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Abstract - Within the framework of Dempster-
Shafer theory of evidence, the data fusion is based on
the building of single belief mass by combination of
several mass functions resulting from distinct infor-
mation sources. This combination called Dempster’s
combination rule (or orthogonal sum) has several in-
teresting mathematical properties like commutativity
or associativity. Unfortunately, it badly manages
the existing conflict between the various information
sources at the step of normalization. In this paper,
we ntroduce traditional combination operators used
within the framework of evidence theory. We pro-
pose other combination operators allowing an arbi-
trary redistribution of the conflicting mass on the
propositions. These various combinations operators
were tested on sets of synthetic and real masses.

Keywords: Data Fusion; Dempster-Shafer Theory of Ev-
idence; Combination Rules.

1 Introduction

In pattern recognition, the information extracted from
the sensors (numeric or symbolic) is often represented
by a degree of belief resulting from imprecise and un-
certain data. The multi-sensor data fusion [1] is an
interesting solution in order to reach information over-
all more reliable. The complementarity and the redun-
dancy of information provide by the sensors are among
the imperative reasons of this effect. In the framework
of evidence theory (or Dempster-Shafer theory of ev-
idence) [2, 3], the data fusion rests on the building
of single belief mass by combination of several mass
functions from distinct information sources. The im-
plementation of this combination requires a normal-
ization step in order to ensure the properties of mass
functions. In [4], Zadeh presents a situation where
the step of normalization used by Dempster’s combi-
nation rule to results against intuitive. In order to
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cure this problem, other combination operators have
been proposed [5, 6, 7]. In this paper, we will see
a brief overview on the already existing combination
rules and we will propose new operators. It will be
organized in as if follow. Initially, we present the basic
concepts of evidence theory (Section 2). In section 3,
we will see the various combination operators which
were developed within framework of this theory. We
will introduce the new combination operators in sec-
tion 4. Finally, simulations on synthetic masses will
be presented in section 5.

2 Dempster Shafer theory

The Dempster Shafer theory of evidence is based on the
concept of lower and upper bounds for a set of com-
patible probability distributions introduced by Demp-
ster [2]. On this basis, Shafer [3] showed the advan-
tage of using belief functions for modeling the uncer-
tain knowledge. The use of belief function as an al-
ternative to subjective probabilities was later justified
axiomatically by Smets [8] who introduced the Trans-
ferable Belief Model providing a clear and consistent
interpretation of the various concept underlying the
theory.

2.1 Knowledge modelling

Let O represents a finite set of N hypothesis. The set
O is called frame of discernment and is defined by :

yHy}. (1)

The property of exhaustive assumption, called closed-
world assumption is in opposition to open world as-
sumption presented by Smets [7]. We go back over in
detail this notion in section 3.1.2. 2° represents the
set of the 2V — 1 propositions # of O :

QZ{HI,...,HH,...

29:{7—[/7'[g@}:{Hl,"',HN,H1UH2,"',@}-
2)



A piece of evidence that influences our belief concern-
ing the true value of a proposition H can be represented
by a basic belief assignment m(.). For each source S;
for j = {1,..., J}, a mass function m;(.) is defined by :

m; 29 = [0,1] (3)

and satisfying following properties :

m;(0) =0 (4)
> mi(H)=1. (5)
HCO

The subsets H of © such that m;(#) > 0 are called the
focal elements of m;(.). The union of all focal elements
of m;(.) is called the core of the mass function. The
core of an information source S; is noted F;. From
the basic belief assignment m;(.), a credibility function
and plausibility function can be computed using the
following equations :

Cri(H)= > m;(H) (6)

H'CH

Pl](H) =

>

(HNH)#0

mi(H')=1-Cr;(H) (7)

where H denotes the complement of 7. The value
Cr;(H) quantifies the strength of the belief that event
H occurs. The plausibility function Pl;(H) provides
a measure of no doubt about the hypothesis H. The
main difficulty consists in modeling knowledge to ini-
tialize the basic belief assignment m;(.). Usually, this
modeling depends on the application. In [1], Appriou
uses two methods to manage the learning uncertainty
with Dempster Shafer theory. These methods are con-
sistent with the Bayesian approach, when the belief is
only assigned to a singleton hypothesis. Many mod-
eling methods are proposed [9], of which the meth-
ods using neighborhood information introduced by De-
noeux [10].

2.2 Combination rules

In case of imperfect data (uncertain, imprecise, incom-
plete), fusion of multi-sensors is an interesting solution
in order to reach more reliable informations. The evi-
dence theory applies very well within the framework of
the data fusion. Indeed, starting from the belief func-
tions m;(.) resulting from each source S;, a combina-
tion rule of these functions makes it possible to obtain
a single belief function m(.). This single belief function
makes it possible to use a decision rule by taking into
account the whole of information sources. In the fol-
lowing section, we will present the various aggregation
rules of belief which one can find in the literature.

3 Combination operators

The different rules of combination that have been pre-
sented in the literature can be distinguished in two

categories. These two categories represent two dif-
ferent philosophies of the fusion technique. The first
type of combination operators, presented in the sec-
tion 3.1, imposes the hypothesis of reliability of all
sources which have to be aggregated. These conjunc-
tive operators have been introduced by Dempster [2]
and Smets [7]. The second category imposes that at
least one of the information sources is reliable. The sec-
ond kind includes the disjunctive operators that have
been presented by Yager [5], Dubois and Prade [6].

3.1 Combination operators of reliable

sources
3.1.1 Dempster combination rule

It is the first rule of information combination that
has been used in the framework of the evidence the-
ory. A necessary condition for using this combination
is that the information sources are independent. The
Dempster operator of combination, or orthogonal sum,
proves to be commutative and associative. The re-
sulting mass function from the Dempster’s rule will be
noted m%(.) and defined by :

VHe2° m'H)=mi(H)@®...amsH) (8)

where @ represents the operator. In a case of two
sources noted S; and S;, the combination can be writ-
ten as :

m°(H) mi(H').m;(H") (9)

1
~1-m@®) 2

(H/'OH'")=H

where m(0) is defined by :

>

(H/AH)=0

m() = mi(H').m; (H"). (10)

In the equation (9), the coefficient m(0) reflects the
conflict between the two sources S; and S;. When
this factor is equal to 1, the sources are totally in
conflict and the information sources cannot be aggre-
gated. On the contrary, when m()) is equal to 0, the
sources agree. This combination rule has some inter-
esting properties like associativity and commutativity
but it is not idempotent. Neutral element is the mass
function of total ignorance (m(©) = 1) and the absorb-
ing element is the mass function that puts the whole
mass on a hypothesis singleton (m(H,) = 1).

This first rule carries out two major problems. The
first problem comes from the idempotence, that is to
say that the combination of two dependent sources al-
lows to reinforce the propositions that these sources
sustain abusively. The second appears in case of con-
flict between the sources. In this case, the Dempster
combination rule proceeds a step of normalization with
the help of the coefficient m((}). This problem, known
as sensitivity of the Dempster rule, has been presented
by Zadeh [4]. Tt clearly appears in the following exam-
ple.

Let © = {H;,H,,H3} be a frame of discernment,
and two information sources S; and Sy producing re-
spectively two mass function m; and ms defined as it



follows :

ml(Hl):e mg(Hl)zl—k—e
ml(Hg) =k mQ(HQ) =k (].].)
ml(H3):1—k'—€ m2(H3)26

with 0 < k < 1. In the case where € is equal to 0, the
combination with the Dempster rule allows to write
the following result :

mO(Hl) =0 mO(HQ) =1 mO(H3) =0. (12)

In the general case, the application of the Dempster
operator gives the following result :

mo (Hl) — mO (HB) _ 3 j_(ée_(lk__];)_ 6), (13)
and : 2
mO(HQ) k (14)

- k2 +2e(1—k—e¢)

Also, taking &k = 0.1 and € = 0.01, we obtain the fol-

lowing mass function :
m®(Hy) = m°(H3) = 0.32

mC(H,) = 0.36 (15)

whereas for £k = 0.1 and € = 0.001, we have :

m®(H,) = m°(Hs) =0.08  m°(H,) =0.84. (16)
Therefore, we can observe that the Dempster rule is
very sensitive to the variations of the value of e. This
sensitivity is due to strong variations of the normal-

ization coefficient #@) In Figure 1, we have rep-

resented the variations of the normalization coefficient
according to the values of the conflict m(0). We can see
that in the neighborhood of m(()) = 1, a weak variation
of m(() involves a strong variation of the normalization

coefficient. In order to solve this problem, Smets pro-
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Figure 1: Normalization coefficient vs. Conflict.

poses another interpretation of the conflict mass m()
in the framework of reliable sources.
3.1.2 Smets combination operator

The solution proposed by Smets [7, 11] considers that
the information sources are completely reliable. The

conflict between the sources can only comes from that
one does not take into account one or several hypothe-
ses in the frame of discernment. This solution con-
sists therefore in not normalizing the function mass
and so affecting the conflict mass m(0) to the empty
set (). That is the notion of open - world proposed by
Smets [8]. The mass resulting from the combination
of Smets will be noted m!(.). This operator can be
written :

VHe2®°  m'(H) =m~(H) (17)

with :

mn (H) =

>

(H'OH!")=H

ml(’H')m] (7‘[”) (18)

The empty set ) may be interpreted as a reject class.
This combination has the same properties (associativ-
ity and commutativity) than the rule of Dempster. In
addition, in [12], Smets proposes a method which uni-
fies the conjunctive and disjunctive rules of combina-
tion.

3.2 Combination operators of unreli-
able sources

Other solutions for the interpretation of the conflict
have been introduced. These methods are based on the
assumption that at least one of the sources to aggregate
is reliable (e.g. see [6]). In this section, we propose to
develop a generic framework in order to unify several
operators of combination. This framework allows us to
propose other operators.

3.2.1 Proposed Framework of Operators

Each information source S; gives a belief mass to each
proposition H; in the core F;. When H; extracted
from the sources S; are compatible, that is to say when
the intersection between the subsets #; is non hope-
less, he product of the masses granted to these subsets
is affected to the intersection of these subsets. If the
hypotheses H; are incompatible, that is to say that
their intersection is equal to the empty set, we have a
partial conflicting mass called m* given by the follow-
ing relation :

. Vi=1,...,J
m= 1L m) " e,
=1, 7
ﬂjzl'}'lj:@
(19)

The total conflict m(0) is derived from these partial
conflicting mass according to :

m(0) = Z*m*

where Y~ " represents a countable sum of elements. The
aim of the combination operators, proposed in this sec-
tion, is to redistribute a partial conflicting mass m*
on a set of propositions. The set of all propositions
‘H where the partial conflict masses have been redis-
tributed will be noted P*.

(20)



A part of the mass m* will be assigned to each
proposition ‘H according to a weighting factor noted
w*. In addition, the set of all propositions where the
conflicting mass have been redistributed will be noted
P, with :

P={P}.
So the total mass got after fusion for a proposition H

will be the sum of two masses. It will be written as it
follows :

(21)

m(H) =ma(H) + m°(H)

In the equation (22), the first term, mn(.), is derived
from the conjunctive rule of combination defined by
equation (18). The second one, noted mc(.), is the
part of the conflict mass granted to the proposition 7.
This value can be written as :

me(H) =Y m(H)

where m®* () is the part of the partial conflicting
masses m* assigned to the proposition H :

(22)

VHCP (23)

VHCP®  mTH)=w(H)m"  (24)
This generic framework allows to rewrite the operator

proposed by Yager in [5].

3.2.2 Yager combination operator

The method proposed by Yager [5] follows this prin-
ciple. While considering that at least one of the
sources concerned with the fusion is reliable, but with-
out knowing which is reliable, the conflict is then dis-
tributed on the set ©. With respect to the generic
framework presented in the section 3.2.1, we get a set
P made of the whole set of hypotheses, that means :

P = {0} (25)

The weight associated to this set is equal to 1 (w*(©) =
1). The conflicting mass is placed therefore on ©. This
method has the effect of separating the totality of the
conflicting mass, and so of more to make intervene it in
the discernment of the hypotheses. This rule of com-
bination is commutative. Unfortunately, it is not asso-
ciative. It is necessary to define an order of fusion of
the sources therefore. Let us note m?(.) the resulting
mass function obtained with this combination opera-
tor.

3.2.3 Dubois and Prade combination rule

In the same way as for the Yager’s combination, the op-
erator of combination of Dubois and Prade [6] rests on
the hypothesis that at least one a source intervening in
the process of combination tells the truth. The princi-
ple of combination, for two sources of information, can
be explained as it follows. Let S; a source supporting
H' with a mass m;(H') and a S; source supporting H"
with a mass m;(H"). If the propositions H' and H"
are in contradiction, that is to say if (H'NH") = 0 then
one does not know what source is right and one has to
consider that the solution is one of the two proposi-
tions. The mass m;(H').m;(H'") will be assigned then

to the proposition (H' U H"). The resulting mass, got
with the rule of combination of Dubois and Prade, will
be noted m3(.). In the general setting of this type of
combination, we get a proposition H, where the partial
conflicting masses have been distributed, such as :

H=H UH" (26)
and :

P* = {H). (27)

The totality of the partial conflicting mass is assigned
to this proposition that means w*(#) = 1. This com-
bination rule is more precise in the redistribution of
the conflict and therefore more informative than the
rule proposed by Yager. Besides, in the step of deci-
sion the conflicting mass having to be redistribute will
intervene in the discernment of the hypotheses. One
can notice that this combination uses a conjunctive
approach when the sources agree and an disjunction
approach in case of conflict. As for the rule of com-
bination of Yager, the operator of fusion proposed by
Dubois and Prade is commutative but is not associa-
tive. A strategy permitting to combine the sources in
a certain order should be defined therefore.

4 New combination operators
proposal

With this generic framework, we can define a family
of combination operators. Among this family, we in-
troduce two operators more precisely. The aim of the
following aggregation operators is to distribute the con-
flicting mass among the smaller subsets which involve
conflict as far as possible. In order to do that, the
conflict management will not be done globally but lo-
cally. This local conflict will be distributed among the
subsets according to a weighting factor associated with
each subset. These weighting factors will be computed
from the masses of each subset involved in the local
conflict. For the different proposed combination oper-
ators, we will assume that the contradictions arise out
of the shortcoming of the information sources. In ad-
dition, we will assume that at least one source tells the
truth. We will suppose that the basic belief assignment
{m1,...,mj,...,my} of the J information sources are
known before the fusion process. So, we will aggregate
all the information sources simultaneously. So, these
new combination operators avoid to order the sources
before the fusion process as it is necessary in Dubois
or Yager fusion scheme.

4.1 Proposition 1

4.1.1 Principle

The J information sources give basic belief assignment
to each subset H; € F; with j = {1,...,J}. When
the hypotheses are compatible, that is to say when the
intersection of the subsets H; is not an empty sub-
set, then the mass product assigned to these subsets
is given to the intersection subset. If the hypotheses



‘H; are not compatible, that is to say when their in-
tersection is equal to the empty set, we have a partial
conflicting mass m* we have to distribute among the
subsets H;. The redistribution is made only on the sets
which involves a contradiction #;. The sets where the
partial conflicting mass will be redistributed are writ-
ten as follows :

P ={H/HCH;} Vji=1,...,J (28)
After defined the set P* containing the subsets on
which the conflicting mass has to be redistributed, we
define a function A(.) as it follows:

>

j=1,...,J

VH € P* AH) = m; (7‘[]) (29)

We have then, for each set 7, the associated weighting
factor w*(#H) defined by :

___A#H)
~ Yucp MH)

We obtain, as for the first combination operator, pairs
(H,w*(H)). From these pairs, we redistribute the local
conflict using equation (24). The local conflict redis-
tribution is then done proportionally to the masses as-
signed to each subset involving the conflict. The sum of
all these redistributions gives the fusion result obtained
with this combination operator. The mass assignment
associated to this operator will be written m*(.).

w* (M) (30)

4.1.2 Properties

The described aggregation operator is commutative
but is not associative. This last fact does not impose a
fusion order in the aggregation process as for Dubois or
Yager. Indeed, the knowledge of all the mass functions
avoids this constraint.

4.2 Proposition 2

The aim of the second combination operator is to as-
sign the local conflicting mass which may exists on all
the possible disjunctions of hypotheses from the sets
involving the conflict.

4.2.1 Principle

Let be m;(H;) the J belief assignments given by the
J information sources to each subset H; € F; with
j = {1,...,J}. When these subsets are compatible
that is to say when ();H; # 0, we will assign this
mass to the conjunction of the H;. If the subsets H;
are not compatible, we define the sets which take place
in the redistribution of the conflicting mass. The sets
where the partial conflicting mass will be redistributed
are then defined by :

P ={H/HC{Hi,...., "Hj,..., Hs}} (31)
At each set H is associated a mass equal to the sum
of the masses assigned to the sets #; such as H is

included in the set ;. This mass is expressed as A(.)
using equation (29). From the masses function A(.),
we define weighting factors given to each set H as it
follows :

A(H)
wH) = =——""—"—. 32
#) Yoy AH) (32)
Then we obtain a set of pairs (H,w*(#)). The re-

distribution of the conflicting mass noted m* is given
then by the equation (24). As previous operators, the
fusion mechanism has to be applied to all the partial
conflicting zones. The summation of the masses m®*(.),
derived from conflicting distributions, give then the fu-
sion result which will be written m®(.).

4.2.2 Properties

This aggregation operator is based on the same prin-
ciple as presented in section 4.1.1. It has the same
properties. This operator is commutative but it is not
associative. Nevertheless, the fact that the operator
does not have the property of associativity does not
impose a fusion order as it is necessary for the Dubois
or Yager aggregation rules.

5 Results

The aim of the tests is to observe the behavior of the
operators, described previously, in different situations.
Initially, we will see an example of conflicting mass re-
distribution realized using the two operators proposed
in this paper. We will describe (Section 5.2) the results
obtained with the various operators in the situation
presented by Zadeh in [4] and which was described in
section 3.1.1. Lastly, a test where the context of data
resulting from an information source evolves will be
presented in section 5.3.

5.1 Example

To illustrate the proposed combination operators, we
consider two information sources {S;,S2} and a frame
of discernment with three hypotheses such as © =
{H,, H>, H3}. The basic belief assignment is given in
the TAB. 1. Using figure FI1G. 2, we explain the prin-

Table 1: Basic belief assignment for the two informa-
tion sources.

Source S; Source S>

ml(Hl) =0.35 mg(Hl) =0.2
ml(Hg) =0.1 ’ITLQ(HQ) =0.2
ml(H3) =0.05 m2(H3) =0.1

ml(Hl U H2) =0.2

mq (H1 U H3) =0.15

ml(Hg U H3) =0.1
m1(0) = 0.05

mg(Hl U H2) =0.2

mQ(Hl U H3) =0.1

mQ(Hz U H3) =0.1
TRQ(@) =0.1

ciples of the conflict mass distribution used by the two
fusion operators describes above.



m Conflict mass area

Figure 2: Representation of fusion for two sources.

5.1.1 Example Proposition 1

In the figure 2, the area noted A represented a par-
tial conflict area between the information sources. So,
the source S; asserts the hypothesis H; with a mass
mq (H;) equal to 0.35 and the source S, asserts Ho
with a mass mo(Hsz) equal 0.2. The local conflicting
mass is then :

m* = mq (Hl)mg(Hz) =0.07. (33)
We are going to distribute this local conflicting mass
proportionally to the mass affected to each source on
the hypotheses H; and H,. This mass will be redis-
tributed on the sets :

P* = {Hl,HQ}. (34)
Then, we obtain the following weighting factors :
A(H,) my (H)
w*(Hy) = = =0.64
( 1) ZHE’P* A(H) m1 (Hl) + mQ (HQ)
(35)
and :
. A(H>) m;(Hs)
) S cp AT~ ma(y) + s ()
(36)

According to these weighting factors, the distribution
of the conflicting mass is then :

m®(H,) = w* (H;).m™ = 0.0448 (37)
and :

m(Hy) = w*(Hz).m* = 0.0252. (38)

By applying this rule to the whole combination of hy-
potheses for two sources, we obtain the resulting mass
assignment presented in Table 2.

5.1.2 Example Proposition 2

The value m* of the first partial conflict between the
two sources is equal to 0.07 (33). The distribution rule
of the mass will be as it follows. At first, we define

the masses assigned to each subset according to the
equation (29). We obtain then :

)\(HQ) = ’ITLQ(HQ) =0.2
)\(Hl U HQ) = ml(Hl) + mQ(HQ) =0.55.

(39)

The weighting factors will be defined according to the
equation (32). So, we obtain the following weighting
factors :

1.1
w*(Hy) = ¥ =0.18
w*(H1 UHQ) = % =0.5.

(40)

Then, we obtain the distribution of the local conflicting
mass m™ between the different propositions :

m™(Hy) = m*w*(H;) = 0.0224
m™(Hy) = m*w*(Hy) = 0.0126
m®(Hy U Hy) = m*w*(Hy U Hy) = 0.035 .

(41)

If we apply this rule to all the partial conflicting ar-
eas and by computing the sum of the whole functions
m&*(.), we obtain the fusion result. The complete fu-
sion result of the two sources is given Table 2.

Table 2: Result of the fusion process.

Resulting Masses
Hypotheses | Proposition 1 | Proposition 2
H, 0.4782 0.4031
H, 0.245 0.2041
Hj 0.1142 0.0920
H, UH, 0.0788 0.140
H,UH; 0.0444 0.0780
H> U Hj 0.0344 0.0520
© 0.005 0.0308

5.1.3 Remarks

We can see that operator of combination 1 we propose
promote the hypotheses singletons at the cost of the
composite hypotheses. On the contrary, operator of
combination 2 promote the composite hypotheses. In
addition, on the contrary of combination operators 1,
the combination 2 redistributes conflicting mass on the
whole set of composite hypotheses. With Table 3, we
can compare the fusion results obtained with these two
operators with those obtained with traditional combi-
nation operators.

5.2 Sensibility

We are now going to study the sensibility of the various
operators to the conflict variations. This first study
will be carried out using the mass distributions sug-
gested by the equation (11). To study the sensibility,
we will vary the value of ¢ what will involve conflict
variations. The various masses resulting from the com-
bination operators are presented in Figures 3 and 4.



Table 3: Result of the fusion process.

Resulting Masses
Hypotheses | Dempster | Dubois

H, 0.4722 0.34

H, 0.2361 0.17

Hj 0.1042 0.075

H, UH, 0.0972 0.16
H, UH; 0.0486 0.08
Hy U H; 0.0347 0.045

] 0.0069 0.13

In Figure 3, we can check the sensibility of Dempster’s
combination rule. Indeed in the case of a severe con-
flict, a small conflict variation involves strong varia-
tions of masses m®(H;) and m°®(H,). On this same
figure, we notice that the results obtained by the other
combinations operators are less influenced by the con-
flict variations. Moreover, we note that the combi-
nation operator proposed by Dubois and the operator
noted Proposition 2 have the same behavior roughly.
Whereas Proposition 1 has a different behavior by not
redistributing mass on disjunctions of hypotheses (Fig-
ure 4). This is due to its conjunctive behavior.
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Figure 3: Mass of H; (or H3) vs. conflict mass.
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Figure 4: Mass of Hy U H3 vs. conflict mass.

5.3 Context evolution

For this second test, we take again one of the tests
realized by Appriou in [1]. This test implements a
problem with two sources and two hypotheses. These
two sources have a good capacity of discrimination, but
a doubt on the training concerning the hypothesis H,
of the source S». The available learning are given by
normal distribution :

P(Si/Hy) = P(Ss/Hy) = N(0,1)

42
P(S,/Hy) = P(S2/Hs) = N(6,1) (42)
while measurements actually simulated follow :
P(S1/H1) = P(S2/H1) = N(0,1)
P(S1/H>) = N(6,1) (43)

P(S;/H>) = N(S,1).

So, in this test, the source S; has effectively a good
knowledge, and the reliability of source S, varies in
function of the signal S due to H>. S represents a pos-
sible evolution of the context of this hypothesis. The
masses first determined from simulated measurements
are obtained using model 1 presented by Appriou [13].
The recognition of the assumption H; is not a prob-
lem because simulated measurements are far consistent
to the training. It is not the case for the hypothesis
H,. Indeed, when the signal S is close to 0, the two
sources are in conflict. The source S; asserts being in
the presence of an hypothesis Hy whereas the source
So supports the hypothesis H;. On the contrary, when
the signal S is close to value 6, the sources support the
hypothesis Hs. In order to analyze the fusion result ob-
tained using the operators described previously, we use
two uncertain measurements introduced by Yager [14].
The first of these measurements is the confusion which
translates ambiguity on the mass distributions within a
belief structure. The second, the no-specificity, trans-
lates the fact that for belief structure given the mass
is more or less distributed on sets of big size. Fig-
ure 5 represents the evolution of confusion according
to the parameter S. In conflicting areas, we can note
that the masses resulting from the fusion using the
Dempster or Dubois operator have a weak confusion.
With regard to the Dempster’s combination rule in the
event of raised conflict, normalization imposed by this
operator becomes very significant. The conflict mass
is then redistributed on only one hypothesis, whereas
the sources are conflicting, which generates a weak con-
fusion. For the Dubois’s combination, the conflicting
mass is redistributed only on the conjunction of the hy-
potheses generating the conflict what is characterized
by a null confusion and a significant no-specificity (see
Figure 6). The operators introduced in this paper
have a very significant confusion (not understanding
between the two assumptions) in the case of strong
conflict. Moreover, Proposition 1 is more specific than
Proposition 2 but it redistributes the conflicting mass
only on the hypotheses singletons. Lastly, when the
information sources are agree (S & 6) then the results
obtained with the various operators are identical, be-
cause only the conjunctive aspect of these operators
are taken into account.
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Figure 6: No-specificity vs. S.

6 Conclusion

In this paper, we introduced the problem of the sen-
sibility in case of conflict with Demspter’s combina-
tion rule. We have proposed a generic framework for
the traditional operators fusion allowing to solve this
problem. This framework allows us to propose two
new combination operators of belief structures. These
combinations, like the Dubois and Yager operators,
are far from sensitive in conflicting situations. More-
over, on the contrary, the operators allows to distribute
more precisely (in fact locally), the conflicting masses.
Lastly, the no-associativity of the Dubois and Yager
operators requires a fusion order in the aggregation
process, whereas the employment of the operators pro-
posed here does not impose this constraint. Indeed,
the knowledge of all the mass functions avoids this con-
straint. Our future works consists to define an optimal
decision rule, within the meaning of classification, for
each proposed operator.
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