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Abstract. Case Base Maintenance (CBM) presents one of the key fac-
tors success for Case Based Reasoning (CBR) systems. Thence, several
CBM policies are proposed to improve their problem-solving performance
and competence. However, to the best of our knowledge, all of them
are not able to make use of prior knowledge which can be offered by
domain experts, especially that CBR is widely applied in real-life do-
mains. For instance, given symptoms of two different cases in medicine
area, the doctor can affirm that these two cases should never follow the
same treatment, or conversely. This kind of prior knowledge is presented
in form of Cannot-Link and Must-link constraints. In addition, most of
them cannot manage uncertainty in cases during CBM. To overcome this
shortcoming, we propose, in this paper, a CBM policy that handles con-
straints to exploit experts’ knowledge during case base learning along
with managing uncertainty using the belief function theory. This new
CBM approach consists mainly in noisy and redundant cases deletion.

1 Introduction

Case Based Reasoning is a methodology for reasoning through adapting previ-
ous experiences to solve new problems. Each success solving operation will be
retained for future learning, where an incremental aspect characterizes the case
bases evolution [1]. As CBR systems are widely applied within real-life domains,
and as they are designed to work over long time frames, the Case Base Main-
tenance (CBM) becomes a fundamental task to guarantee their success. In fact,
CBM has been defined as the field that cares on implementing policies that aim
to reach a particular set of performance objectives through revising the content
and the organization of case bases [2]. Indeed, we note a great interest within
current research that addresses issues for growing case bases. For instance, CBM
policies may be divided into two strategies, even to the optimization strategy
where the deletion is done after optimizing a given evaluation criterion, or to
the partition strategy which allows to treat a set of small case bases indepen-
dently. In the latter strategy, uncertainty about the membership of cases to the
different classes (clusters) have also been handled [3][4]. However, these CBM
policies are not offering the possibility to exploit background knowledge which
can be provided by an expert of domain in which the CBR system is deployed.
Therefore, we aim, in this paper, to propose a new CBM approach based on
an evidential clustering to manage uncertainty about the membership of cases.



2

Moreover, this approach handles extra-information for cases clustering presented
in the form of two types of constraints [5]: Must-link constraints which specify
that two cases have the same solution and Cannot-link constraints which specify
that two solutions cannot belong to the same cluster. To do, we used then the
Constrained Evidential C-Means algorithm (CECM) [6]. The remainder of this
paper is organized as follows. Section 2 reviews briefly some CBM approaches
based on clustering techniques. Section 3 describes the used constrained eviden-
tial clustering technique called CECM. Our new CBM approach will be detailed
in Section 4. Throughout Section 5, we discuss experimental settings, the pair-
wise constraints generation, testing strategy, and results.

2 Clustering-based CBM policies

Intuitively, when addressing the problem of maintaining a large case base, its
decomposition into a number of related closely cases groups appears to be a
good solution for their maintenance. Indeed, clustering techniques have been well
applied within CBR since the notions of neighborhood and distances between
cases are well presented. Actually, there are several works in this way. However,
during the rest of this Section, two of them which handle uncertainty regarding
the membership of cases to different clusters will be reviewed. The first one is
called SCBM noting ”Soft case base maintenance method based on competence
model” which groups cases within the frame of fuzzy sets theory [7]. Then, it tries
to detect the right case types to be removed without decreasing the competence
of the CBR system. The second policy is named ECTD for ”Evidential Clustering
and case Types Detection for case base maintenance” which is more able to
manage uncertainty using the belief function theory [8][9]. First, ECTD applies
ECM [10] algorithm to group cases and obtain the credal partition of cases along
with the different clusters centers. Then, it reasons on the way of detecting
four types of cases in order to be able at the end to eliminate noisiness and
redundancy. However, techniques used inside these methods do not allow to
make use of the background knowledge that helps to guide to the best solution.
For this paper, we consider prior knowledge in form of Must-link and Cannot-link
constraints. To do, we apply on the case base a constrained evidential clustering
technique as presented in the following Section.

3 Constrained evidential clustering technique: CECM

When dealing with clustering-based CBM policies, it is gainful to express prior
knowledge in form of instance level constraints as indicated in the Introduction.
In what follows, we will present CECM through its constraints expression and
work standard.

3.1 Constraints expression by CECM

Let two objects oi and oj and their associated mass functions mi and mj . The
mass function mi×j regarding their joint class membership may be calculated in
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the Cartesian product Ω2 = Ω×Ω, as the combination between mi and mj [11]
such that:

mi×j(A×B) = mi(A) mj(B) , A,B ⊆ Ω,A 6= ∅, B 6= ∅ (1a)

mi×j(∅) = mi(∅) +mj(∅)−mj(∅) mj(∅) (1b)

Let the subset θ = {(ω1, ω1), (ω2, ω2), ..., (ωc, ωc)} in Ω2 (where c is the number
of classes) presents the event ”The pair of objects oi and oj belong to the same
class”. Therefore, after calculating the plausibility pli×j from mi×j , the value
pli×j(θ) = 0 corresponds to a Cannot-link constraint (C) between oi and oj and
the value pli×j(θ) = 0 corresponds to a Must-link constraint (M) between oi

and oj .

3.2 Objective function and Optimization of CECM

First of all, let mention that CECM [6] is a variant of ECM [10] algorithm
(noisiness is assigned to the empty set partition). The principle of both of them
during the evidential clustering is to minimize an objective function in order to
maximize distances between objects belonging to different classes and minimizing
those belonging to the same one. The objective function for ECM algorithm is
defined such that:

JECM (M,V ) =
1

2cn
[

n∑
i=1

∑
Ak 6=∅

|Ak|αmβ
ikd

2
ik +

n∑
i=1

ρ2mβ
i∅ ] (2)

subject to: ∑
j/Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1 ∀i = 1, .., n (3)

where M represents the credal partition of n objects to c clusters, V presents
2c clusters centers, dij represents a given distance between oi and oj , ρ and
β are two parameters to treat noisy objects, and the coefficient α controls the
penalization of degree’s allocation to subsets with high cardinality.

CECM algorithm shares the same standard of ECM with an additional re-
quirement that pli×j(θ) (respectively pli×j(θ)) should be as low as possible if
(oi,oj) ∈ C (respectively (oi,oj) ∈M). Consequently, its objective function to
be minimized is defined such that:

JCECM (M,V ) = (1− ξ)JECM (M,V ) + ξJCONST (4)

where the parameter ξ controls the balance between constraints and geometrical
model, and JCONST , which indicates C and M violating cost, is defined such
that:

JCONST =
1

|M|+ |C|
[

∑
(oi,oj)∈M

pli×j(θ) +
∑

(oi,oj)∈C

pli×j(θ) ] (5)

To minimize Equation 4, an alternate optimization scheme has been proposed in
[6] aiming to fix the partition matrix M and the centroid matrix V . Furthermore,
CECM with adaptive metric (Mahalanobis distance) is proposed to support
arbitrary shapes of clusters. More details of optimization will be found on [6].
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4 Maintaining case bases through Constrained Evidential
Clustering and case Types Detection (CECTD)

In this Section, we present the different steps of our CBM approach. To build our
case base maintainer, our method applies the constrained evidential clustering
analysis, detects cases that should be eliminated from the case base, and performs
the maintenance.

4.1 Case bases clustering with background knowledge

First, we perform on case bases the CECM constrained evidential clustering as
presented in Section 3, where each object is considered as a case and its class
presents the solution part of that case. The background knowledge is presented
as case-level constraints. Actually, CECM algorithm manages uncertainty by
offering clusters centers along with the credal partition which provides the belief
degree of cases membership to the different partitions. These two outputs are
the source of case types detection strategy.

4.2 Case types detection

Several works on the CBM field divide cases into different types according to
their role towards to whole case base or their competence for other problems
resolution. In this paper, we classify cases into four types [4][3] such that:

– Noisy cases: They present a distortion of values and cannot be correctly
classified in any one of clusters.

– Similar cases: They present a number of cases which are so close that they
are considered as redundant.

– Isolated cases: They are dissimilar and situated in clusters borders.
– Internal cases: They present the center of each group of similar case.

Detect Noisy cases Since CECM algorithm allocates a high belief’s degree to
the empty set for noisy cases, we propose, as in [4], to detect them such that:

xi ∈ NC iff mi(∅) >
∑

Aj⊆Ω,Aj 6=∅

mi(Aj) (6)

where xi presents one case and NC represents the set of all the Noisy cases.

Distinguish between Similar and isolated cases Let c clusters are obtained
after cases clustering step. Logically, the majority of cases are situated in the core
of each cluster (Similar cases). However, we find some cases which are isolated
and far somehow to the cluster’s center (Isolated cases). To distinguish between
these two types, we compare cluster-case distance to a given threshold (Thk)
which has been defined as the mean of all cases distances to a given cluster’s
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Threshold of 
BMDs

Fig. 1. Distinguish between similar and isolated cases within a cluster using a threshold

center (see Figure 1). To calculate the distance between a case and cluster’s
center, we chose to use the following Belief Mahalanobis Distance (BMD) [4]:

BMD(xi,vk) =
√

(xi − vk)TΣ−1k (xi − vk) (7)

where vk is the kth cluster’s center generated by CECM, and Σk presents the
Belief Covariance Matrix which has been presented in [6] as follows:

Σk =

n∑
i=1

∑
Aj3wk,Aj⊆Ω

m2
ij |Aj |α−1(xi − vj)(xi − vj)T (8)

where k is the cluster’s number with k = 1, .., c, mij and vj are respectively the
credal partition and their prototypes defined by CECM.

Ultimately, we distinguish between Similar and Isolated cases such that:

xi ∈
{
SCk if ∃k/BMD(xi,vk) < Thk
IsC Otherwise

(9)

where SCk is the set of similar cases, IsC is the set of Isolated ones and the
threshold Thk is defined such that:

Thk =

∑
xi /∈NC BMD(xi,vk)

#TotalCases−#NoisyCases
(10)

Flag Internal cases From each group of Similar cases, we have to flag an
internal case as a representative for covering all of them. Hence, we choose to
detect this case as the closest one to each cluster’s center using BMD. Hence,
they can be formally defined such that:

xi ∈ InC iff ∃k;¬∃xj/BMD(xj ,vk) < BMD(xi,vk) (11)

where xi and xj are two cases, and InC represents the set of Internal cases.

4.3 Case base maintenance

While maintenance, we aim to remove cases that are dispensable or distorting the
problem-solving process. Through this idea, we remove cases detected as Similar
in order to eliminate redundancy and improve performance, as well as Noisy
cases so as to improve the competence of CBR systems in problem resolution.
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5 Experimental study using artificial constraints

During this Section, we aim to differently generate the pairwise Must-link and
Cannot-link constraints, as well as to validate our new CBM method benefit.

5.1 Experimental setting

Our new CBM approach has been developed using R-3.3.2 and it is tested on a
number of numeric case bases from UCI Repository which are described in Table
1 by their references, number of attributes, size, number of classes and their
classes distribution. While developing, default values are taken for the CECM
parameters, and the number of clusters and classes were equally taken. Besides,
we used CECM with adaptive metric to consider arbitrary clusters’ shape.

Table 1. UCI data sets used in our experimental study

Case base Reference Attributes Instances Classes Class distribution

Sonar SN 60 208 2 97/111
Ionosphere IO 34 351 2 226/125
Heberman HB 3 306 2 225/81
Seeds SD 7 210 3 70/70/70
Mammographic MM 6 961 2 516/445
Banknote authentication BA 5 1372 2 762/610

5.2 Pairwise constraints generation

The aim of this subsection is to implement two different ways for artificially-
generating constraints in conjunction with experiments applied on our method.
The idea consists in randomly picking two cases. If they are classified with high
degree of certainty (mi(A) > 0.5 with A is a singleton partition), we generate
a constraint through their solution (If they have the same solution, we create a
Must-link constraint, otherwise we generate a Cannot-Link constraint). There-
fore, we perform the following two ways:

– Batch constraints generation (CECTDbat): Apply ECM algorithm (CECM
without constraint), generate a number of constraints equal to 10% of the
case base size. Then, apply our CECTD method.

– Alternate constraints generation (CECTDalt): Within the first step of our
method, we alternate between running CECM and generating randomly one
constraint having high degree of certainty, until reaching 10% of constraints.

5.3 Maintenance testing strategy

To measure the effectiveness of our maintaining method, we track the following
testing strategy. Each case base is divided into Training set (Tr) and Test set
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(Ts), and we apply our maintaining method on Tr to obtain a modified Training
set (T ′r). Then, we compute three evaluation criteria as follows:

1. Classify Ts from T ′r using 1-Nearest Neighbor algorithm. Therefore, the clas-
sification accuracy to measure the performance is calculated such that:

PCC(%) =
# correct classifications on Ts

size of Ts
× 100

2. Measure the Retrieval Time (RT ) as the time spent to classify all cases’
instances in Tr using 1-NN.

3. Calculate the storage size as the data Retention Rate (RR) of Tr comparing
to T ′r as follows:

RR (%) =
size of T ′r
size of Tr

× 100

The final estimation of each evaluation criterion is obtained by averaging ten
trials values using 10-Folds cross validation technique.

5.4 Experimental results

According to the evaluation criteria mentioned above, we compare our method
with its two different ways to generate constraints (CECTDbat and CECTDalt)
to the Initial case base (ICBR) as well as to ECTD method [4]. Results are
therefore shown in Tables 2 and 3. Obviously, we tolerate some degradation
in accuracy after maintenance at the aim of accelerating cases retrieving task
and improving CBR systems performance. Nevertheless, Table 2 shows some
improvements in accuracy especially with the alternate version of our approach.
For instance, it moves from 80.78% to 82.10% after applying CECTDalt. In
parallel, Table 3 presents, in term of cases retention rate and retrieval time,
how our approach can notably boost CBR systems. Herein, we note that we
were able to reduce more than half of all case bases. For example, ”Heberman”
dataset were reduced by CECTDalt until almost quarter. Moreover, even with
using 1-NN for classification, we clearly note the improvement of retrieval time
values particularly comparing to the Initial non-maintained case base, where all
of them move from about 0.1 s to about 0.001 s.

Table 2. Accuracy evaluation (%)

Case bases ICBR ECTD CECTDbat CECTDalt

SN 80.78 68.31 79.78 82.10
IO 85.47 79.45 85.00 84.90
HB 72.88 67.23 70.85 72.88
SD 90.00 83.16 88.70 90.18
MM 79.81 72.13 80.01 79.92
BA 99.12 86.40 88.97 95.14
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Table 3. Data Retention Rate (%) and Retrival Time (s) evaluation

CB ICBR ECTD CECTDbat CECTDalt

RR RT RR RT RR RT RR RT

SN 100 0.1003 48.98 0.0021 48.50 0.0026 46.51 0.0020
IO 100 0.0094 37.04 0.0017 35.36 0.0017 33.89 0.0015
HB 100 0.0993 29.72 0.0027 34.52 0.0021 28.14 0.0019
SD 100 0.0911 44.13 0.0023 45.77 0.0018 43.98 0.0016
MM 100 0.0852 26.23 0.0014 39.57 0.0016 40.02 0.0022
BA 100 0.1033 31.82 0.0026 44.54 0.0036 39.15 0.0027

6 Conclusion

Aiming at the performance and learning capability issues that the growing scale
of CBR case bases brings, a new CBM approach based on a constrained evi-
dential clustering technique has been developed, in this paper, using two ways
for constraints generation with managing uncertainty. Better results are offered,
during experiments, when generating constraints one by one alternatively with
running CECM.

References

1. A. Aamodt, E. Plaza. Case-based reasoning: Foundational issues, methodological
variations, and system approaches. In AI communications (IOS press, 1994), pp.
39-59.

2. D. C. Wilson, D. B. Leake. Maintaining case-based reasoners: Dimensions and di-
rections. In Computational Intelligence (2001), pp. 196-213.

3. A. Smiti, Z. Elouedi. SCBM: soft case base maintenance method based on
competence model. In Journal of Computational Science (Elsevier, 2017), DOI:
10.1016/j.jocs.2017.09.013.

4. S. Ben Ayed, Z. Elouedi, E. Lefevre. ECTD: Evidential Clustering and case Types
Detection for case base maintenance. In International Conference on Computer Sys-
tems and Applications (IEEE, 2017), pp. 1462-1469.

5. K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering
with background knowledge. In Proceedings of the Eighteenth International Confer-
ence on Machine Learning (2001), pp. 577-584.

6. V. Antoine, B. Quost, M. Masson, T. Denoeux. CECM: Constrained evidential C-
means algorithm. Computational Statistics & Data Analysis (Elsevier, 2012), pp.
894-914.

7. L.A. Zadeh. Fuzzy sets. Information and control 8, pages 338-353, 1965.
8. G. Shafer. A mathematical theory of evidence. In Princeton university press (Prince-

ton university press, 1976).
9. A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping.

In The annals of mathematical statistics (1967), pp. 325-339.
10. M. H. Masson and T. Denoeux. ECM: An evidential version of the fuzzy c-means

algorithm. Pattern Recognition 41 (2008), pp. 1384-1397.
11. P. Smets, R. Kennes. The transferable belief model. Artificial Intelligence (1994),

pp. 191-234.


