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Abstract
Social networks are large systems that depict linkage between millions of social entities. The study of their patterning and evolving
is one of the major research areas in social network analysis and network mining. It includes the prediction of future associations
between unlinked nodes, known as the link prediction problem. Traditional methods are designed to deal with social networks under
a certain framework. Yet, data of such networks are usually noisy, missing and prone to observation errors causing distortions and
likely inaccurate results. This paper addresses the link prediction problem under the uncertain framework of the belief function
theory, an appealing framework for reasoning under uncertainty that permits to represent, quantify and manage imperfect evidence.
Firstly, a new graph based model for social networks that handles uncertainties in links’ structures is introduced. Secondly, a
novel method for the prediction of new links that makes use of the belief functions tools is proposed. It takes advantage of both
neighborhood and common groups information in social networks in order to predict new connections. The performance of the new
method is validated on real world social networks. Experiments show that our approach performs better than traditional methods
based on structural information.

Keywords: Social network analysis; evidential social network; uncertain link prediction; belief function theory; structural
information; social circle information

1. Introduction

Social networks are highly dynamic structures that alter quickly over time by the creation of new links. Under-

standing the processes by which these systems evolve offers a new level of perception of the mechanisms that underlie

social networks [1]. Link prediction is a research field in social network analysis that studies the changes of social

networks structures. It is an efficient tool to examine the uncertainty and potential connections between unlinked

actors.

Link prediction has been drawing the attention of researchers from different domains. The task is to evaluate

the potential existence of a link between nonadjacent nodes given a state of the network. Link prediction conducts

research in various fields generally related, but not restricted, to computer science, such as recommender systems to
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suggest new friends or common interests [2], bioinformatics in the study of protein-protein interaction networks [3]

or link analysis and mining [4] for identifying hidden or missing criminals in terrorist networks [5].

It is a well known fact that the structure of social networks highly depends on the precise nature of the data.

These latter are often missing and noisy [6, 7] (i.e., missing nodes and/or edges). They are also frequently prone

to observation errors which causes distortions. A possible reason is the unreliability of the sources employed for

the construction of the network (i.e., open source intelligence, human intelligence) [8]. In many cases, one has to

deal with two major problems: consider all the nodes and edges and risk the possibility of adding false ones in the

network or delete the uncertain ones and face the problem of missing nodes and edges [9]. On that point, incorporating

uncertainty in the structure and analysis of social networks is expected to be crucial.

In recent years, a wide variety of methods have been proposed to address the LP problem. Yet, most of them

handle social networks under a certain framework where the links take binary values, either 1 (exist) or 0 (¬ exist).

Nevertheless, a possible way to represent an uncertain network is to assign weights with values in [0, 1] to encrypt

the uncertainty degrees [8]. The authors in [6] pointed out the shifting degrees of uncertainty characterizing real

world large-scale data. They outlined the importance of handling uncertainty in network data which is argued to be

more substantial for social networks on account of their large structures. Actually, depiction of uncertainty in social

networks has not been addressed in sociology and other fields literature. Traditional analysis focused on interactions

in small groups since obtaining large datasets was difficult. Yet, the emergence of online networking and modern

database technology allowed to get a great deal of data which stimulated the study of the characteristics of these

networks. However, little interest has been dedicated to the examination of their uncertain aspects [10].

The belief function theory also called the Dempster-Shafer theory was first introduced by Dempster [11] in the

context of statistical inference then generalized by Shafer [12] as a theory for reasoning under uncertainty. It is an

appealing framework considered as a generalization of Bayesian theory. More importantly, it permits to quantify,

manage and represent imperfect evidence. Furthermore, it enables combining information from different sources and

make decision. We suggest to make use of the belief function theory assets to introduce a new graph-based model

for social networks that handles uncertainty at the level of the edges. Additionally, we develop a fruitful approach

for LP that operates under uncertainty. Links with and without prior knowledge are considered in the prediction task,

information from the common neighbors and shared groups is acquired and whole process of transfer, matching and

fusion is applied to get an outlook on the potential new links. Additionally, a new technique for the generation of

uncertain social networks is presented.

All in all, the main contributions of this work are as follows:

- The formulation of the problem of link prediction in social networks under the uncertain framework of the belief

function theory.

- The development of a graph-based model for social networks that handles uncertainty at the edges level encoded

by mass functions.

- The design of a novel framework for link prediction based on our graph model for uncertain social networks that
2
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operates merely with the belief function theory tools.

- The implementation of two algorithms for link prediction according to two strategies: with and without prior

knowledge about the links existence.

- Experiments on real life social networks datasets to evaluate the effectiveness of our proposals.

The remaining of the paper is organized as follows: Section 2 summarizes the related work on the LP problem.

Section 3 provides some basic knowledge about the belief function theory. Section 4 presents the new framework for

LP under uncertainty. Firstly, the new model for uncertain social network is introduced. Then, the proposed algorithms

are presented through a detailed description of the individual steps. Section 5 gives the experimental setting and the

results. Finally, Section 6 concludes the paper and draws future research directions.

2. Related work on link prediction

Link prediction is becoming increasingly important in many fields such as link analysis, information retrieval and

network evolution [13]. In social networks, it is used to predict relationships to be formed, uncover relationships

that probably exist but have not been observed, or even to assist individuals in forming new connections [14]. In this

section, we formulate the link prediction problem and briefly review some exiting approaches. Then, we give some

challenges and present our proposals.

2.1. Problem definition

The most straightforward definition of link prediction is the determination of the likelihood of new associations.

In formal terms, given a current snapshot of a social network graph G(V, E) where V is the set of nodes representing

the social entities and E is the set of edges encoding social relations. The task is to predict potential future or missing

edges according to the considered state of the graph. In fact, when the objective is to predict future links, one should

consider a snapshot of the graph at time t and try to determine the likelihood of links’ existence at time t + 1. In

contrast, to predict missing links, one should consider a state of the graph at time t and try to infer the links that may

existed at time t − 1. They may be unobservable or missing from the data [15]. Yet, to predict future links, one has

to consider data with time information regarding the links formulation. However, such data are not usually available.

Thus, most methods test LP algorithms on static data where the network is built on the basis of the observable data,

then extra links that are not visible but are likely to exist are derived [16].

2.2. Existing methods

Most LP approaches assign weights to links according to the nodes properties. These weights represent computed

scores based on the query network. Decision about new links existence is made by ranking the highest L scores, where

L is a parameter fixed by the user. Various approaches apply directly this intuition to tackle LP. Meanwhile, another

group of methods use the similarity score as features for supervised learning. Other methods use latent models to

tackle LP. A brief survey of the latter approaches is presented in the following paragraphs.
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Structural features. Structural based approaches can be categorized into two main families: local methods and global

methods [17]. The first family compute metrics based on structural similarities between the nodes’ characteristics.

For example, the number of common neighbors between a pair of nodes. The second family uses nodes’ proximity

in the network, metrics based on the ensemble of paths are employed to detect the closest nodes. Generally, global

methods operate better than the local ones [17]. However, some paths based metrics are time consuming because they

use the topological information of the whole network which is not always available. Besides, an important aspect that

characterizes social networks is not treated which is the participation of actors in the social groups (clusters, circles).

As a matter of fact, in many social networks, users are involved in many social groups at the same time. Thus, methods

that use both local and social circles information have been proposed [18, 19, 20, 21].

Supervised learning. Many supervised learning based approaches use similarity measures as features to tackle the LP

problem. For instance, LP is formulated as a binary classification task, a set of features based on the nodes’ similarities

is selected [22]. In [23], the authors used network motifs as a structural feature under supervised learning to predict

new links. The authors in [24] addressed LP using classification models to learn the dynamics of social networks using

auxiliary networks. In [25], a supervised learning strategy for link prediction is developed using structural metrics

as features. In [26], supervised learning is applied to LP using different features such as community information,

connectivity, interaction and trust information. Other works extract the essential attributes of nodes and edges and use

them as features [27]. However, such information are not generic and choosing the appropriate features can be critical

since it depends on the network domain. Besides, node attributes are not usually available in data due to privacy and

confidentiality issues. Although, the use of supervised learning allows to benefit of all the advantages of classification,

there are three main challenges to be considered: (1) the choice of the appropriate classification algorithm, (2) the

suitable combination of features to be considered in learning classifier (3) and handling the class imbalance problem.

Latent models. This group of methods use probabilities to assess the likelihood of links existence [28, 29] where a

class is assigned to each node of the network. Latent methods assume a particular arrangement principles of the struc-

ture of the network, along with some detailed rules and particular parameters retrieved by maximizing the likelihood

of the observed structure. Then, the likelihood of query link is evaluated according to these rules and parameters.

They use generally Bayesian probabilistic models, they learn probabilities of the classes by fixing appropriate priors

probabilities and adjust them later to estimate the likelihood of co-occurrence of the nodes pairs [28, 29]. For example,

in [30], the authors extended matrix factorization and combined latent features with nodes and edges explicit features

to predict new links. The authors in [29] addressed link prediction using a local probabilistic model based on Markov

Random Field [31], an undirected graphical model. To evaluate the likelihood a new link between connecting u and

v, a central neighborhood set based on other nodes that are present in the local neighborhood of u or v is computed.

The authors in [32] proposed stochastic relational models based on Gaussian process models for LP. Yet, latent mod-

els based methods suffer from high complexity costs du to matrix decomposition, factor matrices and latent features

learning which makes such algorithms intractable for large networks.
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2.3. Challenges

There are several challenges when dealing with the link prediction problem. The main challenge consists at the

rapid growth and evolution of online social networks such as Facebook, Twitter, Flickr, and so on. They are highly

dynamic and evolve continuously. That is, effective direct approaches are mandatory to address these constraints

[27]. Besides, the cold start problem is a big challenge of LP. It is the problem of not having sufficient initial link

structure for training the link prediction task [33]. This problem is especially encountered when the size of network

is very small or we do not have any information about the structure of the links. It is also encountered when treating

coupled networks, where the task is to predict the links in a network that we have no information except that is it

interacting with another known one [34]. Incompletion is another faced challenge while predicting links in online

social networks. Actually, almost all social network data contain missing values [35]. This is due to anonymization

and privacy preservation concerns. As a result, only part of the data is collected.

2.4. Structural similarity measures

Our proposals draw on structural based models. More specifically, on the intuition of the methods that use local

and group metrics. This category of methods is the most basic. Practically, traditional methods use the graph feature

measures. One of the most inherent reason is that several similarity score are very easy and simple to compute,

especially the local structural metrics [36]. Besides, they are generic since they are related to the graph topology and

not to its domain. To this end, we recall, in the following, fundamental definitions of popular state of the art structural

local measures and group information scores essential for the understanding of our algorithms.

Local information based measures. Among the well known structural local measures is the “Common Neighbors”

[37], denoted by CN(u, v). It gives the number of common neighbors shared between a pair of two nodes u and v in

the social network. Let τ(u) denotes the set of neighbors of a node u. The Common Neighbors measure is defined as:

CNuv = |τ(u) ∩ τ(v)|. (1)

Suppose that the graph presented in Figure 1 is a social network. The set of nodes is {t, u, v,w, x, y, z}. Consider

the nodes u and v. The set of neighbors of u is τ(u) = {t, x, y, z} and the set of neighbors of v is τ(v) = {t,w, x, y, z}.

Hence, the set of common neighbors of the pair (u, v) is {t, x, y, z}. Thus, CNuv = 4.

Another commonly used measure is the Jaccard Coefficient [38] denoted by JC. It accounts all the neighbors of u

and v. It is defined as follows:

JCuv =
|τ(u) ∩ τ(v)|
|τ(u) ∪ τ(v)|

. (2)

For example, the Jaccard Coefficient of the nodes u and v presented in Figure 1 is JCuv = 4
5 .

The Adamic/Adar measure denoted by AAuv weights the intake of each common neighbor x by the inverse of its

degree, it is defined as:

AAuv =
∑

x∈(τ(u)∩τ(v))

1
log|τ(x)|

. (3)
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The Adamic/Adar score of the nodes u and v from Figure 1 is computed as follows: AAuv = 1
log|τ(x)| + 1

log|τ(y)| +

1
log|τ(z)| +

1
log|τ(t)| = 4.51.

Preferential Attachment [37], denoted by PA, speculates that a new link has probability proportional to |τ(u)| to

connect to u. Thus, the preferential attachment of u and v is proportional to the number of neighbors of u and v. It is

computed as follows:

PAuv = |τ(u)| · |τ(v)| (4)

For example PAuv (Figure 1) is computed as follows: PAuv = |τ(u)| · |τ(v)| = 20.

Resource Allocation [39], denoted by RA, is based on the resource allocation process of networks. Common

neighbors of two unlinked nodes u and v are considered as transmitters of resources where each one provides a unit

so that u sends some resource to v. It is computed as follows:

RA(u, v) =
∑

z∈(τ(u)∩τ(v))

1
|τ(z)|

(5)

For example RAuv (Figure 1) is: RAuv =
∑

z∈(τ(u)∩τ(v))
1
|τ(z)| = 1, 58.

The Sørensen index [40] is used generally for ecological community data. It is defined as:

S ørensenuv =
2|τ(u) ∩ τ(v)|
|τ(u)| + |τ(v)|

. (6)

The Sørensen score of u and v from Figure 1 is computed as follows: S ørensenuv =
2|τ(u)∩τ(v)|
|τ(u)|+|τ(v)| = 8

9 .

Salton Index [41] is defined as follows:

S altonuv =
|τ(u) ∩ τ(v)|
√
|τ(u)| × |τ(v)|

. (7)

The Salton score of u and v is computed as follows: S altonuv =
|τ(u)∩τ(v)|
√
|τ(u)|×|τ(v)|

= 0, 89.

y
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u x

v
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C2

t
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Figure 1: A social network with social circles. The dashed circles cluster nodes belonging to the same social group i.e., y and u belong to the circle

C1 represented by the dashed red circle.
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Group information based measures. Group information based measures include the Common Neighbors of Groups

(CNG) and Common Neighbors Within and Outside of Common Groups (WOCG) [20]. Let ΛC
uv denotes the set of

common neighbors of the pair (u, v) that belong to the social circle C. The CNG describes the size of the set of

common neighbors of (u, v) that belong to at least one group C to which u or v is part of. It is defined as:

CNGuv = |ΛC
uv|. (8)

Suppose that the dashed circles C1,C2, C3 and C4 in the graph presented in Figure 1 describe social groups. The

node u belongs to the groups C1 and C2 and the node v is member of the groups C2 and C3. The set of common

neighbors of groups of the pair (u, v) is Λuv = {x, y, z}. The common neighbor p is not considered since it belongs to

the group C4 which u and v are not part of. Thus, CNG(u, v) = |{x, y, z}| = 3.

Let Λuv = ΛWCG
uv ∪ΛOCG

uv be the set of common neighbors of groups of (u, v) such that ΛWCG
uv is the set of common

neighbors within common groups (WCG) and ΛOCG
uv is the set of common neighbors outside the common groups

(OCG). The WOCG measure is defined as:

WOCGuv =
|ΛWCG

uv |

|ΛOCG
uv |

. (9)

For example, the set of common neighbors within common groups of the pair of nodes (u, v) from Figure 1 is ΛWCG
uv =

{x} while the common neighbors outside the common groups is the set ΛOCG
uv = {y, z}. Hence, WOCGuv = 1

2 .

Both information of the nodes’ neighborhoods and groups are considered in our proposals. We draw on structural

local measures since these latter are simple to compute and they have proven their efficiency in many previous works

[1, 36, 37].

While the above presented measures (local and group information based) are simple and effective [42], they do

not take uncertainty into account. Therefore, in order to handle and manage imperfect social data, the belief function

theory is embraced as a framework for reasoning under uncertainty. Mathematical notations and concepts of the belief

function theory fundamental for the understanding of our proposals are given in the next section.

3. The uncertain framework of belief functions

The belief function theory [11, 12], is a suitable theory to represent and manage imperfect knowledge. It permits

to handle uncertainty and imprecision in data and manage it in a flexible way. Assume the frame of discernment Θ,

an exhaustive and finite set of mutually exclusive events associated to a given problem, and let 2Θ denote the set of all

subsets of Θ. Knowledge in the belief function theory is modeled by a basic belief assignment (bba), denoted by m, it

is defined as follows:

m : 2Θ → [0, 1]∑
A⊆Θ

m(A) = 1. (10)

A is called a focal element if m(A) > 0.
7
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As a special case of bba’s, evidence on the frame of discernment is only committed to a particular subset A and Θ.

Such a mass function is called a simple support function (ss f ). It is defined as [43]:
m(A) = 1 − ω,∀A ⊂ Θ

m(Θ) = ω.

(11)

Reliability of the sources of evidence is an important parameter that needs to be considered. When it is quantified,

the bba may be weakened before the combination on Θ. For that, a discounting mechanism can be applied [12]:
αm(A) = (1 − α)m(A),∀A ⊂ Θ

αm(Θ) = α + (1 − α)m(Θ).
(12)

where α ∈ [0, 1] is the discount rate.

Evidence given by two reliable and distinct sources of information is combined using the conjunctive rule of

combination denoted by ∩©. It is defined as [44]:

m1 ∩©m2(A) =
∑

B,C⊆Θ:B∩C=A

m1(B) · m2(C). (13)

Furthermore, in order to combine two mass functions m1 and m2 defined on two disjoint frames Θ and Ω, we need

to work under a unified frame. For that, the bba’s are extended to the product space Θ×Ω. Then the vacuous extension

operation, denoted by ↑, is applied. It is defined by:

mΘ↑Θ×Ω(C) =


mΘ(A) if C = A ×Ω, A ⊆ Θ,C ⊆ Θ ×Ω

0 otherwise.
(14)

To define the relation between two different frames of discernment Θ and Ω, the multi-valued mapping may be

used [11]. In formal terms, a multi-valued mapping function denoted by ϕ, joins the subsets Xi ⊆ Ω that can possibly

correspond to Ai ⊆ Θ:

mϕ(Ai) =
∑

ϕ(Xi)=Ai

m(Xi). (15)

To make decisions within the theory of belief functions, one may use the pignistic probability measure denoted by

BetP [45]:

BetP(A) =
∑
B⊆Θ

|A ∩ B|
|B|

m(B)
(1 − m(∅))

,∀A ∈ Θ. (16)

4. The evidential link prediction framework

In this section, we start by introducing our evidential graph model for uncertain social networks. Then, we

present our algorithms for link prediction under uncertainty which extends state of the art methods and incorporates

uncertainty at the same time.

8
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4.1. The model: Evidential social network

A social network is commonly modeled by a graph G = (V, E) where V is the set of nodes and E is the set of links.

Yet, such conceptualization does not consider uncertainty that results from imperfect data or unreliability of the tools

used for the construction of the network. In this respect, we suggest to encode the uncertainty degrees on the edges

level by adopting the belief function theory [46, 47]. Each edge uv has assigned a basic belief assignment denoted

by muv defined on Θuv = {Euv,¬Euv}, Euv depicts the event that the link between u and v exists and ¬Euv means that

it is absent. Thus, this bba describes the degree of uncertainty regarding the existence and absence of uv. Hence,

instead of having links with weights that can be either 1 or 0 to show whether or not a link does exist, a mass function

with values in [0, 1] that quantifies the degree of uncertainty regarding a link existence is ascribed. Figure 2 gives an

example of such a social network graph structure. The dashed circles indicate the social groups to which the users

belong. The links are weighted by bba’s. For example, mad is the mass function that encodes the uncertainty degree

regarding the existence of an association between nodes a and d. A node may join to multiple circles i.e., the node d

participates to the three groups Group1, Group2 and Group3.

Figure 2: An evidential social network with social groups

4.2. Methodology: Evidential link prediction (ELP) algorithms

Node neighborhood and group information are coupled to forge an overall mechanism for a method that fulfills

the process of link prediction under uncertainty. In fact, local metrics are simple and generic, they have proven their

efficiency in several social network domains [37, 48]. As such, links connecting similar nodes are more likely to exist.

In turn, in many real world social networks, actors who share similar experiences or interests are more likely to share

a relationship than those that do not have common characteristics. Therefore, group information add semantic and a

better reflection of nodes linkage valuable for LP. The natural arrangement of groups in the network is used e.g., in

facebook, the memberships of users to groups of interests.

9
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On the other hand, there are two kinds of evidence regarding the edges existence: the first kind is when we are

uncertain about whether the link really exists. In this case, the edge has a bba that quantifies this uncertainty. In the

second case, we do not have any knowledge about the link existence. In other terms, the edge has not a mass function.

In fact, a preliminary work is done in [47] where we considered the case of not having any knowledge about the

edges to be predicted and we inspected the corresponding evidence. However, the effect of group memberships is not

taken into account, only structural local information is treated. In [46], we studied the case where the analyzed links

already have prior evidence, the task is to update the current knowledge depending on the graph state. In this work,

our proposed method takes into consideration these two cases. Besides, it combines local topology and social circles

membership to enhance LP.

Accordingly, our proposed problem for link prediction under uncertainty is as follows: Let Ge(Ve,Ee,Ce) be an

evidential social network where Ve = {v1, . . . , v|V |} is the set of nodes, Ee = {(viv j,mviv j ) : vi , v j,m : 2Θ
viv j
→

[0, 1], and Θviv j = {Eviv j ,¬Eviv j }} is the set of edges assigned with bba’s, and Ce = {C1, . . . ,C|C|} is the set of overlap-

ping circles. Let L be the set of analyzed links. The links in L might or not have initial bba’s. The goal is to update

or estimate the bba of query links according to whether or not there is prior information regarding their existence.

Prediction is made by considering local and group information.

The steps of the complete method for the prediction of a new link between a pair of nodes (u, v) are presented in

the following, they are grouped depending on whether or not there is prior evidence regarding uv.

4.3. Without prior knowledge

Information acquiring. For each common neighbor z, extend vacuously the frames of each link zu and zv to the joint

frame Θzu × Θzv using Equation 14. This allows to work on a unified referential. The induced bba’s from the vacuous

extension are then combined using the conjunctive rule of combination to get the masses of the possible pairs on

Θzu × Θzv.

Information transfer and fusion. To successfully transfer the obtained bba’s to the frame Θuv of uv, a multi-valued

operation, denoted by ϕ, is used applied that ϕ: Θzu × Θzv → 2Θuv
. The ϕ function (Equation 15) brings together

combination sets to the mass of uv considering the common neighbor z denoted by muv
z as follows:

- The masses of the pairs containing at least an element in {Ezv, Ezu} and not in {¬Ezv,¬Ezu} are transferred to

Euv ⊆ Θuv such that:

muv
z ({Euv}) =

∑
ϕ(S )=Euv

m(S ). (17)

- The masses of the pairs that contain at least an element in {¬Ezv,¬Ezu} and no element in {Ezv, Ezu} are transferred

to ¬Euv ⊆ Θuv as:

muv
z ({¬Euv}) =

∑
ϕ(S )=¬Euv

m(S ). (18)

10
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- The masses of the pairs including at least an element in {Ezv, Ezu} and an element in {¬Ezv,¬Ezu} are transferred to

Θuv such that:

muv
z (Θuv) =

∑
ϕ(S )=Θuv

m(S ). (19)

where S ⊆ Θzu × Θzv

To get the bba muv, the masses considering all the m common neighbors zi ∈ {z1, . . . , zm} are fused using the

conjunctive rule of combination (Equation 13) such that:

muv = muv
z1
∩©muv

z2
∩© . . . ∩©muv

zm
. (20)

This step permits to fuse the information provided by the neighboring nodes and treat them as independent sources of

evidence.

Information reviewing. Once we get a global evidence from of all the neighboring nodes, we review the resulting bba

according to whether or not the two nodes uv share a common scial circle. We accomplish this by computing the rate

of common neighbors in shared groups |ΛC
uv| with the total set of common neighbors CN, that we denote λuv defined

as:

λuv =
|ΛC

uv|

|CNuv|
. (21)

When all the common neighbors of uv belong to shared groups, λuv is equal to 1. It is equal to 0 when no common

neighbor is part of a mutual circle. We review muv using a discounting mechanism (Equation 12) such that β = 1−λuv

is the discounting rate. The discounted mass denoted by βmuv is computed as follows:
βmuv({Euv}) = (1 − β) · muv({Euv})

βmuv({¬Euv}) = (1 − β) · muv({¬Euv})

βmuv(Θuv) = β + (1 − β) · muv(Θuv)

4.4. With prior knowledge

Similarity measurement. When we have a prior evidence about uv, we compare it with each link xy included in the

common shared circles using the Euclidean distance D(uv, xy). Structural similarity measures based on local and

group information are used as features. The most similar link to uv with the smallest distance is considered in the

prediction task. The distance metric is divided by its maximum to get values in [0, 1]. It is computed as follows:

D(uv, xy) =

√∑n
i=1(si

uv − si
xy)2

Dmax
(22)

where si
uv and si

xy are the values of structural similarity metrics for respectively uv and xy and Dmax is the maximum

value of the Euclidean distance.

11
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Reliability computation. To quantify the degree of reliability of the most similar link, we apply a discounting oper-

ation (Equation 12) using the distance value as a discount coefficient denoted by α = D(uv, xy). As such, the more

alike the two links are, the more reliable the similar link is. Hence, the discounted mass denoted by αmxy is obtained

as follows: 
αmxy({Exy}) = (1 − α) · mxy({Exy})

αmxy({¬Exy}) = (1 − α) · mxy({¬Exy})

αmxy(Θxy) = α + (1 − α) · mxy(Θxy)

If there is more than one most similar link, we choose the link with the highest mass on “exist” as the degree of

certainty of its existence would be higher.

Information transfer and fusion. The discounted bba of the most similar link xy is transferred to the frame Θuv using

a multi-valued mapping γ: Θxy → 2Θuv
that brings together the elements as follows: αmxy({Exy}) is transferred to

muv
xy({Euv}), αmxy({¬Exy}) is transferred to muv

xy({¬Euv}) and αmΘxy
(Θxy) is transferred to muv

xy(Θuv). Where muv
xy denotes

the bba of uv on Θuv given the most similar link, here xy.

The next step is to update the bba of uv given the new evidence obtained from the most similar link. To do this,

the initial bba muv and muv
xy are aggregated using the conjunctive rule of combination.

4.5. Decision making

After applying one of the two strategies, one has to make a decision about the existence of the link uv on the

graph. Decision is made on the basis of the pignistic probability using Equation 16. As a matter of fact, the value

of the pignistic probability on the hypothesis “exist” BetPuv(Euv) is used as a score to evaluate the likelihood of the

existence of new links. Structural methods from literature rank query links on the basis of similarity scores values. In

the same manner, we rank the pignistic probabilities value on the hypothesis “exist” in decreasing order and cast the

top k predicted links with highest scores.

4.6. Overall summary

Both strategies of the ELP algorithms are schematically given in Figure 3. To sum up, when there is prior knowl-

edge about the link existence, our algorithms collect information from the neighboring links shared with the common

neighbors. They are considered as independent sources of information. Then, the collected evidence is pooled to

get an overall picture about the link existence. This evidence is boosted through reliability inspection according to

groups’ information. On the other hand, when there is no prior evidence about the link existence, evidence about

the link is gathered from similar links in the shared groups. The similarity is evaluated according to a distance that

exploits local and group information structural features. The most similar link represents a source of information, its

evidence is reviewed according to its degree of similarity with the query link. The new evidence is pooled with the

initial knowledge of the link to be predicted to make decision about its existence. Finally, after passing through one

12
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of the strategies, pignistic probabilities are computed to predict potential links. To sum up, our framework takes an

evidential social network as input along with a list of query edges. The analyzed links may already have assigned

bba’s or not. The ELP algorithms are subsequently applied to provide the potential existing links as the output of the

framework.

Evidential social network Query links

Information acquiring

Input

Output

ELP

Similarity measurement

Information transfert and fusion

Pieces reviewing

Decision making

Predicted links

With priori knolewdge Without priori knolewdge

Information transfert and fusion

Pieces of evidence fusion

Figure 3: The ELP framework

4.7. Complexity analysis

Analysis of computational time complexity of is essential in social networks. Our novel link prediction frame-

work is based mainly on local information methods, it considers neighboring nodes for prediction. Yet, unlike these

methods, it handles uncertainty in social data. Local information link prediction methods are known to have the low-

est computational complexity among existing approaches from literature [49]. As our framework is based on local

methods, theoretical complexity would be comparable. For the most part, it builds upon the common neighbors ap-

proach, thus it follows up the same procedure. Let N denote the number of nodes and let k be the average degree of

all nodes in the network. The theoretical complexity of the common neighbors approach (and most local methods)

is O(N.k2) [50]. Additional computational costs due to representing and managing belief masses are very low as we

handle frames of discernment with just two elements. Therefore, theoretical complexity of our proposed method is
13
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equal to O(N.k2). Such complexity is acceptable for link prediction and social network analysis applications.

5. Empirical study

To evaluate the potential benefit of the proposed ELP method, uncertain social networks are needed. Yet, data of

such networks are not available. Thus, we preprocessed real-world social networks with social circles of BlogCatalog

[51], Flickr [51] and Facebook [52]. Description of the datasets is provided in Table 1.

• BlogCatalog: a social blog directory website. The dataset incorporates a friendship network with group mem-

berships.

• Flickr: an image and video hosting website. It provides web services and online community. The dataset

contains the friendship network and the group memberships of the users.

• Facebook: a social media platform enabling users to maintain their network of real-world relationships. The

network includes social circles joining people with like-minded interests.

Table 1: Description of the datasets

Dataset #nodes #edges #groups

BlogCatalog 10,312 333,983 39

Flickr 80,513 5,899,882 195

Facebook 4,039 88,234 122

5.1. Network pre-processing

To convert the networks into evidential social networks, we undergo two steps: (1) three graphs of the network

are generated from the data (2) then mass distributions are simulated according to the presence of the links in the

generated graphs.

5.1.1. Graphs generation

At first, three graphs, that we call G0, G1 and G2, are produced from each dataset by removing randomly a portion

of the edges. This procedure is inspired from a widely technique from the literature. In fact, in several works, a portion

of the edges is pruned from the graph to be considered in the prediction process [53, 54, 55]. This graph generation

technique is applied to all the networks datasets.

14



S. Mallek et al. / Computational Science (2018) 1–21 15

5.1.2. Mass functions simulation

To create the evidential version of the social network, each link uv is valued by a bba that is simulated based on

G2, G1 and G0 as follows:

- If uv exists in G2, G1 and G0, a bba muv is created such that muv({Euv}) ∈ [2/3, 1] and muv(Θuv) = 1−muv({Euv});

- If uv exists in G2 and G0 or G1 and G0 then a bba muv is simulated such that muv({Euv}) ∈ [1/3, 2/3[, muv({¬Euv}) ∈

]0, 1/3] and muv(Θuv) = 1 − (muv({Euv}) + muv({¬Euv}));

- If uv exists only in G0 then a mass function muv is ascribed such that muv({Euv}) ∈ ]0, 1/3], muv({¬Euv}) ∈

[1/3, 2/3] and muv(Θuv) = 1 − (muv({Euv}) + muv({¬Euv}));

- If uv exists in G2 and G1 then a ss f muv is created such that muv({¬Euv}) ∈ ]1/3, 2/3] and muv(Θuv) = 1 −

muv({¬Euv});

- If uv exists only in G2 or in G1 then a ss f muv is assigned such that muv({¬Euv}) ∈ ]0, 1/3] and muv(Θuv) =

1 − muv({¬Euv}).

That is, for each dataset, we get an evidential version from the original graph to which the ELP method is applied

to predict the new links under uncertainty.

5.2. Link prediction process

In the experimental phase, the evidential link prediction approach is applied to the evidential version of each graph

G0. The masses of the edges without prior knowledge are determined on the basis of the common neighbors. Edges

with prior bba’s whose corresponding BetP’s claim their absence (i.e., the pignistic probability on the event “not

exist” is less than 50%) are compared to the links of the shared groups to update the evidence. Pignistic probabilities

are subsequently computed to make decisions about the links existence. The results are finally compared to the

initial network. In the similarity measurment step, we use local and group information scores as features to compute

distances: CN (Equation 1), JC (Equation 2), AA (Equation 3), PA (Equation 4), RA (Equation 5), Salton (Equation 7),

Sørenson (Equation 6), CNG (Equation 8) and WOCG (Equation 9).

To quantify the accuracy of prediction algorithms, we use the commonly used metrics: precision and area under

the receiver operating characteristic curve (AUC). The AUC evaluates the performance of an algorithm according

to predicted links. It depicts the likelihood of the score of an existing randomly picked link being higher than that

of A randomly chosen non-existent one. Similarity indices are computed by selecting a random existing link and a

non-existent link each time. Then, a missing link and a nonexistent link are randomly picked to compare their scores,

if among n independent comparisons, there are n′ times the missing link having a higher score and n′′ times they have

the same score, the AUC value is:

AUC =
n′ + 0.5n′′

n
(23)

Typically, a greater AUC value indicates a better performance quality.
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The precision expresses the number of correctly predicted existing links Qe versus the set of analyzed links Q. It

is defined as follows:

Precision =
Qe

Q
. (24)

5.3. Comparative study with existing methods

A comparative study is conducted with popular approaches local information approaches mostly used in the liter-

ature: CN, JC, AA, PA, RA, Salton and Sørensen. Furthermore, we test two other baseline approaches based on group

information: CNG and WOCG. For that, G0 is considered as a certain graph. In the experimental setup a random

fraction of 20% of the links is removed and is considered as the test set along with links that do not exist in the graph.

Performance is evualuated by averaging over 5 implementations with independently random divisions of the test set.

Figure 4: Comparison of link prediction methods on BlogCatalog, Facebook and Flickr networks in terms of AUC

As it can be easily seen from the figure, the best performances are achieved by our novel framework ELP. It

gives the highest results in terms of AUC for all the dataset. For BlogCatalog, our method gives by far the best

results compared to all other methods, followed by CN, then by AA and CNG, which achieve comparable results.

For Facebook, ELP achieves best predictions. Besides AA, CN and PA perform the next best with close accuracies

to our best one, while others, such as Salton, Jaccard index, Sørensen and WOCG perform far worse in the cases for

Facebook. Same observation for Flickr, ELP gives the highest AUC values. CN, AA perfom the next best accuracies,

while WOCG performs the worse. That is, our method clearly outperforms traditional methods. To top it all off, the

novel ELP algorithm is significantly better than simple traditional methods. The strength of our approach comes not

only from the use of both local and social circles information from the networks, but also from handling uncertainty

in the prediction task. Our method operates exclusively using the belief function theory tools. Evidence is adequately

collected from neighboring social entities and pooled to get an overall picture thanks to combination rules given by
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the belief function theory. Evidence can be even revised by evaluating the degree of trustworthiness of these social

entities.

Figure 5: Precision of all algorithms for BlogCatalog according to the number of predicted links L

Figure 6: Precision of all algorithms for Facebook according to the number of predicted links L
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Figure 7: Precision of all algorithms for Flickr according to the number of predicted links L

Our proposals are relevant for real world applications since they significantly reduce wrong predictions and boost

the right ones.

Figures 5, 6 and 7 report the performance results measured by precision according to the variation of the number

of predicted links L for all the methods for respectively the BlogCatalog, Facebook and Flickr networks. Precision

results are very important to evaluate link prediction algorithms as, in many cases, the main objective is to accurately

detect the real existing links. For instance, in Facebook, it is more important not to miss the real actual friends

whereas it does not really matter when unknown friends are suggested. As it is observed, the ELP approach has the

best precision results compared to state of the art methods for all the datasets. As illustrated, the precision curve of

the ELP is above the baseline approaches. That is, the method is able to predict the actual existing associations. It

clearly sticks out from these results that handling uncertainty enhances the prediction quality. Moreover, combining

measures based on both local information and social circles improves performances. One should also notice that our

method is generic as it does not count on the social network domain. That is, it can be applied to social networks from

various fields e.g., friendship networks, blog networks, dark networks, collaboration networks, etc.

6. Conclusions and future work

In this paper, we have proposed a new graph model for social networks that handles uncertainty at the edges level.

We have developed a new method social links prediction under an uncertain framework. The use of the belief function

theory enabled to quantify both the belief regarding the link existence and the uncertainty using mass functions. We
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have treated both the cases of having or not evidence about the predicted links. The neighboring nodes are considered

as independent sources of information, evidence is transferred and fused to get insight about the edges. It is then,

revised and combined to successfully predict new connections. A fruitful technique for the generation of uncertain

networks have also been proposed.

A major advantage of our method compared to the existing approaches is that it operates on uncertain social

networks. Despite that, using the belief function theory tools, all the information from the neighbors can be combined

effectively while remaining cautious about their reliability. Our algorithms can heuristically determine the potential

existing links. An empirical study on real social networks clearly demonstrated the effectiveness of our approach.

As part of future work, extension to the case of both uncertain nodes and edges would be considered. It would

also be interesting to extend our work to a more complex network structure. For instance, we can treat the case of

muti-relationnal networks allowing several types of simultaneous social ties between the actors. Hence, predictions

will be made in a more functional manner by inferring both links’ existence and types.
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