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Abstract- In this paper, a method for diagnosis of AC machines 
using the spectrum of the near magnetic field is presented. The 
method is associated to a fusion process based on belief functions 
which analyze these measurements. In previous works, it has 
been shown that it was possible to detect the inter-turns short 
circuit in the stator windings of electrical machines using a 
noninvasive method. It is based on the analysis of the variation 
of sensitive harmonics when the load varies, and eliminates the 
main drawback presented by other diagnostic methods which 
use the comparison with a healthy state assumed known. Several 
measurements around the machine are necessary to increase the 
probability of the fault detection because the fault position 
relatively to the sensor can strongly influence the results. So in 
this paper it is proposed to exploit conjointly all the 
measurements in order to obtain a more robust and reliable 
diagnostic and to increase the probability of detecting the fault. 
The merging of the different estimations being realized through 
the belief functions framework, this approach is tested on real 
measurements. Experimental tests are performed on a special 
rewound induction machine in order to validate the theoretical 
approach. 

I. INTRODUCTION 

In order to increase the systems productivity and safety of 
industrial applications it is interesting to use the diagnosis 
methods and to anticipate the motors failure. Diagnosis and 
fault detection of electrical machines are in the scope of these 
matter and require the development of measurement, 
acquisition, analysis techniques and decision support. 

Over the last decade different techniques have been 
developed and the technology of this field is still in 
permanent evolution. The techniques such as those based on 
the analysis of vibrations or currents [1-3] have already 
proven beyond the scope of the research laboratories that they 
can find their place in an industrial environment. However, 
the interpretation of results requires a high expertise level and 
are expensive, making it difficult to a real democratization of 
these techniques. Actually only the systems where a 
breakdown of the machine can have disastrous consequences 
are equipped with a monitoring system (for example in power 
generation plants). 

Recently, methods based on the analysis of external 
magnetic field have been developed; their advantages are the 
noninvasive investigation and simplicity of implementation 
[4-6]. For many industrial applications it is interesting to use 
the noninvasive measurement methods to detect the faults of 
electrical machines without stopping the operation. However, 
all the diagnostic methods usually require the knowledge of 
the machine’s healthy state regardless of the used physical 
quantity [7-9]. The fault detection is then based on the 

comparison of the signature for a given state with this of the 
presumed healthy state by considering an indicator issue from 
a measurement that is known to be sensitive to a fault. The 
difficulty lies in the fact that the healthy state is practically 
never known until the failure occurs because the user of the 
machine did not record the healthy signature. In the same 
time, in generally, the load is a disturbing factor for diagnosis 
because it induces several healthy states.  

The aim of this paper is to propose a diagnosis procedure 
for an induction machine using two external flux sensors and 
based on a fusion process with belief functions. The method 
exploits the variation with load of sensitive spectral lines 
instead of their magnitude itself. The paper is organized as 
follows. The next section recalls some principles of the 
diagnosis procedures. Basic concepts on the belief function 
theory are presented in the third section. Then a fusion 
process for fault diagnosis is developed and tested in fourth 
section. In order to demonstrate the validity of this method 
the experimental results were presented in fifth part. Finally a 
discussion and the presentation of future works conclude the 
paper. 

II. DIAGNOSIS PROCEDURE 

The originality of the non-invasive diagnosis method 
presented in [10] is the use of the load to perform the fault 
detection (the load is not longer a disturbing factor). 
Furthermore, the method does not require the knowledge of 
the machine's healthy state. A comparison between machine 
operating conditions (no-load and load) enables to detect a 
stator fault. For diagnosis two flux sensors, placed on each 
side of the machine which measures the external magnetic 
field of the machine, are used [11]. The method consists in 
comparing the signals delivered by each sensor in function of 
the load variation (Fig. 1). More precisely, the procedure uses 
the magnitude variations of a specific sensitive harmonic 
depending on the type of machine especially its number of 
rotor slots. For Induction Machine (IM) used in experimental 
tests the harmonic 850 Hz is analyzed. Considering a load 
increase, the method principle can be described in the 
following way: 

• if the sensitive harmonic amplitudes measured by the 
sensors vary in the same direction, then no fault is 
suspected, (Fig. 1-a)  

• otherwise (they vary in opposite directions), a fault (a 
inter-turns short circuit in the stator windings) is 
suspected (Fig. 1-b). 



A testbed, illustrated in Fig. 2, allows us to test this method 
on a 3-phase induction machine. The machine has been 
rewound and all the elementary sections are extract in order 
to create short-circuit faults at different position of the stator 
winding. Then, different measurements on each sensor are 
obtained for different load conditions.  

Experimental results have shown that the proposed 
procedure does not lead to a good decision when the sensors 
are not placed just in front of the faulty phase. Consequently 
it is necessary to analyze data from several positions to 
improve the diagnosis. Of course, it is not possible to cover 

the whole periphery of the machine, as it should be ideally, so 
measurement are limited to 4 twins of positions as depicted in 
Fig. 3. 

In this paper, different strategies are investigated to 
improve the method. Firstly, measurements will be partially 
considered as the difference of amplitudes between sensors 
measurements tends to be significant in case of a fault, while 
measures tend to be similar with no fault.  

Secondly, to manage the fusion and the imperfection of the 
measures, a model based on the belief function theory [12, 
13] has been introduced. This theory which generalizes in 
particular the probability theory, allows one to exploit 
conjointly, several imperfect sources of information to make 
proper decision. 

III. BELIEF FUNCTION THEORY: BASIC CONCEPTS 

A. Information Representation 
Let us consider a finite set Ω composed of the possible 

values of a variable of interest x. We do not know the true 
value taken by x, but we have information regarding this 
value given by different sources of information, each piece of 
information being represented by a mass functions m.  

Formally, a mass function m defined on Ω = {ω1, …, ωK} 
(called the frame of discernment) is an application from 2Ω to 
[0,1] verifying: 

( ) 1
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For each subset A of Ω, the quantity m(A) represents the 
part of the unit mass allocated to the hypothesis that the true 
value of x lies in the subset A of Ω, and in no strict subsets. 

For example, let us consider a coin tossing with Ω = 
{heads, tails}. We have no information regarding the fact that 
the coin is fair or biased. Thus our knowledge is represented 
by m({heads, tails})=1 (a total ignorance state), neither 
{heads} nor {tails} receives a strictly positive mass.  

 
Fig. 3.  Illustration of the four possible positions for the two sensors to 
detect a fault. 
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a) no faulty case 
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b) faulty case 

Fig. 1. Harmonic amplitude variation in load and no load case for no faulty  
and  faulty case. 
  

 
Fig. 2.  Testbed used for the experiments. Flux sensors measuring the 
external magnetic field of the 3-phase induction machine are placed on each 
side of this machine. The equipment above the machine allows one to 
simulate a fault by short-circuiting coils. The machine can run under no-load 
or loading conditions. 



B. Manipulating Information 
Suppose that we receive two pieces of information 

quantified by m1 and m2, both expressed on Ω, coming from 
two distinct sources. These two mass functions can be 
combined using the conjunctive rule of combination defined 
by: 
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This combination is associative and commutative, which 
ensures that the order the sources are combined does not 
affect the combination result. Its neutral element is the mass 
function representing the total ignorance: m(Ω)=1. 

For example, let us consider a frame Ω = {ω1, ω2}, and two 
sources of information S1 and S2 providing two mass 
functions m1 and m2 defined by m1({ω2}) = 0.2, m1(Ω) = 0.8, 
m2({ω2}) = 0.3 and m2(Ω) = 0.7. The conjunctive 
combination of m1 and m2 is then given in Table 1. The 
resulting mass function, denoted m, is therefore defined by 
m({ω2}) = 0.06 + 0,14 + 0.24 = 0.44, and m(Ω) = 0.56. The 
mass supporting ω2 has then been reinforced with this 
combination. 

TABLE I 
CONJUNCTIVE COMBINATION OF TWO MASS FUNCTIONS 

m1 \ m2 {ω2} 
0.3 

Ω 
0.7 

{ω2} 
0.2 

{ω2}� {ω2} = {ω2} 
0.2 × 0.3 = 0.06 

{ω2} � Ω = {ω2} 
0.2 × 0.7 = 0.14 

Ω 
0.8 

Ω �{ω2}={ω2} 
0.8 × 0.3 = 0.24 

Ω � Ω = Ω 
0.8 × 0.7 = 0.56 

C. Decision Making 
When a decision has to be made regarding the true value of 

x, a strategy [13, 14] consists in transforming the mass 
function m, resulting from the fusion process, into the 
following probability measure BetP, called the pignistic 
probability and defined by: 
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The chosen decision is then the one that maximizes 
BetP.;The resulting pignistic probability associated with the 
combined mass function m depicted in Table 1 is defined by: 
BetP({ω1}) = 0.56/2 = 0.28 and BetP({ω2}) = 0.44 + 0.56/2 = 
0.72. It follows a decision in favor of ω2. 

IV. FUSION PROCESS FOR FAULT DIAGNOSIS 

In the present application, the main question of interest is 
“Is there a fault?”. Let us then define a variable of interest x 
which takes its values in Ω={y,n}, “y” standing for “yes there 
is a fault” and “n” for “no, there is no fault”.  

To detect a fault, four positions on the machine have been 
chosen (Fig. 3). Measures of the two sensors taken at these 
positions are then considered as pieces of evidence regarding 
the fact that there is a fault on the machine. 

A difficult part when modeling a fusion process with belief 
functions is to define masses values.  

This can be done by a learning set composed of labeled 
data (measurements are obtained while the truth is known) 
and by experts’ opinions. Both have been used in this paper.  

As illustrated in Fig. 4, the three couples of phases has 
been called A-A’, B-B’ and C- C’, and each stator slot has a 
number. For example, stator slots 1, 2 are coils of phase A. 
Tests are carried out on an IM characterized by: 11kW, 50Hz, 
p=4, 380/660V, Ns=48 and Nr=32. This machine has been 
rewounded such that the terminals of the different stator 
elementary sections are extracted from the winding and are 
brought back to a connector block, which is fixed above the 
machine as indicated in Fig. 2. This machine allows us to 
simulate a damaged coil (short-circuiting coils), for example 
coils 1-2, corresponding to 12.5% coils of phase A. Using the 
testbed (Fig. 2.) we can then obtained measures from the 
sensors in each of the position 1, 2, 3 and 4 depicted in Fig. 3, 
for different loads, and for different simulated faults. A 
rheostat is used to limit the value of short-circuit current in 
elementary coil. 

 
 
Fig. 4. The three couples of phases of the asynchronous machine. Short-
circuits can be made on each elementary coil using the connector block 
illustrated in Fig. 2. 

Loads increase has been chosen equal to 0 (no load), 
600W, 1000W and 1400W. A series of measurements for 
each of these loads and each of the positions (Fig.3) has then 
been realized with: 

• no fault,  
• two faults on Phase A (short-circuits on coils 1-2 then 

1-3),  
• two faults on Phase B (short-circuits on coils 9-10 then 

9-11),  
• two faults on Phase C (short-circuits on coils 17-18 

then 17-19) 
• two faults on Phase A’ (short-circuits on coils 25-26 

then 25-27) 
• two faults on Phase B’ (short-circuits on coils 33-34 

then 33-35) 



• two faults on Phase B’ (short-circuits on coils 41-42 
then 41-43) 

These series of measurements constitutes the learning set. 
Table II shows the measurements obtained with the two 
sensors placed in position 2 on a machine with no fault. 
Columns “Sensor i evolution” (with i=1,2) indicate 
respectively the difference between sensor i measurement 
obtained at the current load with the measurement obtained at 
the previous load (for example 160 = 376 – 216). It can be 
observed that sensors measurements increase with the loads. 
As there is no fault, this behavior was expected. 
A different situation is exposed in Table III. The machine has 
a fault (short-circuit 1-3), but as sensors measurements 
evolutions are different (two times: between loads 0 and 600 
and between loads 1000 and 1400). 

However this is not always the case as illustrated by the 
example exposed in Table IV. In this situation, there is a fault 
(short-circuit 1-2) but there is no difference of evolution 
between sensors measurements: both sensors measurements 
increase while the load increases. 

TABLE II 
MEASUREMENTS OBTAINED FROM SENSORS 1 AND 2 IN POSITION 2 ON A 

MACHINE WITH NO FAULT. 

Load 
(W) 

Sensor 1 
(µV) 

Sensor 1 
Evolution 

Sensor 2 
(µV) 

Sensor 2 
Evolution 

Same 
evolution? 

0 216  217   

600 376 160 368 151 yes 

1000 478 102 470 102 yes 

1400 531 53 526 56 yes 

 

TABLE III 
MEASUREMENTS OBTAINED FROM SENSORS 1 AND 2 IN POSITION 2 ON A 
MACHINE WITH SHORT-CIRCUIT ON COILS  1-3 ON PHASE A. SITUATIONS 

WHERE SENSORS MEASUREMENTS VARY IN AN OPPOSITE WAY ARE IN BOLD. 

Load 
(W) 

Sensor 1 
(µV) 

Sensor 1 
Evolution 

Sensor 2 
(µV) 

Sensor 2 
Evolution 

Same 
evolution? 

0 314  436   

600 103 -211 529 93 no 

1000 338 235 615 86 yes 

1400 503 165 596 -19 no 

 

TABLE IV 
MEASUREMENTS OBTAINED FROM SENSORS 1 AND 2 IN POSITION 2 ON A 

MACHINE WITH SHORT-CIRCUIT ON COILS  1-2 ON PHASE A). 

Load 
(W) 

Sensor 1 
(µV) 

Sensor 1 
Evolution 

Sensor 2 
(µV) 

Sensor 2 
Evolution 

Same 
evolution? 

0 146  226   

600 245 99 436 210 yes 

1000 348 103 573 137 yes 

1400 456 108 737 164 yes 

 
The set of all the results are regrouped on Table V. For 

example, we retrieve that in position 2, with a 1-3 fault two 

different evolutions were found.  As a difference of evolution 
is a sign of a fault, it is sufficient to detect a fault in one 
position to ensure that there is a fault on the machine. 
However this strategy is not sufficient to detect short-circuits 
1-2 and 25-26 (see Table V zero different evolution for each 
position). 

TABLE V 
NUMBER OF DIFFERENT EVOLUTIONS DETECTED IN FUNCTION OF THE 

POSITION AND THE FAULT IN THE LEARNING SET (IN BOLD THE CASES WHERE 
THE FAULT HAS NOT BEEN DETECTED). 

 Position 1 Position 2 Position 3 Position 4 

No fault 0 0 0 0 

1-2 0 0 0 0 

1-3 3 2 3 1 

9-10 0 0 1 1 

9-11 0 0 0 1 

17-18 1 0 0 0 

17-19 1 2 2 3 

25-26 0 0 0 0 

25-27 2 1 0 0 

33-34 1 1 2 0 

33-35 1 0 2 3 

41-42 1 0 0 0 

41-43 2 3 3 3 

 
Thus values measurements have been considered too. 

Indeed, it has been observed that the absolute value of the 
difference between sensor 1 measurement and sensor 2 
measurement tends to be greater in case of a faulty machine 
than in case of a healthy machine. Results in Table VI give 
examples in situations with no fault, a fault in position 1-2 
and a fault in position 1-3. 

TABLE VI 
ABSOLUTE VALUES OF THE DIFFERENCES OF MEASUREMENTS BETWEEN 

SENSOR 1 AND 2 IN EACH SITUATION DESCRIBED IN TABLE II (NO FAULT), 
TABLE III (FAULT 1-3) AND TABLE IV (FAULT 1-2). 

Load 
(W) 

Dif. with no fault 
(Table II) (µV) 

Dif. with fault 1-2 
(Table IV) (µV) 

Dif. with fault 1-3 
(Table III) (µV) 

0 1 80 122 

600 8 191 426 

1000 8 225 277 

1400 5 281 93 

 
To exploit jointly all these pieces of information (sensors 

measurements difference of evolutions and sensors 
measurements absolute values in each position), a model 
based on mass functions has been developed. As previously 
explained the frame of discernment is chosen equal to 
Ω={y,n}. Eight pieces of evidence are to be quantified: the 
differences of evolution in positions 1 to 4, and measurements 
values in positions 1 to 4. 

In case of a difference of evolution, a fault is surely 
present, then masses regarding the presence of a fault in 
position i (i=1,2,3,4) are initialized in the following way: 



• If there is at least a difference of evolution: 
mevo,i({y})=0,95 and mevo,i(Ω)=0,05. It represents the 
fact that there is surely a fault. 

• If there no opposite evolution in the measurement: 
mevo,i({n})=0,05 and mevo,i(Ω)=0,95. We do not know 
is there is a fault, however there is a small chance that 
there is no fault. The pignistic probability associated 
with this mass function is near a 50-50 biased in favor 
of no fault. 

It remains to take into account measurements values in 
position i (i=1,2,3,4). The main idea is that with no fault 
sensors, measurements are rather close, while with a fault the 
difference between these values tends to widen. Thus masses 
are chosen in the following manner: 

• If the maximum of the absolute values of the 
differences is lower than 200: mval,i({n})=0,05 and 
mval,i(Ω)=0,95 (we do not know if there is a fault, 
maybe not). 

• If this value is between 200 and 300, we start to think 
that maybe there is a fault: mval,i({y})=0,05 and 
mval,i(Ω)=0,95 (but we remain doubtful). 

• With this difference between 300 and 500, a fault is 
more credible: mval,i({y})=0, 5 and mval,i(Ω)=0,5. 

• At last if the difference is greater than 500, a fault is 
more surely present: mval,i({y})=0, 8 and mval,i(Ω)=0,2. 

Even if it has been seen in Table VI that with no fault the 
absolute values of the differences are much smaller than 300, 
a diagnosis method with a complete knowledge of a healthy 
machine is not expected. This is the reason why only a 
cautious allocation of the masses has been realized. 

For example, information in Table II are then quantified by 
mevo,2({n})=0,05 and mevo,2(Ω)=0,95 as there is no opposite 
evolutions, while information in Table III give the following 
knowledge: mevo,2({y})=0,95 and mevo,2(Ω)=0,05. Results 
exposed in Table VI induce the following information: 

• For the scenario exposed in Table II (the maximum 
value of the absolute values of the differences is equal 
to 8): mval,2({n})=0,05 and mval,2(Ω)=0,95  

• For the scenario exposed in Table IV (the maximum is 
equal to 281): mval,2({y})=0,05 and mval,2(Ω)=0,95  

• For the scenario exposed in Table III (the maximum 
being equal to 426): mval,2({y})=0,5 and mval,2(Ω)=0,5. 

Once the mass functions initialized, the next step consists 
in the fusion of the mass functions using the conjunctive rule 
of combination (Eq. 2). The chosen decision is then the one 
that maximizes the pignistic probability (Eq. 3). 

The proposed method for fault diagnosis can then be 
summarized in the following manner: 

1. For each position i (i=1,2,3,4) illustrated in Fig. 3, 
from the measurements obtained from sensors, 
compute mevo,i and mval,i 

2. Combine conjunctively all the mass functions: 
∩ i=1,2,3,4 mevo,i  ∩ ∩ i=1,2,3,4 mval,i   

3. The probability of having a fault is then given by 
BetP({y}). 

V. EXPERIMENTS 

To test this fusion process, three new series (called series 2, 
3 and 4) of measurements have been undertaken under the 
same conditions, with the same machine and testbed (Fig. 2).  

Pignistic probabilities obtained from a combination of only 
the information regarding the opposite evolutions of 
measurements are depicted in Fig. 5.  

These probabilities are obtained from the pignistic 
transformation of the conjunctive combination of mass 
functions mevo,i with i=1,2,3,4. 

Pignistic probabilities obtained from the combination of all 
the mass functions mevo,i and mval,i with i=1,2,3,4 are 
illustrated in Fig. 6. 

In series 2 and 4 (Fig.5 and Fig.6), the probability of a fault 
is strictly greater than 0,5 (a fault is detected) in each case 
except when the machine has no fault (indicated as “no def” 
below the first histogram) and when there is a fault in 
position 1-2. Thus the two fusion process has obtained the 
same results in these series. The consideration of 
measurements values has not improved the diagnosis. 

In series 3 (Fig.5 and Fig.6), the second strategy has 
allowed the detection of faults in position 1-2 (Phase A), 9-11 
(Phase B) and 17-18 (Phase C) which were not detected by 
just considering the opposite evolutions of measurements.  

 
Fig. 5.  Probabilities of fault obtained with the fusion of only information 
regarding the opposite evolutions of measurements in each position (mevo,i 
with i=1,2,3,4). 
 



Then in this series, information regarding the 
measurements values have been useful. 

Finally if we regroup the results obtained from these three 
series, over the 39 decisions to make, the fusion process 
taking into account only the opposite evolutions of 
measurements has realized 34 good decisions (~87,2%) and 
the fusion considering also measurements values has made 37 
good decisions (~94,9%). 

VI. CONCLUSION 

This paper use conjointly a non-invasive diagnosis 
approach and an approach based on a stochastic model (belief 
functions) to diagnose the inter-turns short circuit in the stator 
windings of electrical machines. Both approaches provide an 
interpretation of the magnetic field variation outside the 
machine in the presence of a fault, without need to know the 
healthy state of the machine, the comparison being made 
between two states of working (called 'no load and in load 
case). The method proposes to exploit the measured values of 
the external magnetic field, obtained by a specific sensor in 
order to increase the probability of finding the fault. Direct 
analysis of the spectrum corresponding to the external 
magnetic field may determine the fault of the machine. 
However the information provided by the sensors are 
dependent on the position of each one in relation to fault, the 
load level of the machine and the fault severity, hence the 
interest of a statistical method which takes into account these 

parameters. By applying a conjointly analysis between the 
two methods it has enabled this work to increase the detection 
probability of the fault from a value of ~87,2% to ~94,9%. 

VII. DISCUSSION AND FUTURE WORKS 

Let us point out that the amplitude of the measured 
harmonics strongly depends on the fault severity and the 
location of the sensor in relation to the machine. So in this 
paper, four sets of measurements were used for each sensor 
position and four positions of sensors around the machine. 
The uses of two jointly approaches have yielded a significant 
probability for determining the machine fault. It will be 
interesting to know the evolution of the probability with 
increasing the number and positions of measurements in order 
to establish a protocol for industrial implementation. This will 
be the next step of this study. 
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