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Ahmed Samet1,2, Eric Lefèvre2, and Sadok Ben Yahia1
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Abstract. In this paper, we tackle the problem of data representation
in several types of databases. A detailed survey of the different support
measures in the major existing databases is described. The reminder of
the paper aims to prove the importance of using evidential databases
in case of handling imperfect information. The evidential database gen-
eralizes several ones by the use of specific Basic Belief Assignments. In
addition, we show that the precise support, initially introduced on evi-
dential database, generalizes several support measures.
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1 Introduction

Data mining is a technique that uses a variety of data analysis tools to
discover, hidden but interesting patterns and relationships in data that
may be used to make valid predictions. Thanks to its simple formulas,
it associates performance and quality in its retrieved results. For this
reason, it is used in various fields and attracted interest in different ap-
plications [9].
The first studies on data mining relies on a data model under which
transactions captured doubtless facts about the items that are contained
in each transaction. These binary databases have only two scenarios :
1 if an element exists, 0 otherwise. However, in many applications, the
existence of an item in a transaction is better captured by likelihood
measures. The obvious limits of the binary databases in handling such
types of data led the data mining community to adopt imprecise frame-
works in order to mine more pertinent knowledge.
In this paper, we present a non exhaustive review of existing data mining
databases. The characteristics of binary, probabilistic, fuzzy and eviden-
tial databases are detailed. The support measures in the databases are
presented. The aim of this paper is to demonstrate the pivotal role of
the evidential database, which relies on the evidence theory [5, 12], in
representing imprecision and uncertainty. The importance of using an
evidential database rather than the other ones is justified. Indeed, we
prove that the precise support measure [10] in evidential databases is a
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generalization of that of the classical ones.
The remainder of the paper is organized as follows: in section 2, the
key basic settings of the evidential database are recalled. In section 3,
the binary database is studied and its relationship with the evidential
database is highlighted. In section 4, probabilistic databases are scruti-
nized and the correlation between the precise support and the probabilis-
tic support is highlighted. Section 5 stresses on the snugness connection
between fuzzy databases with the evidential ones. Finally, we conclude
and we describe issues for future work.

2 Evidential database and precise support

In this section, we detail the main concepts of evidential databases as
well as as the notion of precise support.

2.1 Evidential Database concept

Introduced by Lee [8], the evidential database was aimed at modelling
imperfect information. This type of database is supposed to handle im-
precise and uncertain data. An evidential database is a triplet EDB =
(AEDB,O, REDB). AEDB is a set of attributes and O is a set of d trans-
actions (i.e., lines). Each column Ai (1 ≤ i ≤ n) has a domain θAi of
discrete values. REDB expresses the relation between the jth line (i.e.,
transaction Tj) and the ith column (i.e., attribute Ai) by a normalized
BBA as follows:

mij : 2θAi → [0, 1] withmij(∅) = 0∑
ω⊆θAi

mij(ω) = 1. (1)

Table 1: Evidential transaction database EDB

Transaction Attribute A Attribute B

T1 m(A1) = 0.7 m(B1) = 0.4
m(θA) = 0.3 m(B2) = 0.2

m(θB) = 0.4
T2 m(A2) = 0.3 m(B1) = 1

m(θA) = 0.7

Table 1 illustrates an example of an evidential database. An item corre-
sponds to a focal element. An itemset corresponds to a conjunction of
focal elements having different domains. The inclusion operator is defined
in [3] such that for two itemsets X and Y , we have:

X ⊆ Y ⇐⇒ ∀xi ∈ X,xi ⊆ yi.
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where xi and yi are the ith element of X and Y . For the same evidential
itemsets X and Y , the intersection operator is defined as follows:

X ∩ Y = Z ⇐⇒ ∀zi ∈ Z, zi ⊆ xi and zi ⊆ yi.
An evidential associative rule R is a causal relationship between two
itemsets that can be written in the following form R : X → Y such that
X ∩ Y = ∅.

Example 1. In Table 1, A1 is an item and θA × B1 is an itemset such
that A1 ⊂ θA × B1 and A1 ∩ θA × B1 = A1. A1 → B1 is an evidential
associative rule.

In the following subsection, we consider the precise support and confi-
dence measures.

2.2 Support and confidence in evidential database

Several definitions for the support’s estimation have been proposed for
the evidential itemsets such as [3, 6]. Those definitions assess the sup-
port based on the belief function Bel(). The based belief support is con-
structed from the Cartesian product applied to the evidential database.
Interested readers may refer to [6]. The support is computed as follows:

SupportEDB(X) = BelEDB(X) (2)

such that:

Bel : 2θ → [0, 1] (3)

Bel(A) =
∑
∅6=B⊆A

m(B). (4)

In a previous work [10], we introduced a new metric for support esti-
mation. The latter has been shown to provide more accuracy and to
overcome several drawbacks of using the belief function. This measure is
called Precise support Pr and it is defined by:

Pr : 2θi → [0, 1] (5)

Pr(xi) =
∑
x⊆θi

|xi ∩ x|
|x| ×mij(x) ∀xi ∈ 2θi . (6)

The evidential support of an itemset X =
∏

i∈[1...n]
xi in the transaction

Tj (i.e., PrTj ) is then equal to:

PrTj (X) =
∏

xi∈θi,i∈[1...n]

Pr(xi). (7)

Thus, the evidential support SupportEDB of the itemset X becomes:

SupportEDB(X) =
1

d

d∑
j=1

PrTj (X). (8)
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Additionally, in [11], we introduced a new measure of confidence for
evidential associative rules that we called the precise confidence measure.
Let us assume an evidential association rule such as R : Ra → Rc,
where Rc and Ra respectively, denote the conclusion and the antecedent
(premise) part of the rule R. The precise confidence measure can be
written as follows:

Confidence(R : Ra → Rc) =

d∑
j=1

PrTj (Ra)× PrTj (Rc)

d∑
j=1

PrTj (Ra)

. (9)

In the following sections, we highlight the relationships between evi-
dential databases and the main other ones. The link between existing
measures and the evidential precise one is also demonstrated.

3 Binary data mining

The first database variants studied from a data mining view are the
binary ones. A binary database can be represented by a triplet BDB =
(A,O, RBDB). A represents the set of n binary attributes (i.e., columns).
RBDB is the relation that reflects the existence of an item in a transaction
by only the values 0 and 1. RBDB(Ai, Tj) = 1 means that the item Ai
exists in the transaction Tj and RBDB(Ai, Tj) is set equal to 0 otherwise.
Since the inception of the Apriori algorithm [2], several other approaches
have been introduced to reduce the computational complexity of mining
these ”frequent” binary itemsets. The support of an item Ai in a trans-
action Tj is defined as follows:

SupportTj (Ai) = RBDB(Ai, Tj). (10)

The support of an item Ai in those binary databases is still computed
with the same manner:

Support(Ai) =

d∑
j=1

RBDB(Ai, Tj) = count(Ai). (11)

The same goes for an itemset A ∪ B (or A × B if we keep the product
notation):

Support(A×B) = count(A ∪B). (12)

Thus, the support is computed by counting the number of transactions
having both A and B. From the support, the confidence measure of a
rule R : Ra → Rc is computed as follows:

confidence(R : Ra → Rc) =
count(Ra ∪Rc)
count(Ra)

. (13)

A binary database can be constructed by redefining the REDB as a pre-
cise BBA. Indeed, each item Ai ∈ A can be redefined as an evidential
item having the following frame of discernment θAi = {∃, 6 ∃}. ∃ and 6 ∃
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denote respectively the existence and absence of the attribute Ai in the
considered transaction. Such a BBA can be written as follows:{

mij({∃}) = RBDB(Ai, Tj)

mij({6 ∃}) = 1−RBDB(Ai, Tj)
(14)

where mij is equivalent to a certain BBA. In that case, the support
measure proposed in [10] is equivalent to the binary support equation
defined in Equation (10). To demonstrate that equivalence, let us con-
sider a binary database D and the evidential database EDB constructed
as in the described procedure. Suppose that RBDB(Ai, Tj) = 1 such that
Ai ∈ A, then the corresponding evidential attribute is an Ai ∈ AEDB
with θAi = {∃, 6 ∃}:

PrTj (∃) =
|∃ ∩ ∃|
|∃| mij({∃})+

| 6 ∃ ∩ ∃|
| 6 ∃| mij({6 ∃}) = mij({∃}) = RBDB(Ai, Tj).

(15)
From this point, we deduce that the evidential precise support is a gen-
eralization of the binary one. The same goes for the precise confidence
given in Equation (9) that generalizes binary confidence since they both
rely on the same support fraction.

Example 2. In this example, Table 2 shows how to create an evidential
database from a binary one.

Table 2: The evidential transformation of BDB (Table (a))
to EDB (Table (b))

A B C

T1 X X
T2 X X
T3 X X

(a)

A B C

T1 m11({∃}) = 0 m21({∃}) = 1 m31({∃}) = 1
m11({6 ∃}) = 1 m21({6 ∃}) = 0 m31({6 ∃}) = 0

T2 m12({∃}) = 1 m22({∃}) = 1 m32({∃}) = 0
m12({6 ∃}) = 0 m22({6 ∃}) = 0 m32({6 ∃}) = 1

T3 m13({∃}) = 0 m23({∃}) = 1 m33({∃}) = 1
m13({6 ∃}) = 1 m23({6 ∃}) = 0 m33({6 ∃}) = 0

(b)

The equivalency of the support measure is shown for the itemset B×C.

The support of the itemset B × C from the transactions of Table 2.a
is Support(B × C) = 2

3
. In the evidential database, it is computed as

follows:

SupportEDB(B × C) = 1
3

3∑
j=1

PrTj (A)× PrTj (B)

SupportEDB(B × C) = 1
3
(m21({∃})×m31({∃}) +m22({∃})×m32({∃})+

m23({∃})×m33({∃})) = 2
3

Thus, the support retrieved from the binary database is the same as the
precise support computed from the evidential database.
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In the following section, we review the basics of the probabilistic support.
A transformation method from a probabilitic database to evidential one
is introduced. The equivalency between the probabilistic support and the
precise one is studied.

4 Probabilistic data mining

Probabilistic data mining [1] was introduced to represent imperfect in-
formation thanks to the probability support. It can be represented by
a triplet PDB = (APDB,O, RPDB). The degree of existence of the item
Ai in the transaction Tj is measured through the probability function
p(Ai, Tj) ∈ [0, 1]. The support of an itemset X ∈ APDB in such type of
database is defined as follows [4]:

p(X,Tj) =
∏
i∈X

p(i, Tj). (16)

Thus, the support of an itemset X in a database is the sum of its expected
probability in the transaction:

SupportPDB(X) =

d∑
j=1

p(X,Tj). (17)

An equivalent evidential database can be constructed through using
Bayesian BBA3. The BBA can be modeled on a two-member-based frame
of discernment θi = {∃, 6 ∃} where ∃ indicates that Ai belongs to the con-
sidered transaction, whereas 6 ∃ performs the opposite. Such a BBA can
be constructed as follows:{

mij({∃}) = p(i, Tj)

mij({6 ∃}) = 1− p(i, Tj).
(18)

With this construction, the probabilistic support defined in Equation
(17) is equivalent to the proposed precise support. Indeed, the assertion
can be verified i.e.:

PrTj (∃) =
|∃ ∩ ∃|
|∃| mij({∃}) +

| 6 ∃ ∩ ∃|
6 ∃ mij({6 ∃}) = mij({∃}) = p(i, Tj).

(19)
As is the case for a binary database, the Evidential Data mining Al-
gorithm (EDMA) generalizes the probabilistic version of Apriori: i.e.,
U-Apriori [4].

Example 3. Table 3 shows how to create an evidential database from a
probabilistic one.

The equivalency of the support measure is shown for the itemset B×C.
The support of the itemset B×C from the transactions of the Table 3.a

3 A BBA is called Bayesian only if all its focal sets are singletons.
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Table 3: The evidential transformation of PDB (Table (a))
to EDB (Table (b))

A B C

T1 0.0 0.7 0.8
T2 0.9 0.7 0.1
T3 0 0.8 0.7

(a)

A B C

T1 m11({∃}) = 0 m21({∃}) = 0.7 m31({∃}) = 0.8
m11({6 ∃}) = 1 m21({6 ∃}) = 0.3 m31({6 ∃}) = 0.2

T2 m12({∃}) = 0.9 m22({∃}) = 0.7 m32({∃}) = 0.1
m12({6 ∃}) = 0.1 m22({6 ∃}) = 0.3 m32({6 ∃}) = 0.9

T3 m13({∃}) = 0 m23({∃}) = 0.8 m33({∃}) = 0.7
m13({6 ∃}) = 1 m23({6 ∃}) = 0.2 m33({6 ∃}) = 0.3

(b)

is Support(B × C) = (0.7×0.8)+(0.7×0.1)+(0.8×0.7)
3

= 0.4. In the evidential
database, it is computed as follows:

SupportEDB(B × C) = 1
3

3∑
j=1

PrTj (A)× PrTj (B)

SupportEDB(B × C) = 1
3
(m21({∃})×m31({∃}) +m22({∃})×m32({∃})+

m23({∃})×m33({∃})) = 1.2
3

= 0.4

Thus, the support retrieved from the probabilistic database is the same
as the precise support computed from the evidential database.

In the following section, we review the basics of fuzzy data mining and
we study its relation with the evidential one.

5 Fuzzy Data mining

Let us assume the triplet FDB = (AFDB,O, RFDB) that denotes a fuzzy
database. RFDB denotes the fuzzy relationship between an item and a
transaction expressed through a membership function. The membership
function µTj (i) = α (α ∈ [0, 1]) rates the degree of membership of the
considered item to the transaction Tj . The support computation in such
databases is done by the use of the count() function in the following
manner [7]:

count(i) =

d∑
j=1

µTj (i). (20)

The support of item i in the fuzzy database is found as follows:

Support(i) =
count(i)

d
. (21)

Thus, for an itemset X of size q such that xi ∈ X and i ∈ [1, q], the
support becomes:

support(X) =

d∑
j=1

min{µTj (xi), i = 1 . . . q}

d
. (22)
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The numerator of the support could be seen as the Gödel t-norm (mini-
mum t-norm).
Assuming a fuzzy database is available, it is possible to construct an evi-
dential database. In addition, the precise support sustains fuzzy support
in its formulation. Indeed, as can be seen in Equation (8), the precise
support is also equal to the sum of the transactional support divided by
the database size.
In the following, we show how to obtain analogous evidential support of
the fuzzy support. Assuming an attribute Ai ∈ AEDB having a frame of
discernment θAi such that ω1 ⊂ · · · ⊂ ωn ⊆ θAi , the corresponding BBA
for a fuzzy relation RFDB(ω1, Tj) = µTj (ω1) is constructed in this form:mij(ω1) = µTj (ω1)∑

m(∪kωk) = 1− µTj (ω1).
(23)

We can obviously remark that:

T (µ(Ai), µ(Aj)) = min(Bel(Ai), Bel(Aj)) (24)

where T is a minimum t-norm. Thus, the fuzzy support can be retrieved
in an evidential database as follows:

SupportFDB(X) =

∑
Tj∈O

min{Bel(xi), xi ∈ X}

d
. (25)

Interestingly enough, an equivalent to fuzzy database support in eviden-
tial database does exists.

Example 4. Table 4 shows how to create an evidential database from a
fuzzy one.
The equivalency of the support measure is shown for the itemset B×C.
The support of the itemsetAω1×Bω2 from the Table 4.a is Support(Aω1×
Bω2) = 0.3+0.5+0.2

3
= 1.0. In the evidential database, Table 4.b, it is com-

puted as follows:

SupportEDB(Aω1 ×Bω2) = 1
3

3∑
j=1

min(Bel(Aω1), Bel(Aω2))

SupportEDB(Aω1 ×Bω2) = 1
3
(BelT1(Aω1) +BelT2(Aω1) +BelT2(Bω2))

SupportEDB(Aω1 ×Bω2) = 1.0

Despite the fact that the precise support is not equivalent to the fuzzy
support, it is still possible to recover the same value with the use of the
Equation (25).

6 Conclusion

In this paper, we detailed the data mining measures such as the support
and the confidence on the several databases such as binary, probabilis-
tic, fuzzy databases. We have proven the generalization relation between
precise measures in evidential databases and measures used in other
databases. In future works, we aim to study the evidential transformation
of other imperfect databases such as fuzzy-possibilistic database [13].
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Table 4: The evidential transformation of FDB (Table (a))
to EDB (Table (b))

A B
ω1 ω2 ω1 ω2

T1 0.3 0.7 0.1 0.8
T2 0.5 0.2 0.3 0.8
T3 0.8 0.1 1.0 0.2

(a)

A B
ω1 ω2 ω1 ω2

T1 m11(ω1) = 0.3 m21(ω2) = 0.7 m31(ω1) = 0.1 m41(ω2) = 0.8
m11(Ω) = 0.7 m21(Ω) = 0.3 m31(Ω) = 0.9 m41(Ω) = 0.2

T2 m12(ω1) = 0.5 m22(ω2) = 0.2 m32(ω1) = 0.3 m42(ω2) = 0.8
m12(Ω) = 0.5 m22(Ω) = 0.8 m32(Ω) = 0.7 m42(Ω) = 0.2

T3 m11(ω1) = 0.8 m21(ω2) = 0.1 m31(ω1) = 1.0 m41(ω2) = 0.2
m11(Ω) = 0.2 m21(Ω) = 0.9 m31(Ω) = 0 m41(Ω) = 0.8

(b)
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