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ABSTRACT 
The stator insulation breakdown is a major cause of AC machine failures. Ground 

insulation defaults are easily detected by classical systems based on leakage current 

measurements, however the turn-to-turn insulation degradations are more difficult to 

detect. For large machines, on-line methods, based on partial discharge detection and 

analysis, give good results but they cannot be used for low-voltage machines fed by 

adjustable speed drives (ASD). Previously, it has been shown by some of the authors 

that it was possible to estimate the aging of an AC machine winding thanks to HF 

measurements of current or magnetic field. In this paper, it is proposed to exploit 

conjointly all these different estimations to obtain a more robust and reliable diagnostic. 

The merging of the different estimations being realized through the belief functions 

framework, this approach is tested on real measurements. 

   Index Terms — AC machines, life estimation, machine windings, rotating machine 

insulation, power system monitoring, merging information, Dempster-Shafer theory of 

belief functions. 

 

1. INTRODUCTION 

 STATOR insulation failures involve about one third of the 

total number of AC machines outages in industrial environment 

[1]. The stator insulation failure mechanism is now well-known; it 

often begins with a local turn-to-turn breakdown, which creates a 

supplementary thermal stress and an extension of the damage that 

may reach the ground wall insulation, if the power supply is not 

switched-off [2]. For many industrial applications, motor failures 

cause unforeseen production stoppages, which are very expensive. 

To avoid such problems, preventive maintenance is required for 

crucial machines. Several classical methods can be used for 

ground insulation testing [1], but it is more difficult to evaluate the 

quality of the turn insulation which is the only way to detect the 

very beginning of an insulation problem, particularly for inverter 

fed machines. Until now, very few methods are available. It is 

possible to perform an impulse testing on an off-line machine [3], 

or to follow the PD activity on a high voltage working machine [4, 

5] or with off-line PD testing systems [6].  

This paper presents an on-line monitoring system able to give 

information on the aging of the turn insulation of AC machine. The 

system is based on the indirect measurement of the turn-to-turn 

capacitance followed by an information fusion method. Results of 

the measurements made on a typical magnet wire [7], which shows 

that the specimen capacitance increases with the insulation aging. 

Correlations between the variations of this capacitance, the 

breakdown voltage and the cumulative probability of failure are 

established. The first part of this document describes how to 

observe the aging of an ac machine winding and the on-line 

monitoring system, based on high frequency measurements on the 

windings of a machine in service. The second part presents the 

decision-making process regarding the aging of the machine. This 

process is based on the fusion of information provided by HF 

measurements of current and magnetic fields. When a measure is 

precise and certain, no other measure is necessary. However, 

such a measure is rarely obtained in real world applications. 

Information fusion consists then in merging, or exploiting 

conjointly, several imperfect sources of information to make 

proper decision. Various frameworks can be used to model the 

fusion, e.g., probability theory, possibility theory, belief 

functions [8, 9]. In the second part of the paper, the different 

measurements of the aging of an AC machine winding are 

combined in the latter frame. This method is tested on data 

resulting from measurements on a 4 kW inverter fed machine and 

allows us to obtain a more robust and reliable diagnostic. 
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2. AGING OF AN AC MACHINE AND 

MONITORING SYSTEM  

2.1 INFLUENCE OF AGING ON TURN-TO-TURN 
CAPACITANCE  

Thermal accelerated aging was performed in a previous 

study on specimens made with a polyesterimide (THEIC) 

magnet wire according to the IEC 60851-5 standard [7, 10]. 

The thermal accelerated aging of magnet wire shows the 

correlation between the specimen capacitance variations and 

the quality of the insulation between wires. It proves that the 

capacitance variations can be used as an indicator of the 

winding turn insulation aging. Figure 1 and Figure 2 presents 

respectively the mean value and breakdown voltage and 

capacitance of identical specimen versus aging time for a 

thermal stress of 250°C. A model developed in [7] shows that 

such capacitance variations yields significant variations of 

resonance frequencies in machine windings. In a real case, the 

turn-to-turn capacitance cannot be measured on a machine. 

However it is possible to measure the capacitance 

corresponding to the equivalent RLC parallel circuit that 

represents the winding first resonance. For a frequency range 

up to 10 MHz, a simple parallel RLC equivalent circuit 

represents roughly the machine winding frequency behavior 

[11]. The global capacitance Cg, defined for the RLC parallel 

equivalent circuit, includes the turn-to-turn capacitance Ci and 

the turn to core capacitance Cm : 

( , )Cg f Ci Cm=  (1) 

The numerical value of Ci is much higher than Cm; 

consequently, the global capacitance Cg is then much more 

influenced by turn-to-turn capacitance Ci. The variation of Cg 

corresponds approximately to the variation of Ci and the 

variation of the first parallel resonance can be considered as an 

indirect effect of the degradation of the turn insulation. 

 

 

2.2 ON-LINE MONITORING SYSTEM  

The synopsis of the monitoring system is presented in 

Figure 3. The spectrum of the measured signal on a running 

machine has many low frequency spectrum lines, up to several 

kilohertz, corresponding to the slotting effects. However, it has 

no natural lines in the range of 100 kHz – 2 MHz, which 

corresponds to stator winding resonances [7, 10, 11]. To detect 

such phenomena a high frequency low-level voltage is 

superimposed to the stator supply, and the corresponding HF 

current and magnetic fields are measured. The injection system 

contains an inductance (Lin), which yields a series resonance 

depending on winding global capacitance Cg. Global 

capacitance Cg is determined by an identification of frequency 

response of three phases of the AC machine with an RLC 

circuit. The 4 kW studied machine has a global capacitance of 

272 pF. The inductance Lin allows us to tune the series 

resonance frequency at a frequency higher than the parallel 

one, in this application Lin is chosen equal to 45 µH. Figure 4 

shows series resonance with and without the injection 

inductance measured with a precision impedance analyzer 

Agilent 4294A between 100 kHz to 3 MHz; it can be observed 

that the series resonance induced by Lin is clearly identifiable. 

Figure 2.  Mean value of the specimen capacitance for 250 °C.. 

Figure 1. Mean value of breakdown voltage for 250 °C. 

 

 
Figure 3. Synopsis of the monitoring system.  



 

When the global equivalent capacitance varies, the series 

resonance varies in the same way as the parallel resonance. 

The coupling capacitor (Cdec) function consists in providing 

large impedance at inverter switching frequency (12 kHz) and 

a low impedance at series resonance frequency (≈1 MHz). A 

10 nF/2 kV polypropylene film capacitor is chosen, its 

impedance is 1.6 kΩ at 10 kHz and 16 Ω at 1 MHz. 

The measurement and injection system is composed of a 

signal generator coupled with a HF amplifier. The signal 

generator is controlled by the decision process system and can 

apply a sinusoidal signal up to 2 MHz. Current measurement is 

performed by a passive current probe Tektronix P6022. 

Magnetic field is measured near the end-winding along two 

axes, denoted H1 and H2, described in Figure 5, the two axis 

magnetic sensor used is a Honeywell HMC1022 with a field 

range up to ±6 gauss and a sensitivity of 1 mV/V/gauss [12].  

The first step consists in applying a sinus wave between 

100 kHz to 2 MHz to determine for a sound AC machine a 

series resonance frequency deduced of impedance (current and 

voltage measurement) and magnetic fields H1 and H2. Then 

the frequency range is reduced around this first resonance 

frequency. For this study, a limited number of measurements 

have been realized for each stage of the aging of the machine. 

In an industrial context, these measures would be carried out 

continuously or during chosen periods. While the machine is 

working, the on-line monitoring system injects an HF 

sinusoidal signal around the resonance frequency of the 

machine. These measurements allow one to determine the 

variation of resonance frequency of the AC machine winding. 

In the next section, these three estimations of the resonance 

frequency provided by the impedance and magnetic fields are 

combined in the framework of belief functions in order to 

improve the decision-making process regarding the winding 

aging. 

3. AGING ESTIMATIONS FUSION  

In this paper, the problem of information fusion is addressed 

using the Dempster-Shafer theory of belief functions [9], a rich 

and flexible framework for representing and reasoning with 

various forms of imperfect information and knowledge. Belief 

functions were first introduced by Dempster as a tool for 

statistical inference [13], and were later proposed by Shafer 

[8] as a general formalism for representing partial information 

and reasoning under uncertainty. Since then, different models 

based on the basic mathematical apparatus of belief functions 

have been proposed, including the Transferable Belief Model 

(TBM) [14] which is adopted here. A discussion of these 

interpretations of belief functions (TBM, Dempster’s model, 

Hints model, random sets) can be found in [9]. 

The Transferable Belief Model (TBM) is a model of 

uncertain reasoning and decision-making based on two levels: 

- the credal level, where available pieces of information are 

represented and manipulated by belief functions; 

- the pignistic or decision level, where belief functions are 

transformed into probability measures when a decision has to 

be made. 

The basic concepts of this model are exposed in the next 

section. 

3.1. BELIEF FUNCTIONS: BASIC CONCEPTS 

3.1.1. CREDAL LEVEL  

Let Ω = {ω1, …, ωK}, called the frame of discernment or the 

universe, be a finite set of the possible answers to a given 

question Q of interest. 

Information held by a rational agent Ag regarding the 

answer to question Q can be quantified by a mass function m 

defined on Ω, which is an application from 2
Ω

 to [0,1] 

verifying: 

( ) 1.
A

m A
⊆Ω

=∑                (2) 

The quantity m(A) represents the part of the unit mass 

allocated to the hypothesis that the answer to question Q is in 

the subset A of Ω, and to no strict subset. The mass m(Ω) 

represents then the degree of total ignorance regarding the 

answer to the question Q of interest.  

Let us remark that the mass on the empty set m(∅) may be 

positive. This mass plays a role of alarm in the TBM, the 

sources being conflicting [15]. 

Once each piece of information represented by a belief 

function, an aggregating operator can be used in order to 
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Figure 5.  AC machine and magnetic field sensor position. 
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Figure 4.  Impedance of AC machine with and without Lin.  



 

synthesize and capture all the relevant information contained 

individually in each piece of information. 

Two distinct mass functions m1 and m2 can be combined 

using the conjunctive rule of combination defined by: 

1 2 1 2
( ) ( ) ( ),    .

B C A

m m A m B m C A
∩ =

∩ = ∀ ⊆ Ω∑            (3) 

This combination is associative and commutative, which 

ensures that the order the sources are combined does not affect 

the combination result. 

For example, let us consider a universe Ω = {ω1, ω2, ω3}, 

and two sources of information S1 and S2 providing 

respectively the pieces of evidence m1 and m2 such that 

m1({ω1,ω2}) = 0.8,  m1({ω2}) = 0.2, m2({ω2,ω3}) = 0.3, and 

m2(Ω) = 0.7. Their combination can then be computed as 

illustrated by table 1. 

 
Table 1. Conjunctive combination of m1 and m2 

m1 \ m2 
{ω2,ω3} 

O.3 

Ω 

O.7 

{ω1,ω2} 

O.8 

{ω1,ω2}∩{ω2,ω3}={ω2

} 

0.8 × 0.3 = 0.24 

{ω1,ω2} ∩ Ω = {ω1,ω2} 

0.8 × 0.7 = 0.56 

{ω2} 

O.2 

{ω2}∩{ω2,ω3}={ω2} 

0.2 × 0.3 = 0.06 

{ω2}∩ Ω = {ω2} 

0.2 × 0.7 = 0.14 

 

The resulting mass function, denoted m, is therefore defined 

by m({ω2}) = 0.24 + 0.06 + 0.14 = 0.44, and m({ω1,ω2}) = 

0.56. The mass supporting the state of the universe ω2 has been 

reinforced with this combination. 

3.1.2. DECISION LEVEL 

When a decision has to be made regarding the answer to 

question Q, a strategy [14, 16] consists in transforming the 

mass function m, resulting from the fusion process, into the 

following probability measure BetP, called the pignistic 

probability and defined by: 

,

( )
({ })  ,     .

 | |  (1 ( ))A A

m A
BetP

A mω

ω ω
∈ ⊆Ω

= ∀ ∈ Ω
− ∅

∑      (4) 

The chosen decision is then the one that maximizes BetP. 

The resulting pignistic probability associated with the 

combined mass function m depicted in table 1 is defined by: 

2 1 2

2

1 2

1

({ }) ({ , }) 0.56
({ }) 0.44  0.72 ;

1 (1 0) 2 (1 0) 2

({ , }) 0.56
({ }) 0.28 .  

2 (1 0) 2

m m
BetP

m
BetP

ω ω ω
ω

ω ω
ω

= + = + =
− −

= = =
−

 It follows a decision in favor of ω2. 

3.2. FUSION MODEL FOR AC MACHINE WINDING 

AGING ESTIMATION  

In the present fusion problem, the question Q of interest is 

the following: “Has the AC machine winding to be changed?” 

The universe Ω of the possible answers to question Q is then 

composed of two elements: Ω={yes,no}. 

As mentioned in Section 2, the resonance frequency of a 

winding, obtained by impedance or magnetic fields, decreases 

over time. The measurements of resonance frequency based on 

these different techniques, constitutes then different opinions 

regarding the winding aging, which can be expressed as mass 

functions defined on Ω. 

The mass assignment used in this paper, is based on four 

thresholds (Ti)i∈{1,2,3,4} depicted in Figure 6. For example, it 

can be observed in this figure, that if the measured resonance 

frequency is lower than T1, the total part of the unit mass is 

allocated to the answer “yes, the winding has to be 

substituted”. 

Let us note that the resonance frequency measurements 

based on the impedance and magnetic fields, are generally 

associated with different vectors of thresholds. The 

determination of these thresholds can be realized by a human 

expert or a learning set composed of labeled resonance 

frequencies, that is, resonance frequencies associated with a 

known winding aging.  

Thanks to this conversion, at each time t, the measurements 

of resonance frequency based respectively on impedance, 

magnetic fields H1 and H2, provide different pieces of 

information, expressed respectively by mZ, m1 and m2, 

regarding the winding substitution necessity. 

Once computed, these mass functions can be combined 

using the conjunctive rule of combination (equation (3)): 

1 2( ) ( ),    .
Z

m A m m m A A= ∩ ∩ ∀ ⊆ Ω   (5) 

The resulting mass function m can then be transformed into 

the pignistic probability (equation (4)) to make the final 

decision. 

 For example, let us consider that the following mass 

functions have resulted from the mass assignment step: 

- mZ({yes})=0.6 and mZ(Ω)=0.4 (from the resonance 

frequency  measurement based on the impedance, the 

substitution of the winding is rather necessary); 

- m1(Ω)=1 (from the resonance frequency  measurement 

based on the first magnetic, there is a total ignorance regarding 

the necessity to replace the winding); 

- m2({no})= 0.1 and m2(Ω)=0.9 (from the resonance 

frequency  measurement based on the second magnetic field, 

the substitution of the winding is not really necessary). 

Then, the conjunctive combination denoted m of m1, m2 and 

mZ verifies: 

( ) 0.4 1 0.9 0.36 ;   ({ }) 0.6 1 0.9 0.54 ;

({ }) 0.4 1 0.1 0.04 ;     ( ) 0.6 1 0.1 0.06. 

m m yes

m no m

Ω = × × = = × × =

= × × = ∅ = × × =
 (5) 
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Figure 6.  Mass assignment method allowing one to convert measurements 

on the resonance frequency of a winding, into a piece of information 

regarding the necessity to substitute this winding. 



 

 

The pignistic probability is thus given by: 

1 0.36
({ }) (0.54 ) 0.77 ; 

1 0.06 2

1 0.36
({ }) (0.04 ) 0.23 .  

1 0.06 2

BetP yes

BetP no

= + =
−

= + =
−

 (6) 

In this example, as BetP({yes})>BetP({no}), the winding 

has to be changed. 

3.3. APPLICATION  

At fifty different steps of the aging of the machine winding, 

three measurements of the winding resonance frequency have 

been realized from the three measured parameters (impedance, 

two magnetic fields). The ground truth is known: the first forty 

measurements correspond to a winding which has not to be 

changed, while the last ten are associated with a winding 

which has to be changed.  

The Figure 7 illustrates the different resonance frequencies 

obtained for each measurement technique, as well as the 

ground truth. A winding associated with a resonance frequency 

lower than 95% of the resonance frequency obtained when the 

winding is sound, is generally considered as to be changed. 

This limit is represented for each measurement technique as a 

horizontal line in Figure 7.  

From Figure 7, it can be observed than an individual 

decision process: 

- based on the impedance commits one error (measurement 

number 45); 

- based on the first magnetic field commits two errors 

(measurement numbers 35 and 38); 

- based on the second magnetic field commits three errors 

(measurement numbers 40, 41 and 42). 

The goal of the fusion consists in improving these results by 

making fewer errors. 

The Figure 8 illustrates the thresholds used to build the mass 

functions provided by the first magnetic field.  

Thresholds used for the impedance and the second magnetic 

field are not detailed in the same figure for the sake of clarity. 

The Figure 9 depicts the pignistic probabilities obtained for 

each measurement. It can be observed that: 

- for each measurement where the winding has not to be 

changed, BetP({no})>0.5 ; 

- for each measurement where the winding has to be 

changed, BetP({yes})>0.5. 

Thus, on this particular test, this fusion made zero error 

whereas each individual decision process made at least one 

error, which fulfills its purpose.  

Let us note that in this same application a simple fusion 

based on a majority vote leads to zero error as well. A more 
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Figure 10.  Pignistic probabilities at the same fifty different steps of the 

aging of the machine winding after combining the measurements based 

uniquely on the two magnetic fields.. 
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Figure 7.  Resonance frequencies obtained at 50 different steps of the 

aging of the machine winding 
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Figure 9.  Pignistic probabilities at fifty different steps of the aging of the 

machine winding after combining the three measurements based on the 

impedance and the two magnetic fields.. 
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Figure 8.  Thresholds used to build the mass function provided by the first 

magnetic field. 



 

complex application test should be undertaken to validate this 

approach. 

Nevertheless some interesting points of this fusion already 

appear:  

- This fusion method based on belief functions provides a 

degree of reliability in addition to its decisions 

- It also allows one to combine only two sources of 

information which is more difficult to realize with a voting 

system. Let us suppose the failure of a sensor, for example the 

current measurement. The Figure 10 represents the pignistic 

probability resulting from the combination of the two masses 

m1 and m2 coming from the two magnetic fields. It can be 

observed that no error are committed, however there is an 

ambiguity on the measurements 40 and 41, where BetP({no})= 

BetP({yes})=0.5. This last fusion can also be interesting if we 

consider a price for the measurements. The value in money 

may be better by not measuring the resonance frequency from 

the impedance, the gain in terms of robustness and 

performance remaining sufficient. 

 

4. CONCLUSION  

The paper has presented an on-line diagnostic system of AC 

machine based on the fusion of HF measurements providing 

evidence regarding the winding aging. This system has shown 

a reliable and robust diagnostic on a “real world” test. The 

next step of this study consists in implementing this system in 

an industrial application to validate this approach on more 

experimental data. Further studies can also be undertaken to 

develop the fusion model by taking into account the 

reliabilities of each measurement [17] or the temporal aspect 

of the measurements for example.   
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