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Abstract. Data fusion under the belief function framework has at-
tracted the interest of many researchers over the past few years. Until
now, many combination rules have been proposed in order to aggregate
beliefs induced form dependent or independent information sources. Al-
though the choice of the most appropriate rule among several alternatives
is crucial, it still requires non-trivial effort. In this investigation, we sug-
gest to evaluate and compare some combination rules when dealing with
independent information sources in the context of the classifier fusion
framework.
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1 Introduction

Pattern recognition has been widely studied to solve classification problems ow-
ing to its capacity to achieve the greatest possible classification accuracy [15].
One of the proposed solutions is based on an advanced method named ensemble
classifiers. Hence, various combination approaches have been proposed to com-
bine multiple classifiers such as voting-based systems, plurality, Bayesian theory,
belief function theory [8]. This latter, also known as Dempster-Shafer theory, is
regarded as a convenient method for representing and managing different kinds
of imperfect data [14] and has proved to be an efficient approach for combining a
set of classifiers. Thus, it provides several combination rules which mainly differ
according to the way of managing the mass assigned to the empty set also called
conflict [1, 2, 5, 7, 12]. Basically, in this paper, we are interested in the Dempster
rule [1], the conjunctive rule [12], the combination with adapted conflict rule
(CWAC rule) [5] and the improved CWAC rule [2]. It is noteworthy that the
combination rule of Dempster does not support the value of the conflict gen-
erated when combining pieces of evidence and consequently this latter should
be proportionally distributed over all focal elements. However, in the conjunc-
tive combination rule the mass allocated to the empty set should be kept in the
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purpose of reflecting the degree of conflict between the combined sources. Nev-
ertheless, this conflict has an absorption effect: when we apply a large number
of conjunctive combinations, the mass assigned to the conflict tends towards 1
and hence the conflict loses its initial role. The CWAC and the improved CWAC
rules are defined by an adaptive weighting between the Dempster and the con-
junctive rules in order to give the conflict its paramount role as an alarm signal.
With this diversity of combination rules, the choice of the most efficient one
becomes really a challenging task. So, in this work, we propose to compare the
CWAC and the improved CWAC rules with the conjunctive and the Dempster
rules within the classifier fusion framework in order to pick out the most appro-
priate combination rule. The rest of this paper is structured as follows. Section
2 provides a brief overview of the basic concepts of the belief function theory.
We outline some combination rules dealing with distinct pieces of evidence in
Section 3. Section 4 is devoted to discussing our comparative approach. The ex-
periments and the results are presented in Section 5. The conclusion is reported
in Section 6.

2 Belief function theory: basic concepts

Let Θ be a finite non-empty set of N elementary events related to a given prob-
lem, these events are assumed to be exhaustive and mutually exclusive. Such
Θ is called the frame of discernment. The power set of Θ, denoted by 2Θ, is
composed of all the subsets of Θ.

The impact of evidence assigned to each subsets of the frame of discernment
Θ is named basic belief assignment (bba). It is defined as:

m : 2Θ → [0, 1]
∑

A⊆Θ

m(A) = 1 (1)

The amount m(A), known as basic belief mass (bbm), expresses the degree of
belief committed exactly to the event A.

To make decision within the belief function framework, we must transform
the bba into a probability measure called pignistic probability denoted BetP

and defined as follows [13]:

BetP (A) =
∑

B⊆Θ

|A ∩B|

|B|

m(B)

1−m(∅)
∀ A ∈ Θ (2)

where |B| denotes the cardinality of B.

The reliability of each information source S can be quantified. In fact, if S
is not fully reliable then the bba provided by S should be discounted using a
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reliability factor denoted 1 - α [11]. The discounted bba is obtained as follows:

mα(A) = (1− α)m(A) ∀ A ⊂ Θ (3)

mα(Θ) = α+ (1− α)m(Θ)

Given two bbas m1 and m2, according to [4], the distance measure between
them is computed as follows:

d(m1,m2) =

√

1

2
(m1 −m2)TD(m1 −m2) (4)

with D is the Jaccard index matrix, the elements of which are calculated as
follows:

D(A,B) =







1 if A=B= ∅

|A ∩B|

|A ∪B|
∀ A,B ∈ 2Θ

(5)

3 Combination rules dealing with independent

information sources

As mentioned earlier, there exist several combination rules assuming items of
evidence combined to be independent. In this section, we present only the con-
junctive rule [12], the Dempster rule [1], the CWAC rule [5] and the improved
CWAC rule [2].

1. The conjunctive rule, proposed by Smets, is used to combine two bbas pro-
vided by reliable and distinct information sources [12]. The resulting bba,
denoted m1 ∩©m2, is defined by:

(m1 ∩©m2)(A) =
∑

B,C⊆Θ:B∩C=A

m1(B).m2(C) (6)

The mass assigned to the empty set (m1 ∩©m2(∅)) quantifies the degree of
disagreement between the two combined sources.

2. The Dempster rule, based on the orthogonal sum, is a normalized version of
the conjunctive rule where the mass of the empty set must be reallocated over
all focal elements in the case wherem1 ∩©m2(∅) 6= 0 thanks to a normalization
factor, denoted K [11]. This rule, assuming pieces of evidence combined to
be reliable and distinct, is defined as follows:

(m1 ⊕m2)(A) = K(m1 ∩©m2)(A) (7)

and

(m1 ⊕m2)(∅) = 0 (8)

where

K−1 = 1− (m1 ∩©m2)(∅) (9)
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3. In [5] the authors have proposed the CWAC combination rule which is de-
fined by an adaptive weighting D between the conjunctive and the Dempster
rules. This adaptive weighting offers an effective way to obtain the same be-
havior as the conjunctive rule when the bbas are contradictory and the same
behavior as the Dempster rule when the bbas are similar. The CWAC rule
uses the Jousselme distance to measure the dissimilarity between sources.
Assume we have M bbas, denoted as m1,...., mM , the result of their combi-
nation using the CWAC operator is noted as m↔© and is defined as follows:

m↔©(A) = Dm∩©(A) + (1−D)m⊕(A) (10)

and

m↔©(∅) = 1 when m∩©(∅) = 1 (11)

with

D = max
i,j

[d(mi,mj)] ∀ i,j ∈ [1,M ] (12)

m∩©(A) = (∩©
i
mi)(A) and m⊕(A) = (⊕

i
mi)(A) ∀ i ∈ [1,M ] (13)

4. The improved CWAC rule [2], inspired from the spirit of the CWAC rule,
is employed to combine reliable and distinct pieces of evidence. Authors in
[2] have proved that the improved CWAC rule enhances the ability of the
CWAC rule to preserve the conflict as an alarm signal and also it truly
reflects the opposition between bbas in the combination. Assume we have
M bbas, denoted as m1,.....,mM , the result of their combination using the
improved CWAC operator, denoted ↔©I , is defined as follows:

m↔©I (A) = D̄m∩©(A) + (1− D̄)m⊕(A) (14)

and

m↔©I (∅) = 1 when m∩©(∅) = 1 (15)

with

D̄ =

∑M
i=1,j>i d(mi,mj)

M(M−1)
2

∀ i,j ∈ [1,M ] (16)

m∩©(A) = (∩©
i
mi)(A) and m⊕(A) = (⊕

i
mi)(A) ∀ i ∈ [1,M ] (17)

As the CWAC and the improved CWAC rules are defined by an adaptive
weighting between the conjunctive and the Dempster rules, we suggest to make
a comparative approach that allows to select the most efficient rule within the
classifier fusion framework.
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4 Comparative approach

Ensemble classifier systems, also known as multiple classifiers, is considered as
an efficient way to solve pattern recognition issues. As well, the fusion of a set of
classifiers in the context of the belief function framework has been extensively
explored in several studies [6, 10]. In this paper, ensemble classifier systems will
be used as a way for evaluating and comparing some fusion rules dealing with
independent information sources. The process of combining classifiers within the
belief function framework composed of two distinct parts. The first one consists
of the construction of mass functions from classifiers’ outputs and the second
one focuses on the combination of these mass functions across some combination
rules.

4.1 Mass functions construction from classifiers’ outputs

Consider a pattern recognition problem where B = {x1, ..., xn} is a database
with n instances, C = {C1, . . . ,CM} is a set of M classifiers and Θ = {w1, . .
. ,wN} is a set of N class labels. B should be randomly split into learn and test
sets. We first construct classifiers from the learning set and then we apply them
to predict the label class of all test patterns. In order to combine classifiers within
the belief function framework, classifiers outputs must be transformed into bbas.
Since classifiers outputs may differ from one classifier to another, each pattern
test should have M bbas obtained as follows:

mi({wj}) = 1 (18)

mi(A) = 0 ∀ A ⊆ Θ and A 6= {wj}

where mi({wj}) expresses the part of belief assigned exactly to the predicted
class wj through the classifier Ci.

Results supplied by classifiers can be unreliable, therefore the bbas gener-
ated must be discounted by taking into consideration the reliability rate of each
classifier. The reliability ri of a classifier Ci is computed as follows:

ri =
Number of well classified instances

Total number of classified instances
(19)

If ri equals 1 then the classifier Ci is absolutely reliable, by against the classifier
Ci is totally unreliable in the case where ri is equal to 0. The discounted mass
functions, using Equation 3, are obtained as follows:

mαi

i ({wj}) = ri (20)

mαi

i (Θ) = 1− ri

with αi = 1 - ri.
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5 Classifier fusion

Let us remind that the process of combining classifiers within the belief function
framework consists on two main steps: classifiers’ outputs modeling and classi-
fiers’ combination. So, if the outputs of all classifiers are converted into bbas,
we move on to classifier fusion using combination rules mentioned in Section 3.
Combination results allows us to assess and compare these alternative rules in
order to select the most efficient one. Thus, we rely on two assessment criteria:
the PCC and the distance.

– The PCC criterion that represents the percent of correctly classified instances
will be used to compare the CWAC and the improved CWAC rules of combi-
nation with the Dempster one. Such case demands the use of three variables
n1, n2, n3 which respectively correspond to the number of well classified,
misclassified and rejected instances. For each combination rule, we proceed
as follows:
1. Firstly, we set a tolerance thresholds S=[0.1,1]. For any threshold s ∈

S, we examine the mass of the emptyset (m(∅)) induced by each model
test as follows:
• ifm(∅) > s, the classifier chooses to reject instance instead of misclas-

sifying it. As a result, we increment the number of rejected instances
n3.

• if m(∅) ≤ s, we calculate the pignistic probability (BetP ) in order
to choose the most probable class. Accordingly, the chosen class will
be compared to the real one: in the case where the chosen class is
similar to the real one, we increment the number of well classified
instance n1, inversely we increment the number of the misclassified
instances n2.

2. Secondly, having the well classified, misclassified and rejected instances,
we calculate the PCC for each threshold s ∈ S using the following for-
mula:

PCC =
n1

n1 + n2
∗ 100 (21)

The most appropriate combination rule is the one that has the highest value
of PCC ∀ s ∈ S.

– The distance criterion, which corresponds to the Jousselme distance between
two bbas, will be employed to compare the CWAC and the improved CWAC
rules with the conjunctive one. Thus, for each combination rule, we track
the following steps to compute the distance criterion:
1. The real class wj of each pattern test must be transformed into a mass

function. It is obtained as follows:

mr({wj}) = 1 (22)

mr(A) = 0 ∀ A ⊆ Θ and A 6= {wj}
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2. Then, we compute for each test pattern the Jousselme distance (See
Equation 4) between the mass function relative to its real class (mr)
and the mass function generated when combining bbas induced from M

classifiers.
3. At last, we sum the Jousselme distances obtained by all test patterns in

order to get the total distance.
The best combination rule is the one that has the minimum total distance.

6 Simulation and experimentations

6.1 Experimental setup

To evaluate our alternative combination rules, our experiments are performed
using several real world databases obtained from the U.C.I repository [9] de-
scribed in Table 1. These databases have different number of instances and dif-
ferent number of attributes. However, their classe numbers are equal to 2 or 3.
It is noteworthy that our alternative combination rules can support databases
with a number of classes greater than 3.

Table 1. Description of databases

Databases #Instances #Attributes #Classes

Diabetes 768 2 2

Fertility 100 10 2

Heart 270 13 2

Hepatitis 155 19 2

Iris 150 4 3

Parkinsons 195 23 2

We have carried out experiments using four machine learning algorithms
implemented in Weka [3]: the Naive Bayes (NB), the Decision tree(DT), the
k-Nearest Neighbor where k equals 1 (1-NN), and the Neural Network (NN)
algorithms. These latter were run based on the leave one out cross validation
approach. The accuracy values of the single classifiers are given in Table 2.

Table 2. Single classifier accuracies (%)

Databases NB DT 1-NN NN

Diabetes 75.65 70.57 73.82 74.21

Fertility 87.00 83.00 85.00 87.00

Heart 82.96 75.55 75.18 78.88

Hepatitis 83.22 81.29 80.00 79.35

Iris 95.33 95.33 95.33 96.66

Parkinsons 69.74 96.41 87.17 91.79
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6.2 Results and discussion

Let us start by comparing the CWAC and the improved CWAC rules with the
Dempster one in term of the PCC criterion. Figure 1 illustrates the PCCs for
the Dempster, the CWAC and the improved CWAC rules relative to all the
mentioned databases. The results, as seen in Figure 1, indicate that for any

Fig. 1. PCC values for all databases

threshold s the value of PCC relative to the Dempster rule is constant due
to the fact that n3 is always equal to 0 (no rejected instances). It should be
noted that the PCC values of the CWAC and the improved CWAC rules are
greater or equal to those corresponding to the Dempster rule for the different
databases. For instance, the values of PCC relative to the Diabetes database
for both CWAC and improved CWAC rules varies from 84% to 76% with the
variation of s, whereas they are equal to 76% for the Dempster rule ∀ s ∈
S. This result might be due to the fact that the average number of rejected
instance correspond to the CWAC and the improved CWAC rules are greater
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than 0, whereas that correspond to the Dempster rule is equal to 0. It should
be emphasized that this interpretation is available for the remaining databases.
Then, we can conclude that the CWAC and the improved CWAC rules are more
efficient than the Dempster rule according to the PCC criterion. To this end,
we move to the comparison of the CWAC and the improved CWAC rules with
the conjunctive one. Figure 2 illustrates the conjunctive, the CWAC and the
improved CWAC distances correspond to the different databases.

Fig. 2. Distance results of the conjunctive, CWAC and improved CWAC rules.

From Figure 2, we can notice that the CWAC and the improved CWAC rules
achieve best results compared with the conjunctive rule. In fact, the distances
correspond to the CWAC and the improved CWAC rules are lower than those
correspond to the conjunctive rule. For example, for Pima Indian Database, the
CWAC and the improved CWAC distances are respectively 270.39 and 226.60,
whereas the conjunctive distance is equal to 270.42. For Hepatitis database,
we have 48.62 as conjunctive distance, 43.63 as CWAC distance and 34.75 as
improved CWAC distance. As far, we can assume that this result can be applied
to all the other databases. Thus, we can conclude that the CWAC and the
improved CWAC rules are more adequate than the conjunctive one according
to the distance criterion. Also, from Figure 1, we can remark that the PCCs
obtained by the CWAC rule are higher than those obtained by the improved
CWAC rule (for all s ∈ S). Moreover, the total distances of the improved CWAC
rule are less than those relative to the CWAC rule. Therefore, we can note that
the improved CWAC rule is better than the CWAC rule according to the distance
criterion but worse than the CWAC rule according to the PCC criterion.

7 Conclusion

In this paper, we have outlined some combination rules assuming the pieces
of evidence combined to be distinct. Then, we relied on the ensemble classifier
system to carry out some experimental tests in the purpose of comparing these
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alternative rules. The obtained results show the efficiency of the CWAC rule and
the improved CWAC rule compared with the conjunctive and Dempster ones.
Results of experimentations show also that the improved CWAC rule is the best
combination rule according to the distance criterion, whereas the CWAC rule is
considered as the best rule of combination in term of the PCC criterion.
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