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Abstract : Within the framework of pattern recognition, many methods of classification were developed.
More recently, techniques using the Dempster-Shafer’s theory or evidence theory tried to deal with the problem
related to the management of the uncertainty and data fusion. In this paper, we propose a classification method
based on the Dempster-Shafer’s theory and information criteria. After an original basic belief assignment
method, we introduce an attenuation factor of belief functions based on the dissimilarity between probability
distributions. Results on synthetic and real world data sets are given in order to illustrate the proposed
methodology.
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1 Introduction

Data analysis and processing are two important tasks in today’s information society. The data management
becomes essential when the information is imperfect, that is to say imprecise and uncertain. Traditionally,
probability theory, which is inadequate in some cases as well known [1], is used for dealing with imperfect data.
In the recent past, other models have been developed for handling imprecise knowledge (theory of fuzzy sets [2],
possibility theory [3, 4]) or uncertain information (theory of belief functions [5]). In this paper, we deal with
a classification method of imperfect data sets using evidence theory [5, 6, 7]. Recently, in this context, a new
approach using neighborhood information has been developed [8]. Each nearest neighbor of a pattern to be
classified is considered as an item of evidence. The resulting belief assignment is also defined as a function of the
distance between the pattern and its neighbor. We propose an alternative solution to this classification method
in initializing the belief functions using information criteria. This paper is organized as follows. In section 2,
we introduce notations allowing to describe the Dempster-Shafer’s Theory of evidence. Section 3 is devoted to
present the proposed methodology. This work is applied to synthetic and real data (section 4).

2 Dempster-Shafer’s Theory

In this section, a brief overview of the Evidence Theory [5] is provided. Let © represents the set of hypotheses
H, called the frame of discernment. The knowledge about the problem induces a basic belief assignment which
allows to define a belief function m from 2° to [0, 1] as :

m(0) =0 (1)
> m(H)=1. (2)

Subsets H of © such that m(H) > 0 are called focal elements of m. From this basic belief assignment m, the
credibility Bel(H) and plausibility PI(H) can be computed using the equations :

Bel(H) = Y m(A) (3)
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PI(H)= Y m(A). (4)
HNA#D
The value Bel(A) quantifies the strength of the belief that event A occurs. These functions (m, Bel and
Pl) are derived from the concept of lower and upper bounds for a set of compatible probability distributions.
In addition, Dempster-Shafer’s theory allows the fusion of several sources using the Dempster’s combination
operator. It is defined like the orthogonal sum (commutative and associative) following the equation :

m(H)=mi(H)®m(H)D .... dmyn(H). (5)
For two sources S; and S;, the aggregation of evidence can be written :

mH) =% Y mi(A)m(B) VACe ©)

ANB=H
where [ is defined by :
K=1- " mi(A)m;(B). (7)
ANB=0
The normalization coefficient K evaluates the conflict between two sources. An additionnal aspect of the

Dempster-Shafer’s theory concerns the attenuation of the basic belief assignment m by a coefficient . The
attenuated belief function can be written as :

m(H) = a;mj(H) VHe?2° (8)
M, (0) = 1—a;+a;m;(0). (9)

3 Methodology of classification process

The proposed methodology can be decomposed in three steps. The first one corresponds to the basic belief
assignment based on analysis of the learning set (see section 3.1). The second one consists in attenuating the
belief structure by means of a coefficient a derived from the Hellinger’s distance between probability distribu-
tions. This one has a lower bound equal to 0 and an upper bound equal to 1. This distance allows to estimate
the similarity between two probability distributions and, in particular to check if the gaussian assumption is
correct (see 3.2). Finally, the belief structures defined for each source of information are aggregate in order to
decrease significantly the uncertainty for the later classification process (see 3.3).

3.1 Basic Belief Assignment

An important aspect of the discrimination concerns learning knowledge using data. In evidence theory, this
problem leads to initialize the belief functions m. We make the hypothesis that the data extracted from one
information source S; among M sources can be represented as a gaussian distribution. This assumption is
obtained by means of the study of the learning database defined as : X = {X(n;l), ooy Xsan)  Where Xy, 5) =
{X(nj)} represents the set of vectors X, classified in the hypothesis H,. For the value x;, we determine the
membership probability according to the hypothesis as :

— (@)

1 o
) = N(“(n;j)’a(n;j)) (10)

———€
O (nij) V2T

The pair (4(n;5), 7(n;5)) represent respectively the mean and standard deviation computed after the learning step
for each hypothesis H,, and each source S;. In addition, we compute a third gaussian distribution representing
the conjunction of the two hypotheses. This new distribution has the following mean and standard deviation :

P(z;/Hy) =

_ B(ng) T B
,u(n,n’);j - ] 9 4 (11)
O (nn)s = MAX(0 (i), Tn'35))- (12)

This assumption allows to generate the belief functions. Let X' a M component vector to be classify with
X' = [#},...,2]". The belief given for each hypothesis H,, depends on the membership probability with
respect to :

m;(H,) = R; = P(«;/H,) YV H, €2° (13)



The coefficient R; is a normalization coefficient. It allows to verify the condition given by equation (2). It is
defined as : )

= v H, € 2°. (14)
>, e20 P2}/ Hy)

R;

3.2 Belief function attenuation

After this learning step, the main idea is to resume the information contained in each source S; by means of an
optimum histogram computed on the set J;c 1, X(i;j) in the sense of the maximum likelihood and of a mean
square cost. This histogram will be used in order to establish the relevance of a source of information. First,
we have to build an approximation of the unknown probability distribution with only the N-samples given in
each source. That is done by means of a histogram building which is led by the use of an information criterion.
We will see that different information criteria initially designed for model selection can be used.

3.2.1 Probability density Approximation

Let be A1 As... Ap... A, an initial partition @ of an unknown distribution A with ¢ = Card(Q). The aim is to
approximate A with a histogram built on a subpartition C' = B1 B, ... B, of ) with ¢ bins such as ¢ < ¢. The
probability distribution A¢ built with C is an optimum estimation of A according to a cost function to define.
C results from an information criterion called IC issued from the basic Akaike’s information criterion (AIC')
[9], AIC* or ¢* [10] which are respectively Hannan-Quinn’s criterion and Rissanen’s criterion. These criteria
have the following form : R

A /\C(B)

IC(c) =g(c) = Y_ Acln o (B) (15)

BeC

where g(c) is a penalty which differs from one criterion to another one. Let us note € a random process of a
probability distribution A supposed absolutely continuous to an a priori given probability distribution v. Let w
be the set of all values taken by €. The probability density f of A is given by the Radon-Nycodim’s derivative
such as :

d\

Veew f()\,e)za(e). (16)

The probability density f is approximated from N samples (e;) of € by means of a histogram with ¢ bins
obtained with these N values. An optimum histogram to approximate the unknown probability distribution
A is obtained in two steps. The first one consists in merging two contiguous bins in a histogram with ¢ bins
among the (¢ — 1) possible fusions of two bins. This is made by minimizing the IC criterion. The second one
consists in finding the "best" histogram with ¢ bins. The optimum histogram with ¢ = c,,¢ bins is the one
which minimizes IC.

3.2.2 Maximum likelihood estimator for a partition @)

Let ) be a partition with ¢ bins and let €;...ex be a N-observation sample and let be Ag the probability
distribution according to ). The maximum likelihood estimator Ag of Ag is given by the following equation :

1

Vpew XQ(AP):N > e (17)
ekEAp

where A, is a bin of the partition (). This result derives from the density expression of Ag :

Veew fOga=Y Af(iﬁ’ La(e) (18)

with 14(e) =1 if € € A and 0 otherwise.

3.2.3 Selection of the bin number of a histogram

The obtaining of the optimum histogram is based on the use of an information criterion IC' which gives the
number of bins optimal thanks to a cost function based on the Kullback’s contrast or the Hellinger’s distance.



We define the cost to take A when X is the true probability density by :

WA\ = By (w [f(x’e)b (19)

fxe)

where E) is the mathematical expectation according to A and v is a convex function. According to the expression
of ¥ the cost function leads to different information criteria to choose the histogram with ¢ bins. So, if ¥ is the
Hellinger’s distance we get :

AIC(c) = 20}; L, Y A(B)n
BeC

2t (20)

B)’
It can be seen that it is identical to the classical Akaike’s information criterion. If the cost function W (A, }) is
expressed according to the KullBack’s contrast, we obtain two new criteria such as :

.+ _ c(l+In(lnN)) < A\(B)
) (c)—T—ngckc(B)ln o(B) (21)

ooy _c(l+InN) < . A(B)
AIC*(0) = ——— QBZE:CAC(B)l (B)" (22)

These criteria can be used to select the optimum histogram with ¢ bins to approximate the unknown probability
density of a N-sample. Detailed demonstrations are available in [9, 10].

3.2.4 Optimum histogram building process

At first, an initial histogram with ¢ = Card(Q) = 2 x E[V/N — 1] bins is built giving the partition @, where
E[ ] denotes the integer part. Then, a partition with (¢ — 1) bins is considered. For each possible fusion
of two contiguous bins among (¢ — 1) the criterion IC(¢ — 1) is computed. The choice of the best fusion is
made according to the minimization of IC'(¢ — 1).When it is done, we look for the best partition with (¢ — 2)
bins according to the same rule. Finally, the histogram with ¢ bins such as IC(c) for ¢ € {1,...,q} is retained.
Figure 1 shows an initial histogram built with a N-sample (N = 90) randomly generated according to a gaussian
distribution with mean equal to 0 and with a variance equal to 1. The final histograms according to respectively
AIC, AIC* and ¢* are given in figure 2. Figure 3 gives the behaviour of the three criteria. It can be seen
that AIC* and ¢* give the same final histogram. AIC gives a final histogram with an upper bin number. This
difference is linked to the type of convergence for each information criterion [10].

The optimum histogram is computed on the set UieHn X(i;5)- Once this histogram is obtained, we use the

Hellinger’s distance between the approximated distribution 5\0 computed on the set X, ;) and the approximated

distribution ¢ computed on the set X, ;). This distance gives a dissimilarity between the two probability
densities that is to say the ability of the source to distinguish the two hypotheses H,, and H,,.

3.3 Information sources aggregation and decision

We attenuate the belief structures according to the equation (9) where « is the Hellinger’s distance. The
information sources S; are then aggregated using the Dempster’s combination rule (see equation (5)). Finally,
the decision is made by assigning the vector X’ to the hypothesis H, with the maximum credibility. The
decision rule is based on the decision function § which assignes a vector X' to the hypothesis H,, following :

§(X', H,) = niif H, = arg max (Bel(H;)) (23)
H;e2©

4 Simulations

The proposed method has been applied to several sets of artificial and real data in order to perform an evaluation
of the algorithm.
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Figure 1: Initial histogram
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Figure 2: Optimum histograms

4.1 Synthetic data

In this section, we present results obtained on synthetic data. For the simulations, we have generated three

1 -1 0
gaussian dstributions such as : pu; = | 1 | and 0 = 1; py = 1 and 02 = 4; u3 = | —1 | and
1 0 1

02 = 3. The first learning set is made of N = 90 elements (30 for each class) and the second one is made of
N = 200 elements (70 elements in the first class, 50 elements in the second class and 80 elements in the third
class). The test base is made of 600 elements. Our method is compared to the method proposed in [11]. The

results are given in the two following tables for the first learning set.

For the method proposed by Zouhal, the

% Classified C; | Classified (5 | Classified C;
C} presented 81 7.5 11.5
C> presented 29.5 43.5 27
C5 presented 31 16 53

Table 1: Results of method [11]

% Classified C; | Classified C, | Classified Cs
C; presented 87 3.5 9.5
Cs presented 33 42.5 24.5
C3 presented 27 15 58

Table 2: Results with our method

good classification rate is of 59.16% and 62.50% for our method. According to the second learning set, we get
the following results (see tables 3 and 4). For the method proposed by Zouhal, the good classification rate is

of 57.83% and 60.33% for our method.
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Figure 3: Criteria evolutions

% Classified C; | Classified C, | Classified Cs
C; presented 78.5 4.5 17
Cs presented 29.5 47 23.5
C3 presented 26 26 48

Table 3: Results of method [11]

% Classified C; | Classified C, | Classified Cs
C; presented 83.5 6.5 10
C> presented 38 41 21
C5 presented 27.5 16 56.5

Table 4: Results of our method

4.2 Real data

A second database concerns a set of 16 characteristics extracted from 122 images of dermatological lesions.
Details concerning the features can be found in [12]. The database is composed of 101 naevi (no pathological
lesions) and 21 melanoma. Final results are presented in the following tables (Tables 5 and 6). The proposed
method allows to obtain 81.1% of good classification towards 75.7% for the method presented in [11].

5 Conclusion

% H, (naevus) | H> (melanoma)
H, (Decision) 99 1
H, (Decision) 47.6 52.4

Table 5: Results of method [11]

% H, (naevus) | H> (melanoma)
H, (Decision) 86.1 13.9
H, (Decision) 23.8 76.2

Table 6: The proposed method

In this paper, we have presented an original method of discrimination using both information criteria and
Dempster-Shafer’s theory. The proposed methodology consists in intializing the belief functions with proba-
bility densities obtained by learning. By means of information criteria, we determine the attenuation of the



belief assignment based on the dissimilarity between probability distributions. Results on artificial and real
data demonstrate the effectiveness of the proposed method. Concerning the real-world data (diagnosis in der-
matology), tests on a larger base are processing at this time. Future work is concerned with analysis of several
decision rules using uncertainty measures proposed by Klir [13, 14].
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