set Size 
CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] 

Cost Gap Time Gap Cost Gap Time Gap Cost Gap Time Gap 

 100 -0.17% -5.76% 0.37% 30.86% 2.80% 87.34% 

C 200 -0.88% -15.54% 3.88% 43.15% 6.97% 91.33% 

 400 -0.82% -7.99% 8.76% 42.31% 14.47% 73.42% 

Avg -0.62% -9.76% 4.34% 38.77% 8.08% 84.03% 

Table 4.2: Solution quality and computing time comparison on set C instances. 

  

 Table 4.3 presents the experimental results on the R set instances. The GGA 

shows its superiority in solving the random distributed instances. It outperforms other 

approaches on 8 instances in both best found solution and average solution quality. 

The results indicate the GGA maintains a good diversity of the population when 

processing the instances. Table 4.4 reveals the percentage of outperforming in the 

same manner as table 4.2. Although there is 21.34% computing time gap between the 
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GGA and CAC according to the calculation method of table 4.4, the computing time 

of GGA and CAC is still similar considering the summation computing time of 9 

instances in table 4.3.    

 

Ints Size 
GGA CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] 

Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) 

R101 100a 2207.1  2235.9  18 2223.1 2283.2 12 2207.1 2281.5 18 2235.1  2265.4  100  

R102 100b 1824.5  1867.5  15 1841.4 1874.3 13 1834.6 1864.2 17 1832.8  2091.7  97  

R103 100c 2209.1  2286.0  17 2235.9 2313.4 11 2299.2 2438.7 21 2204.7  2418.5  80  

R201 200a 4034.8  4188.3  43 4156.1 4231.8 36 4101.5 4253.5 108 4425.0  4567.1  430  

R202 200b 3646.8  3751.7  41 3717.2 3824.2 29 3772.2 4071.9 84 3952.4  4283.3  231  

R203 200c 3923.2  4158.4  38 4164.7 4304.6 44 4368.5 4541.5 116 4092.4  4257.5  540  

R401 400a 7514.9  7799.5  392 7891.4 8033.7 358 8396.1 8580.4 581 8787.8  8993.8  1106  

R402 400b 6172.7  6254.0  277 6365.2 6559.7 204 6512.7 6893.3 479 7258.7  7417.5  896  

R403 400c 7670.2  7872.9  311 8023.4 8129.5 289 8113.1 8338.9 631 8841.9  8933.5  1037  

Total 39203.3  40414.2  1052  40618.4  41554.4  996  42505 44663.9 2055  43630.8  45228.3  4517  

Table 4.3: Experimental results of set R instances (random user distribution). 

 

   

Size 
CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] 

Cost Gap Time Gap Cost Gap Time Gap Cost Gap Time Gap 

100 1.21% -39.98% 2.69% 10.27% 5.83% 81.76% 

200 2.11% -15.73% 5.94% 59.54% 7.68% 88.40% 

400 3.58% -8.32% 7.99% 47.54% 13.61% 70.90% 

Avg 2.30% -21.34% 5.54% 39.12% 9.04% 80.35% 

Table 4.4: Solution quality and computing time comparison on set R instances. 

 

 

 The experimental results for the set W instances (real-world instances) are 

presented in table 4.5. The GGA provides better results on 6 instances in the average 

solution quality, and gives new best solutions for 5 instances. The outperforming 

percentage is shown in table 4.6.  

 Considering all three sets of instances, the solution quality of GGA is significant 

better than other approaches when dealing with the instances with random user dis-

tribution. However, the CAC is still a better approach for the instances with clustered 

distributed users. For the small size (100 users) W set instances, the GGA can provide 

an insignificant improvement with 33.54% more computing time compared with the 

CAC approach. Therefore, we believe CAC is still a better choice for real-world 

implementation if the number of users is relatively smaller.  
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Inst Size 
GGA CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] 

Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) 

W101 100 864.2 879.3 12 864.2 886.3 9 889.4 893.8 18 864.2 885.7 81 

W102 100 1000.6 1010.2 14 998.9 1008.5 11 1016.5 1020.3 18 1007.5 1037.9 82 

W103 100 1088.2 1126.3 14 1112.4 1134.8 10 1142.4 1168.1 20 1100.5 1187.6 87 

W201 200 1528.6 1562.1 35 1523.1 1557.6 46 1586.1 1601.8 97 1717.1 1722.9 341 

W202 200 1719.5 1768.5 33 1803.7 1812.9 22 1872.2 1919.2 104 2014.3 2127.7 406 

W203 200 1701.2 1743.8 51 1701.2 1784.4 40 1795.6 1907.5 85 1860.5 1965.1 371 

W401 400 2608.8 2694.5 311 2789.5 2848.4 356 2843.4 3066.4 481 3168.4 3442.8 955 

W402 400 3210.2 3406 402 3283.1 3360.1 324 3541.6 3692.9 441 3633.5 3984.9 792 

W501 565 4733.2 4896.6 488 4887.5 5056.2 515 5090.2 5224.9 697 5377.5 5858.3 1621 

Total 18454.5  19087.3  1360  18963.6 19449.2 1333  19777.4  20494.9  1961  20743.5  22212.9  4736  

Table 4.5: Experimental results of set W instances (real world cases). 

 

 

Size 
CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] 

Cost Gap Time Gap Cost Gap Time Gap Cost Gap Time Gap 

100 0.46% -33.54% 2.06% 28.52% 2.85% 84.01% 

200 1.48% -17.86% 6.30% 57.40% 12.49% 89.29% 

400 2.40% -2.06% 8.73% 24.72% 17.56% 62.19% 

Avg 1.44% -17.82% 5.70% 36.88% 10.97% 78.49% 

Table 4.6: Solution quality and computing time comparison on set W instances. 

 

 Same as the previous chapters, a further evaluation of the performance among the 

four approaches has been conducted by using a Freidman test. The test consists in the 

average solution quality on all 27 instances used in our experiments. The detail 

information is presented in table 4.7, the detail calculation is presented in appendix 2.  

 The Friedman statistic value T of table 4.7 is calculated to be 46.2, while the 

threshold for the F distribution with a significance level 0.01 is 4.04. Since T is much 

greater than the threshold, it is proven that there exists at least one approach whose 

performance is significant different from at least one of the other approach. A paired 

comparison is then performed to decide which approaches are really different. Ac-

cording to the paired comparison, for significance level 0.01 and 78 degrees of 

freedom, the critical value for a significant difference between two approaches is 

16.25. 

 Table 4.8 shows the difference between the performances of every two approaches. 

According to the values in the table, the GGA outperforms significantly the ANTS 

and the SB approaches, but the performance difference between GGA and CAC is not 

significant. However, considering the aspect of best found solution of 30 runs, where 

the GGA outperforms CAC on 20 instances, the GGA clearly shows its superiority in 

this aspect. 
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Instance 
GGA CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] 

Avg R R2 Avg R R2 Avg R R2 Avg R R2 

C101 1599.3 3 9 1593.4 2 4 1592.9 1 1 1669.2 4 16 

C102 1712 1 1 1728.2 2 4 1748.5 3 9 1724.8 4 16 

C103 1543.9 3 9 1527.5 1 1 1535.1 2 4 1599.4 4 16 

C201 2749.4 2 4 2717.7 1 1 2854.2 3 9 2868.6 4 16 

C202 2876.5 1 1 2892.9 2 4 3004.5 3 9 3114.1 4 16 

C203 2891.8 2 4 2834.1 1 1 3003.5 3 9 3182.4 4 16 

C401 5690.6 2 4 5618.6 1 1 6281.4 3 9 6860.3 4 16 

C402 4786.4 2 4 4760.3 1 1 5153.2 3 9 5524.5 4 16 

C403 6085.2 2 4 6046.4 1 1 6742.1 3 9 6994.5 4 16 

R101 2235.9 1 1 2283.2 4 16 2281.5 3 9 2265.4 2 4 

R102 1867.5 2 4 1874.3 3 9 1864.2 1 1 2091.7 4 16 

R103 2286 1 1 2313.4 4 16 2438.7 4 16 2418.5 3 9 

R201 4188.3 1 1 4231.8 2 4 4253.5 3 9 4567.1 4 16 

R202 3751.7 1 1 3824.2 2 4 4071.9 3 9 4283.3 4 16 

R203 4158.4 1 1 4304.6 3 9 4541.5 4 16 4257.5 2 4 

R401 7799.5 1 1 8033.7 3 9 8580.4 3 9 8993.8 4 16 

R402 6254 1 1 6559.7 2 4 6893.3 3 9 7417.5 4 16 

R403 7872.9 1 1 8129.5 2 4 8338.9 3 9 8933.5 4 16 

W101 879.3 1 1 886.3 3 9 893.8 4 16 885.7 2 4 

W102 1010.2 2 4 1008.5 1 1 1020.3 3 9 1037.9 4 16 

W103 1126.3 1 1 1134.8 2 4 1168.1 3 9 1187.6 4 16 

W201 1562.1 2 4 1557.6 1 1 1601.8 3 9 1722.9 4 16 

W202 1768.5 1 1 1812.9 2 4 1919.2 3 9 2127.7 4 16 

W203 1743.8 1 1 1784.4 2 4 1907.5 3 9 1965.1 4 16 

W401 2694.5 1 1 2848.4 2 4 3066.4 3 9 3442.8 4 16 

W402 3406 2 4 3360.1 1 1 3692.9 3 9 3984.9 4 16 

W501 4896.6 1 1 5056.2 2 4 5224.9 3 9 5858.3 4 16 

Avg 

 

1.48  

 

1.96  

 

2.93   3.74  

Sum 

 

40 70 

 

53 125 

 

79 243  101 389 

Table 4.7: Friedman test results. 

 

|Ri-Rj| CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] 

GGA 13 39 61 

CAC - 26 48 

ANTS [Maniezzo, 2004] - - 22 

Table 4.8: Paired comparison results. 

 

 The accuracy of the GGA is examined by calculating the standard error (column 

Std) of the solutions obtained in 30 runs of each instance. The solution quality 

difference (column Diff) between the best found solution quality and the average 

solution quality of each instance in the previous tables is also calculated. Table 4.9 

shows the average of the abovementioned values of the three same-size instances. The 

average differences between the best found solution and the average solution of the 
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GGA on three sets of instances are around 2.8%, which is higher than the CAC 

approach.  

 

Size 
C set instances R set instances W set instances 

Best Avg Std Diff(%) Best Avg Std Diff(%) Best Avg Std Diff(%) 

100 1600.4  1618.4  12.4 1.1  2080.2  2129.8  22.4 2.3  984.3  1005.3  9.7 2.0  

200 2741.6  2839.2  51.9 3.4  3868.3  4032.8  64.9 3.1  1649.8  1691.5  31.4 2.5  

400 5315.8  5520.7  93.1 3.7  7119.3  7308.8  125.5 2.5  3517.4  3665.7  78.2 4.0  

Avg 3219.3  3326.1  52.5 2.7  4355.9  4490.5  70.93 2.8  2050.5  2120.8 39.8 2.8  

Table 4.9: Evaluation of the accuracy of the GGA. 

 

To verify the performance of the adaptive variation rate mechanism, the GGA has 

also been tested with a fixed variation rate. The average solution qualities of the three 

same-size instances are shown in the table 4.10. Observe that, the GGA with adaptive 

variation rate leads in the solution quality consistently in all entries. The results show 

that the adaptive control plays an important role in improving solution quality and 

possibly directing search to unknown regions to avoid being trapped in a locality. An 

example that presents the diversity changing of the search process is shown in figure 

4.4. 

 

Size 
C set instances R set instances W set instances 

Adaptive Fixed Adaptive Fixed Adaptive Fixed 

100 1618.4  1652.9  2129.8  2162.8  1005.3  1023.6  

200 2839.2  3834.3  4032.8  4218.3  1691.5  1754.3  

400 5520.7  5803.4  7308.8  7751.7  3665.7  3866.2  

Total 9978.3 11290.6 13471.4 14132.8 6362.5 6644.1 

Table 4.10: Evaluation of the adaptive variation rates. 

 

 

Figure 4.4: Comparison between fixed and adaptive variation rates. 
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4.4.3  Summary 

In section 4.3, we introduced GGA, a new guided genetic algorithm for solving the 

long-term car pooling problem. We adopt the preference mechanism into the genetic 

paradigm to aid the variation operators to generate high quality solutions. Furthermore, 

an adaptive variation rate mechanism is also developed to maintain a better diversity 

of the population.  

The presented approach has been applied successfully for solving the long-term 

car pooling problem. Experiments have been performed in section 4.4 to confirm the 

efficiency and the effectiveness of the GGA approach. The approach has been com-

pared with three other metaheuristics for solving the long-term car pooling problem. 

For most of the instances, the GGA can provide solutions with good quality. The 

adaptive variation rate mechanism has been proven to be useful. Thus, it has been 

demonstrated that the GGA algorithm is an effective approach for solving the 

long-term car pooling problem.  

 

 

 

 

4.5 Multi-agent Self-adaptive Genetic Algorithm 

for the LTCPP 

Based on our previous research, we believe the population based metaheuristics pos-

sess some weakness in solving the long-term car pooling problem. First, although the 

use of metaheuristics allows to significantly reducing the computational complexity of 

the search process, the latter remains time or memory consuming to obtain the good 

solution quality for the large size instances. Second, even with the aid of multiple di-

versification mechanisms, the ability to explore other areas of the search space is sig-

nificant decreased after the convergence to an optimum. Third, the population-based 

algorithms require a large number of accurate parameter settings in order to obtain 

good search ability, thus an inaccurate parameter setting may greatly decrease the 

performance of an algorithm. At last, the structures of the algorithms are always fixed, 

thus when a new operator is developed or an old constraint is modified, the whole 

system structure of the algorithm needs to be redefined, which results in a large work 

load and a weak system robust. Therefore, we are motivated to develop an improved 

approach for the LTCPP to overcome these disadvantages.  

The first technology we adapt into our new approach is the multi-agent system 

(MAS). In the multi-agent approach, when a portion of the population searches 

around a local optimum it may discover, while the other portions of the population 

continue to search for new local optima, and the process is repeated if any more local 
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optima are found. The interaction among the agents of MAS is able to maintain the 

diversity after convergence. Therefore, with the same computational time, the MAS 

can increase the solution quality obtained by a standard population based metaheuris-

tics. Furthermore, by proceeding with the calculation on multiple workstations, the 

MAS can improve the computational speed of the algorithm. 

The hyper-heuristic is the second technology we added into our improvement ap-

proach, in order to develop a more intelligent system to facilitate the complex param-

eter setting of the standard population based metaheuristics. We define different oper-

ators which are able to provide different levels of intensity and diversity to the popu-

lation, and the hyper-heuristic is used to find the most suitable operator or sequence of 

operators to apply at an appropriate situation. Thus the design of each individual op-

erator becomes more flexible. Furthermore, with the hyper-heuristic combined with 

the MAS, any new operator can be easily inserted into the system without modifying 

the system’s main structure, since the hyper-heuristic will select the most appropriate 

operator to apply. 

Thus, we then investigate in this section to merging the Genetic Algorithm with 

the multi-agent system and the hyper-heuristic. For this purpose, we elaborate a Mul-

ti-agent Self-adaptive Genetic Algorithm for solving the long-term car pooling prob-

lem.  

 

4.5.1 Multi-agent System and Hyper-heuristic  

Multi-agent systems (MAS) is a subfield of Artificial Intelligence (AI) research dedi-

cated to the development of distributed solutions to complex problems regarded as 

requiring intelligence. Classic AI concepts are modified, so that multi-processor sys-

tems and clusters of computers can be applied with new mechanisms, in order to im-

prove the computational speed and the quality of solutions.  

The fast development of technology in designing processors, networks, and data  

storage has made the use of parallel computing more and more popular. Such archi-

tectures represent an effective strategy for the design and implementation of parallel 

metaheuristics. Indeed, sequential architectures are reaching physical limitation. Now-

adays, even laptops and workstations are equipped with multicore processors, which 

represent a given class of parallel architecture. Moreover, the cost performance ratio is 

constantly decreasing. The proliferation of powerful workstations and fast communi-

cation networks have shown the emergence of clusters of processors, networks of 

workstations, and large-scale network of machines as platforms for high-performance 

computing. Parallel and distributed computing can be used in the design and imple-

mentation of multi-agent metaheuristics for the following reasons: 

• Speed up the search: One of the main goals of the multi-agent system is to reduce 

the search time. This helps designing on-line and interactive optimization methods.   

This is a very important aspect for the complex optimization problems in real-world 
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implementation where there is hard requirement on the search time. 

• Improve the quality of the obtained solutions: Parallel models for metaheuristics 

might allow improving the quality of the search. Indeed, exchanging information be-

tween cooperative metaheuristics will alter their behavior in terms of searching in the 

landscape associated with the problem. The main goal of a parallel cooperation be-

tween metaheuristics is to improve the quality of solutions. Both better convergence 

and improvement in the quality of solutions may happen. 

• Improve the robustness: A parallel metaheuristic may be more robust in terms of 

solving in an effective manner different optimization problems and different instances 

of a given problem by easily inserting, removing, and modifying the operators. 

• Solve large size problems: Parallel metaheuristics allow solving large size instances 

of complex optimization problems, which cannot be solved by a sequential machine. 

The typical multi-agent systems, such as Co-Search [Talbi and Bachelet, 2004] 

and A-Team [Jedrzejowicz and Wierzbowska, 2006], have been proposed with the 

above mentioned purposes. 

Contrary to the organizations of typical multi-agent systems, the distribution 

principle of our approach is based on coalition. In the multi-agent field, a coalition is a 

structure where agents have the same capacities and cooperate by means of direct in-

teractions. Agents contribute to the achievement of the same task. In the above men-

tioned systems, agents' behaviors correspond to a functional decomposition of the op-

timization process, but in our system, each agent has its own optimization process, 

they have the same initial capacities and status. The objective is to exploit cooperation 

in order to dynamically improve the optimization strategy of the agents. In addition, 

the coalition structure is intended to support robustness and facilitate the distribution 

since control is decentralized, communications between agents are asynchronous, and 

consequently, the removal or addition of any agent will not perturb the global func-

tioning of the system. 

The term hyper-heuristic was first created in Denzinger et al. [1997], and it was 

then used to describe the idea of using heuristics to choose heuristics. The fundamen-

tal difference between meta-heuristics and hyper-heuristics is that most implementa-

tions of meta-heuristics search within a search space of problem solutions, whereas 

hyper-heuristics always search within a search space of heuristics. Thus, when using 

hyper-heuristics, we are attempting to find the right method or sequence of heuristics 

in a given situation rather than trying to solve a problem directly. 

In Burke et al. [2009], hyper-heuristics have been classified according to the 

source of feedback used by the hyper-heuristic. The classification distinguishes the 

hyper-heuristics which use online learning, off-line learning and no learning. To be 

specific, learning refers to the concept of adaptation mechanism in Multi-agent Sys-

tems. This learning mechanism modifies the search strategy according to the experi-

ences obtained during the search process. In online learning hyper-heuristics, the 
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modification takes place while the algorithm solves the problem instance. For off-line 

learning approaches, the search strategy is defined with a training phase. 

 

 

4.5.2  General Introduction of the Approach 

The multi-agent self-adaptive genetic algorithm (AGA) presented in this paper inte-

grates the multi-agent system, the hyper-heuristic and the genetic structure into one 

single system. The system is composed of several agents; each agent processes part of 

the population, and shares its progress with all other agents. The genetic structure is 

used as a main algorithm structure to provide the evolutionary characteristic for each 

agent. The hyper-heuristic with both online and off-line learning mechanisms, which 

is built outside the genetic structure, guides the agents to select the most appropriate 

genetic operators during each generation. The genetic operators correspond to the re-

combination and mutation operators of the genetic algorithm, which work on the 

problem search space and produce solutions. These operators respectively represent 

different levels of intensity and diversity to the population. That is, the goal of the in-

tensity focused operators is to concentrate the search in the promising areas of the 

search space. On the contrary, the goal of the diversity focused operators is to move 

the search to the unexplored areas. A comprehensive study of the concepts of intensi-

fication and diversification in metaheuristics can be found in [Blum and Roli, 2003] 

Note that the operators are easily implemented, removed or replaced, so the AGA is 

closer to a generally applicable methodology rather than the one solving a single 

problem instance. 

In AGA, an operator pool is defined to store the operators for the agents to select. 

In the operator pool, the recombination and mutation operators are kept in pairs. Each 

pair consists of one recombination operator and one mutation operator; the two oper-

ators in pair have the same intensity and diversity tendency to the population. The se-

lection of operator pair of each agent is determined by the hyper-heuristic, called de-

cision making heuristic, which is designed to learn adaptively and concurrently guide 

the behavior of all agents. The decision making heuristic includes two learning phases, 

see figure 4.5. The first phase, called pre-learning, is an off-line learning process. In 

this process, the agents are only allowed to use fixed operator pairs and therefore gen-

erate an evaluation to each operator pair. This procedure provides initial experiences 

of the performances of each operator pair in different conditions before the next 

learning process. This pre-learning phase is performed at the beginning of the ap-

proach and takes relatively small percentage of total generations, in order to provide 

more operating time and spaces for the more intelligent learning phase. The second 

phase, called reinforcement learning, is an online learning process. In this process, the 

decision making mechanism is self-adaptive. When an agent gets an improvement 

with an operator pair under a certain condition, the mechanism modifies the rules of 



CHAPTER 4 Evolutionary Metaheuristics for the Long-term Car Pooling Problem 

 

105 

decision making heuristic according to the level of the improvement, so when the 

same condition is met again during the genetic process, there will be greater probabil-

ity for agents to select the same operator pair to modify the search space. This online 

learning process is designed to favor the operator pair that often improves the current 

best solution under each condition. In AGA system, all agents share the same operator 

pool but the decision making heuristic can lead to different strategies of using differ-

ent operator pairs. 

 

 

Figure 4.5: Relationship between the learning process and the hyper-heuristic 

 

At the end of each genetic generation of an agent, the migration process is acti-

vated. Then, exchanges of some selected individuals between the agents’ population 

are realized, and received individuals are integrated into the local population of each 

agent. The selection policy of emigrants indicates for each agent in a stochastic way 

the individuals to be migrated. The stochastic policy does not guarantee that the best 

individuals will be selected, but its associated computation cost is lower and it is bet-

ter for the diversity of the population. The number of emigrants is expressed as a fixed 

number of individuals. The choice of the value of such parameter is crucial. Indeed, if 

the number of emigrants is low, the migration process will be less efficient as the 

agents will have the tendency to evolve in an independent way. On the contrary, if the 

number of emigrants is high, the agents of the system are likely to converge to the 

same solutions. The integration policy of immigrants is performed at the end of each 
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generation, before the survival selection. The objective of the mechanism is to delay 

the global convergence and encourage diversity of the system. 

4.5.3  Decision Making Hyper-heuristic 

In order to perform the decision making in AGA, a set of rules has been defined in the 

form of (condition, operator), where the condition indicates the current situation oc-

curred, the operator corresponds to the pair of intensity or diversity focused recombi-

nation and mutation operators. Let C be the set of conditions, O the pair of recombi-

nation and mutation operators. For a condition ci, a weight wij is associated to each 

pair oj. The weight wij corresponds to the likelihood of selection of the pair oj under 

the condition ci. The selection of an operator pair is performed by a roulette wheel se-

lection principle. Thus, the probability P(ci, oj ) to apply the operator pair oj in the 

condition ci is computed using the following equation (4.4). 

 

 
 



Nn in

ij

ji
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ocP ,                       (4.4) 

 

where N is the set of operator pairs. 

 

 
Figure 4.6: Structure of the decision making matrix. 

 

The decision making mechanism can be displayed in the form of a matrix shown 

in figure 4.6. The columns indicate the different conditions, the rows correspond to 

the operator pairs, and the blocks show the likelihood of each operator pair being se-

lected in each condition. According to the roulette wheel selection principle, wij cor-

responds to the likelihood of selection of operator pair i in condition j. Thus, by in-

creasing or decreasing the weight values, the probability of the operator pairs being 

selected in certain conditions will be raised or reduced, respectively. The main pur-

pose of the learning mechanism is to improve all agents' choices of operator pair 
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through the modification of the weight values, in order to select the most appropriate 

operator pair in different conditions. Notice that in AGA, all agents share the same 

decision making matrix, this idea is designed to aid the agents to share their experi-

ences easily with each other. This acts as stigmergy behavior which can be found in 

the swarm intelligence metaheuristics. 

The set of conditions is chosen to allow an alternation between different operator 

pairs. It is defined according to the improvement situation occurred at the end of each 

generation. Two kinds of solution are used in the condition definition: the local best 

solution obtained by a certain agent and the global best solution obtained among all 

agents. The condition set is composed of four different conditions which cover all the 

situations that may occur in the genetic process: 

 

 C1: Local or global best solution has been improved in recent m1 generations; (in-

tensity preferred) 

 C2: Local or global best solution has been improved before more than m1 but less 

than m2 generations (m2 > m1); (less intensity preferred) 

 C3: No improvement in recent m2 generations, and no diversification operator pair 

has been applied in recent m3 generations (m2 > m3); (diversity preferred) 

 C4: No improvement in recent m2 generations, but a diversification operator pair 

has been applied in recent m3 generations (m2 > m3). (intensity preferred) 

 

where m1, m2 and m3 are parameters set by the user according to the total genera-

tion number or total run time. 

 

 

i i+m1 i+m2 j j+m3 k generations

C1 C2 C3 C4 C3 C4

Best solution 

improved

Diversification 

operator pair applied

Diversification 

operator pair applied

intensity+ Intensity- diversity+ intensity+ diversity+ intensity+

 

Figure 4.7: The order of the conditions in the search process. 

 

The order of the conditions in the search process is shown in figure 4.7. The con-

dition definition and parameter setting are based on the following considerations: 

During the first few generations after the global best solution or local best solution has 

just been improved, it is better now to apply an intensification focused operator pair to 

search the neighborhood close to the current best solution, which can normally pro-

vide high probability in finding further improvement. Thus, an operator pair which 

provides intensity to the population may be favored from generation i to i+m1. If the 

operator receives no improvement, we may change to apply another operator pair with 

less intensity during generation i+m1 to i+m2 to try to improve the current best solu-

tion. Afterwards, if there is still no improvement obtained after generation i+m2, the 
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diversification focused operator pair may be used to provide large diversity to the 

population, by doing which we can receive greater opportunity in finding new im-

provements. If applying the operator did not bring any improvement, it is possible to 

apply another operator pair to explore the neighborhood of the current population for 

a few generations instead of moving immediately the population to another area of the 

search space, thus condition C4 is defined. 

It is obvious that a diversification focused operator pair is favored under condi-

tion C3, however the diversification search normally will not immediately improve the 

current best solution. Thus, in order to reinforce the selection of diversification oper-

ator under condition C3, the following rule is defined. 

  

Definition 4.5.1  

When a diversification operator pair is selected and applied under condition C3, the 

operator pair will benefit an augmentation of the weight value under this condition, if 

the current local or global best solution has been improved in the future w genera-

tions. 

 

During the genetic process, in the beginning of each generation, the improvement 

situation of previous generation will be matched with one of the conditions in the 

condition set. Then the decision making heuristic will proceed to select the appropri-

ate operator pair for this condition, as shown in figure 4.8. In the end of the generation, 

an evaluation of this selection will be performed. If there is an improvement obtained 

in this generation, the corresponding weight value in decision making matrix will be 

increased (except the evaluation of a diversification focused operator pair applied un-

der condition C3, which will last for w generations). In other words, the operator used 

in the current generation is determined by improvement situation of the previous gen-

eration. 

 

 

Figure 4.8: Actions in each generation of a genetic process. 

 

4.5.4  Learning Mechanisms 

The agents sequentially use both off-line learning and online learning mechanisms to 
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adjust their behaviors, called pre-learning and reinforcement learning as mentioned 

before. The learning is performed during the genetic process in order to improve the 

agents’ selection strategy of the operator pairs.  

Pre-learning mechanism 

At the beginning, the decision making matrix is initialized with equal values. The 

weight values then are updated by the pre-learning phase, where each agent is forced 

to use only one particular operator pair. If an improvement is obtained under a certain 

condition, the relative weigh value of this operator pair will be modified synchro-

nously in the matrix. 

Thus, in the pre-learning phase of genetic process, agents are disabled from se-

lecting operator pairs, and they are forced to use only the operator pair assigned to 

them. Vice versa, each operator pair must be used by at least one agent, in order to 

make sure all operator pairs can be evaluated. Since the amount of agents and operator 

pairs do not always equal to each other, the pre-learning phase will end until every 

operator pair is evaluated with equal number of generations. The mechanism to update 

the decision making matrix is the same as reinforcement learning phase, which will be 

introduced in detail in the next part. 

 

Reinforcement Learning Mechanism 

The reinforcement learning is defined as how an agent ought to take actions in an en-

vironment so to maximize some notion of cumulative reward. 

In AGA, the problem of selecting the most appropriate operators is viewed as a 

reinforcement learning problem. During the genetic process, an agent applies different 

operator pairs in different conditions and learns from the application experiences. To 

perform the learning, it is necessary to identify the beneficial experiences and deter-

mine a reward. This problem is known as the credit assignment problem. An experi-

ence is defined as a triplet (condition ci; operator oj; improvement v) where the im-

provement is the fitness difference obtained by the application of the operator pair. 

When an implementation of an operator pair made an improvement of the global or 

local best solution, the reinforcement learning procedure consists in an augmentation 

by a factor σ of the weight value wij. That is, when a new best local or global solution 

has been obtained, the operator pair of this generation is reinforced. This mechanism 

is intended to favor the operator pair that often finds new best solutions in a certain 

condition. If the best found solution is not changed in this generation, then the weight 

matrix will not be modified. 

In order to refine the reinforcement learning process, two cases are distinguished, 

(1) When the agent improves its local best solution, and (2) when the agent improves 

the global best solution in addition to the local best solution. The learning factors σ1 

and σ2 are respectively used for these two cases. Before adding the reinforcement 

value to the weight value wij of applying operator pair oj under condition ci, all exist-

ing weight values wij related to the corresponding condition ci in the decision making 

matrix will decrease with a rate μ, in order to enlarge the influence of the new reward 
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obtained in the current generation. The reinforcement is performed using equations 

(4.5) and (4.6). 

'''
ijij ww                                   (4.5) 

 '
ijij ww                                 (4.6) 

where w’
ij is the weight value before adding the reinforcement, w’‘

ij is the weight 

value before the evaporation, and σ: {σ1, σ2} is the learning factor, respectively. 

Figure 4.9 presents a simple case where reinforcement learning procedure is ap-

plied. Suppose the current condition is c1 with the setting: Local or global best solu-

tion has been improved in recent 5 generations. In this condition, operator o1 is ap-

plied for the current generation and obtained an improvement which decreases the lo-

cal best solution from 3200 to 3100. Then, reinforcement is applied based on the ex-

perience (c1, o1, 100). Thus, the weights w11 is augmented to favor the selection of the 

operator pair in this condition.  

In figure 4.9, the original weight matrix is shown on the left, and the matrix on 

the right obtained a reinforcement with σ = 1. The reinforcement procedure clearly 

affects the next selections of the operator pairs. If condition c1 is met again after the 

reinforcement, then operator o1 has 51% (2.8/5.5) probability to be selected against 

40% (2/5) before the reinforcement. 

 

c1 c2 c3 c4

2 2 1 1

1 4 1 3

1 4 2 2

1 2 6 1

o1

o2

o3

o4

Matrix before reinforcement Matrix after reinforcement

c1 c2 c3 c4

o1

o2

o3

o4

Reinforcement = 1

2.8 2 1 1

0.9 4 1 3

0.9 4 2 2

0.9 2 6 1

Evaporation rate = 0.9

 
Figure 4.9: Reinforcement learning procedure. 

 

The combination of pre-learning and reinforcements learning allows to introduce 

adaption into the population based search, and then to enhance individual and global 

behavior. An agent exploits its past experiences in order to improve its ability to find 

new best solutions; it also shares its experiences in order to collectively ensure better 

actions of the system in the future. 
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4.5.5  Main Structure of the AGA 

The behavior of AGA agents is based on four components: genetic structure, operator 

pairs, decision making heuristic and learning mechanisms. The genetic structure pro-

vides the evolutionary procedure. The operators are designed to proceed with intensi-

fication focused or diversification focused searches. The decision making heuristic 

determines the selection of operator pairs while maintaining a genetic generation. For 

each application of an operator pair, the agent's population is examined and if it is 

beneficial, the operator pair is rewarded. Based on the experiences accumulated dur-

ing each generation, learning mechanisms modify the rules of the decision making 

process. 

The behavior of AGA agents is described in algorithm 4.3. In the pre-learning 

phase, in the beginning of each generation, the improvement situation of previous 

generation will be matched with one of the conditions in the condition set. Then the 

assigned operator pair will be applied. If the agent improves the best solution, the 

learning mechanism will be activated, and then the decision making matrix will be 

updated. In the reinforcement learning phase, the procedure starts by verifying the 

improvement condition of the previous generation, then selects and applies an opera-

tor according to the condition. Then, same as pre-learning phase, if the agent has 

made an improvement, the reinforce mechanism will be executed. Note that, the glob-

al best solutions and the decision making matrix are always shared immediately dur-

ing the process, there is no synchronization point in the system. 

The migrations are performed inside a ring topology. Each agent has a source 

agent for receiving individuals and a destination agent for sending the emigrant indi-

viduals. Another element with important consequences over the algorithm is the 

asynchronous migration parameterization. Frequent migrations may result in a prem-

ature convergence while rare migrations fall in the opposite case. In our case, z% of 

the population migrate in asynchronous manner, that is, migrations occur at different 

times. An agent migrates its individuals at the end of its generation, but the emigrants 

are accepted when the corresponding agent reach its own end of generation. The 

choice of asynchronous communication is related to the fact that the speedup perfor-

mance of the system is expected to be higher than synchronous system. Indeed, in the 

synchronous model, the evolution process is often hanging on powerful machines 

waiting the less powerful ones to complete their computation. A stochastic binary 

tournament selection strategy is being applied for selecting the emigrant individuals 

where the better individuals are selected to migrate to the population of the target 

agent. 

 

 
 

Algorithm 4.3: Multi-agent Self-adaptive Genetic Algorithm 

 

Agent n 
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Generate initial population; 

Initialize the guidance information; 

Assign operator pairs to agents; 

 

/* Pre-learning phase */ 

While stopping criterion of pre-learning is not met do   

Get the improvement condition of previous generation ci; 

While not exceed the recombination rate do 

Parent selection; 

Apply assigned operator pair oj; 

End while 

Get the new best found solution of current generation; 

If the global or local best solution is improved; 

Update the global or local best solution; 

Update decision making matrix of (ci , oj); 

If a diversification operator pair ok was applied under condition c3 in recent 

w generations, update decision making matrix of (c3 , ok); 

Migrate z% of the population to agent n+1; 

If there is migrators from agent n-1, then receive; 

Survival selection; 

End While 

 

/* Reinforcement learning phase */ 

While stopping criterion of reinforcement learning is not met do 

Match condition ci with condition set; 

Choose operator pair oj according to decision making matrix (ci , oj); 

While not exceed the recombination rate do 

Parent selection; 

Apply operator pair oj; 

End while 

Get the new best found solution of current generation; 

If the global or local best solution is improved; 

Update the global or local best solution; 

Update decision making matrix of (ci , oj); 

If a diversification operator pair was applied ok under condition c3 in recent 

w generations, update decision making matrix of (c3 , ok); 

Migrate z% of the population to agent n+1; 

If there is migrators from agent n-1, then receive; 

Survival selection; 

End While 
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4.5.6  Specialization for the LTCPP 

The specialization of AGA for the Long-term Car Pooling Problem requires the defi-

nition of the diversification and intensification focused operator pairs particularly de-

signed for the LTCPP. Based on Guided Genetic Algorithm presented in section 4.3, 

four pairs of operators are defined in the operator pool, including four recombination 

operators and four mutation operators. They are designed to provide different levels of 

intensity and diversity tendency to the population. To be more specific, two pairs are 

defined to focus on the intensity tendency; however, they are given different intensity 

levels. The other two pairs of operators are intended to provide the diversity to the 

population, and they also have different diversity levels. It is important to note that the 

recombination and mutation rates are associated to each individual operator pair. That 

is, if an operator pair is selected by an agent, then the agent must generate the genetic 

operations with the specific recombination and mutation rates of this pair. So when 

defining the recombination and mutation operator pairs, the correlative recombination 

and mutation rates have to be defined at the same time. The operator pairs and other 

details of specialization are introduced as follows. 

 

4.5.6.1 Solution representation and initial solution 

The direct encoding is still used in this approach. The chromosome is encoded in the 

same manner as the Guided Genetic Algorithm. The detail is introduced in section 

4.3.2. 

The initial population contains both random and structured solutions. The expec-

tation is that an initial population of reasonably structured solutions will evolve to 

high-quality solutions in a relatively small number of generations. However, a possi-

ble drawback is that such a population will lack the diversity needed to obtain 

near-optimal solutions. Thus, the randomly generated initial solutions have also been 

considered. Both types of initial solutions possess half of the population. The method 

to generate the initial solution is also same as the Guided Genetic Algorithm, which is 

presented in section 4.3.6. 

 

4.5.6.2 Recombination Operators 

Inspired by the adaptive recombination and mutation rates of the Guided Genetic Al-

gorithm, in the operators’ pool, four pairs of different operators are defined with dif-

ferent variation rates. Each pair consists in a recombination operator and a mutation 

operator. When the agent selects the operators during the genetic process, it must se-

lect an operator pair, not single recombination or mutation operator. The operator 

pairs are fixed after the definition, that is, the recombination and mutation operators in 

each pair will not change during the whole AGA process. The recombination and mu-
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tation rates associated with each pair are also fixed. All four recombination operators 

defined in AGA use the same 2-point recombination mechanism as the Guided Genet-

ic Algorithm, however, the distance d2-point between the two points in the chromosome 

are fixed, and each point must be a start or an end of a car pool. Then, one offspring is 

generated by combining the genes from the first parent which are between the two 

chosen points in the chromosome, along with the genes from the second parent which 

are to the left of the first point and to the right of the second point of the chromosome. 

The duplicate users caused by the recombination will be removed from the second part, 

and the users which do not exist in any part of genes will be inserted in to the chro-

mosome based on the preference mechanism same as the GGA approach. A second 

offspring is produced by swapping round the parents then using the same procedure. 

The differences among the four recombination operators are the values of d2-point. 

A d2-point value close to half of the total length of the chromosome, results in a large 

number of duplicate users from the two parents need to be removed and reinserted, 

which provides a high level of diversity between the parents and the offspring. In 

contrary, a relatively small d2-point value brings very few duplicate users to remove and 

reinsert, thus it provides an intensity tendency to the population. Thus, by giving the 

four recombination operators different d2-point values, the levels of intensity and diver-

sity provided to the population by the operators are distinguished. Therefore, we de-

fine two recombination operators with relatively small d2-point values, and combined 

them with the intensification focused mutation operators, in order to form two intensi-

fication focused operator pairs. Also, two recombination operators with relatively 

large d2-point values are combined with two diversification focused mutation operators 

to generate two diversification focused operator pairs. 

 

4.5.6.3 Mutation Operators 

Four different mutation operators are also defined in the operator pool. The operators 

are extended from the mutation operators in GGA. We generate two new intensifica-

tion focused mutation operators, named with M1 mutation and M2 mutation, as well 

as two new diversification focused operators, named with M3 mutation and M4 muta-

tion. Each mutation operator is associated with one recombination operator to form an 

operator pair. They are matched according to the intensity and diversity they bring to 

the population.  

 

M1 and M2 mutation operators (intensification focused) 

The M1 and M2 mutation operator choose randomly n1 and n2 car pools. For each se-

lected car pool i, the operators select its nearest car pool j according to their gravity 

centers. Then, M1 mutation operator swaps every user in car pool i and every user in 

car pool j, while the M2 mutation operator tries to move every user of pool i to any 

car pool j which has available car capacity. The move is confirmed as soon as the total 

cost decreases with a feasible result.  
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M3 and M4 mutation operators (diversification focused) 

The M3 and M4 mutation operators randomly select n3 and n4 car pools and remove 

randomly one user from each car pool. Then the M3 mutation operator reinserts these 

users into the non-full car pools with the same insertion procedure of the recombina-

tion operator, while the M4 mutation operator reinserts the users randomly into the 

non-full car pools. New car pools may be created in order to maintain the feasibility. 

In order to focus on the diversity of the population, the M3 and M4 mutation opera-

tors are regardless of the total cost. Since the insertion operation of M3 mutation op-

erator is guided by the preference mechanism and the one of M4 mutation operator is 

random, the latter can provide more diversity to the population than the former.  

 

 

4.6  Computational Results of AGA 

Computational experiments have been conducted to compare the performance of the 

proposed AGA approach with other approaches.  

 

4.6.1 Configuration 

Parameter setting and simulation configuration for the investigated algorithm are 

specified as follows. These parameters were determined experimentally over a set of 

combinations, choosing the one that yielded the best average output. 

 Number of agents: 4; 

 Population: 30; z = 10%; 

 Condition definition: m1 = 5, m2 = 10, m3 = 5, w = 5;  

 Decision making matrix update: σ1 = 1, σ2 = 2, μ = 0.95;  

 Operator pair 1 (intensification focused): 

  Recombination operator with d2-point = 10% of all car pools; 

  M1 mutation with n1 = 20% of all car pools; 

  Recombination rate cr1 = 0.6, mutation rate mr1 = 0.4. 

 Operator pair 2 (intensification focused): 

  Recombination operator with d2-point = 20% of all car pools; 

  M2 mutation with n2 = 20 % of all car pools; 

  Recombination rate cr2 = 0.6, mutation rate mr2 = 0.2. 

 Operator pair 3 (diversification focused): 

  Recombination operator with d2-point = 30% of all car pools; 

  M3 mutation with n3 = 30% of all car pools; 

  Recombination rate cr3 = 0.7, mutation rate mr3 = 0.2. 

 Operator pair 4 (diversification focused): 

  Recombination operator with d2-point = 40% of all car pools; 
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  M4 mutation with n4 = 30% of all car pools; 

  Recombination rate cr4 = 0.8, mutation rate mr4 = 0.4. 

 

4.6.2  Experimental results 

 The AGA is compared with three other approaches for solving the LTCPP, the ANTS 

and the CAC introduced in chapter 3, as well as the GGA algorithm presented previ-

ously in this chapter. All three approaches have been proven to have the ability to 

provide good solution quality for some of our benchmarks. Thus, the comparison with 

these three approaches will be convincing for the evaluation of the AGA.   

 The experiments of AGA consist in performing 30 simulation runs for each 

problem instance using multi-thread computing technology [Hyde, 1999] on Windows 

operating system with Intel Core i7 740QM 2.9 GHz CPU and 4 GB RAM. Each 

agent is simulated with one thread. The AGA approach is still set to generate the same 

amount of solutions as the other approaches did in the previous chapters.  

 Table 4.11 compares the experimental results of the C set instances. Considering 

the average solution quality of 30 runs, the AGA outperforms other approaches on all 

instances. Furthermore, the GGA is able to provide new best found solutions for 4 

instances. 

 

  

Inst Size 
AGA GGA CAC ANTS [Maniezzo, 2004] 

Best Avg Time Best Avg Time Best Avg Time Best Avg Time 

C101 100 1585.5  1585.5  12 1585.5 1599.3 13 1585.5 1593.4 11 1585.5 1592.9 17 

C102 100 1701.9 1704.1 10 1701.9 1712 9 1706.8 1728.2 10 1711.4 1748.5 14 

C103 100 1508.6 1511.6 10 1513.7 1543.9 12 1508.6 1527.5 11 1512.6 1535.1 18 

C201 200 2626.8  2671.5  27 2672.2 2749.4 31 2703.1 2717.7 25 2784.4 2854.2 57 

C202 200 2806.7 2811.9  30 2836.7 2876.5 28 2879.2 2892.9 36 2936.1 3004.5 64 

C203 200 2716 2724.6  26 2716 2891.8 42 2769.3 2834.1 29 2845.9 3003.5 58 

C401 400 5425.9  5448.9  211 5489.4 5690.6 248 5533.3 5618.6 189 5833.5 6281.4 424 

C402 400 4518.2  4538.0  183 4548.3 4786.4 203 4518.2 4760.3 242 4893.5 5153.2 357 

C403 400 5725.9  5796.2  234 5909.6 6085.2 295 5930.7 6046.4 271 6125.6 6742.1 511 

Total 28615.6  28792.3  743  28973.3 29935.1 881  29134.7  29719.1  824  30228.5  31915.4  1520  

Table 4.11: Experimental results of set C instances (clustered user distribution). 

  

 

 Table 4.12 shows the percentage the AGA outperforms other approaches on set C 

instances, in the aspects of average solution quality and computing time. For each 

instance, the outperforming percentage is calculated as (other approach’s value – 

AGA’s value) / other approach’s value. Each value in table 4.12 is obtained by 

averaging the outperforming percentages of the three same-size instances. Comparing 
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with other approaches, the AGA can provide better solution quality in less computing 

time.  

 

 

Set Size 
GGA CAC ANTS [Maniezzo, 2004] 

Cost Gap Time Gap Cost Gap Time Gap Cost Gap Time Gap 

 100 1.14% -2.07% 0.98% -6.36% 1.51% 29.91% 

C 200 3.62% 14.62% 2.79% 6.34% 7.37% 53.64% 

 400 4.73% 15.15% 3.94% 8.80% 13.07% 51.06% 

Avg 3.16% 9.23% 2.57% 2.92% 7.32% 44.87% 

Table 4.12: Solution quality and computing time comparison on set C instances. 

 

 Table 4.13 presents the experimental results on the R set instances. The AGA is 

still superior in solving the random distributed instances. It outperforms other 

approaches on all instances in average solution quality, and provides 4 new best found 

solutions. The results indicate the AGA maintains a good diversity of the population 

when processing the random distributed instances. Table 4.14 reveals the percentage 

of outperforming. Note that AGA is better than other approaches in the aspects of 

both solution quality and computing time.   

 

Ints Size 
AGA GGA CAC ANTS [Maniezzo, 2004] 

Best Avg Time Best Avg Time Best Avg Time Best Avg Time 

R101 100a 2207.1  2214.7  12  2207.1 2235.9 18 2223.1 2283.2 12 2207.1 2281.5 18 

R102 100b 1824.5  1835.7  12  1824.5 1867.5 15 1841.4 1874.3 13 1834.6 1864.2 17 

R103 100c 2200.3  2226.9  11  2209.1 2286 17 2235.9 2313.4 11 2299.2 2438.7 21 

R201 200a 3966.2  4117.1  35  4034.8 4188.3 43 4156.1 4231.8 36 4101.5 4253.5 108 

R202 200b 3646.8 3666.7  28  3646.8 3751.7 41 3717.2 3824.2 29 3772.2 4071.9 84 

R203 200c 3923.2 3982.1  29  3923.2 4158.4 38 4164.7 4304.6 44 4368.5 4541.5 116 

R401 400a 7354.2  7405.1  288  7514.9 7799.5 392 7891.4 8033.7 358 8396.1 8580.4 581 

R402 400b 6172.7 6222.5  194  6172.7 6254 277 6365.2 6559.7 204 6512.7 6893.3 479 

R403 400c 7602.0  7695.0  274  7670.2 7872.9 311 8023.4 8129.5 289 8113.1 8338.9 631 

Total 38897.0  39365.8  881  39203.3  40414.2  1052  40618.4  41554.4  996  42505 44663.9 2055  

Table 4.13: Experimental results of set R instances (random user distribution). 

 

 

Size 
GGA CAC ANTS [Maniezzo, 2004] 

Cost Gap Time Gap Cost Gap Time Gap Cost Gap Time Gap 

100 1.75% 31.02% 2.93% 4.81% 4.38% 38.11% 

200 2.74% 24.80% 4.77% 13.64% 8.49% 69.82% 

400 2.61% 22.90% 6.10% 10.01% 10.38% 55.56% 

Avg 2.36% 26.24% 4.60% 9.49% 7.75% 54.50% 

Table 4.14: Solution quality and computing time comparison on set R instances. 
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 The experimental results for the set W instances (real-world instances) are 

presented in table 4.15. The AGA provides better results on 8 instances in the average 

solution quality, and gives new best solutions for 4 instances. The outperforming 

percentage is shown in table 4.16.  

 Considering all three sets of instances, the solution quality of AGA is significant 

better than other approaches in both the best found solution quality and the average 

solution quality. Moreover, considering the total computing time of all the instances, 

the AGA is fastest approach among the candidates.  

 

Inst Size 
AGA GGA CAC ANTS [Maniezzo, 2004] 

Best Avg Time Best Avg Time Best Avg Time Best Avg Time 

W101 100 864.2 868.2  10 864.2 879.3 12 864.2 886.3 9 889.4 893.8 18 

W102 100 998.9 1010.5  11 1000.6 1010.2 14 998.9 1008.5 11 1016.5 1020.3 18 

W103 100 1088.2 1096  11 1088.2 1126.3 14 1112.4 1134.8 10 1142.4 1168.1 20 

W201 200 1523.1 1532  29 1528.6 1562.1 35 1523.1 1557.6 46 1586.1 1601.8 97 

W202 200 1719.5 1739.6  31 1719.5 1768.5 33 1803.7 1812.9 22 1872.2 1919.2 104 

W203 200 1646.1  1696.6  38 1701.2 1743.8 51 1701.2 1784.4 40 1795.6 1907.5 85 

W401 400 2577.2  2608.6  281 2608.8 2694.5 311 2789.5 2848.4 356 2843.4 3066.4 481 

W402 400 3188.9  3273  309 3210.2 3406 402 3283.1 3360.1 324 3541.6 3692.9 441 

W501 565 4685.1  4759.2  412 4733.2 4896.6 488 4887.5 5056.2 515 5090.2 5224.9 697 

Total 18291.2  18583.7  1132  18454.5  19087.3  1360  18963.6 19449.2 1333  19777.4  20494.9  1961  

Table 4.15: Experimental results of set W instances (real world cases). 

 

Size 
GGA CAC ANTS [Maniezzo, 2004] 

Cost Gap Time Gap Cost Gap Time Gap Cost Gap Time Gap 

100 1.31% 19.84% 1.75% -7.04% 3.33% 42.78% 

200 2.09% 16.23% 3.54% 0.35% 8.26% 65.20% 

400 3.30% 16.12% 5.63% 15.23% 11.74% 37.47% 

Avg 2.23% 17.40% 3.64% 2.85% 7.78% 48.48% 

Table 4.16: Solution quality and computing time comparison on set W instances. 

 

 As in the previous chapters, a further evaluation of the performance among the four 

approaches has been conducted by using a Freidman test. The test consists in the 

average solution quality on all 27 instances used in our experiments. The detail 

information is presented in table 4.17.  

 The Friedman statistic value T of table 4.17 is calculated to be 90.73, while the 

threshold for the F distribution with a significance level 0.01 is 4.04. Since T is much 

greater than the threshold, it is proven that there exists at least one approach whose 

performance is significant different from at least one of the other approach.  

 A paired comparison is then performed to decide which approaches are really 

different. According to Friedman test, for significance level 0.01 and 78 degrees of 
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freedom, the critical value for a significant difference between two approaches is 

12.49. Table 4.18 shows the difference between the performances of every two 

approaches. According to the values in the table, the AGA outperforms significantly 

the other approaches. 

 

Instance 
AGA GGA CAC ANTS [Maniezzo, 2004] 

Avg R R2 Avg R R2 Avg R R2 Avg R R2 

C101 1585.5 1 1 1599.3 4 16 1593.4 3 9 1592.9 2 4 

C102 1704.1 1 1 1712 2 4 1728.2 3 9 1748.5 4 16 

C103 1511.6 1 1 1543.9 4 16 1527.5 2 4 1535.1 3 9 

C201 2671.5 1 1 2749.4 3 9 2717.7 2 4 2854.2 4 16 

C202 2811.9 1 1 2876.5 2 4 2892.9 3 9 3004.5 4 16 

C203 2724.6 1 1 2891.8 3 9 2834.1 2 4 3003.5 4 16 

C401 5448.9 1 1 5690.6 3 9 5618.6 2 4 6281.4 4 16 

C402 4538 1 1 4786.4 3 9 4760.3 2 4 5153.2 4 16 

C403 5796.2 1 1 6085.2 3 9 6046.4 2 4 6742.1 4 16 

R101 2214.7 1 1 2235.9 2 4 2283.2 4 16 2281.5 3 9 

R102 1835.7 1 1 1867.5 3 9 1874.3 4 16 1864.2 2 4 

R103 2226.9 1 1 2286 2 4 2313.4 3 9 2438.7 4 16 

R201 4117.1 1 1 4188.3 2 4 4231.8 3 9 4253.5 4 16 

R202 3666.7 1 1 3751.7 2 4 3824.2 3 9 4071.9 4 16 

R203 3982.1 1 1 4158.4 2 4 4304.6 3 9 4541.5 4 16 

R401 7405.1 1 1 7799.5 2 4 8033.7 3 9 8580.4 4 16 

R402 6222.5 1 1 6254 2 4 6559.7 3 9 6893.3 4 16 

R403 7695 1 1 7872.9 2 4 8129.5 3 9 8338.9 4 16 

W101 868.2 1 1 879.3 2 4 886.3 3 9 893.8 4 16 

W102 1010.5 3 9 1010.2 2 4 1008.5 1 1 1020.3 4 16 

W103 1096 1 1 1126.3 2 4 1134.8 3 9 1168.1 4 16 

W201 1532 1 1 1562.1 3 9 1557.6 2 4 1601.8 4 16 

W202 1739.6 1 1 1768.5 2 4 1812.9 3 9 1919.2 4 16 

W203 1696.6 1 1 1743.8 2 4 1784.4 3 9 1907.5 4 16 

W401 2608.6 1 1 2694.5 2 4 2848.4 3 9 3066.4 4 16 

W402 3273 1 1 3406 3 9 3360.1 2 4 3692.9 4 16 

W501 4759.2 1 1 4896.6 2 4 5056.2 3 9 5224.9 4 16 

Avg 

 

1.074  

 

2.444  

 

2.704   3.778  

Sum 

 

29 35 

 

66 172 

 

73 209  102 394 

Table 4.17: Friedman test results. 

 

 

|Ri-Rj| GGA CAC ANTS [Maniezzo, 2004] 

AGA 37 44 73 

GGA - 7 36 

CAC - - 29 

Table 4.18: Paired comparison results. 
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 The accuracy of the AGA is examined by calculating the standard error (column 

Std) of the solutions obtained in 30 runs of each instance. The solution quality 

difference (column Diff) between the best found solution quality and the average 

solution quality of each instance in the previous tables is also calculated. Table 4.19 

shows the average of the abovementioned values of the three same-size instances. The 

average differences between the best found solution and the average solution of the 

AGA on three sets of instances are 0.5%, 1.2% and 1.4%, which are the most accurate 

values we obtained during our research.  

 

Size 
C set instances R set instances W set instances 

Best Avg Std Diff(%) Best Avg Std Diff(%) Best Avg Std Diff(%) 

100 1598.7 1600.4 1.2 0.1 2077.3 2092.4 7.2 0.7 983.8 991.6 3.7 0.8 

200 2716.5 2736.0 15.3 0.7 3845.4 3922.0 31.1 2.0 1629.6 1656.1 8.9 1.6 

400 5223.3 5261.0 22.1 0.7 7043.0 7107.5 33.8 0.9 3483.7 3546.9 29.1 1.8 

Avg 3179.5 3199.1 12.9 0.5 4321.9 4374.0 24 1.2 2032.4 2064.9 13.9 1.4 

Table 4.19: Evaluation of the accuracy of the AGA. 

 

To evaluate the performance of hyper-heuristic, two other multi-agent based 

genetic algorithms MGAR and MGAF are applied. The MGAR corresponds to a 

multi-agent system with the same number of agents as AGA, the difference is the 

MGAR has no learning mechanism and the operator pairs are randomly selected by 

each agent. The MGAF is similar to MGAR except each agent is fixed with one 

operator pair. The average solution qualities of the three same-size instances are 

shown in the table 4.20. Observe that, the AGA leads in the solution quality consist-

ently in all instances. The results reveal that the hyper-heursitic plays an important 

role in selecting the approriate operator pair and improving the solution quality.  

 

Size 
C set instances R set instances W set instances 

MGAR MGAF AGA MGAR MGAF AGA MGAR MGAF AGA 

100 1608.2 1607.2 1600.4 2126.7 2118.1 2092.4 1003.8 998.2 991.5 

200 2849.6 2834.9 2736 4012.2 4099.1 3921.9 1695.4 1683.7 1656.7 

400 5487.0 5431.3 5261 7330.9 7232.6 7107.5 3681.9 3766.7 3546.3 

Total 9944.8 9873.4 9597.4 13469.8 13449.8 13121.8 6381.1 6448.6 6194.5 

Table 4.20: Evaluation of the hyper-heuristic. 

 

 C1 (%) C2 (%) C3 (%) C4 (%) 

O1 62 4 3 31 

O2 18 30 11 41 

O3 12 36 28 24 

O4 11 16 67 6 

Table 4.21: Frequency of usage of each operator pair. 
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Table 4.21 reveals an example of the frequency of usage of each operator pair 

under different conditions when solving a set C instance. The results show the intelli-

gence of our approach. When a condition occurred, a specific operator pair is favored. 

The search tendency of each operator pair is proven to be useful; each specific opera-

tor pair has contributed to the improvement of solutions in their related condition. For 

instance, the operator pair one is mostly used under condition c1, while the operator 

pair four is mostly applied under condition c3. The operator pairs two and three are 

both favored under condition c2, since these two operator pairs are defined to provide 

average intensity and diversity to the population. 

 

4.6.3  Summary 

In section 4.5 and section 4.6, we have introduced AGA, a new multi-agent based 

self-adaptive genetic algorithm to solve the LTCPP. AGA is composed of several 

agents which concurrently explore the search space but cooperate to coordinate the 

search and improve their behaviors. Each agent manages a relatively independent ge-

netic algorithm. In each genetic algorithm, the agent applies recombination and muta-

tion operators which are selected by an adaptive decision making mechanism. This 

decision making mechanism is based on the heuristic rules which are adapted during 

the optimization process by learning mechanisms. 

AGA exploits the combination of multi-agent system, hyper-heuristic and genetic 

algorithm. The multi-agent system encourages modularity and reusability. The coop-

eration structure is intended to support robustness and facilitate the distribution, since 

the control is decentralized and the agents' interactions are asynchronous. The hy-

per-heuristic with both online and off-line learning mechanisms provides good adap-

tion characteristic and effectively guides the selection of operators in the genetic algo-

rithm. 

Some additional criteria such as flexibility and modularity have to be considered 

since AGA addresses these issues. Flexibility can be defined as the capacity of adapt-

ing an algorithm to effectively deal with additional constraints, an algorithm which is 

highly problem dependent cannot be considered as flexible. Considering this criterion, 

AGA has several advantages. First of all, new intensity and diversity focused opera-

tors can be easily introduced without modifying the architecture of the agents. These 

operators are automatically managed by the decision making process and learning 

mechanisms. Then, by using the multi-agent model, others decision or learning pro-

cedures can be considered. Finally, the decentralization in AGA and the asynchronous 

nature of agents' interactions make AGA a good candidate for a parallel execution. 

The presented approach has been applied successfully for solving long-term car 

pooling problem. Experiments have been performed to confirm the efficiency of the 

system. It is shown that AGA can provide solutions with good quality efficiently when 

dealing with both small and large scale instances. Also the process time of AGA is 
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less comparing with the other metaheuristics. Thus, it has been demonstrated that 

AGA is an effective approach for solving long-term car pooling problem and it is 

competitive with some of the most powerful heuristics.  

 

 

4.7  Conclusion 

In this chapter we introduced a guided genetic algorithm and a multi-agent self-adap-

tive genetic algorithm for the long-term car pooling problem.  

The GGA is designed with an adaptive control of the variation rates. The algo-

rithm adapts the recombination rate and mutation rate dynamically, in order to main-

tain stable population diversity at a desirable level. 

 The AGA is designed using a multiple agent framework with a genetic paradigm. 

It adopts the metaphor of the coalition. Several agents concurrently explore the search 

space, and they cooperate to coordinate the search and improve their behaviors. To 

perform the search, an agent uses several genetic operator pairs which are scheduled 

by an adaptive decision process. The decision process is based on heuristic rules and 

follows the hyper-heuristic approach which is problem independent. In addition, the 

decision rules of the agents are adapted during the optimization process by a learning 

mechanism. The coalition structure is intended to support robustness and facilitate the 

distribution, since the control is decentralized and the agents’ interactions are asyn-

chronous. Finally, cooperation and learning mechanism contribute to the effectiveness 

of the optimization.  

The two presented approaches have been applied successfully for solving the 

long-term car pooling problem. Experiments have been performed to confirm the 

efficiency and the effectiveness of the two approaches. Comparisons among the GGA, 

the AGA and the CAC approaches have been conducted. For most of the instances, 

the AGA can provide the best solution quality, however a good hardware environment 

is required. The GGA is able to provide remarkable solution quality for the instances 

with random user distribution and the real-world instances. As mentioned in the pre-

vious chapter, the CAC approach shows its superiority in processing the instances 

with clustered user distribution. Therefore, the selection of the algorithm in the re-

al-world implementation depends on the hardware environment of the car pool pro-

gram provider and the location distribution of the participants. Nevertheless, all three 

approaches can be considered to be effective and applicable in the real-world imple-

mentation.  

In the next chapter, we extend our work to the daily car pooling problem. A new 

daily car pool model which includes multiple destinations in one program will be in-

troduced, and a hybrid resolution method to the problem will be presented. 
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Abstract 

This chapter addresses to an extension problem, the multi-destination car pooling 

problem. The mathematical model of the problem will be presented at first. Then a 

Hybrid Ant Colony approach for solving the problem will be outlined. Experimental 

results are examined in order to evaluate the performance of the resolution method. 
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5.1 Introduction 

Along with our research on the long-term car pooling problem, we also try to make 

some efforts in improving the daily car pooling problem (DCPP). As introduced in 

chapter 1, in the DCPP, a number of users declare their availability for picking up or 

bringing back other users on one particular day. Hence, these users are considered as 

servers, and the other users being picked up or bringing back are considered as clients. 

Then the problem becomes to assign clients to servers and to identify the routes to be 

driven by the servers. According to the definition of the daily car pooling problem, 

users in a problem are required to go to a common destination. Thus, in the real-world 

application, the organizer usually separates the users going to different destinations 

into different car pool projects. Thus, in order to schedule the users with the current 

daily car pooling system, it is necessary to divide users according to their destinations, 

and each set of users going to the same destination are considered as an individual in-

stance.  

Observed from the real-world application of the daily car pooling, we found that 

lots of servers travel through their neighbors’ destinations before reaching their own 

ones with available car capacity. However, these servers are not allowed to pick up 

their neighbors because the neighbors go to different destinations. Dividing users into 

different car pooling instances based on the destinations results that some instances 

may have redundant servers, while the other instances may lack of servers.  

This situation greatly decreases the effectiveness of serving the clients and poten-

tially increased the travel cost of all the users in the daily car pool project, since if a 

server can pick up and deliver the clients who go to the destinations other than the 

server’s own, the total travel cost can be greatly saved. Thus, a daily car pool model 

which includes multiple destinations in one program is required in the real-world ap-

plication.  

In order to respond to this need, a multi-destination daily car pooling model is de-

fined in this chapter. In this model, the server can pick up and deliver clients who go 

to different destinations as long as the server can accept the length of the detour 

he/she has to make. A concept called “transfer point” is also defined in this model, 

which means two car pool servers can meet at an intersection point, where the clients 

can change vehicles in order to decrease the length of the detour the servers have to 

make. 

So in the Multi-destination Daily Car Pooling Problem (MDCPP), a number of 

users declare their availability for picking up or bringing back other users on one par-

ticular day. These users are considered as servers, then the other users are assigned to 

servers as clients and the routes to be driven by the servers are identified. In each car 

pool group, the server and the clients can have different destinations, and each client 

can be served by two servers during the transition to the destination. Figure 5.1 shows 

the three situations of picking up and delivery considered in our model: (a) a server 
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picks up clients, and then they go to a common destination; (b) a server picks up cli-

ents and then leads them to their destinations before going to the server’s own desti-

nation; (c) a server picks up clients and delivers them to a transfer point, and then an-

other server picks them up from this point and delivers them to their destination. 

 

Destination of s and c 

Server s

Client c

Destination of s 

Server s

Client c

Destination of c 

Server s1

Client c Destination of s1 

Server s2

Destination of s2 and c 

Transfer point c

(a)

(b)

(c)

Figure 5.1: Situations of pickup and delivery in Multi-destination Daily Car Pooling. 

 

Observed from figure 5.1, it is clear that the multiple destinations concept is only 

applicable on daily basis. It cannot be adapted to the long-term car pooling, because 

each user has to act as a server in the long-term car pooling, and client c is not able to 

pick up and deliver other car pool members within his/her maximum driving time in 

situation (b) and (c).  

Based on the new mathematical model defined for MDCPP, an efficient and ef-

fective metaheuristic is developed to solve this problem in the real-world application. 

Our Hybrid Ant Colony Algorithm (HAC) is based on the Clustering Ant Colony Al-

gorithm introduced in chapter 3; however, we introduce new definitions to the con-

cepts of preference and attractiveness. Moreover, a Transfer Point Searching heuristic 

(TPS) and a local search procedure are integrated into the algorithm in order to iden-

tify the transfer points and to further optimize the best solutions obtained during itera-

tions. Computational results are reported to illustrate the effectiveness of our approach 

in solving MDCPP. 

This chapter proceeds as follows. Section 5.2 describes the MDCPP and its 

mathematical model. Section 5.3 presents the HAC algorithm for MDCPP. Then, Sec-

tion 5.4 illustrates the computational results obtained by our method. The last section 

gives conclusions and perspectives.  

 

 

5.2 Problem definitions and formulation  

The mathematical formulation of the MDCPP will be presented in this section. The 

objective function and constraints to describe the MDCPP will be introduced in detail 

manner.  
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5.2.1 Mathematical model 

The MDCPP can be modeled by means of a directed graph G = (U∪D, A) with n+o 

vertices, where set U = {1, …, m} is the set of vertices corresponding to the users’ home, 

set D ={m+1,…, n} is the set of vertices associated with the destinations, and A={arc(i, 

j) / i, j∈U∪D} is the set of arcs where each arc(i, j)∈A is associated with a positive 

travel cost costij and a travel time tij. The set U is furthermore partitioned as U = Us∪Uc, 

where Us = {1, …, ms} is the subset of vertices associated with servers and Uc = 

{ms+1, …, m} is the subset of vertices associated with the clients. Let set O = {o(i, j, m, 

n) / i, j, m, n∈U∪D} be the set of intersection points where o(i, j, m, n) is the inter-

section point of arc(i, j) and arc(m, n). These intersection points are considered as po-

tential transfer points. Each server s∈Us enlisted in the multi-destination daily car 

pooling specifies the car capacity Qs and a maximal driving time Ts that the server is 

willing to accept when picking up clients. Each user i∈U has to specify a destination 

di∈D, the earlist time ei for leaving home and the latest time ri for arriving at destina-

tion.  

 The MDCPP is a multi-objective problem, requiring minimizing the total travel 

cost of all servers and the amount of unserved clients. Note that the clients can be left 

on the transfer point and wait for the next server. This results that the waiting time of a 

client between served by two servers becomes a very important factor to maintain 

client’s satisfaction. Therefore, minimizing the waiting time of all clients is also an 

objective in MDCPP. In spite of the multiple objectives, it is possible to combine them 

into a single objective function by still using a penalty concept as in the LTCPP. We 

define a penalty pi representing the contribution to the total cost in case a client is not 

picked up or a server does not pick up any client and a penalty qi indicating the clients 

who have to wait in the transfer point. The objectives of MDCPP then can be 

transformed into an integrated formulation presented as follows. 

 Define a pool k of users and let user s be the server and k be the amount of 

members in this pool. Server s of pool k will use his/her car to pick up the other pool 

members and then deliver them before going to his/her own destination. The driver 

thus has to find a Hamiltonian path starts at his/her home, and then passes through all 

his/her pool members’ homes and destinations or transfer points exactly once then ends 

at his/her own destination. Let ham(s,k) be the shortest above mentioned path, starting 

from s∈ pool k, connecting all pool members’ home j∈ pool k﹨{s} and transfer 

points or destinations of all pool members who do not go to the same destination as 

server s and ending in the destination of server s, with the constraint that destinations 

and transfer points must be visited after the corresponding clients. The cost for a server 

driving directly from his/her home to his/her destination is denoted by costsd, while ps 

is a penalty value incurred when the server travels alone, and qj is the penalty for 

making the pool member j waiting on the transfer point after getting off the car, 

calculated based on the length of the waiting time wtj. Then, the cost of pool k is 

defined to be:  
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 The cost for an unserved client c is defined as equation 5.2, where pc is the penalty 

value for client c being not served. 

 

   cunserved p=ctcos                             (5.2) 

 

 The total cost of a complete solution of the MDCPP is then defined to be the sum of 

the costs of the pools in it plus the sum of the costs of the unserved clients. This view 

optimizes at the same time the three objectives. In our mathematical model, the penalty 

of a user driving alone is set to be much higher than the cost when he/she drives directly 

from his/her home to the destination, so it is always more convenient to pool users 

together than to leave them alone. And because of the penalty for waiting at transfer 

point, if the client has to wait too long time at the transfer point, it is better to deliver 

him by the current server instead of changing vehicle. 

 The transfer points are designed to decrease the travel distance of the servers. 

Although the transfer points can save the total travel costs, they also increase the 

inconvenience of the servers and the clients. Moreover, it is very hard to implement 

the transfer point accurately in the real world application since the real world paths 

are always not direct lines. Based on the abovementioned reasons, in our model, we 

limit the amount of transfer point for each client to at most one. 

 MDCPP being NP can be easily proven since it is transformed from the DCPP and 

the DCPP is a NP-hard problem. 

 

5.2.2 Objective function 

The problem can be translated in a four indices formulation considering: 

 Decision variables:  

xij
s: Binary variable equals to 1 if and only if arc(i,j) is traveled by server s;  

yi: Binary variable equals to 1 if client i is not picked up by any server or server i does 

not pick up any client;  

ρi
s: Binary variable equals to 1 if and only if client i is delivered to his/her destination  

by server s; 

ψmn
is: Binary variable equals to 1 if and only if client i is left on transfer point of 

arc(m,n) by server s; 

σmn
is: Binary variable equals to 1 if and only if client i is picked up on transfer point of 

arc(m,n) by server s; 
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Si: Positive variable denoting the pickup time of client i or the departure time of server 

i. 

Fi
d: Positive variable denoting the arrival time of user i at a destination d;  

Li: Positive variable denoting the arrival time of client i on his/her transfer point; 

Hi: Positive variable denoting the pick-up time of client i on his/her transfer point; 

Qi
k: Positive variable denoting the amount of people in the car of pool k after visiting a 

user i or a destination i or a transfer point i; 

 Constants: 

ϕid: Binary value equals to 1 if and only if client i’s destination is destination d;  

η(m,n)(p,q): Binary value equals to 1 if and only if there is an intersection between 

arc(m,n) and arc(p,q); 

cij: Positive value denoting the travel cost between users i and j; 

tij: Positive value denoting the travel time between users i and j; 

Qs: Positive value denoting the car capacity of server s; 

Ts: Positive value indicating the maximum driving time specified by server s; 

ei: Positive value indicating the earliest time for leaving home of user i; 

ri: Positive value indicating the latest time for arriving at the destination of user i; 

pi: Positive value indicating the penalty for drive alone server i or unserved client i; 

qi: Positive value indicating the penalty for client i waiting on transfer point; 

Us: Index set of all servers;  

Uc: Index set of all clients; 

U: Index set of all users; 

A: Index set of all arcs; 

D: Index set of all destinations; 

O: Index set of all intersections. 

 

Objective function: 
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ci UiS  0                               (5.35) 

ci UiF  0                               (5.36) 

ci UiL  0                               (5.37) 

ci UiH  0                               (5.38)         

Equation (5.4) is continuity constraint for visiting clients. Equation (5.5) forces the 

server to go from each destination at most once, while equation (5.6) restricts the server 

to go to each destination at most once. Equation (5.7) forces the server’s path ends at 

server’s destination. Equation (5.8) makes sure each server’s destination must be vis-

ited. Equation (5.9) and (5.10) force each picked up client must be delivered to the 

client’s destination. Equation (5.11) makes sure a client left on a transfer point must be 

picked up eventually. Equation (5.12) restricts the client’s destination must be visited 

if the client is served by a server. Equation (5.13) is continuity constraint for visiting 

the destinations. Equation (5.14) restricts the transfer point to leave a client must on the 
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path of a server, while equation (5.15) confirms the transfer point to pick up a client 

must on the path of a server, respectively. Equation (5.16) forces a client can be left on 

the transfer point at most once, and equation (5.17) restricts a client can be pickup at the 

transfer point at most once, respectively. Equation (5.18) confirms there must be an 

intersection between the paths of leaving and picking up a client. Equation (5.19) is car 

capacity constraint. Equation (5.20) forces each user to be served by only one server or 

to be penalized, while equation (5.21) is maximum driving time constraints, respec-

tively. Equations (5.22) and (5.23), where M is a big constant, collectively set feasible 

pick-up times, while equation (5.24) sets minimum and maximum values of feasible 

arrival times, respectively. Equations (5.25) and (5.26), where M is a big constant, 

collectively set feasible time to leave a client on a transfer point, while equations (5.27) 

to (5.29) set feasible time to pick up a client from a transfer point, respectively. Con-

straints (5.30) to (5.34) are the binary constraints, and constraints (5.35) to (5.38) are 

the positivity constraints. 

 

 

5.3 Hybrid ant colony algorithm for the MDCPP  

In this section, we explain in detail the concepts and the structure of our Hybrid Ant 

Colony algorithm (HAC) for the MDCPP. The adaptation of the different components 

for the MDCPP is described and examined. 

 

5.3.1 Main structure 

Our HAC approach for solving MDCPP is based on the Ant Colony Optimization 

paradigm; the approach tries to assign clients to servers during the ants making their 

tour. The HAC consists in four components, a pre-sorting process, an ant colony op-

timization based metaheuristic, a transfer point searching heuristic for determining the 

transfer points and a local search for further optimizing the solutions. The ultimate 

goal of this approach is to solve the MDCPP efficiently and obtain a good solution 

with limited exploration to the search space.  

The pre-sorting procedure is designed to partition servers and clients according to 

several constraints defined based on the servers’ convenience, in order to aid and fa-

cilitate the future approaches. In this procedure, the servers will be divided into two 

subsets based on their availability to pass other destinations before going to their own 

ones: Servers who are able to visit other destinations; and servers who can only go to 

their own destinations. The two subsets are used as the start points to build car pools 

for the ants in the ant colony optimization based metaheuristic. In the same manner, 

the clients will also be grouped according to their destinations, in order to narrow 
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down the candidates for the ants to assign to a server. 

On the basis of the pre-sorting procedure, the ant colony based metaheuristic is then ap-

plied. The approach is based on the Clustering Ant Colony Algorithm presented in chapter 3, 

but its concepts of preference information and attractiveness are redefined. The preference 

information is designed as the tendencies of assigning a client to a server, while the attrac-

tiveness between a client and a server is defined according to the linear distance between the 

client and the straight line connecting the server and the destinations he/she has to visit. 

The new preference and attractiveness information are used to guide the client assign-

ment behavior of the ants, in order to achieve the car pool construction. The first step of the 

ant colony based metaheuristic is to initialize the preference information. Then, when the ant 

starts to construct a solution, it will first select a server from the server subsets as the start 

point to start a new car pool, and then if the car capacity and time window constraints are 

satisfied, it will continue searching for clients, whose destinations are available to the server, 

to assign to the server. The probability for the ant to select a client to visit and assign him to a 

server is based on the preference information and the attractiveness value between the client 

and the server. During the construction of the car pool, if pooling a client violates the time 

window constraints, the ant will try to select another client. If the maximum number of times 

of selection is exceeded, the ant will end the car pool, and stochastically select another server 

as a new start point of a new car pool. 

After a solution has been constructed by an ant, the Transfer Point Searching heuristic 

(TPS) is applied to create transfer points for car pools. The heuristic proceeds as follows: 

suppose server s makes a relatively long detour to visit client i’s destination, the heuristic will 

then try to locate another server k that is going to the same destination as client i, and create a 

transfer point for server s to transfer client i to server k, so the total travel cost can be de-

creased.  

When all ants finish their tours, several best solutions are selected based on the objective 

function. A local search is then applied to further optimize these selected solutions. The main 

structure of the local search consists in a loop applying sequentially two operators, and it 

stops when no improvement made during x loops.  

At the end of iteration, the composition of the best solutions will be used to update the 

preference information, and the ancient preference values will decrease with an evaporate 

rate, in order to enlarge the influence of the new preference information obtained in the cur-

rent iteration. 

The general structure of the HAC is specified as following Algorithm 5.1. 

 

 
 

Algorithm 5.1: Hybrid ant colony algorithm. 

 

/* Pre-sorting process */ 

Partition the servers according to their ability to pass to other destinations; 

Partition the clients according to their destinations;  



CHAPTER 5 Extension: Multi-destination Daily Car Pooling Problem 

 

133 

 

 

 

/* Ant colony optimization based metaheuristic */  

Initialize preference and attractiveness. 

While the stop criteria are not met  

For k =1, k ≤ the number of ants do 

Repeat 

Select start point for ants based on the partition of servers;  

Assign clients to servers based on preference, attractiveness and the availa-

bility of the server for the clients’ destinations; 

Until all servers are selected; 

Apply TPS to decide the transfer points; 

End for 

Select the best m solutions; 

Apply local search to the selected solutions; 

Update the preference based on the composition of selected solutions; 

End while 

 

 

5.3.2 Solution representation 

The aim to design a representation for the solution is to build a suitable mapping be-

tween our problem and the solution generated by the algorithm. Although both direct 

and indirect coding have been proven to be applicable for the representation of vehicle 

routing related problem, we favor to select the direct coding for the MDCPP, since the 

time-consuming encoding and decoding phase of the indirect coding can be avoided. 

Similar to the Long-term Car Pooling Problem, the representation is designed with 

two layers. The first layer presents the match between servers and clients, as well as 

the pickup order of the clients and the visit orders of destinations and transfer points. 

The second layer records the departure time of the servers, the pickup time of clients 

and their arrival time at the destinations or the transfer points. 

Therefore, the first layer of the proposed representation consists in a set of clus-

ters Rep = {R1, R2, ..., Rm}, and each cluster Ri = {Sj, Ck, ... , Cp, Li, Ds} is a ordered 

sequence, started with the server of this cluster Sj and followed with clients Ck or 

transfer point ( Li indicates the transfer points to leave the clients on, Pi refers the 

transfer points to pick up clients from) or destinations Ds based on the order they are 

visited by this server. Note that the representation of each cluster may have different 

length, since the length is based on the number of clients and destinations visited by 

the server.   

Then in the second layer, for each server Sj and client Ck in each cluster, the de-

parture time Tj or pickup time Tk are associated. For each destination Ds, a value arvs 

indicating the arrival time of the server at this destination and a set offs including the 
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clients who get off the vehicle at this destination are associated. 

Note that some clients may correspond to a transfer point; the detail representa-

tion concerning this situation will be introduced in section 5.3.6. This representation 

provides all the information of a user in the Multi-destination Daily Car Pooling 

Problem. It offers and contributes in a clear manner to design multi-destination daily 

car pooling problem solutions. An example of the solution representation is shown in 

figure 5.2. 

 

......L2S1 C7 C11 C12 S3C4 C6 C9

off2: (C7, C11)T7: 7:40
arv2: 8:11

associate

D2 D1 C9 D2

T1: 7:30

associate associate

arv1: 8:34

associate

off1: (S1, C12,C4)

 

Figure 5.2: An example of the solution representation. 

 

5.3.3 Pre-sorting 

Pre-sorting categorizes both servers and clients, it is designed as a preparation proce-

dure for the ant colony optimization based metaheuristic. Two constraints are defined 

to aid the categorizations of servers and clients. 

The servers are divided into two subsets, the M-server subset which contains the 

servers who are able to visit more than one destination within their maximum driving 

time, and the S-server subset which consists in the servers who can only go to their 

own destinations. The selection of the members of each subset is performed by con-

straints (5.39) and (5.40). The evaluation takes place between each server and each 

destination except the server’s own one. 

dissn+disnm <  z×dissm                       (5.39) 

  tsn+tnm < Ts                          (5.40) 

where dissm is the distance between server s and his/her own destination m, tsn is 

the travel time between server s and another destination n, tnm is the travel time be-

tween destination n and destination m, z is a parameter set to adjust the maximum de-

tour length the server can afford, and Ts is the maximum driving time a server willing 

to accept, respectively.  

Constraint (5.39) restricts that the length of a server’s detour cannot be longer 

than z times of the distance he/she travels to his/her own destination. Constraint (5.40) 

confirms that travel to destination n will not exceed the server s’s maximum driving 

time. If server s is able to satisfy the two constraints when he/she travels to any desti-
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nation other than his/her own, he/she will be categorized into the M-server subset. 

Otherwise, the server will be put in the S-server subset. For each processed server, 

his/her available destinations will be recorded with him, shown in figure 5.3. 

 

Servers

M-Servers

S-Servers

S1 Available Destinations: D2, D3

Sm Available Destinations: D1, D2, D3

...
Sm+1 Available Destinations: D2

Sn Available Destinations: D1

...

 

Figure 5.3: Categorization of servers in pre-sorting procedure. 

 

These two subsets will be both considered as the start points for building car 

pools for the ants in the ant colony optimization based metaheuristic, but they are 

given different priorities when ants process them. The servers in the M-server subset 

must be processed before the ones in the S-server subset, only after all servers in the 

M-server subset have been assigned with car pool members, the ants start to process 

the servers in the S-server subset. By defining this concept, we achieve the favor to 

the servers who can travel to multiple destinations, as they can serve more clients than 

the servers who go to only their own destinations.  

The clients are also divided into several subsets; the number of subsets is based 

on the number of destinations of an instance. The clients going to the same destina-

tions are organized into the same subset. In the ant colony optimization based me-

taheuristic, when an ant searches clients to assign to a server, only the clients going to 

the available destinations of the server are visible to the ant. That is, only the clients 

with the destinations the server can reach without violating the constraints (5.39) and 

(5.40) are candidates for the ant to select. By applying this mechanism, the amount of 

candidates for an ant has been significantly decreased. 

 

5.3.4 Preference information 

The Clustering Ant Colony structure is kept in our ant colony optimization based me-

taheuristic, but the concepts of preference and attractiveness are redefined. The pref-

erence information in our metaheuristic is distinct from the Clustering Ant Colony 

Algorithm, because it is defined between each server and each client. The preference 

information is stored in an m×n matrix where m is the number of servers and n is the 
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number of clients in an instance. The preference values of the matrix indicate the ten-

dency level to assign a client to a server, as shown in figure 5.4. These values are ex-

periences gained from the best solutions obtained in each iteration, and are used to 

guide the ant for constructing car pools in future iterations. 

 

C1 C2 C3 C4

0 0.5 1.1 0

0.5 0 1.4 0.7

1.0 0.2 0 0

0 0.7 0 0

S1

S2

...

Sm

Preference matrix in HAC

... Cn

0.5 0

0 0

0 0

0.8 1.2

 

Figure 5.4: The preference information matrix in HAC. 

 

In the initialization of the preference information, several time window constraints 

are pre-checked between the servers and the clients whose destinations are available 

for the servers. The preference values between the server and the clients whose desti-

nations are not feasible for the servers are set to be zero. Let ds be the destination of 

server s, di be the destination of client i, tij be the travel time between two locations, 

respectively. Constraints (5.41) and (5.42) examine whether server s and client i can 

both be able to arrive on time, if server s picks up client i before going to the 

destination. Constraint (5.43) checks if the pickup time of client i is too late for server 

s to arrive at the destination on time. Note that, if client i has a different destination 

from server s, the server must deliver the client first, and then go to his/her own 

destination. If pooling server s and client i together cannot satisfy the abovementioned 

constraints, the preference value wsi is set to zero, which indicates there is no proba-

bility that client i will be assigned to server s by ants. By applying this procedure, we 

are able to remove some car pool combinations which do not belong to any feasible 

solution, so the computing time for the ants to search for car pool members is further 

decreased. 

  sddidsis rtt+t+e
sii


                        (5.41) 

iidsis rt+t+e
i
                            (5.42) 

sddidi rtt+e
sii
                             (5.43) 

 

Then, if the constraints are satisfied, the preference values between each server and 

each client are initialized by the geographic distance difference between server s going 

to his/her destination directly and server s picking up and delivering the client i before 
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going to his/her own destination, and their earliest departure time difference, shown as 

equation (5.44).  

 

isissmnminsi

si

ete
β+

disdisdisdis
α=w







11
       (5.44)  

                             

where dissi, disin, disnm and dissm are the geographical distances between server s 

and client i, between client i and i’s destination n, between client i’s destination n and 

server s’s destination m, and between server s and s’s destination m, respectively. tsi 

are the travel time between server s and client i. es and ei are the earliest departure time 

of server s and client i. α and β are weight factors. Equation (5.44) indicates that the 

shorter the detour the server s has to make to pick up client i, the higher the initial 

preference between them. If the arrival time of server s at client i’s home is close to 

client i’s earliest departure time, they will also obtain a higher preference value 

between them. Note that the constants in the abovementioned equation have both 

distance unit and time unit, so the factors α and β are designed to adjust these values. 

Similar to the Clustering Ant Colony Algorithm, the two denominators in equation 

(5.44) are limited to a minimum value σ, which replaces the denominators if their 

values are less than σ. This mechanism is designed to avoid generating too large pref-

erence values. 

In each iteration, an ant starts its tour from a server s, selected stochastically from 

the M-server set obtained in pre-sorting procedure. Then the ant tries to assign clients 

to server s. The probability for the ant to select a client i to visit and assign to server s 

is based on the preference information and attractiveness between client i and server s. 

The attractiveness will be introduced in detail in next section. The probability for the 

ant to select a client i is performed by a roulette wheel selection procedure, as shown 

in equation (5.45). As abovementioned, only the clients with the destinations can be 

visited by server s without violating the constraints have positive preference values, 

which indicates they are visible for the ant to select. 

 

       
   

   
Hj

b

sj

a

sj

b

si

a

si
si

w

w
=obability




Pr                  (5.45)  

 

where wsi is the preference value between server s and client i, while ηsi is the 

attractiveness value, respectively. H is the set of visible candidates of server s, who 

have not been assigned to any car pool yet, while a and b are adjusting parameters, 

respectively.  

If the client selected by the ant can satisfy the time window constraints of the 

server and the existing clients in the car pool, the selected client will be added into the 

car pool. Otherwise, the selection is considered as failed and the ant will try to select 
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another client until the maximum number of times of failed selection y is exceeded. 

When a new client is assigned to the car pool, the new order of pickup and delivery of 

the clients will be updated. The update is based on the calculation of the attractiveness, 

which will be presented in section 5.3.5.  

When the current constructing car pool reaches its car capacity or exceeds the 

maximum number of times of failed selection, the car pool will be closed. And then 

the ant will select stochastically another server from the M-server, or S-server if the 

servers in M-server subset are all processed, then continue to assign clients to the 

server, as shown in figure 5.5. 

S1C1C2

C3

S2

C4C5C6

 

Figure 5.5: The procedure of ant searching for car pool members. 

 

After a solution has been constructed by an ant, the Transfer Point Searching heu-

ristic (TPS) is applied to create the transfer points. The TPS will be presented in detail 

in section 5.3.6. When the transfer point is built, the waiting time of client i on the 

transfer point is calculated and associated to him, in order to aid the evaluation at the 

end of iteration. 

When all ants finish their tour, an evaluation is performed to all the solutions gen-

erated by the ants; the evaluation is given by equation (5.3), which is the objective 

function of the MDCPP. After the evaluation, the first m best-fit solutions are selected 

to be applied with a local search, in order to further optimize the solution.  

Then, before updating the preference values with these solutions, all weight values 

wsi in the preference information matrix will decrease with an evaporate rate μ, as 

shown in equation (5.46), where w
’’

si is the preference value of the previous iteration, 

in order to enlarge the influence of the new preference information obtained in current 

iteration. Afterwards, for each selected solution s, the preference values between the 

server and the clients in the same car pool consist in an augmentation, as shown in 

equation (5.47), where w
’
si is the preference after evaporation, favg is the average fit-

ness of the whole ant colony, fk is the fitness of current selected solution s, S is the set 

of all selected solutions, and factor λ is a weight factor, respectively. For the clients 

who have been transferred during the travel, only the preference value between the 

clients and their original servers are updated. 

 

                 sisi wμ=w '''                          (5.46)  
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Figure 5.6 shows an example of preference matrix updating.  

 

C1 C2 C3 C4

0 0.5 1.1 0

0.5 0 1.4 0.7

1.0 0.2 0 0

0 0.7 0 0

S1

S2

...

Sm

Pheromone matrix before updating

... Cn

0.5 0

0 0

0 0

0.8 1.2

Solution k :

( S1 C2 C3 )( S2 C1 C4 )...

augmentation = 0.05 

μ= 0.95

C1 C2 C3 C4

0 0.53 1.1 0

0.53 0 1.34 0.72

0.95 0.19 0 0

0 0.67 0 0

S1

S2

...

Sm

Pheromone matrix after updating

... Cn

0.48 0

0 0

0 0

0.76 1.14

Figure 5.6: Updating the preference matrix in HAC. 

 

5.3.5 Attractiveness 

The paradigm of the Ant Colony Optimization (ACO) involves the movement of a 

colony of ants through the different states influenced by two local decision policies, 

pheromone and attractiveness. In our ant colony optimization based metaheuristic, the 

attractiveness is considered as the level a client is attracted by the theoretical shortest 

path of the server. Therefore, the attractiveness between client i and server s is defined 

as the reciprocal of smallest linear distance between client i and the straight lines con-

necting server s and the destinations the server has to pass.  

During the ant colony optimization based metaheuristic, when the ant is searching 

client i for server s, a “standard path” is designed for calculating the attractiveness. The 

standard path is a Hamilton path starts from server s and connects sequentially the 

destinations the server has to visit to deliver his/her current car pool members as well 

as client i, as shown in figure 5.7. Thus the standard path is modified if client i goes to 

a different destination. 

For instance, in figure 5.7, server s’s destination is ds, and the two clients are with 

destination dc1 and dc2. Then, in the beginning of a car pool construction, the standard 

path is the section of line connecting the server s and the server s’s destination. When 

the ant tries to insert client c1 with different destination into the car pool, the standard 

path is changed to the Hamilton path starts from the server, passing the destination of c1 

and ends at server s’s destination. In the same manner, when the ant tries to insert cli-

ent c2 into the car pool, the standard path of this car pool is the Hamilton path starts 

from server’s home connecting dc1 and dc2, ends at ds.  

As the standard path is the shortest path to go through the destinations for the server, 
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if the server picks up the clients close to this path, he/she will make only relatively short 

detour. Thus, the standard path is used as the guide line to calculate the attractiveness 

for guiding the ants; the concept is designed to ensure that the distribution of selected 

clients vibrates around the standard path with a narrow width. 

 

s

ds

s

ds
dc1

c1

s

ds dc1

c2

dc2

1. Only Server S1 in the car pool. 2. Try to insert C1  into the car pool.

3. C1 has been assigned to the car pool, try to insert C2 into the car pool.

c1

 

Figure 5.7: The modification of the standard path.  

 

When ant makes its tour, the attractiveness is calculated according to the standard 

path of the server. We calculate the linear distance between the candidate client c and 

each section of the standard path before reaching c’s destination, and then choose the 

reciprocal of shortest one as the attractiveness value of this client to the server, as 

shown in figure 5.8. Note that if the projection point of the client is not on the corre-

sponding section of the standard path, an extra distance will be added to the attrac-

tiveness distance. The extra distance is calculated as the linear distance between the 

projection point and the closest end of the section of the standard path. In figure 5.8, 

server s’s destination is ds, candidate client c’s destination is dc, and dx is the destina-

tion of an existing client in server s’s car pool. dc_mn indicates the linear distance from 

client c to the section between node m and node n, and P refers to the projection points 

of client c on each section of the standard path. In the example, the distances between c 

and the standard paths are dc_sdx and dc_dxdc+dpc2dx. Thus, the attractiveness value be-

tween c and s is calculated as the reciprocal of dc_sdx, since dc_sdx is shorter than 

dc_dxdc+dpc2dx. 
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c
dc_sdx

s

dc
dx

dc_dx dc

Extra distance: dpc2 dx

Pc1

Pc2

ds

 

Figure 5.8: The distance between a client and the standard path. 

 

Note that only the distances between client c and the sections of the standard path 

before reaching c’s destination can be calculated and used. In figure 5.8, client c can 

only have the projection point on the section sdx and dxdc of the standard path since 

his/her destination is dc. The distance between client c and the sections dcds of the 

standard path is not calculated because, even if the distance was the shortest, the serv-

er has to travel to an opposite direction to deliver the client. This is usually inconven-

ient and expensive for the server, thus it is better to leave the client to other servers.  

At last, according to the section of the standard path selected to calculate the attrac-

tiveness and the location of the corresponding projection point, we are able to obtain 

the position for a client to be inserted in the server’s pickup and delivery sequence. For 

instance, in figure 5.8, client c will be inserted in the pickup and delivery sequence 

between s and dx, since the attractiveness of c is calculated based on the distance to 

section sdx. 

Therefore, the distance datc for calculating the attractiveness is calculated as equa-

tion (5.48). By connecting client c to the two ends of section mn of the standard path, 

we can obtain a triangle. If 
∧

cmn and 
∧

cnm  are acute-angles or right-angles, datc simply 

equals to the distance dc_mn between client c and section mn. Otherwise, datc is added 

with an extra distance min(dpm, dpn).  

 

 
otherwise

90   and   if 







 

 )  ,d+min(dd

cnmcmnd
=dat

pnpmc_mn

c_mn
c

∧∧

                    (5.48) 

 

where dc_mn indicates the linear distance from client c to the section between m and n, 

while dpm and dpn indicates the linear distances from projection point p of client c to m 

and n.  
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And the attractiveness for client c to a server s will be: 

 

)min(dat
=η

c

sc

1
                                  (5.49) 

 

where datc indicates all possible distances from client c to the sections of the standard 

path. 

When a new client is assigned to a car pool, according to its projection point on the 

standard path, the pickup and delivery sequence will be updated. The client with the 

projection point closer to the server will be picked up first. The attractiveness is es-

sential in our ant colony optimization based metaheuristic. Its role is not only a factor 

for ants to select clients to assign to servers, but also to indicate the position where the 

client should be located in the pickup and delivery sequence.  

 

5.3.6 Transfer point searching heuristic 

After a solution has been constructed by an ant, the Transfer Point Searching heuristic 

(TPS) is applied to create the transfer points. As mentioned in the mathematical model, 

the transfer point can increase the inconvenience of the servers and the clients. Thus, 

in our model, we limit the number of transfer points to at most one for each client. 

In TPS, we define a parameter to decide whether a detour of a server is considered 

to be long. In a solution, if server s is confirmed to make a long detour to deliver client 

i, the heuristic will try to locate another server k that is going to the same destination as 

client i and has available car capacity, then try to create a transfer point for server s to 

transfer client i to server k, in order to decrease the total travel cost. 

The servers, who travel multiple destinations and have the travel distance is more 

than w times of the distance from his/her home directly to his/her destination, are 

selected and put into a list. The list is organized in decrease order of the length of the 

servers’ detours, and the server with longer detour will be processed first. Then, all 

the servers in the list proceed with the following procedures, as shown in figure 5.9. 

Suppose s is a server with destination ds, then for every other destination di server s 

has to visit (in the case of figure 5.9, d1 is the other destination server has to visit), if 

there is no existing transfer point on the paths linking di (in figure 5.9, the paths are 

c2d1 and d1ds) and no client going to di has been transferred before, we remove di from 

the original path to construct a conjecture path, and the clients going to di are marked 

to be transferred in the next step. Otherwise, we skip di and process the next 

destination. Then, we select randomly a server who goes through destination di and 

examine the availability to construct a transfer point. The process for destination di 

continues until a transfer point is created or all possible servers who go through 

destination di are checked. 

A server k must satisfy the following constraints to create a transfer point:  
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(1) There must be an intersection between server k’s path and server s’s conjecture 

path;  

(2) The intersection must be on the part of the conjecture path which is visited after 

picking up the clients of server s who need to be transferred.  

(3) Server k must have available car capacity to serve the clients transferred from 

server s.  

(4) Calculate the coordinates of the transfer point, and then check the arrival time 

of both servers at the transfer point. The time for server k to pick up the clients must 

be later than the time for server s to leave the clients.  

The constraints are examined sequentially; the next constraint is examined only if 

the previous constraint is satisfied. Note that, the coordinates calculated in the fourth 

constraint are memorized, so the repetitive calculation can be avoided in the future 

iterations.  

Since the verification of the constraints is time consuming, we apply the first 

improvement policy. That is, the transfer point is confirmed as soon as the total cost 

of the two car pools decreases. Note that, the path of server s will be modified to be 

same as the conjecture path after the creation of the transfer point. 

 

 

s

d1

c1

c2ds

k

Transfer Point

User Destination

s ds

c1 ds

k d1

c2 d1

Conjecture path

Original path

 

Figure 5.9: Construction of a transfer point. 

 

 

The representation of the transfer point in a solution is introduced in figure 5.10. 

The transfer point to leave clients is named with Li, while the transfer point to pick up 

the corresponding clients is named with Pi. Each transfer point i is associated with set 

SLi of clients being left or set SPi of clients being picked up, the distance dis and 

travel time tim between the previous visited node and transfer point i, and the time arv 

of the server arriving at this transfer point. 
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S1 C7 C11 C12

SLi: (C7, C11)

dis(C12-Li): 11 km

tim(C12-Li): 10 min
arvL: 8:11

associate

Transfer point to 

leave passenger
Li

S2 C5

SPi: (C7, C11)

dis(C5-Pi): 23 km

tim(C5-Pi): 25 min
arvP: 8:18

associate

Transfer point to 

pickup passenger
Pi C7 C11

Car pool 1

Car pool 2

D1

D2

 

Figure 5.10: Representation of a transfer point. 

 

5.3.7 Local search procedure 

As abovementioned, when all ants have finished their tours and the TPS is applied, 

several best solutions are selected to be improved by a local search procedure. The 

main structure of local search consists in a loop applying sequentially two operators. 

The local search stops when no improvement made during x loops. The same forbid-

den list mechanism as presented in chapter 3 is applied to avoid repetitive calcula-

tions. 

 

 
 

Algorithm 5.2: Local search in HAC. 

 

Local_Search_Operators[] = { Swap, Move } 

Create the forbidden list; 

Repeat 

 For each operator in Local_Search_Operators do  

Select car pools for operator; 

For selected car pools do 

Check the forbidden list; 

If not in the list, apply the operator; 

     If solution is improved, update the solution; 

Remove corresponding information of the current car pool from 

the forbidden list; 

Else record the operation in the forbidden list; 

Else skip the operation and process next selected car pool; 

  End for 

 End for 

Until the stop criteria of the local search is met. 

Clear the forbidden list. 
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The two operators are designed specifically based on the characteristic of the 

MDCPP. The main structures of the operators are similar. For each operator, we first 

select several car pools according to the selection rules defined by each operator. 

Then, for each operation performed by an operator, we check the forbidden list. If 

there is corresponding information in the list, which means we applied the same oper-

ation to the same users in the past and made no improvement, we will skip the opera-

tion. Otherwise, we apply the operator and see whether there is an improvement ob-

tained. If the solution is improved, we update the solution and remove the correspond-

ing information of the modified car pools from the forbidden list. And if the solution 

is not improved, which indicates the operation on the selected car pools is not benefi-

cial. We will record this information in the forbidden list, in order to avoid repeating 

the same operation again to the same car pools. 

 

Swap operator 

The operator first stochastically selects u servers who make long detours. The servers, 

who travel multiple destinations and have the travel distance is more than v times of 

the distance from his/her home directly to his/her destination, is considered making a 

long detour. The length of detour is calculated as the distance difference between the 

server’s travel distance and the distance from server’s home directly to his/her desti-

nation. The selection is performed by a roulette wheel selection based on the length of 

the detour made by the server. The probability of server s to be selected is calculated 

by equation (5.50).  

            

Kk

k

s
s =

d e t o u r

d e t o u r
yP r o b a b i l i t                      (5.50) 

where detours is the length of detour of server s and K is the set of all servers. 

For each selected server s, the operator tries to swap every existing car pool mem-

ber of server s with any client j whose destination is visited by s and has positive 

preference value to s. The move is confirmed as soon as an improvement is obtained. 

Note that, the clients being transferred cannot be swapped, in order to avoid af-

fecting the schedule of the car pool where the clients being transferred from or to. An 

example of the operation of the swap operator is presented in figure 5.11. 

S5 C11 C7 C20 C40 C04 C25

Selected server

Swap

   C 40                  5.1

   C 04                  2.3

   C 25                  1.6

   ……

Candidate clients of S5

D1

Client ID     Preference 

 

Figure 5.11: An example of the operation of swap operator. 
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Move operator 

The move operator tries to move a client from a selected car pool to a server with 

available car capacity. It first selects t servers who make long detours. The selection is 

performed by a roulette wheel selection still based on equation (5.50).  

For each selected server s, the operator attempts to move every car pool member i 

to any server who passes i’s destination, and has positive preference value to i and 

available car capacity, as shown in figure 5.12. The move is confirmed as soon as an 

improvement is obtained. Following the same manner as the swap operator, the clients 

corresponding to the transfer points cannot be moved. 

 

S9 C7 C6

S1 C3 C8 C4

Selected server

 

  S9                    5.1

  S2                    2.6

   ……

Preference of C4 to 

available servers

MoveD1

D1

S2 C5 C2 D1

 

Figure 5.12: An example of the operation of move operator. 

 

 

 

5.4 Experimental Results and Analysis 

5.4.1 Benchmarks 

Computational experiments have been conducted to examine the performance of the 

proposed approach. Since no literature can be found on MDCPP, we created three 

new sets of instance based on our LTCPP benchmarks presented in chapter 1. We se-

lect a few users from each LTCPP instance to be servers and the rest of the users in 

the instance are considered as clients. We also define several new destinations, so the 

LTCPP instances can be conversed to the MDCPP instances. 

For the original set C instance of the LTCPP, we first calculate the geographical 

gravity center of all users in an instance and select 20% of users who are the farthest 

from the gravity center to be servers, thus the servers are located in the surrounding 

areas of the user distribution. The destinations are defined by selecting the gravity 

centers of the rest users who are considered as clients. We divide the clients into clus-

ters with same size, the number of clusters equals to the number of destinations we 

want to define. Then, for each cluster we calculate the gravity center of each cluster 

and consider it as a destination. At last, each server and client are randomly assigned 

with a destination. In the original set R instance, random 20% of the users are selected 

to be servers and the rest of the users are set to be clients. The destinations are gener-
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ated and assigned in the same manner as set C instances. In the original set W instance 

of LTCPP, which is a real-world instance, we keep the original destination and use 

other campuses of the Artois University to be the second and third destinations. The 

selection of servers and clients, as well as the assignment of their destinations, are 

performed randomly as in the set R instances. At last, minor modifications are done to 

the new set R and set W instances by swapping the location of the clients, who are 

obviously impossible to be picked up, with some random selected servers. Figure 5.14 

shows a general idea of the user distributions in MDCPP instances.  

 

Zone of 

servers

Zone of clients 

and 

destinations

Zone of servers, 

clients and 

destinations

(1) Client centered distribution 

(Set C)

(2) Random distribution  

(Set R and Set W)

 
Figure5.14: Different user distributions in MDCPP instances. 

 

Thus we obtained three sets of instances for MDCPP, still named with C, R and 

W. Each set includes 9 instances with various sizes from 100 to 400 (565 for set W).  

 

5.4.2 Configuration 

Parameter setting for the presented HAC algorithm is specified as follows. 

Pre-sorting: z = 1.5; 

Number of ants: 90; 

Initialization parameters: α = 0.9, β = 0.1, σ = 1; 

Probability parameters: a = 2, b = 1, y = 3; 

Preference updating parameters: λ = 0.1, μ = 0.95, n = 10; 

Penalty parameters: p = 2×user’s direct travel cost to the destination, q = 2; 

TPS parameters: w = 1.3; 

Local search: u = t = 20 % of the amount of all car pools, x = 2, v = 1.2. 

Given limited computational resources and combinatorial complexity, parameter 

values were determined empirically over a few intuitively selected combinations, 

choosing the one that yielded the best average output. 
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5.4.3 Results obtained with HAC 

The HAC algorithm was implemented in JAVA, under Eclipse 6, and all results were 

obtained running the code on a Windows Operating System with Intel Core i7 740QM 

2.9 GHz CPU and 4 GB of RAM. The algorithm has been executed 30 times for each 

instance, where each execution is given 1000 iterations. 

In order to evaluate the gain of solving users with multiple destinations together, 

in our first set of experiments, we compare the results obtained by our MDCPP model 

with the ones generated by classic daily car pooling problem (DCPP) model. We di-

vide each instance into sub problems according to the destination of users. Therefore 

each sub problem includes only one destination, which transforms the instance into a 

classic DCPP one. Since the DCPP is less complex than the LTCPP and MDCPP, so it 

is possible to obtain a good solution to an instance of 100 users by using CPLEX with 

several hours of computing. Thus, we divide each DCPP instance again into smaller 

ones with around 100 users. At last, the total costs, as well as the traveled alone serv-

ers and unserved clients of each sub problem are summed up and compared with the 

results provided by HAC with the MDCPP model. By the comparison, we are able to 

examine the benefits of considering an instance as a MDCPP instead of several 

DCPPs.  

 In the result tables, Size with the format [number of users (number of servers / 

number of clients)], refers to the amount of users, servers and clients in each instance, 

respectively. N indicates the number of destinations in an instance.  

In table 5.1, we compared the experimental results of HAC with the ones generated 

by the CPLEX approach. The HAC outperforms the CPLEX approach on all instanc-

es.  

 

Size N 

Set C instances Set R instances Set W instances 

HAC CPLEX HAC CPLEX HAC CPLEX 

Best Avg Time Best Best Avg Time Best Best Avg Time Best 

100(20/80) 2 1629.0  1641.3 11 2174.2 1963.1  1989.7  12  2372.1 878.7  886.0  10  1082.9 

100(20/80) 2 1516.6  1542.7 10 1984.1 2091.4  2097.2  14  2495.2 791.4  798.2  10  1019.5 

100(20/80) 2 1703.5  1715 10 2354.4 2139.1  2165.5  12  2763.6 1037.4  1040.0  12  1238.6 

200(40/160) 2 2376.2  2413.1 35 3385.2 3408.7  3454.0  38  4735.9 1427.5  1464.0  41  2043.3 

200(40/160) 2 2839.0  2883.5 41 4184.8 3997.5  4082.1  43  4822.8 1356.5  1358.2  33  1812.4 

200(40/160) 2 3835.6  3879.5 37 5060.4 2781.3  2843.1  42  3950.5 1209.3  1229.5  34  1759.6 

400(80/320) 3 4924.7  5049.6 297 7454.8 5829.0  5953.7  344  8077.7 2331.8  2404.5  255  3534.3 

400(80/320) 3 3969.2  4091.4 332 6455.3 4722.5  4958.0  271  6395 2979.7  3097.4  321  4145.6 

400(80/320) 3 5126.2  5267.2 281 7238.5 6187.0  6298.0  368  8831.5 4435.0  4538.8  318  5781 

Total 27920 28483.3 1054 40291.7 33119.6 33841.3 1144 44444.3 16447.3 16816.6 1034 22417.2 

Table 5.1: Experimental results of HAC and CPLEX. 
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 Table 5.2 shows the percentage the HAC outperforms the CPLEX approach on the 

three sets of instances, in the aspect of average solution quality. The computing time 

is not listed. Since the CPLEX approach costs several hours to generate the result, it is 

obvious that the HAC is significantly faster. For each instance, the outperforming 

percentage is calculated as (CPLEX’s value – HAC’s value) / CPLEX’s value. Each 

value in table 5.2 is obtained by averaging the outperforming percentages of the three 

same-size instances. According to our experiments, the HAC can improve the CPLEX 

approach’s results by 28.1%, 22.4% and 24.2% on three different sets of instances. 

 

 

Size Set C instances Set R instances Set W instances 

100 24.6% 17.9% 18.6% 

200 27.7% 23.5% 27.8% 

400 32.0% 25.8% 26.2% 

Avg 28.1% 22.4% 24.2% 

Table 5.2: Solution quality comparison. 

 

 

 According to table 5.1 and 5.2, we believe that, solving the instances as a MDCPP 

can always provide better solutions than solving the instance as several DCPPs. The 

total cost is decreased significantly. Therefore, the comparison reveals the 

effectiveness MDCPP model and the efficiency of the HAC in solving the MDCPP.    

 

 

Size N 
Set C instances Set R instances Set W instances 

With TPS No TPS With TPS No TPS With TPS No TPS 

100(20/80) 2 1641.3  1835.4  1989.7  2157.2  886.0  915.0  

100(20/80) 2 1542.7  1813.1  2097.2  2252.8  798.2  837.8  

100(20/80) 2 1715.0  1905.0  2165.5  2495.0  1040.0  1138.8  

200(40/160) 2 2413.1  2921.5  3454.0  4149.1  1464.0  1738.9  

200(40/160) 2 2883.5  3386.3  4082.1  4311.7  1358.2  1635.3  

200(40/160) 2 3879.5  4504.1  2843.1  3459.5  1229.5  1465.3  

400(80/320) 3 5049.6  6051.3  5953.7  6846.3  2404.5  2715.9  

400(80/320) 3 4091.4  4716.4  4958.0  5833.7  3097.4  3586.1  

400(80/320) 3 5267.2  6406.9  6298.0  7160.9  4538.8  5064.8  

Total 28483.3  33540.0  33841.3  38666.1  16816.6  19097.8  

Table 5.3: Comparison with the results obtained without TPS.  
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Size Set C instances Set R instances Set W instances 

100 11.8% 9.3% 5.5% 

200 15.4% 13.3% 16.3% 

400 15.9% 13.4% 11.8% 

Avg 14.4% 12.0% 11.2% 

Table 5.4: Solution quality comparison with the results obtained without TPS. 

 

 Table 5.3 and table 5.4 show the improvement given by the Transfer Points 

Search heuristic (TPS). The average solution quality of HAC has been compared with 

the one obtained by disabling the TPS mechanism. According to the tables, all the 

solutions benefit from the TPS approach. The total cost of all instances has been 

decreased by this procedure. The improvements vary from the size of the instances. 

The large size instances, such as 200 and 400, obtain the most significant improve-

ments. 

 The accuracy of the HAC is examined by calculating the standard error (column 

Std) of the solutions obtained in 30 runs of each instance. The solution quality 

difference (column Diff) between the best found solution quality and the average 

solution quality of each instance in the previous tables is also calculated. Table 5.5 

shows the average of the abovementioned values of the three same-size instances. The 

average differences between the best found solution and the average solution of the 

three sets of instances are 1.7%, 1.8% and 1.7%, respectively, which indicates the 

HAC approach can be considered to be accurate for a metaheuristic. 

 

 

Size 
C set instances R set instances W set instances 

Best Avg Std Diff(%) Best Avg Std Diff(%) Best Avg Std Diff(%) 

100 1616.4  1633.0  8.5 1.0  2064.5  2084.1  11.3 0.9  902.5  908.1  3.6 0.6  

200 3016.9  3058.7  17.2 1.4  3395.8  3459.7  27.9 1.8  1331.1  1350.6  11.7 1.4  

400 4673.4  4802.7  65.8 2.7  5579.5  5736.6  93.4 2.7  3248.8  3346.9  76.4 2.9  

Avg 3102.2  3164.8  31.8 1.7  3680.0  3760.1  44.2 1.8  1827.5  1868.5  30.6 1.7  

Table 5.5: Evaluation of the accuracy of the HAC. 

 

 

5.5 Conclusion 

In this paper we defined a new car pooling problem model, Multi-destination Daily 

Car Pooling Problem (MDCPP). The mathematical formulation has been introduced 

in detail manner. Then, we introduced the HAC algorithm, a Hybrid Ant Colony Al-

gorithm to solve the MDCPP. We presented in detail the four components of HAC 

algorithm, a pre-sorting procedure, an ant colony optimization based metaheuristic, a 
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heuristic process designed inside the ant colony structure for determining the transfer 

point and a local search for further optimize the solutions.  

The presented approach has been applied successfully for solving the MDCPP. 

The experiments of the HAC have been performed on three sets of structurally differ-

ent instances. Each set includes large scale instances. The experimental results are 

compared with a CPLEX based decomposition approach, and the comparison has 

proven that solving the instances as a MDCPP can provide better solutions than solv-

ing the instance as several DCPPs. Experiments also have been performed to confirm 

the effectiveness of the Transfer Point Searching heuristic. Thus, it has been demon-

strated that the HAC algorithm is an effective approach for solving the MDCPP.  
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Conclusions 

This thesis has focused on the development of metaheuristics to solve long-term car 

pooling problem (LTCPP). The vast amount of research on metaheuristics indicates 

that they have established themselves as an effective tool to deal with complex opti-

mization problems. 

In this thesis, different classes of metaheuristics are presented. Experimental re-

sults demonstrate that the methods are effective and efficient for solving large scale 

LTCPP instances. 

The contributions that stem from this PhD thesis are: 

 

• Present a state-of-the-art on car pooling problem. It covers the description of the 

problem, the mathematical model and its recent solving methods. 

 

• Define three sets of structurally different instances for the long-term car pooling 

problem.  

 

• Provide an efficient way to solve the LTCPP. This contribution is based on the de-

velopment of Variable Neighborhood Search (VNS) algorithm. The interest of this 

algorithm consists in the ability of shifting from a neighborhood to another one 

throughout the optimization process. This ability offers an effective mechanism for 

tracking the optimum in the search space. Neighborhoods particularly designed for the 

LTCPP have been integrated to increase the efficiency of this approach. The experi-

ments demonstrate that the approach is able to provide good solutions within very 

short computational time. 

 

• Present a high performance swarm intelligence metaheuristic for the LTCPP. This 

metaheuristic is called Clustering Ant Colony Algorithm (CAC). The approach is 

based on the ant colony optimization paradigm. A preference concept is defined to 

give the ants the abilities to cluster users. The approach achieves to merge the clus-

tering and routing operations during the optimization process, thus it possesses the 

ability to generate high solution quality. The preference mechanism is proven to be 

able to retain the good elements of previous iterations and use this information to 

guide the move of the ants in new iteration. The experimental results reveal that the 

approach can provide better solution quality than the existing metaheuristics in litera-

ture. 

 

• Enhance the performance of the evolutionary based metaheuristics by adding an 

adaptive control mechanism and a guidance mechanism. This contribution is achieved 
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by developing the Guided Genetic Algorithm (GGA). The adaptive control mecha-

nism is able to effectively adjust the level of intensity and diversity of the population 

during the optimization process. With the guidance mechanism, which is adapted 

from our swarm intelligence metaheuristic, the composition of the better individuals is 

always memorized and updated. Then this information is used to aid the genetic oper-

ators to produce offspring solutions with high solution quality. The experimental re-

sults showed the benefits of proposed adaptation and guidance mechanisms in en-

hancing the overall performance of our algorithm. 

 

• Provide an effective and efficient metaheuristic with flexible structure and the abil-

ity to maintain the diversity during the exploration of the search space. This contribu-

tion is realized by a Multi-agent Self-adaptive Genetic Algorithm (MGA). The algo-

rithm combines the multi-agent system, the hyper-heuristic and the genetic algorithm. 

The multi-agent systems can provide great improvement to the computational speed 

and the solution quality. By communicating among different agents, it is able to 

maintain the diversity of the population after the convergence of the algorithm. The 

hyper-heuristic is to use to find the most suitable heuristic or sequence of heuristics in 

a given situation, so the design of each individual heuristic can be flexible. Moreover, 

with the hyper-heuristic, any new heuristic can be easily inserted into the system 

without modifying the system’s structure, since the hyper-heuristic will select the 

most appropriate heuristic to apply. For the experiment results, MGA provides the 

best solutions so far on most of our LTCPP instances.  

 

• Propose a new type of the daily car pooling problem with multiple destinations, 

provide a new mathematical model and an effective resolution method. Contrary to 

the classic daily car pooling problem, the servers in multi-destination daily car pool-

ing problem (MDCPP) can pick up clients who go to different destinations, as long as 

the servers can accept the length of the detour they have to make. Two car pool serv-

ers in the model can be given a transfer point, where the clients can change vehicles in 

order to reach their destinations in time and avoid the server to make long detours. An 

accurate mathematical model is proposed to this problem, as well as a resolution me-

taheuristic. The metaheuristic is a hybrid approach based on the ant colony optimiza-

tion paradigm. A heuristic is designed to locate transfer points between two car pools, 

and a local search is implemented to further optimize the solution. Experiments are 

performed to demonstrate the good ability of the approach in solving the MDCPP. 

 

• Design and implement a platform for the test, demonstration, evaluation and com-

parison of the approaches for solving the LTCPP or other optimization problems (see 

Appendix 1). The algorithm test and analysis platform provides comparison function 

to evaluate the results obtained with different parameter settings, so the best one can 
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be confirmed. It also contains several comparison methods which are designed to an-

alyze the performance of different algorithms. Moreover, a graphical interface is de-

veloped to give an intuitionistic view for any manual operation. The solutions gener-

ated by the algorithms, as well as the analysis and comparison results are also dis-

played with graphical visualization, so they can be easily examined. The platform has 

been proven to effectively facilitate our research process. 

 

• Design and implement a web based platform for the car pooling service of the stu-

dents of Artois University (see Appendix 1). The platform reveals the value of our 

research in the real world application. All functions in the long-term car pooling have 

been achieved in the platform. The participants can register to the platform and submit 

their requests to find long-term car pool members. The requests then are processed by 

the algorithms introduced previously and the travel schedules are displayed to the par-

ticipants with Google API. The platform works well in the real world use. All the re-

quests are successfully solved by the algorithms and remarkable solutions are provid-

ed. With the platform, we are able to provide large cost saving for the participants of 

the car pooling program.   
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Perspectives 

While working on this PhD thesis, some areas to improve further have arisen. They 

form the basis for future works: 

 

- Some algorithms proposed in this work have some potential for improvement. For 

instance, the Clustering Ant Colony Algorithm could be enhanced by applying an 

adaptive evaporate rate similar to the adaptive variation rate of the Guided Genetic 

Algorithm, in order to provide a better diversity. The Variable Neighborhood Search 

for the LTCPP could be extended by using a multi-agent system where different 

agents are assigned with diverse initial solutions, and cooperate by exchanging infor-

mation related to their searches in the solution space. 

 

- The effectiveness of the developed algorithms on the LTCPP encourages their ap-

plication to other transportation problems, such as daily car pooling problem, public 

transportation systems, and scheduling of taxis. Among all the algorithms introduced 

in this thesis, the multi-agent self-adaptive genetic algorithm is the easiest one to ap-

ply to other problems since its structure is the most problem-independent. However, 

several important aspects may have to be investigated, such as the operator design and 

the neighborhood definition for each problem. 

 

- The multi-destination car pooling problem can be further studied as well as its solv-

ing method. The construction of the transfer points may be embedded into the behav-

ior of the ants instead of using a separate heuristic. In this case, the solution quality of 

the algorithm could be further improved. However, the computational speed may de-

crease by this modification, which raises the issue of balancing the solution quality 

and processing time. 

 

- All our algorithms are designed to provide solutions within a relatively short compu-

ting time period, in order to decrease the response time of the car pooling organizer to 

their users. Recently, the use of graphics processors has been extended to general ap-

plication domains such as computational science. Indeed, GPUs are very efficient at 

manipulating computer graphics, and their parallel structure makes them more effi-

cient than general-purpose CPUs for a range of complex algorithms. Thus, modifying 

the implementation of our algorithm to adapt to the GPU would be a very interesting 

direction to focus on. This will result in further improvement of the computational 

speed of our algorithms. 

 

- The two platforms designed in our work still have some improvement space. The 
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algorithm test and analysis platform are currently able to support other algorithms for 

solving the long-term car pooling problem, and it can be easily extended to support 

the algorithms designed for other optimization problems, so the full capacity of the 

platform can be unleashed. The car pooling platform of Artois University can be per-

formed with further optimization of the interface design and the implementation 

structure, in order to facilitate the user’s operations. Further work may also include 

the implementation of a mobile phone application which achieves a real time tracking 

of the participant based on the build-in GPS function of the mobile phones. 

 

The increasing popularity of the long-term car pooling problem and competition 

among various car pooling service providers require efficient, effective and easy- 

to-use algorithms for solving the problem, especially for solving the one with large 

size instances. The approaches proposed in this thesis are very promising and reliable 

for the real-world implementation. We believe that these algorithms provide valuable 

suggestions and instructions for the design of the algorithms for different types of the 

car pooling problem. 
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Abstract 

In this appendix we introduce and demonstrate two platforms: an algorithm test and 

analysis platform for implementing and evaluating the algorithms we developed for 

the LTCPP, and a car pooling web platform for servicing the participants of the car 

pooling program of Artois University. The structure design and implementation detail 

are presented exclusively. The performance of the two platforms in real-world is con-

cluded. 
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1.1 Introduction 

In this appendix, we present the two platforms we developed during our research: an 

algorithm test and analysis platform and a car pooling web platform designed for the 

car pooling program of Artois University in France.  

The test and analysis are the key features for the evaluation of an algorithm. Dur-

ing our research, we developed several algorithms for the long-term car pooling prob-

lem. For each algorithm, a large amount of experiments and comparisons are required 

for the parameter setting and the algorithm evaluation, in order to present the most 

accurate performance of each algorithm. The usual way to implement the algorithms 

is to implement each of them separately. Therefore, since the algorithms are sepa-

rately implemented without a management platform, the setting, evaluation and 

analysis of the parameters of each algorithm and the comparison between the 

algorithms can only be done manually by several complex, time-consuming and lack 

of accuracy procedures. Therefore, a standard, open, and scalable test and analysis 

environment is needed to make the comparison and evaluation work faster, easier, and 

the most important, more accurate.  

Thus, in order to improve our research environment, we propose a light weight 

and scalable test platform to execute, test, evaluate and compare the algorithms for the 

long-term car pooling problem. All the algorithms presented in the chapters 2 to 4 are 

implemented inside the platform, so every algorithm can receive a fair and convincing 

test environment.  

Furthermore, the platform provides comparison function to evaluate the results 

obtained with multiple combinations of parameters, so the best parameter setting can 

be confirmed. The platform also contains several comparison methods which provide 

the analysis to verify the performance of the algorithms. The comparison methods 

include measurements for typical algorithm evaluation, as well as a few advanced 

measurements particularly designed for the metaheuristics. Two main comparison 

modules are developed in the platform. The first comparison module offers the 

comparison between multiple runs of a single algorithm, the solutions can be com-

pared and analyzed, and the typical statistical values, such as maximum, minimum, 

average and standard deviation will be calculated and displayed. The second module 

offers a parallel comparison between the multiple results obtained by different algo-

rithms. Multiple performance aspects of each algorithm are analyzed and compared in 

detail, and a Friedman test is performed to evaluate the significance of improvement 

provided by each algorithm. All the information generated by the platform will be rec-

orded in an exclusive report for further use.  

Moreover, the analysis and comparison results of the platform are provided with 

graphical visualization, so they can be easily examined. The graphical interface gives 

an intuitive view for any manual operation.  

 The second platform developed in our research is the car pooling web platform 

which provides car pooling service in real world application. The target user is set to 
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be the students in the University of Artois.  

The deployment of a car pooling service should be supported by multiple features. 

Given the number and the complexity of the operations to be performed, it is 

necessary to design a multi-module system as the previous platform, with different 

modules dedicated to different macro functions, such as user interface module, data 

management module, optimization module, etc. 

Our car pooling platform is designed to support three types of users: car pooling 

participant, car pooling organizer and system administrator. The car pooling organizer 

generates and manages the schedules of the car pooling participants. The system 

administrator guarantees all the features of the platform running properly and 

provides maintenance service.  

All the operations in the car pooling platform are aided with a web based graph-

ical interface. Data collected and used by the car pooling platform are stored in a data-

base with the structure especially designed for the LTCPP. The schedules are gener-

ated by an optimization module which contains the Clustering Ant Colony Algorithm 

and the Multi-agent Self-adaptive Genetic Algorithm introduced in the chapters 2 and 

3. However, the car pooling organizer may modify some of the schedules if the 

participants are not satisfied with them. 

The appendix is organized as follows: The algorithm test and analysis platform is 

introduced in the Section 1.2 in detail manner. Section 1.3 presents our car pooling 

platform, with the structure, the functions, and the demonstration. In Section 1.4, we 

conclude with a summary of the main contributions reported in this chapter. 

 

 

1.2 Algorithm Test and Analysis Platform 

A user case diagram is given in Figure 1.1 to show the main functions of this platform. 

The architecture of the algorithm test and analysis platform is consisting of four mod-

ules: an algorithm box module, an algorithm analysis module, a database module and 

a graphical user interface.  

The algorithm box module is designed to implement the algorithms designed for 

the long-term car pooling problem. The module contains the four algorithms pre-

sented in the chapters 2 to 4. Also, two other algorithms designed by other authors are 

also implemented in the platform in order to be compared with our approaches in a 

fair environment. The algorithms are listed in Figure 1.2. User can switch among all 

six algorithms in order to test or solve a long-term car pooling problem. The module 

is designed with good expandability, thus it is very easy to insert any new algorithm 

into this module or remove any existing algorithms from the module. 
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Figure 1.1: The user case diagram of the algorithm test and analysis platform 

 

 

 

Figure 1.2: Algorithms implemented in the algorithm box module 

 

The algorithm analysis module provides the functions for the comparison and 

evaluation of the algorithms. This module consists of two main sub-modules. The first 

sub-module analyzes the results obtained by a single algorithm. Both experiments 

with single run and multiple runs can be analyzed. This sub-module is mainly de-

signed to aid the parameter setting of an algorithm. The second sub-module covers the 
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analysis of the results obtained by multiple algorithms. It can generate multiple 

performance comparisons among the algorithms in the algorithm box module. This 

sub-module dedicates to the performance evaluation of different algorithms. 

 

 

 
Figure 1.3: The structure of the database design 

 

The database module is implemented in MySQL by means of a standard rela-

tional DBMS structure. Relational data contains all elements relevant to the platform, 

including the management of the benchmarks, the parameter settings of all the algo-

rithms and the analysis results of the algorithm analysis module. The design of the 

database structure is shown in Figure 1.3. 
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The Graphical User Interface (GUI) is implemented to provide the functions of 

the data input and result display. The data input includes the benchmark selection, the 

parameter setting of each algorithm and the result analysis, while the result display 

demonstrates the solution obtained by the algorithm, including the cluster distribution, 

the user schedules and the statistic information, and the analysis results, such as the 

solution curve, bar chart and analysis result tables. The module allows accessing the 

database to read and write the experimental results and benchmarks.  

 

GUI

Box Module

Analysis Module

Database

1.1: selectBenchmark()

1.2: setParameters()
1.3: getBenchmark()

1.6: saveSolution()

1.4: solveBenchmark()

1.5: displaySolution()

2.1: selectSolution()

2.2: setParameters()

2.3: getSolution()

2.6: saveAnalysisResult()

2.4: analyseSolution()

2.5: displayResult()

3.1: queryData()

3.2: modifyData()

3.3: deleteData()
 

Figure 1.4: The collaboration diagram of the algorithm test and analysis platform 

 

The interactions between the GUI and other components of the platform are pre-

sented in Figure 1.4. The user selects benchmarks and sets parameters for the algo-

rithms in the algorithm box module, and then the solutions are returned to GUI and 

displayed to the user after the benchmarks are solved. The solutions, at the same time, 

are also saved to the database module. With the parameters set through the GUI, the 

analysis module performs the evaluation of the solutions and displays the analysis re-

sults in the GUI. All the data, such as the benchmarks, the optimization results and the 

analysis results are stored in the database module which is accessible through the GUI, 

so the user can easily modify and remove any data in the database.  

 

 

1.2.1 Function Workflow 

As abovementioned, the two main functions of the platform are to solve LTCPP in-

stances and to analyze the results. Thus, in this section, we present the detail work-

flow analysis of these two functions. 
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A. Solving a LTCPP instance 

The platform’s workflow to solve a LTCPP instance is presented in Figure 1.5. The 

first step of the operations is to select a benchmark for the platform. The selected 

benchmark will be verified by the system. If the benchmark is a legal LTCPP instance, 

the process will continue, otherwise the system requires selecting another benchmark.  

 After the benchmark is confirmed, the user has to select an algorithm to solve the 

problem from the candidate algorithms, such as VNS, CAC, GGA... Afterward, the 

user can either set the parameters of the algorithm himself or use the best-known 

parameter setting stored in the system. For the former case, the parameters will be 

examined by the system, and if the parameters are not feasible, the system will require 

the user to modify the setting referred to the suggestion given by the system. When 

the parameter setting is considered legal, the system will start to solve the problem, 

and then display the experimental results. 

 

 

Figure 1.5: The workflow of the function of solving a LTCPP instance 
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B. Performing a result analysis 

To start the result analysis, the user first need to select the analysis type, the analysis 

can be based on a single run of a single algorithm, or multiple runs of a single algo-

rithm, or multiple results of multiple algorithms. For each type of analysis, user then 

has to specify a set of parameters, such as the methods of comparison, the aspects of 

comparison and the type of chart to display the analysis results. Then the analysis will 

be performed. Afterward, the analysis results will be displayed according to the 

requirement of the user, and functions of saving the result and export the result as a 

report are also available to the user. The workflow of the platform to perform a result 

analysis is shown in Figure 1.6. 

 

 

Figure 1.6: The workflow of the function of result analysis 

 

1.2.2 Demonstration of the platform 

The algorithm test and analysis platform is demonstrated in this section. The demon-

stration presents some important interfaces which users may meet frequently during 

their operations. This section is presented in four parts: benchmark selection, 

algorithm parameter setting, optimization result display and analysis result display. 

Figure 1.7 shows the interface for benchmarks selection and algorithm parameter set-

ting. 
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Figure 1.7: The interface for benchmarks selection and algorithm parameter setting 

 

 

A. Benchmark Selection 

The benchmark selection includes the following functions: 

 Select: This function provides benchmarks for users to select. All the available 

benchmarks are obtained from the database and put into a combo list. 

 Refresh: the function is used when the benchmarks in the database are modified. 

The function updates the modifications in the database.  

 Import: the function is designed to import new benchmarks into the database. 

Currently only the database format benchmark can be imported. 

 Benchmark info: This area shows the detail information of the selected bench-

mark, such as the benchmark type, the distribution of the users in the benchmark, 

the amount of users of the benchmark and the value of the best known solution of 

the benchmark.  
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B.  Algorithm Parameter Setting 

Six algorithms are implemented in the platform, the user can switch among them to 

solve the long-term car pooling problem. The algorithm is currently displayed on the 

top layer is considered selected. For each algorithm, we design an algorithm depend-

ent panel for users to input the necessary parameters. The items in the panels are 

introduced as follows.  

 Stop criteria: the system provides three criteria to terminate an algorithm: maxi-

mum iterations, maximum run time, and no improvement during a user-defined 

number of iterations. User can select any of them by ticking the box next to each 

option. 

 Parameter setting: user can set all necessary parameters of the algorithm in this 

area. A suggestion button is provided. The parameters will be filled with the best 

known parameter setting by clicking it. 

 Neighborhood selection: most of the implemented approaches are embedded with 

the variable neighborhood search (VNS) procedure. This area enables the user to 

turn on and off an individual operator in the VNS. Thus, different combinations of 

operators can be achieved. 

 

 

C.  Optimization Result Display 

This part demonstrates the solution of a benchmark. The general resolution results are 

displayed for each run, including the total cost, computing time, amount of iterations, 

amount of the car pools built and amount of traveled alone users. Moreover, the plat-

form also provides a graphical view of the distribution of the clusters and the detail 

time schedule of each car pool.  

 

          

Figure 1.8 (a): Cluster distribution of the 

clustering ant colony algorithm 

Figure 1.8 (b): Cluster distribution of the 

guided genetic algorithm 
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The distribution of the clusters is displayed based on the algorithm used to solve a 

problem. Figure 1.8 (a) presents the cluster distribution of a solution obtained by the 

clustering ant colony algorithm. The graph shows the construction trajectory of the 

solution, where the moves between the users are marked in green, and the moves be-

tween the clusters are indicated by blue. By viewing the graph, the steps of the solu-

tion construction can be examined easily. Figure 1.8 (b) shows the cluster distribution 

of a solution obtained by the guided genetic algorithm. Since the clusters in GGA are 

obtained by modifying the chromosome instead of constructing a solution path, the 

graph therefore only displays the composition of each cluster and its inner paths. 

 The user schedule is also presented by the platform. The display consists in the 

schedule when each user acts as a server, which includes the order and time for the 

current server to pick up other car pool members. The pickup time will pop up when 

the cursor points at the corresponding user. Figure 1.9 shows an example of the user 

schedule display, note that in each cluster, every user has to act as a server. 

 

 

Figure 1.9: The user schedule display 

 

 

 

D. Analysis Result Display 

This part demonstrates three types of solution analysis provided by the platform.  

Figure 1.10 shows the analysis of a single run of an algorithm. The analysis re-

veals the optimization curve, the solution quality, the computing time, the iteration 

number where each global best solution is improved, and the comparison to the 

best-known solution of the instance. 
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Figure 1.10: Single run analysis of an algorithm 

 

 

Figure 1.12 presents the analysis of multiple runs of an algorithm. The example 

reveals the comparison between the solution qualities of different runs. A bar chart is 

used to display the comparison result. Moreover, the maximum, minimum, average, 

standard deviation values of the runs, and the distance between the average and the 

best known solution are given below the chart. This analysis is mainly used for decid-

ing the parameter setting of an algorithm and for performing an initial review of an 

algorithm for the multiple algorithm comparison analysis. 

 

 

 

Figure 1.11: Multiple runs analysis of an algorithm 
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Figure 1.12: Multiple algorithms analysis 

 

 

Figure 1.12 displays the analysis of multiple runs of multiple algorithms. The 

solution costs obtained by different algorithms are compared and shown in bar chart. 

The data for the comparison can be imported from the single algorithm multiple runs 

analysis. The algorithms are ordered and ranked according to their solution quality. 

The solution quality differences between the algorithm with the best performance and 

other algorithms are calculated and displayed in a table. By clicking the ‘Friedman 

test’ button on bottom left, an exclusive comparison report performed with the Fried-

man test method can be generated. 

 

 

1.2.3 System requirements 

The software and hardware requirements for running the algorithm test and analysis 

platform are as follows. 

 Windows XP or higher operating system / Linux 5.0 or higher operating system 

 Java environment 1.4 or higher 

 1GHz CPU or higher 

 512M RAM or higher  

 Minimum screen Resolution of 800x600 pixels and a minimum color depth of at 

256 colors. 

 

 

1.2.4 Summary 

This section presents our test and analysis platform. The platform is designed to 
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implement and analyze the algorithms we designed for solving the long-term car 

pooling problem. The platform provides a fair and convenient environment to perform 

efficiently evaluation and comparison of the algorithms. The graphical user interface 

successfully displays the detailed solutions of LTCPP instances and the analysis 

results of algorithms. The platform has been proven to be a very useful tool for our 

research of the long-term car pooling problem. 

Furthermore, to the best of our knowledge, our test and analysis platform is the 

first attempt to implement such a platform for the long-term car pooling problem. In 

future works, our test and analysis platform will be extended to support other algo-

rithms for other optimization problems. 

 

 

1.3 Car pooling platform 

The car pooling platform is designed for an actual use in real-world for students in the 

Artois University. The platform is a web application developed with PHP and HTML 

language and connected to the Google Map Web service. Two of the algorithms 

described in the previous chapters are embedded in the platform to provide solutions 

for the users. A user case diagram of the platform is presented in Figure 1.13. 

 

 

Figure 1.13: The user case diagram of the car pooling platform 

 

The platform consists in a solution building module, a database module and a 

webpage based graphical user interface. The three modules are implemented as fol-

lows. 

 The solution building module contains two algorithms: the clustering ant colony 

algorithm and the multi-agent self-adaptive genetic algorithm. The former algorithm 

is preferable in solving the instances with less than 200 users, whereas the latter algo-

rithm is favored to solve the cases with more than 200 users. 
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 The database module is designed to store all related data of the platform, includ-

ing the geographical information of users, the requests of users, the solution infor-

mation and the detail travel schedule of users. The design of the database is shown in 

Figure 1.14. 

 

 

 

Figure 1.14: Database structure of the car pooling platform 

 

 

The graphical user interface is implemented by using web application. It permits 

the users to input all information related to the participation of the car pooling pro-

gram, to access the database and to display the car pooling schedule in Google Map. 

According to their distinct requirements of functions, different interfaces are designed 

for the car pooling participant and the car pooling organizer. The interactions between 

the interfaces and the other two modules are presented in Figure 1.15. The main func-

tions corresponding to a car pooling participant are account creation, car pooling re-

quest submission and detailed car pooling schedule display. The functions concerning 

the car pooling organizer are the management of the participants’ information and 

their schedules.  
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PARTICIPANT UI

Solution Building Module

Database

1.1: createAccount()

1.2: submitRequest()

2.3: buildSolution()

2.4.1: displaySolution()

2.2: getRequests()

2.4.2: sendSolution()

2.5: displaySchedule()

3.1: manageParticipantAccount()

3.2: manageSchedule()

ORGANIZER UI
2.1: selectRequests()

 

Figure 1.15: Interaction diagram of the components of the car pooling platform 

 

 

1.3.1 Development techniques 

Google Maps API is essential in our platform development. It is designed to allow 

developers to integrate Google Maps into their websites. By using the Google Maps 

API, it is possible to embed Google Maps site into an external website, on to which 

site specific data can be overlaid. The Maps API includes an API for Adobe Flash 

applications, a service for retrieving static map images, and web services for perform-

ing geocoding, generating distances, and obtaining elevation profiles. The Google 

Maps API is free for commercial use providing that the site on which it is being used 

is publicly accessible and does not charge for access. 

 

 

1.3.2 Demonstration of the platform 

The main functions of the car pooling platform are demonstrated in this section.  

 

A. Create an account 

In order to generate high quality schedules, the car pooling platform requires some 

coordination and personal information from participants. Thus, each user of the plat-

form is required to create a functioning account with accurate information. The inputs 

of the user to create the account include: login, password, name, gender, student card 

number, email, cellphone number, a valid home address, driver license, and vehicle 

capacity.  

Furthermore, all users of the platform must respect certain ethical and safety rules. 

This laid out the responsible behavior that users must adopt, which entails respecting 
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the rules of good conduct, and of safety with regard to other users. Figure 1.16 shows 

the interface to aid the user to input a valid address. 

 

 

Figure 1.16: the interface to aid the user to input a valid address. 

 

 

B. Submit a request 

To submit a request to the platform, a user first has to confirm the departure location 

and destination, and then inputs the date when the user will participate the car pooling 

program, the earliest departure time, latest the arrival time, and the maximum travel 

time. Note that a user can submit multiple requests as long as the periods of each are 

not over lapped. Figure 1.17 shows the interface to input the acceptable departure and 

arrival time ranges. 

 

 

Figure 1.17: the interface to input the departure and arrival time. 

 

 

C. Receive a schedule 

After the requests are solved by the resolution algorithm, the schedule of each particu-

lar participant will be sent. Since the platform is for long-term car pooling, the partici-
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pant is able to view all the daily schedules of his participation period. In each daily 

schedule, the user can check the pickup time and order of each car pool member. The 

total driving time and distance are also displayed along with route presented in the 

Google Map. The user may also view the percentage of cost being saved by par-

ticipating the car pool program as well as the extra travel time the user has to spend. 

Figure 1.18 presents the interface showing the detail schedule of a car pooling 

participant. 

 

Figure 1.18: the interface showing the detail schedule of a car pooling participant. 

 

 

D. Manage the participants and schedules 

This function is only available for the car pooling organizers. They are authorized to 

modify and delete the participants’ information and the car pooling schedules. Figure 

1.19 and 1.20 shows the organizer view of the participants’ address information and 

the car pooling schedules 

 

 

Figure 1.19: the organizer view of the participants’ address information. 
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Figure 1.20: the organizer view of the car pool schedules. 

 

1.3.3 System requirements 

The software and hardware requirements for running the car pooling platform are 

specified as follows. 

 Windows XP or higher operating system / Linux 5.0 or higher operating system 

 1GHz CPU or higher  

 512M RAM or higher 

 Minimum screen Resolution of 800x600 pixels and a minimum color depth of at 

256 colors. 

 Internet explorer 6.0 or higher 

 Java environment 1.4 or higher 

 MySQL 4.0 or higher 

 Apache 2.0 or higher 

 

1.3.4 Summary 

In this section, the car pooling platform in presented. The platform is designed and 

implemented to serve the students in our university, thus it is a real world application. 

All functions in the long-term car pooling have been achieved in the platform. The 

participants can register in the platform and submit their requests to find long-term car 

pool members. The requests then are processed by the algorithms introduced previ-

ously and the travel schedules are displayed to the participants. 

 The platform works well in the real world use. We obtained more than 500 regis-

tered users and more than 700 requests. The requests are successfully solved by the 

algorithms and remarkable solutions are provided. According to our statistic result, we 

are able to provide an average of 67% cost saving for the participants with only an 

average of 16% extra travel time. Since the students in the same university have the 

same time to start their first course, which results in similar arrival time window, 

building a car pool becomes relatively easy comparing with the car pool program with 

random participants. Our car pool platform has effectively provided car pool matching 

for 88% of all the participants. Only 12% of the registered users are not able to find 
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car pool members. 

 The implementation of the car pooling platform is considered a success. Further 

improvements of the platform consists in the implementation of a mobile phone 

application which can show all the car pool information for the user and track user’s 

real time location with the aid of the GPS function. 

 

 

1.4 Conclusion 

The two platforms we developed during our research are introduced in this appendix. 

The algorithm test and analysis platform facilitates our research process by providing 

an exclusive result display and analysis function, while the car pooling platform re-

veals the value of our research in the real world application. Both platforms are 

proven to work effectively.  

The algorithm test and analysis platform are currently able to support other algo-

rithms for solving the long-term car pooling problem, and the future work is to extend 

the platform to support the algorithms designed for other optimization problems, in 

order to unleash the full capacity of the platform. 

The car pooling platform will be performed with further optimization in the 

implementation, in order to gain faster response speed to user’s operations. Further 

work also includes the implementation of a mobile phone application which achieves 

a real time tracking of the participant based on the build-in GPS of the mobile phone. 
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2.1 Procedure of Friedman test 

The Friedman test can be used to compare the performance of k (k ≥ 2) metaheuristics 

using a test bed with b instances [Conover, 1998][Villegas, 2011]. The data of the ex-

periment will be presented in a b×k table, where each entry represents the result of 

the objective function found by the metaheuristics, as shown in table 2.1. 

 

The procedure to perform the Friedman test is as follows: 

 Rank the results of the metaheuristics within each instance, giving 1 to the best 

and k to the worst. Let R(Xij) be the rank, from 1 to k, assigned to Xij of instance i.  

 Calculate the total summation of squared ranks A2 with equation (2.1). 
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Instance 
Metaheuristic 

Metaheuristic 1 Metaheuristic 2 … Metaheuristic k 

Instance 1 X11 X12 … X1k 

Instance 2 X21 X22 … X2k 

… … … … … 

Instance b Xb1 Xb2 … Xbk 

Table 2.1: Presentation of data for the Friedman test 

 

In the absence of ties A2 simplifies to equation (2.2). 

6
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2
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We calculate the summation of the rank for each metaheuristic using equation 

(2.3) and then calculate B2 with equation (2.4). 
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Then, the test statistic is given by equation (2.5). 
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Using a F distribution table, we can find the critical value F1-α,k-1,(b-1)(k-1) with a 

significance level α. If T2 is greater than F1-α,k-1,(b-1)(k-1), we reject the null hypothesis, 

and then there exist at least one metaheuristic whose performance is different from at 

least one of the other metaheuristics. 

However, it is necessary to perform paired comparisons to know which metaheu-

ristics are really different if there are more than two metaheuristics being compared. 

 

2.2 Procedure of paired Comparisons 

The paired comparison is used to know if metaheuristics i and j are considered differ-

ent after the rejection of the null hypothesis with the Friedman test.  

 We calculate the absolute difference of the summation of the ranks of metaheuris-

tics i and j, and if constraint (2.6) is satisfied, we declare that metaheuristics i and j are 

different. 
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where t1-α/2 is the 1-α/2 quantile of the t distribution with (b-1)(k-1) degree of 

Freedom. 

 

2.3 Comparisons of the approaches in this thesis 

In this section, we demonstrate in detail the comparisons of the approaches we pre-

sented in this thesis. The demonstration is organized according to the chapters. 

2.3.1 Comparison in Chapter 2 

In chapter 2, we compare our VNS-LTCPP approach with the SB approach. The ranks 

of the solution quality of each approach for each instance are presented in table 2.2.  

 

Instance 
VNS-LTCPP SB [Correia, 2007] 

Avg R R2 Avg R R2 

C101 1684.6 2 4 1669.2 1 1 

C102 1753.8 2 4 1724.8 1 1 

C103 1563.6 1 1 1599.4 2 4 

C201 2723.8 1 1 2868.6 2 4 

C202 3145.2 2 4 3114.1 1 1 

C203 2993.7 1 1 3182.4 2 4 

C401 6130.1 1 1 6860.3 2 4 

C

402 

5110.7 1 1 5524.5 2 4 

C403 6322.5 1 1 6994.5 2 4 

R101 2286.6 2 4 2265.4 1 1 

R102 1898.7 1 1 2091.7 2 4 

R103 2379.8 1 1 2418.5 2 4 

R201 4464.6 1 1 4567.1 2 4 

R202 4162 1 1 4283.3 2 4 

R203 4282.5 2 4 4257.5 1 1 

R401 8398.4 1 1 8993.8 2 4 

R402 6975 1 1 7417.5 2 4 

R403 8422 1 1 8933.5 2 4 

W101 886.9 2 4 885.7 1 1 

W102 1041.5 2 4 1037.9 1 1 

W103 1173.8 1 1 1187.6 2 4 

W201 1682.5 1 1 1722.9 2 4 

W202 2003.6 1 1 2127.7 2 4 

W203 1806.8 1 1 1965.1 2 4 

W401 3076.8 1 1 3442.8 2 4 

W402 3513 1 1 3984.9 2 4 

W501 5288.4 1 1 5858.3 2 4 

Avg 

 

1.25

925

9 

 

 

1.74

074

1 

 

Sum 

 

34 48 

 

47 87 

Table 2.2: Ranks between the VNS-LTCPP and the SB approach. 
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In this comparison, the number of approaches k = 2, and the number of instances 

b = 27. Thus, A2 = 48 + 87 = 135, while B2 = (34
2
+47

2
)/27 = 124.63. 

So the T2 value is calculated as follows: 

 

85.7
63.124135

)4/322763.124)(127( 2

2 

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T  

 

From the F distribution table, with 1-0.01 quantile, F1-α,k-1,(b-1)(k-1) = F0.99,1,26 = 

7.72. Since T2 > F0.99,1,26, we reject the null hypothesis, then there exist at least one 

approach whose performance is different from at least one of the other metaheuristics. 

Because there are only two approaches being compared, and the summation of the 

ranks of the VNS-LTCPP approach is smaller than the one of the SB approach, it is 

clear that the VNS-LTCPP approach is significant better than the SB approach. 

 

2.3.2 Comparison in Chapter 3 

In chapter 3, we compare our CAC algorithm with the ANTS algorithm, the SB ap-

proach and the VNS-LTCPP presented in chapter 2. The ranks of the solution quality 

of each approach for each instance are presented in table 2.3.  

 In this comparison, the number of approaches k = 4, and the number of instances 

b = 27. Thus, A2 = 55+173+344+238 = 810, while B2 = (35
2
+65

2
+92

2
+78

2
)/27 = 

740.67. 

So the T2 value is calculated as follows: 

 

63.24
740.67810

)4/5427740.67)(127( 2

2 

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T  

 

From the F distribution table, with 1-0.01 quantile, F1-α,k-1,(b-1)(k-1) = F0.99,3,78 = 

4.04. Since T2 > F0.99,3,78, we reject the null hypothesis, then there exist at least one 

approach whose performance is different from at least one of the other metaheuristics. 

A paired comparison is then performed to decide which approaches are really 

different. From a T distribution table, t1-α/2 for α=0.01 and (b-1)(k-1) = 78 degrees of 

freedom is 2.64. Thus, the critical value for the difference is:  

 
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Table 2.4 shows the absolute difference of the summation of the ranks between 

every two approaches. We can see that our CAC approach provides the best perfor-

mance. It outperforms significantly all the other approaches. 
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Instance 
CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] VNS-LTCPP 

Avg R R2 Avg R R2 Avg R R2 Avg R R2 

C101 1593.4 2 4 1592.9 1 1 1669.2 3 9 1684.6 4 16 

C102 1728.2 2 4 1748.5 3 9 1724.8 1 1 1753.8 4 16 

C103 1527.5 1 1 1535.1 2 4 1599.4 4 16 1563.6 3 9 

C

201 

2717.7 1 1 2854.2 3 9 2868.6 4 16 2723.8 2 4 

C202 2892.9 1 1 3004.5 2 4 3114.1 3 9 3145.2 4 16 

C203 2834.1 1 1 3003.5 3 9 3182.4 4 16 2993.7 2 4 

C401 5618.6 1 1 6281.4 3 9 6860.3 4 16 6130.1 2 4 

C402 4760.3 1 1 5153.2 3 9 5524.5 4 16 5110.7 2 4 

C403 6046.4 1 1 6742.1 3 9 6994.5 4 16 6322.5 2 4 

R101 2283.2 3 9 2281.5 2 4 2265.4 1 1 2286.6 4 16 

R102 1874.3 2 4 1864.2 1 1 2091.7 4 16 1898.7 3 9 

R103 2313.4 1 1 2438.7 4 16 2418.5 3 9 2379.8 2 4 

R201 4231.8 1 1 4253.5 2 4 4567.1 4 16 4464.6 3 9 

R202 3824.2 1 1 4071.9 2 4 4283.3 4 16 4162 3 9 

R203 4304.6 3 9 4541.5 4 16 4257.5 1 1 4282.5 2 4 

R401 8033.7 1 1 8580.4 3 9 8993.8 4 16 8398.4 2 4 

R402 6559.7 1 1 6893.3 2 4 7417.5 4 16 6975 3 9 

R403 8129.5 1 1 8338.9 2 4 8933.5 4 16 8422 3 9 

W101 886.3 2 4 893.8 4 16 885.7 1 1 886.9 3 9 

W102 1008.5 1 1 1020.3 2 4 1037.9 3 9 1041.5 4 16 

W103 1134.8 1 1 1168.1 2 4 1187.6 4 16 1173.8 3 9 

W201 1557.6 1 1 1601.8 2 4 1722.9 4 16 1682.5 3 9 

W202 1812.9 1 1 1919.2 2 4 2127.7 4 16 2003.6 3 9 

W203 1784.4 1 1 1907.5 4 16 1965.1 3 9 1806.8 2 4 

W401 2848.4 1 1 3066.4 2 4 3442.8 4 16 3076.8 3 9 

W402 3360.1 1 1 3692.9 3 9 3984.9 4 16 3713 2 4 

W501 5056.2 1 1 5224.9 2 4 5858.3 4 16 5288.4 3 9 

Avg 

 

1.30  

 

2.41  

 

3.41   2.89  

Sum 

 

35 55 

 

65 173 

 

92 344  78 238 

Table 2.3: Ranks among the CAC, the ANTS, the SB and the VNS-LTCPP. 

 

 

|Ri-Rj| ANTS [Maniezzo, 2004] SB [Correia, 2007] VNS-LTCPP 

CAC 30 57 43 

ANTS [Maniezzo, 2004] - 27 13 

SB [Correia, 2007] - - 14 

Table 2.4: Paired comparison results. 

 

2.3.3 Comparison in Chapter 4 

In chapter 4, we first compare our GGA algorithm with the CAC approach presented 

in chapter 3, the ANTS algorithm and the SB approach. The ranks of the solution 

quality of each approach for each instance are presented in table 2.5.  
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Instance 
GGA CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] 

Avg R R2 Avg R R2 Avg R R2 Avg R R2 

C101 1599.3 3 9 1593.4 2 4 1592.9 1 1 1669.2 4 16 

C102 1712 1 1 1728.2 2 4 1748.5 3 9 1724.8 4 16 

C103 1543.9 3 9 1527.5 1 1 1535.1 2 4 1599.4 4 16 

C201 2749.4 2 4 2717.7 1 1 2854.2 3 9 2868.6 4 16 

C202 2876.5 1 1 2892.9 2 4 3004.5 3 9 3114.1 4 16 

C203 2891.8 2 4 2834.1 1 1 3003.5 3 9 3182.4 4 16 

C401 5690.6 2 4 5618.6 1 1 6281.4 3 9 6860.3 4 16 

C402 4786.4 2 4 4760.3 1 1 5153.2 3 9 5524.5 4 16 

C403 6085.2 2 4 6046.4 1 1 6742.1 3 9 6994.5 4 16 

R101 2235.9 1 1 2283.2 4 16 2281.5 3 9 2265.4 2 4 

R102 1867.5 2 4 1874.3 3 9 1864.2 1 1 2091.7 4 16 

R103 2286 1 1 2313.4 4 16 2438.7 4 16 2418.5 3 9 

R201 4188.3 1 1 4231.8 2 4 4253.5 3 9 4567.1 4 16 

R202 3751.7 1 1 3824.2 2 4 4071.9 3 9 4283.3 4 16 

R203 4158.4 1 1 4304.6 3 9 4541.5 4 16 4257.5 2 4 

R401 7799.5 1 1 8033.7 3 9 8580.4 3 9 8993.8 4 16 

R402 6254 1 1 6559.7 2 4 6893.3 3 9 7417.5 4 16 

R403 7872.9 1 1 8129.5 2 4 8338.9 3 9 8933.5 4 16 

W101 879.3 1 1 886.3 3 9 893.8 4 16 885.7 2 4 

W102 1010.2 2 4 1008.5 1 1 1020.3 3 9 1037.9 4 16 

W103 1126.3 1 1 1134.8 2 4 1168.1 3 9 1187.6 4 16 

W201 1562.1 2 4 1557.6 1 1 1601.8 3 9 1722.9 4 16 

W202 1768.5 1 1 1812.9 2 4 1919.2 3 9 2127.7 4 16 

W203 1743.8 1 1 1784.4 2 4 1907.5 3 9 1965.1 4 16 

W401 2694.5 1 1 2848.4 2 4 3066.4 3 9 3442.8 4 16 

W402 3406 2 4 3360.1 1 1 3692.9 3 9 3984.9 4 16 

W501 4896.6 1 1 5056.2 2 4 5224.9 3 9 5858.3 4 16 

Avg 

 

1.48  

 

1.96  

 

2.93   3.74  

Sum 

 

40 70 

 

53 125 

 

79 243  101 389 

Table 2.5: Ranks among the GGA, the CAC, the ANTS and the SB. 

 

In this comparison, the number of approaches k = 4, and the number of instances 

b = 27. Thus, A2 = 70+125+243+389 = 827, while B2 = (40
2
+53

2
+79

2
+101

2
)/27 = 

772.26. 

So the T2 value is calculated as follows: 
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From the F distribution table, with 1-0.01 quantile, F1-α,k-1,(b-1)(k-1) = F0.99,3,78 = 

4.04. Since T2 > F0.99,3,78, we reject the null hypothesis, then there exist at least one 

approach whose performance is different from at least one of the other metaheuristics. 

A paired comparison is then performed to decide which approaches are really 

different. From a T distribution table, t1-α/2 for α=0.01 and (b-1)(k-1) = 78 degrees of 



APPENDIX 2 Using Friedman Test to Compare the Performance of Metaheuristics 

183 

 

freedom is 2.64. Thus, the critical value for the difference is:  
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Table 2.6 shows the absolute difference of the summation of the ranks between 

every two approaches. According to the values in the table, the GGA outperforms sig-

nificantly the ANTS and the SB approaches, but the performance difference between 

GGA and CAC is not significant. 

 

 

|Ri-Rj| CAC ANTS [Maniezzo, 2004] SB [Correia, 2007] 

GGA 13 39 61 

CAC - 26 48 

ANTS [Maniezzo, 2004] - - 22 

Table 2.6: Paired comparison results. 

 

 

 The second comparison in chapter 4 is among the AGA, the GGA, the CAC pre-

sented in chapter 3 and the ANTS algorithm. The ranks of the solution quality of each 

approach for each instance are presented in table 2.7.  

In this comparison, the number of approaches k = 4, and the number of instances 

b = 27. Thus, A2 = 35+172+209+394 = 810, while B2 = (29
2
+66

2
+73

2
+102

2
)/27 = 

775.19. 

So the T2 value is calculated as follows: 

 

83.74
775.19810

)4/542719.775)(127( 2
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From the F distribution table, with 1-0.01 quantile, F1-α,k-1,(b-1)(k-1) = F0.99,3,78 = 

4.04. Since T2 > F0.99,3,78, we reject the null hypothesis, then there exist at least one 

approach whose performance is different from at least one of the other metaheuristics. 

A paired comparison is then performed to decide which approaches are really 

different. From the T distribution table, t1-α/2 for α=0.01 and (b-1)(k-1) = 78 degrees 

of freedom is 2.64. Thus, the critical value for the difference is:  
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Table 2.8 shows the absolute difference of the summation of the ranks between 

every two approaches. According to the values in the table, the AGA outperforms sig-
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nificantly the other approaches. 

 

 

Instance 
AGA GGA CAC ANTS [Maniezzo, 2004] 

Avg R R2 Avg R R2 Avg R R2 Avg R R2 

C101 1585.5 1 1 1599.3 4 16 1593.4 3 9 1592.9 2 4 

C102 1704.1 1 1 1712 2 4 1728.2 3 9 1748.5 4 16 

C103 1511.6 1 1 1543.9 4 16 1527.5 2 4 1535.1 3 9 

C201 2671.5 1 1 2749.4 3 9 2717.7 2 4 2854.2 4 16 

C202 2811.9 1 1 2876.5 2 4 2892.9 3 9 3004.5 4 16 

C203 2724.6 1 1 2891.8 3 9 2834.1 2 4 3003.5 4 16 

C401 5448.9 1 1 5690.6 3 9 5618.6 2 4 6281.4 4 16 

C402 4538 1 1 4786.4 3 9 4760.3 2 4 5153.2 4 16 

C403 5796.2 1 1 6085.2 3 9 6046.4 2 4 6742.1 4 16 

R101 2214.7 1 1 2235.9 2 4 2283.2 4 16 2281.5 3 9 

R102 1835.7 1 1 1867.5 3 9 1874.3 4 16 1864.2 2 4 

R103 2226.9 1 1 2286 2 4 2313.4 3 9 2438.7 4 16 

R201 4117.1 1 1 4188.3 2 4 4231.8 3 9 4253.5 4 16 

R202 3666.7 1 1 3751.7 2 4 3824.2 3 9 4071.9 4 16 

R203 3982.1 1 1 4158.4 2 4 4304.6 3 9 4541.5 4 16 

R401 7405.1 1 1 7799.5 2 4 8033.7 3 9 8580.4 4 16 

R402 6222.5 1 1 6254 2 4 6559.7 3 9 6893.3 4 16 

R403 7695 1 1 7872.9 2 4 8129.5 3 9 8338.9 4 16 

W101 868.2 1 1 879.3 2 4 886.3 3 9 893.8 4 16 

W102 1010.5 3 9 1010.2 2 4 1008.5 1 1 1020.3 4 16 

W103 1096 1 1 1126.3 2 4 1134.8 3 9 1168.1 4 16 

W201 1532 1 1 1562.1 3 9 1557.6 2 4 1601.8 4 16 

W202 1739.6 1 1 1768.5 2 4 1812.9 3 9 1919.2 4 16 

W203 1696.6 1 1 1743.8 2 4 1784.4 3 9 1907.5 4 16 

W401 2608.6 1 1 2694.5 2 4 2848.4 3 9 3066.4 4 16 

W402 3273 1 1 3406 3 9 3360.1 2 4 3692.9 4 16 

W501 4759.2 1 1 4896.6 2 4 5056.2 3 9 5224.9 4 16 

Avg 

 

1.074  

 

2.444  

 

2.704   3.778  

Sum 

 

29 35 

 

66 172 

 

73 209  102 394 

Table 2.7: Ranks among the AGA, the GGA, the CAC and the ANTS. 

 

 

|Ri-Rj| GGA CAC ANTS [Maniezzo, 2004] 

AGA 37 44 73 

GGA - 7 36 

CAC - - 29 

Table 2.8: Paired comparison results. 

. 
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Publications 

The results of the research work presented in this PhD thesis have been published. 

The publications are listed as follows, grouped by type of publication and sorted 

chronologically within each category. 

 

 

Journals 

1. Guo Y., Goncalves G., Hsu T. Multi-agent based self-adaptive genetic algorithm 

for the long-term car pooling problem. International Journal of Mathematical 

Modeling and Algorithms. Springer, 2012. 

2. Guo Y., Goncalves G., Hsu T. A clustering ant colony algorithm for the long-term 

car pooling problem. International Journal of Swarm Intelligence. IGI Global, 2012. 

3. Guo Y., Goncalves G., Hsu T. The multi-destination car pooling problem and its 

resolution method. RAIRO Operations Research. Cambridge, 2013. (Submitted) 

4. Guo Y., Goncalves G., Hsu T. A genetic algorithm with guidance mechanism and 

adaptive variation rates for solving the long-term car pooling problem. Journal of 

Operations Research, 2013. (Submitted) 

 

 

Conferences 

5. Guo Y., Goncalves G., Hsu T. A velocity based bee colony algorithm for the car 

pooling problem. European Conference on Metaheuristics. Lorient, France, 2010. 

6. Guo Y., Goncalves G., Hsu T. A self-adaptive genetic algorithm for the car pooling 

problem. In Proceeding of International Conference on Metaheuristics and Nature 

Inspired Computing. Djerba, Tunisia, 2010. 

7. Guo Y., Goncalves G., Hsu T. Genetic algorithm with preference matrix for the car 

pooling problem. 12e Congrès Annuel de la Société Française de Recherche 

Opérationnelle et d’Aide à la Décision. Saint Etienne, France, 2011.   

8. Guo Y., Goncalves G., Hsu T. A guided genetic algorithm for solving the long-term 

car pooling problem. In Proceeding of IEEE International Conference on 

Computational Intelligence in Production and Logistics Systems. Paris, France, 2011.    
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9. Guo Y., Goncalves G., Hsu T. A clustering ant colony algorithm for the long-term 

car pooling problem. In Proceeding of IEEE International Conference on Swarm 
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