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Abstract. The process of combining an ensemble of classifiers has been
deemed to be an efficient way for improving the performance of several
classification problems. The Random Subspace Method, that consists of
training a set of classifiers on different subsets of the feature space, has
been shown to be effective in increasing the accuracy of classifiers, no-
tably the nearest neighbor one. Since, in several real world domains, data
can also be suffered from several aspects of uncertainty, including incom-
pleteness and inconsistency, an Enhanced Evidential k-Nearest Neighbor
classifier has been recently introduced to deal with the uncertainty per-
vading both the attribute values and the classifier outputs within the
belief function framework. Thus, in this paper, we are based primarily
on the Enhanced Evidential k-Nearest Neighbor classifier to construct
an ensemble pattern classification system. More precisely, we adopt the
Random Subspace Method in our context to build ensemble classifiers
with imperfect data.

Keywords: Classifier ensemble, Random Subspace Method, Enhanced
Evidential k-NN, belief function theory

1 Introduction

The core purpose of an ensemble classifier is to achieve a high accuracy for a
given classification problem. The process of building an ensemble learning con-
sists firstly of generating a set of base/weak classifiers from the training data
and then perform actual classification by combining the output predictions of
base classifiers. To gain a better accuracy, the basic classifiers should be diverse
and independent [13]. Several ensemble classifier generation methods allow to
achieve diversity among the base classifiers. Bagging [3] and Boosting [18] are
widely used as ensemble methods but some authors have proven that these two
techniques are not guaranteed to produce fully independent individual base clas-
sifiers [5]. Both theoretical and experimental researches conducted by the ma-
chine learning community have shown that the efficient method for achieving a
good diversity consists of training the base classifiers on different feature subsets



[4, 24]. This may be explained by the fact that a feature subset-based ensemble
can reduce the correlation among the classifiers and also perform faster owing
to the reduced size of input features [4, 8, 11]. The key problem of this kind of
ensemble learning is how to yield attribute subsets with good predicting power.
Several feature subsets techniques have been introduced till now where some of
which are based on filter approaches [17], while others are relied on wrapper ap-
proaches [12]. Another more popular and effective tool is the Random Subspace
Method (RSM) also called random subspacing [19] and has satisfactory yielded
results particulary with the standard k-Nearest Neighbor classifier (k-NN)[2]. In
this paper, we have to adapt the random subspace method in the real context of
uncertain data. Precisely, we propose to design a classifier ensemble via random
subspacing on the basis of the Enhanced Evidential k-NN (EEk-NN) classifier,
which is proposed in [23], as a new technique for dealing with uncertain data
represented within the belief function framework. The reminder of this paper
is organized as follows: Section 2 is committed to highlighting the fundamental
concepts of the belief function theory. In Section 3, we present the EEk-NN clas-
sifier that handles evidential databases. Section 4 is dedicated to describing our
proposed ensemble classifier through random subspaces. Our experimentation
on several synthetic databases is conducted in Section 5. Finally, the conclusion
and our main future work directions are reported in Section 6.

2 Belief function theory: background

The belief function theory, also referred to as evidence theory, is widely regarded
as very effective and efficient basis for representing, managing and reasoning
about uncertain knowledge. This section briefly reviews some important concepts
underlying this theory.

2.1 Information representation

Let Θ = {θ1, θ2, . . . , θN} denote the frame of discernment including a finite non
empty set of N elementary hypotheses that are assumed to be exhaustive and
mutually exhaustive. The power set of Θ, denoted by 2Θ, is made up of all the
subsets of Θ:

2Θ = {∅, θ1, θ2, . . . , θN , . . . , Θ} (1)

Expert’s beliefs over the subsets of the frame of discernment Θ are represented
by the so-called basic belief assignment (bba) denoted by m. It is carried out in
the following manner: ∑

A⊆Θ

m(A) = 1 (2)

Each subset A of 2Θ having fulfilled m(A) > 0 is called a focal element.



2.2 Combination operators

For certain real world problems, we are clearly confronted with information
issued from several sources. Therefore, a number of combination rules has been
proposed and discussed for some past time. The conjunctive rule, introduced
by Smets within the Transferable Belief Model (TBM) [21], is one of the best
known ones. Given two information sources S1 and S2 with respectively m1 and
m2 as bbas, the conjunctive rule, denoted by ∩©, was established as follows:

m1 ∩©m2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Θ. (3)

The belief completely associated to the empty set was recognised under the name
of conflictual mass. A normalized version of the conjunctive rule has been pro-
posed by Dempster [6] to retain the basic characteristics of the belief function
theory. Indeed, it allows to manage the conflict while redistributing the conflict-
ual mass over all focal elements. The Dempster rule is then set as follows:

m1 ⊕m2(A) =
1

1−K
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Θ (4)

where the conflictual mass K caused by the combination of the two bbas m1

and m2 through the conjunctive rule, is given as follows:

K =
∑

B∩C=∅

m1(B)m2(C) (5)

2.3 Decision making

The pignistic probability, denoted by BetP , has been proven to be an effective
and efficient decision-making tool for selecting the most likely hypothesis rela-
tive to a given problem [20]. It consists of transforming beliefs into probability
measures as follows:

BetP (A) =
∑

B∩A=∅

|A ∩B|
|B|

m(B), ∀A ∈ Θ (6)

The hypothesis Hs that has to be chosen is the one with the highest pignistic
probability:

Hs = argmaxABetP (A), ∀A ∈ Θ (7)

2.4 Dissimilarity between bbas

In the research literature, several measures have been proposed to compute the
degree of dissimilarity between two given bbas [10, 16, 22]. One of the earliest



and best-known measures is the Jousselme distance. Formally, the Jousselme
distance, for two given bbas m1 and m2, is defined by:

dist(m1,m2) =

√
1

2
(m1 −m2)TD(m1 −m2) (8)

where the Jaccard similarity measure D is set to:

D(X,Y ) =


1 if X=Y= ∅
|X ∩ Y |
|X ∪ Y |

∀ X,Y ∈ 2Θ
(9)

3 Nearest Neighbor classifiers for uncertain data

Data uncertainty is regarded as one of the main issues of several real world ap-
plications that can affect experts’ decisions. Two levels of uncertainty can be
distinguished in the literature: the uncertainty that occurs in the attribute val-
ues and the one pervading the class labels. The process of constructing classifiers
from totally uncertain data has not received the great attention till now. Drawing
inspiration from the Evidential theoretic k-NN that incorporates classifier out-
puts uncertainties [7, 9], we have proposed an EEk-NN classifier for handling not
only the uncertainty associated with the classifier outputs but also that pervad-
ing the data, precisely the attribute values. Suppose we have to solve an M class
classification problem. Let us denote by X = {xi = (xi1, ..., x

i
n);Li|i = 1, ..., N}

a collection on N n-dimensional training samples where each one is character-
ized by n uncertain attribute values xij (j ∈ {1, . . . , n}) represented within the

belief function framework and a class label Li demonstrating its membership
to a specific class in Θ = {θ1, . . . , θM}. Assume that y={y1,. . .,yn} be a new
query pattern to be classified on the basis of the training set X. The major idea
underlying our proposed classifier is to compute the distance dy,i between the
query pattern y and each instance xi ∈ X that corresponds to the sum of the
absolute differences between the attribute values as follows:

dy,i =

n∑
j=1

dist(xij , yj) (10)

Particulary, we have relied on the Jousselme distance measure dist (see Equation
8) for processing the uncertainty that characterizes the attribute values. It must
be emphasised that dy,i can have values comprised within the range of from 0 to
1. A value of dy,i which is too small involves the situation that the instances y
and xi are described by the same class label Li. In contrast, a high value of dy,i
implies the situation of almost complete ignorance with regard to the class label
of y. As a matter of fact, the uncertainty pervading the class label of the query
pattern y can be modeled and represented within the belief function theory.
Assume that the training instances are sorted in ascending order according to



their distance from the test instance y, each training instance xi ∈ X provides
an item of evidence denoted by m(i)(.|xi) over Θ:

m(i)({θq}|xi) = αΦq(dy,i) (11)

m(i)(Θ|xi) = 1− αΦq(dy,i)
m(i)(A|xi) = 0,∀A ∈ 2Θ\{Θ, θq}

where the distance function dy,i should be calculated such as in Equation 8, θq
refers to the class label of xi and α is a parameter satisfying 0< α < 1. It has been
proven that a value of α equal to 0.95 can lead to satisfactory or better outcomes
[7]. The decreasing function Φq, checking Φq(0)=1 and limd→∞Φq(d) = 0, will
be given as follows:

Φq(d) = exp(−γqd2), (12)

where γq displays a positive parameter of class θq. It can be optimized depending
on the training samples. An exact method relied on a gradient search procedure
can be used for small or medium data sets, while using a linearization approach
for large data [25]. The best values of γq, for both exact and approximated
methods, can be estimated by minimizing the mean squared classification error
over the whole training set X of size N .

The final bba my regarding the class membership of the query pattern y can be
obtained by merging the bbas issued from k nearest neighbors training instances
of y through the Dempster rule of combination. The final bba will be defined as
follows:

my = m(1)(.|x1)⊕m(2)(.|x2)⊕ . . .⊕m(k)(.|xk) (13)

The class label concerning the test pattern y, will be made by computing the
pignistic probability BetP of the bba my as shown in Equation 6. The query
pattern y is then assigned to the class label with the highest pignistic probability.

4 Ensemble Enhanced Evidential k-NN (Ensemble
EEk-NN)

As already mentioned, the concept of diversity is regarded as a vital necessity
for the ultimate success of ensemble classifier systems. Note however, that in
this context, the RSM is a widely used technique addressed to ensure diversity
between individual classifiers and has achieved satisfactory results notably
for the ensembles of Evidential theoretic k-NNs [1]. Despite their relevance
and success, such kind of ensemble systems cannot handle imperfect data,
especially the uncertain ones. Get inspired from [1], in this paper, we propose
a new ensemble system that fully benefits from the advantages of both RSM
and EEk-NN. Our proposed ensemble classification system deals mainly with
uncertain data where the uncertainty occurs precisely in the attribute values
and is represented within the belief function framework. The suggested model is
generally characterised by three main steps. Given a training data X, the first



level concerns the generation of T feature subsets with size S from a uniform
distribution over X. In the second level, the output label of each query pattern
will be predicted through T EEk-NN classifiers that are trained with the
different generated feature subsets. The final stage concerns the combination of
the predictions yielded by the different classifiers. Let us remind that the output
label of each individual classifier is expressed in terms of a mass function. The
belief function theory has also been proven to be an efficient way for merging an
ensemble of classifiers where each of which produces a belief function for each
query instance. Different combination rules have been implemented within this
framework and can be categorized according to the dependency between the
merged sources. In this paper, we ultimately opted for the Dempster operator,
which is the conventionally used rule within the belief function theory, for
combining diverse classifiers.

Two substantial parameters need to be considered for our proposed framework:

– The number of created classifiers: A substantial key element when
designing an ensemble classifiers is the number of individual classifiers
used to get the final decision. There is no doubt that a huge number of
classifiers may in the one hand increase the computational complexity and
on the other hand decrease the comprehensibility. Several researches have
been done to predefine a reasonable number of classifiers. The conclusion
conducted following to the study of [15] shows that ensembles of 25 k-NN
classifiers are sufficient for reducing the error rate and consequently for
improving performance. For that very reason, in this paper, we set the
number of combined EEk-NN classifiers to 25.

– The size of feature subsets S: The choice of the appropriate size of
feature subsets is still being studied. Since a small subspace size can make the
algorithm even faster, the chance to fall into missing informative features or
also missing correlation between several features can ever be strong enough.
To address that challenge, in this paper, we will randomly select the subspace
size, relative to each individual EEk-NN classifier, in the range [n/3;2n/3],
which means that at least one-third and at most two-thirds of the original
feature set will be used to train each component classifier (i.e. the subspace
size S varies from one classifier to another).

5 Experimentations

This Section is devoted to studying the performance improvements of our En-
semble EEk-NN classifier in random subspaces compared with that in full feature
space. Our comparative study will mainly be based on the percentage of correct
classification (PCC) criterion. In what follows, we elaborate our experimentation
settings (Section 5.1) and our experimentation results (Section 5.2).



5.1 Experimentation settings

Since we are dealing specifically with uncertain knowledge, we have generated
several synthetic databases while injecting a degree of uncertainty P , having
values comprised within the range [0,1], to some well−known real data sets ob-
tained from the UCI machine learning repository [14]. Table 1 provides a short
description of the different tested databases where #Instances, #Attributes and
#Classes denote, respectively, the number of instances, the number of attributes
and the number of classes. Four uncertainty levels have been considered in this
paper: certain case (P=0), low uncertainty case(0 < P < 0.4), middle uncer-
tainty case (0.4 ≤ P < 0.7) and high uncertainty case (0.7 ≤ P ≤ 1).

Table 1: Description of databases
Databases #Instances #Attributes #Classes

Voting Records 435 16 2
Heart 267 22 2
Monks 195 23 2
Lymphography 148 18 4
Audiology 226 69 24

Let D be a given database described by N instances xi (i ∈ {1, . . . , N} ) and
n attributes xij (j ∈ {1, . . . , n}). Let Θj be the frame of discernment associated
to the attribute j. Suppose that |Θj | is the cardinality of Θj , every attribute
value vij,t relative to an instance xi such that vij,t ⊆ Θj (t ∈ {1, . . . , |Θj |}) will
be represented through the belief function framework as follows:

mΘj{xi}(vij,t) = 1− P (14)

mΘj{xi}(Θj) = P

5.2 Experimentation results

To assesses our model performance, we have undertaken the 10-fold cross vali-
dation strategy. This technique splits randomly the treated data into ten equal
sized parts where nine part is used as a training set and the remaining as test-
ing sets. A major key issue in our proposed approach is related to the number
of neighbors that may give satisfactory results, in our current experimentation
tests, we evaluate five values of the nearest neighbors k which respectively cor-
respond to 1, 3, 5, 7 and 9. The PCC results are given from Table 2 to Table
6.



Table 2: Results for Heart database (%)
k = 1 k = 3 k = 5 k = 7 k = 9

EEk-NN Ensemble
EEk-NN

EEk-NN Ensemble
EEk−NN

EEk-NN Ensemble
EEk-NN

EEk-NN Ensemble
EEk−NN

EEk−NN Ensemble
EEk−NN

No 61.15 67.30 63.84 70.38 67.30 68.07 70 70.03 71.15 71.23

Low 58.46 68.84 64.23 66.15 66.92 69.23 68.07 68.07 79.03 78.24

Middle 60 69.23 63.07 65.38 66.15 67.69 69.61 67.30 68.07 67.69

High 63.84 68.46 63.07 65.76 66.36 66.53 70.76 71.13 69.61 70.03

Table 3: Results for Vote Records database (%)
k = 1 k = 3 k = 5 k = 7 k = 9

EEk-NN Ensemble
EEk-NN

EEk-NN Ensemble
EEk−NN

EEk-NN Ensemble
EEk-NN

EEk-NN Ensemble
EEk−NN

EEk−NN Ensemble
EEk−NN

No 92.79 92.05 92.32 92.65 93.02 92.32 93.72 94.01 93.72 92.81

Low 92.09 93.14 93.02 93.65 92.55 93.24 93.25 94.25 93.25 94.78

Middle 91.62 92.79 91.39 92.56 91.39 93.12 91.86 92.94 92.32 94.16

High 84.18 87.20 87.67 88.60 88.60 89.30 89.30 86.97 89.76 91.86

Table 4: Results for Monks database (%)
k = 1 k = 3 k = 5 k = 7 k = 9

EEk-NN Ensemble
EEk-NN

EEk-NN Ensemble
EEk−NN

EEk-NN Ensemble
EEk-NN

EEk-NN Ensemble
EEk−NN

EEk−NN Ensemble
EEk−NN

No 72 73.13 59.81 60.26 60.54 61.68 70 69.03 79.81 80.45

Low 69.63 71.01 58.18 59.49 63.63 94.16 70.90 70.65 76.54 77.88

Middle 68.9 69.85 63.81 64.23 66.72 68.9 71.09 72.84 70.72 72.13

High 54.90 56.14 53.09 53.68 52.54 52.03 52.72 53.26 54.18 55.36

Table 5: Results for Audiology database (%)
k = 1 k = 3 k = 5 k = 7 k = 9

EEk-NN Ensemble
EEk-NN

EEk-NN Ensemble
EEk−NN

EEk-NN Ensemble
EEk-NN

EEk-NN Ensemble
EEk−NN

EEk−NN Ensemble
EEk−NN

No 63.18 64.22 60.45 60.67 52.72 53.16 50.45 51.26 44.54 45.22

Low 52.72 52.98 55.45 55.67 53.63 53.87 47.27 47.56 45.9 46.81

Middle 52.72 53.24 48.18 47.84 44.54 44.22 41.13 42.76 40.45 41.68

High 15.45 14.49 23.18 24.01 21.36 22.45 22.27 23.46 18.18 18.96



Table 6: Results for Lymphography database (%)
k = 1 k = 3 k = 5 k = 7 k = 9

EEk-NN Ensemble
EEk-NN

EEk-NN Ensemble
EEk−NN

EEk-NN Ensemble
EEk-NN

EEk-NN Ensemble
EEk−NN

EEk−NN Ensemble
EEk−NN

No 84.28 84.51 85 85.07 62.42 63.45 85.71 86.25 85 85.42

Low 80 81.12 85.71 86.13 83.57 82.56 86.42 81.17 85.71 86.96

Middle 82.14 82.42 84.28 83.96 86.42 87.22 84.28 85.14 82.14 83.27

High 58.57 58.63 61.42 62.19 59.28 61.02 58.57 59.13 65.71 66.48

According to the results given from Table 2 to Table 6, we can deduce that
ensembles of the EEk-NN classifier through random subspacing has led to in-
teresting results compared to the individual EEk-NN classifiers that are learnt
with the full feature space. In fact, the PCC yielded by an ensemble of classifiers
is generally better than that yielded by an individual classifier for the most of
cases. For instance, let us consider k equals 5, the PCC results yielded by the
ensemble system on the Heart database with No, Low, Middle and High uncer-
tainties are respectively equal to 67.30%, 66.92%, 66.15% and 66.36%. However,
there are equal to 68.07%, 69.23%, 67.69% and 66.53% when using an individual
system. This small difference may be explained by the existence of irrelevant and
redundant features as a consequence of the random method.

6 Conclusion

In this paper, we have proposed an ensemble EEk-NN classifier through random
subspaces with the aim of increasing the classification performance for a given
classification problem. For assessing the performance of our proposed approach,
we have carried out a comparative study between the ensemble EEk-NN classifier
in random subspaces and that in full feature space when relied on the PCC
assessment criterion. Although the RSM method can unfortunately increase the
risk that irrelevant and redundant features may be part of the selected subsets,
numerical results have shown that ensemble EEk-NN classifiers have contributed
to somewhat more favorable PCC results for the different mentioned databases.
To promote better and more effective classification performance, in our future
studies and research projects, we look forward to solutions allowing to produce
the best possible feature subsets.
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