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Abstract. Mining database provides valuable information such as fre-
quent patterns and especially associative rules. The associative rules have
various applications and assets mainly data classification. The appear-
ance of new and complex data support such as evidential databases has
led to redefine new methods to extract pertinent rules. In this paper,
we intend to propose a new approach for pertinent rule’s extraction on
the basis of confidence measure redefinition. The confidence measure is
based on conditional probability basis and sustains previous works. We
also propose a classification approach that combines evidential associa-
tive rules within information fusion system. The proposed methods are
thoroughly experimented on several constructed evidential databases and
showed performance improvement.
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1 Introduction

Data mining domain allows extracting pertinent information within databases
[1]. The provided information are represented in a set of rules, where each one
is associated with a pertinence measure denoted Confidence. Among their pur-
poses, those associative rules are used for data classification [2, 3]. The classifi-
cation process from those associative rules is denoted associative classification.
Associative classification offers one of the best classification rate and measure
membership [3]. Recently, new databases have appeared proposing data suffer-
ing from imperfection. Those types of data fit reality where opinions are no
longer represented with Boolean values. In addition, it has added more complex-
ity in their treatment. The imperfection is handled with several theories such as
fuzzy [4] and evidential theory [5, 6]. In [7], the author introduced a new type
of databases that handle both imprecise and uncertain information thanks to
the evidential theory. Those types of databases were denoted as the Evidential
database. The evidential databases were shortly studied from a data mining view
[8] and not so much attention was paid to that issue. In literature, two major
works [8, 9] stand by proposing new measures for itemsets’ support. Indeed, in
[8], Hewawasam et al. proposed a methodology to estimate itemsets’ support



and modelize them in a tree representation: Belief Itemset Tree (BIT). The BIT
representation brings easiness and rapidity for the estimation of the associative
rule’s confidence. In [9], the authors introduced a new approach for itemset sup-
port computing and applied on a Frequent Itemset Maintenance (FIM) problem.
Only [8] paid attention to associative classification where the authors introduced
evidential associative rules. A new measure for rule’s confidence was introduced
based on conditional belief [6]. In this work, evidential data mining problem is
tackled by putting our focus on the associative classification. We highlight prob-
lems existing in current measure of evidential rule’s confidence which are based
on conditional belief. A new confidence measure is proposed based on Bayesian
assumption. We also introduce a new associative classification method that re-
duces the overwhelming number of generated rules. The retained rules are then
used for classification purposes and tested on several benchmarks. This paper is
organized as follows: in section 2, the main principles of the evidential database
are recalled. In section 3, several state of art works on confidence measure are
scrutinized and we highlight their limits. In addition, we introduce an alternative
confidence measure based on probabilistic definitions. In section 4, we introduce
a new method for evidential rule generation. The provided rules are filtrated and
combined through a fusion system. The performance of this algorithm is studied
in section 5. Finally, we conclude and we sketch issues of future work.

2 Evidence database concept

An evidential database stores data that could be perfect or imperfect. Uncer-
tainty in such database is expressed via the evidence theory [5, 6]. An evidential
database, denoted by EDB, with n columns and d lines where each column i
(1 ≤ i ≤ n) has a domain θi of discrete values. Cell of line j and column i
contains a normalized BBA as follows:

mij : 2θi → [0, 1] with

mij(∅) = 0∑
A⊆θi

mij(A) = 1. (1)

Table 1. Evidential transaction database EDB

Transaction Attribute A Attribute B

T1 m11(A1) = 0.7 m21(B1) = 0.4
m11(θA) = 0.3 m21(B2) = 0.2

m21(θB) = 0.4
T2 m12(A2) = 0.3 m22(B1) = 1

m12(θA) = 0.7



In an evidential database, as shown in Table 1, an item corresponds to a
focal element. An itemset corresponds to a conjunction of focal elements having
different domains. Two different itemsets can be related via the inclusion or the
intersection operator. Indeed, the inclusion operator for evidential itemsets [9]
is defined as follows, let X and Y be two evidential itemsets:

X ⊆ Y ⇐⇒ ∀xi ∈ X,xi ⊆ yi.

where xi and yi are the ith element of X and Y . For the same evidential itemsets
X and Y , the intersection operator is defined as follows:

X ∩ Y = Z ⇐⇒ ∀zi ∈ Z, zi ⊆ xi and zi ⊆ yi.
An Evidential associative rule R is a causal relationship between two itemsets

that can be written in the following form R : X → Y fulfilling X ∩ Y = ∅. In
Table 1, A1 is an item and {θA B1} is an itemset such that A1 ⊂ {θA B1} and
A1 ∩ {θA B1} = A1. A1 → B1 is an evidential associative rule.

Several definitions for the support estimation were defined for the evidential
itemsets such as [8, 9]. Those methods assess the support based on the belief
function applied on the evidential database BBA mEDB

3 :

SupportEDB(X) = BelEDB(X) (2)

such that:

Bel : 2θ → [0, 1] (3)

Bel(A) =
∑
∅6=B⊆A

m(B). (4)

In a previous work [10], we introduced a new metric for support estima-
tion providing more accuracy and overcoming several limits of using the belief
function. The Precise support Pr is defined by:

Pr : 2θi → [0, 1] (5)

Pr(xi) =
∑
x⊆θi

|xi ∩ x|
|x|

×mij(x) ∀xi ∈ 2θi . (6)

The evidential support of an itemset X =
∏

i∈[1...n]
xi in the transaction Tj (i.e.,

PrTj
) is then computed as follows:

PrTj
(X) =

∏
xi∈θi,i∈[1...n]

Pr(xi) (7)

Thus, the evidential support SupportEDB of the itemset X becomes:

SupportEDB(X) =
1

d

d∑
j=1

PrTj
(X). (8)

3 A BBA constructed from Cartesian product applied on the evidential database.
Interested readers may refer to [8].



3 Confidence measure for evidential associative rules

The confidence is the measure assigned to the associative rules and it represents
its relevance [1]. As originally introduced in Boolean databases, the confidence
measure was relying on conditional probability [1]. Indeed for a ruleR : Ra → Rc,
such that Rc and Ra are respectively the conclusion and the antecedent (premise)
part of the rule R, the confidence is expressed as follows:

Confidence(R) = P (Rc|Ra) =

d∑
i=1

P (Ra ∩Rc)

d∑
i=1

P (Ra)

(9)

In addition, even in fuzzy data mining, the associative rule’s confidence is built
with conditional fuzzy measures [11]. In this respect, evidential associative rules
were initially introduced in [8]. The authors defined the structure of an evidential
associative rule and estimated its relevance following a confidence metric. The
confidence of a rule R in the set of all rules R, i.e., R ∈ R, is computed as
follows:

Confidence(R) = Bel(Rc|Ra) (10)

where Bel(•|•) is the conditional Belief. The proposed confidence metric is hard
to define where several works have tackled this issue and different interpretations
and formulas were proposed such as those given respectively in [5, 12]. In [5], the
conditional belief is defined as follows:

Bel(Rc|Ra) =
Bel(Rc ∪Ra)−Bel(Ra)

1−Bel(Ra)
(11)

In [8], the authors used Fagin et al.’s conditional belief such that:

Bel(Rc|Ra) =
Bel(Ra ∩Rc)

Bel(Ra ∩Rc) + Pl(Ra ∩ R̄c)
. (12)

where Pl() is the plausibility function and is defined as follows:

Pl(A) =
∑

B∩A 6=∅

m(B). (13)

Example 1. Through the following example, we highlight the inadequacy of the
conditional belief use. We consider the Transaction 1 of Table 1 from which we
try to compute the confidence of A2 → B1 (i.e., Bel(B1|A2)). The conditional
belief introduced in [5] gives the following results:

Bel(B1|A2) =
Bel(B1 ∪A2)−Bel(A2)

1−Bel(A2)
=
Bel(B1)

1
= 0.4



The result of the belief of B1 knowing A2 is true is equal to that of Bel(B1) due
to the independence between A2 and B1. On the other hand, both hypothesis
might be correlated so that the event B1 does not occur knowing already the
happening of A2.

In the following, we propose a new metric for the confidence estimation based
on our Precise support measure [10] and probability assumption:

Confidence(R) =

d∑
j=1

PrTj
(Ra)× PrTj

(Rc)

d∑
j=1

PrTj
(Ra)

(14)

where d is the number of transactions in the evidential database. Thanks
to its probabilistic writing, the proposed metric sustains previous confidence
measure such as that introduced in [1].

Example 2. Let us consider the example of the evidential database in Table 1.
The confidence of the evidential associative rule R1 : A1 → B1 is computed as
follows:

Confidence(R1) =
PrT1(A1)× PrT1(B1) + PrT2(A1)× PrT2(B1)

PrT1
(A1) + PrT2

(A1)
= 0.75

The generated rules with their confidence could find several applications. In the
following, we tackle the classification problem case and a based evidential rule
classifier is introduced.

4 Associative Rule Classifier

One of the main characteristics of the evidential database is the great number
of items that it integrates. The number of items depends from the frame of
discernment of each column. This asset makes from the evidential database more
informative but more complex than the usual binary database. In [10], we have
shown the significant number of generated frequent patterns that may be drawn
even from small databases. Indeed, from a frequent itemset, of size k, 2k − 2
potential rules are generated. In order to use the generated evidential rules for a
classification purposes, we first have to reduce their number for a more realistic
one. In the following, we propose two processes for classification rule’s reduction.

4.1 Classification rules

From the obtained rules, we retain only the classification ones. From a rule such
that

∏
i∈I

Xi →
∏
j∈J

Yj , we only keep those matching a class hypothesis at the

conclusion part (i.e., Yj ∈ θC and θC is the frame of discernment).



Example 3. Let us consider the following set of the association rules S = {A1 →
C1;A1, B2 → C1;A1 → B1} and the class frame of discernment θC = {C1, C2}.
After classification rule reduction, the set S becomes S = {A1 → C1;A1, B2 →
C1}.

4.2 Generic and Precise rules

Generic rules: the rule’s reduction can assimilate the redundant rules. A rule
R1 is considered as a redundant rule if and only if it does not bring any new
information having at hand a rule R2. R2 is considered as more informative as
far as its antecedent part is included in that of R1. The retained rules from the
reduction process constitute the set of Generic rules R extracted from the set of
frequent itemsets FI.

Example 4. Let us consider the previous set of the association rules S = {A1 →
C1;A1, B2 → C1;A1 → B1}. After redundant rule reduction, the set S becomes
S = {A1 → C1;A1 → B1}.

Precise rules: A rule is considered as precise if the rule’s premise is maxi-
mized. Thus, from the set of all possible rules, we retain only those having the
size of their premise part equal to n (number of columns of EDB).

Algorithm 1 sketches the process of rule’s generation as well as rule reduc-
tion. The algorithm relies on the function Construct Rule(x, θC) (Line 10) that
generates associative rules and filtrates out them by retaining only the classifi-
cation ones. The function Find Confidence(R,Pr Table) (Line 22) computes
the confidence of the rule R following the Pr Table that contains all trans-
actional support of each item (for more details see [10]). Finally, the function
Redundancy(R, R) (Line 42) builds the set of all classification rules R which
are not redundant and having the confidence value greater than or equal to the
fixed threshold minconf .

4.3 Classification

Let us suppose the existence of an instance X to classify represented a set of
BBA belonging to the evidential database EDB such that:

X = {mi|mi ∈ X,xji ∈ θi} (15)

where xji is a focal element of the BBA mi. Each retained associative rule, in the
set of rules R, is considered as a potential piece of information that could be of
help for X class determination. In order to select rules that may contribute to
classification, we look for rules having a non null intersection with X such that:

RI = {R ∈ R,∃xji ∈ θi, x
j
i ∈ Ra} (16)

Each rule found in the set RI constitutes a piece of information concerning
the instance X membership. Since several rules can be found and fulfilling the



Algorithm 1 Evidential Associative Rule Generation algorithm

Require: Pr Table,minconf,FI, θC
Ensure: R
1: for all x ∈ FI do
2: R← Construct Rule(x, θC)
3: if R 6= ∅ then
4: Conf ← Find Confiden-
ce(R,Pr Table)

5: if Conf > minconf then
6: R← Redundancy(R, R)
7: end if
8: end if
9: end for

10: function Construct Rule(X , θC)
11: for all x ∈ X do
12: if x /∈ θC then
13: prem← prem+ {x}
14: else
15: concl← concl + {x}
16: end if
17: end for
18: R.premise← prem
19: R.conclusion← concl
20: return R
21: end function
22: function Find Confidence(R, Pr)
23: numer ← 0
24: denom← 0
25: for j=1 to d do
26: num← 1

27: den← 1
28: for all i ∈ Pr(j).focal element

do
29: if Pr(j).focal element ∈

R.premise then
30: num ← num ×

Pr(j).val
31: den← den× Pr(j).val
32: else
33: if Pr(j).focal element ∈

R.conclusion then
34: end if
35: end if
36: end for
37: numer ← numer + num
38: denom← denom+ den
39: end for
40: return numer

denom

41: end function
42: function Redundancy(R,R)
43: for all rule ∈ R do
44: if R.premise ⊂ rule.premise &

R.conclusion = rule.conclusion then
45: R ← R\rule
46: R ← R∪R
47: end if
48: end for
49: return R
50: end function

intersection condition, it is of importance to benefit from them all. In our work,
we assume that all information is valuable and should be handled within the
information fusion problem. From the set RI, we extract the set of generic
or precise classification rules (see Subsection 4.2). Indeed, each rule from the
computed set Rl ⊂ RI, l ∈ [1 . . . L] and L < |RI|, that brings a new information
(different Ra) is transformed into a BBA following the frame of discernment θC
(frame of discernment of Rc):

{
mθC
Rl ({Rc}) = α× confidence(Rl)

mθC
Rl (θC) = 1− (α× confidence(Rl))

(17)

where Rc is the conclusion part of the rule Rl and α ∈ [0, 1] is a discounting
factor.



The L constructed BBA are then fused following the Dempster rule of com-
bination [5] as follows:

m⊕ = ⊕Ll=1m
θC
Rl . (18)

⊕ is the Dempster’s aggregation function where for two source’s BBA m1 and
m2: {

m⊕(A) = 1
1−K

∑
B∩C=Am1(B) ·m2(C) ∀A ⊆ Θ,A 6= ∅

m⊕(∅) = 0
(19)

where K is defined as:

K =
∑

B∩C=∅

m1(B) ·m2(C). (20)

5 Experimentation and results

In this section, we present how we managed to conduct our experiments and we
discuss comparative results.

5.1 Evidential database construction

In order to perform experimental tests, we construct our own evidential databases
from UCI benchmarks [13] based upon ECM [14]. Interested reader may refer
to [10] for more details on evidential database construction. The transforma-
tion was operated on Iris, Vertebral Column, Diabetes and Wine databases. The
studied databases are summarized on Table 2 in terms of number of instances
and attributes.

Table 2. Database characteristics

Database #Instances #Attributes #Focal elements

Iris EDB 150 5 40

Vertebral Column EDB 310 7 116

Diabetes EDB 767 9 132

Wine EDB 178 14 196

5.2 Comparative results

In the following, we compare the classification result performance between the
Generic and Precise rules. Table 3 shows the difference in classification result
between the generic and the precise associative rules. The precise rules highlight
better results than do the generic ones. Indeed, the larger the rule’s premise
is, the more pertinent the rule is. On the other hand, the generic rule based



approach fuse much more rules than do the precise one. In addition, all generic
rules are considered with the same weight within the fusion process despite
their pertinence difference. These characteristics with Dempster’s combination
behavior mislead the fusion process to errors. Indeed, as shown in Figure 1,
the high number of fused rules depends highly from the minsup value. Unlike
the generic approach, the number of precise rule is defined by number of larger
premise’s rule which is dependent from the treated evidential transaction.

Table 3. Comparative result between Generic and Precise classification rules

Database Iris EDB Vertebral Column EDB Diabetes EDB Wine EDB

Precise rules 80.67% 88.38% 83.20% 100%

Generic rules 78.67% 67.74% 65.10% 51.68%
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Fig. 1. Generic associative rule’s number for different support values

6 Conclusion

In this paper, we tackled associative rule’s extraction from evidential databases.
We proposed a new confidence measure for associative rules in evidential databases.



The proposed measure is based on Precise support (i.e., probability measure)
providing coherence and sustains previous work on fuzzy and binary databases.
The rules are then filtrated to retain only classification and non redundant rules.
A classification method based on evidential associative rules is introduced. The
classification approach is based on a fusion system that represents interesting
rules. As illustrated in the experimentation section, the proposed method pro-
vides an interesting performance rates. In future work, we plan to study the
development of a new method to estimate the reliability of each combined as-
sociative rule. Indeed, each rule has a precision relatively to the instance to
classify. The precision is measured by the intersection between the premise and
the instance itself. A reliability measure for rule BBA is under study.
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