The Capacitated Vehicle Routing Problem with Evidential Demands: models and perspectives

Nathalie Helal1, Frédéric Pichon1, Daniel Porumbel2, David Mercier1 and Éric Lefèvre1

1Université d’Artois, LGI2A, F-62400 Béthune, France

2Conservatoire National des Arts et Métiers, EA 4629 CEDRIC , 75003 Paris, France
The Capacitated Vehicle Routing Problem (CVRP)

Finding the least cost routes to serve customers with known demands while respecting problem constraints, in particular capacity constraints.

Uncertainty on client demands

- Random demands \Rightarrow CVRP with Stochastic Demands (CVRPSD)
 - Chance Constrained Programming (CCP);
 - Stochastic Programming with Recourse (SPR).
- Interval demands \Rightarrow Robust CVRP
 - Robust solutions against all realisations of customer demands deemed possible.
Intermediary situation between probabilistic and set-valued approach

each customer demand is known to belong to one or more sets with a given probability associated to each set.

⇒ the Capacitated Vehicle Routing Problem with Evidential Demands (CVRPED).

The CVRPED [Helal et al., 2016], [Helal et al., 2017]

Extending stochastic programming approaches into evidence theory framework:

- extending CCP ⇒ Belief Constrained Programming (BCP);
- extending SPR ⇒ recourse approach.

The resulting models are connected to the robust CVRP.
Outline

1. CVRPSD
 - CVRPSD modelled by CCP
 - CVRPSD modelled by SPR

2. CVRPED
 - CVRPED modelled by BCP
 - CVRPED modelled by a recourse approach

3. Perspectives
 - Extensions
 - Advanced analysis
 - The metaheuristic
Capacitated Vehicle Routing Problem (CVRP)

Given:

- \(n \) = number of customers
- \(m \) = number of vehicles
- \(Q \) = vehicle capacity
- \(d_i \) = (known) demand of client \(i \)
- \(c_{i,j} \) = cost of travelling edge \((i, j)\)
- \(w_{i,j,k} = \begin{cases} 1 & \text{if } k \text{ travels } (i, j) \\ 0 & \text{otherwise} \end{cases} \)
- \(R_k \) = route associated to vehicle \(k \)

Objective function:

\[
\text{Minimize} \sum_{k=1}^{m} C(R_k)
\]

where

\[
C(R_k) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i,j} w_{i,j,k}
\]

(Travel cost of route \(R_k \))

S.t : \[\sum_{i=1}^{n} \sum_{j=1}^{n} d_i w_{i,j,k} \leq Q, \quad k = 1, \ldots, m \]
CVRPSD

d_i represents the stochastic demand of i.

CVRPSD via CCP

Same formal model as the CVRP except that capacity constraints are replaced by

$$P \left(\sum_{i=1}^{n} d_i \sum_{j=1}^{n} w_{i,j,k} \leq Q \right) \geq 1 - \beta, \quad k = 1, \ldots, m,$$

where $1 - \beta$ is the minimum allowable probability that the capacity constraint is fulfilled.
Recall in the CVRP

\[
\text{Minimize} \sum_{k=1}^{m} C(R_k)
\]

Such that: \(\sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij}w_{i,j,k} \leq Q, \quad k = 1, \ldots, m\)

CVRPSD via SPR (incorporates constraints into the objective)

\[
\text{Minimize} \sum_{k=1}^{m} C_E(R_k),
\]

where \(C_E(R_k)\) the expected cost of \(R_k\) defined by

\[
C_E(R_k) = C(R_k) + C_P(R_k),
\]

with \(C_P(R_k)\) the expected penalty cost on \(R_k\) induced by violating capacity constraints of vehicle \(k\).
1 CVRPSD
 CVRPSD modelled by CCP
 CVRPSD modelled by SPR

2 CVRPED
 CVRPED modelled by BCP
 CVRPED modelled by a recourse approach

3 Perspectives
 Extensions
 Advanced analysis
 The metaheuristic
Evidence theory

A variable x taking values in a finite domain X.

- A MF $m^X : 2^X \rightarrow [0, 1]$ s.t. $\sum_{A \subseteq X} m^X(A) = 1$.

- Belief and Plausibility functions:

 $$Bel(x \in A) = \sum_{\emptyset \neq B \subseteq A} m(B), \ \forall A \subseteq \Omega,$$

 $$Pl(x \in A) = \sum_{B \cap A \neq \emptyset} m(B), \ \forall A \subseteq \Omega.$$

- Given a MF m^X and a function $h : X \rightarrow \mathbb{R}^+$, then the upper expected value of h relative to m^X is:

 $$E^*(h, m^X) = \sum_{A \subseteq X} m^X(A) \max_{x \in A} h(x).$$
CVRPED

\(d_i\) represents the evidential demand of client \(i\) (represented by MF).

CVRPED via BCP

Same formal model as the CVRP except that capacity constraints become

\[
Bel \left(\sum_{i=1}^{n} d_i \sum_{j=1}^{n} w_{i,j,k} \leq Q \right) \geq 1 - \beta, \quad k = 1, \ldots, m, \tag{1}
\]

\[
Pl \left(\sum_{i=1}^{n} d_i \sum_{j=1}^{n} w_{i,j,k} \leq Q \right) \geq 1 - \overline{\beta}, \quad k = 1, \ldots, m, \tag{2}
\]

s.t \(\beta \geq \overline{\beta}\)

and \(1 - \beta\) (resp \(1 - \overline{\beta}\)) the minimum allowable degree of belief (resp plausibility) that the capacity constraint is respected on each route.
Particular cases

- Bayesian MF \Rightarrow CVRPSD via CCP with $\beta = \overline{\beta}$.
- Categorical MF (and $\beta < 1$) \Rightarrow robust CVRP (minimax optimization procedure).

Properties

- The optimal solution cost is non increasing in Q, β and $\overline{\beta}$.

Properties based on change in knowledge specificity

$\forall i : d_i$ independent and known in the form $m_i^{\Theta_i}$:

- $m_i^{\Theta_i}$ built from $m_i^{\Theta_i}$: for each $A = [A; \overline{A}]$ s.t $m_i^{\Theta_i}(A) > 0$, transfer the mass $m_i^{\Theta_i}(A)$ to $A^+ = [A; \overline{A} + a^+]$, with $a^+ \in [0; Q - \overline{A}]$.

\Rightarrow the more pessimistic knowledge is about customer demands, the greater the cost of the optimal solution.
Particular cases

- Bayesian MF \Rightarrow CVRPSD via CCP with $\beta = \overline{\beta}$.
- Categorical MF (and $\beta < 1$) \Rightarrow robust CVRP (minimax optimization procedure).

Properties

- The optimal solution cost is non increasing in Q, β and $\overline{\beta}$.

Properties based on change in knowledge specificity

d_i independent and known in the form $m_i^{\Theta_i}$:

- $m_i^{\Theta_i}$ built from $m_i^{\Theta_i}$: for each $A = [A; \overline{A}]$ s.t $m_i^{\Theta_i}(A) > 0$, transfer the mass $m_i^{\Theta_i}(A)$ to $A^+ = [A; \overline{A} + a^+]$, with $a^+ \in [0; Q - \overline{A}]$.

\Rightarrow the more pessimistic knowledge is about customer demands, the greater the cost of the optimal solution.
Particular cases

- Bayesian MF \Rightarrow CVRPSD via CCP with $\beta = \bar{\beta}$.
- Categorical MF (and $\underline{\beta} < 1$) \Rightarrow robust CVRP (minimax optimization procedure).

Properties

- The optimal solution cost is non-increasing in Q, $\underline{\beta}$ and $\bar{\beta}$;

Properties based on change in knowledge specificity

d_i independent and known in the form $m_i^{\Theta_i}$:

- $m_i^{\Theta_i}$ built from $m_i^{\Theta_i}$: for each $A = [A; \bar{A}]$ s.t. $m_i^{\Theta_i}(A) > 0$, transfer the mass $m_i^{\Theta_i}(A)$ to $A^+ = [A; \bar{A} + a^+]$, with $a^+ \in [0; Q - \bar{A}]$.

\Rightarrow the more pessimistic knowledge is about customer demands, the greater the cost of the optimal solution.
1 CVRPSD
 CVRPSD modelled by CCP
 CVRPSD modelled by SPR

2 CVRPED
 CVRPED modelled by BCP
 CVRPED modelled by a recourse approach

3 Perspectives
 Extensions
 Advanced analysis
 The metaheuristic
CVRPED via recourse (incorporates constraints into the objective)

\[
\text{Minimize } \sum_{k=1}^{m} C^*_E(R_k),
\]

where \(C^*_E(R_k) \) the upper expected cost of \(R_k \) defined by

\[
C^*_E(R_k) = C(R_k) + C^*_p(R_k),
\]

with \(C^*_p(R_k) \) the upper expected penalty cost on \(R_k \) induced by violating capacity constraints of vehicle \(k \).

\[
C^*_p(R_k) = E^*(g, m^\Omega), \text{ where } g \text{ a penalty cost function and } m^\Omega \text{ uncertainty on failing the capacity constraint on } R_k.
\]
Particular cases

- Categorical MF \Rightarrow similarities with Robust CVRP;
- Bayesian MF \Rightarrow CVRPSD via SPR.

Properties based on change in knowledge specificity

Evidential demands d_i are independent and known in the form $m_i^{\Theta_i}$:

- $m_i^{\Theta_i}$ built from $m_i^{\Theta_i}$: for each $A \subseteq \Theta_i$ s.t $m_i^{\Theta_i}(A) > 0$, transfer the mass $m_i^{\Theta_i}(A) > 0$ to a subset A' such $A \subseteq A' \subseteq \Theta_i$.

\Rightarrow the less specific knowledge is about customer demands, the greater the cost of the optimal solution.

Solution method for recourse and BCP models

Both models solved using a Simulated annealing metaheuristic.
1. CVRPSD
 CVRPSD modelled by CCP
 CVRPSD modelled by SPR

2. CVRPED
 CVRPED modelled by BCP
 CVRPED modelled by a recourse approach

3. Perspectives
 Extensions
 Advanced analysis
 The metaheuristic
Extensions

- **Extend** to the evidential framework, other variations of stochastic CVRP:
 - stochastic travel times;
 - presence of clients is stochastic;
 - other combinatorial optimisation problems.

- **Extend/adapt** our models to other uncertainty frameworks, which extend probabilistic and set-valued approaches.
 - Imprecise probability;
 - possibility theory.
Advanced analysis

For the BCP and the recourse model, we would like to

- **perform a sensitivity analysis**: identifying clients, whom more knowledge about their demands leads to better solutions;

- identify from the set of non-dominated solutions, some parts of routes more preferred to be included in a solution:
 - previous work on label ranking [Destercke et al., 2015].

- extend our models, to the case of incomplete knowledge about dependency between evidential demands:
 - previous work on idempotent conjunctive combination of belief functions [Destercke and Dubois, 2011].
The metaheuristic

- Improve the metaheuristic:
 - improving the operators and some strategies adopted by the metaheuristic.

- Qualify the metaheuristic quality, by comparing optimal solutions to the metaheuristic solutions:
 - create small instances, so they can be solved by a brut force method in a reasonable time;
 - up until which instance size the metaheuristic is still able to find optimal solutions (how far from optimal).

Thank you for your attention.