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Abstract. In this paper, an extension of the belief Analytic Hierar-
chy Process (AHP) method is proposed, based on the belief function
framework. It takes into account the fact that the pair-wise compari-
son between criteria and alternatives may be uncertain and imprecise.
Therefore, it introduces a new way to cope with expert judgments. Thus
to express his preferences, the decision maker is allowed to use a belief
assessment instead of exact ratios. The proposed extension also models
the relationship between the alternative and criterion levels through con-
ditional beliefs. Numerical examples explain in detail and illustrate the
proposed approach.

1 Introduction

Analytic Hierarchy Process (AHP) method [5] is one of the widely preferred
multi-criteria decision making (MCDM) methods and has successfully been ap-
plied to many practical problems. Using this approach, the decision maker mod-
els a problem as a hierarchy of criteria and alternatives. Then, the expert assesses
the importance of each element at each level using a pair-wise comparison ma-
trix, where elements are compared to each other.

Though its main purpose is to capture the expert’s knowledge, the standard
AHP still cannot reflect the human thinking style. It is often criticized for its use
of an unbalanced scale of estimations and its inability to adequately handle the
uncertainty and imprecision associated with the mapping of the decision maker’s
perception to a crisp number [4].

In order to model imperfect judgments, the AHP method was modified by
many researchers. Under the belief functions framework, Beynon et al. have
proposed a method called the DS/AHP method [1] comparing not only single
alternatives but also groups of alternatives. Besides, several works has been
defined by Utkin [10]. Also, Ennaceur et al. [2] [3] have developed the belief
AHP approach that compares groups of criteria to subsets of alternatives. Then,
they model the causality relationship between these groups of alternatives and
criteria.

Taking into account the above, we propose an extension of the belief AHP
method [3], a Multi-Criteria Decision Making (MCDM) method under the belief
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function framework. On the one hand, our proposed method takes into account
the conditional relationships between alternatives and criteria. In fact, our aim
is to more imitate the expert reasoning since he tries to express his preferences
over the sets of alternatives regarding each criterion and not regardless of the
criteria. Consequently, we try to represent the influences of the criteria on the
evaluation of alternatives. On the other hand, our method takes into account the
fact that the pair-wise comparison may be uncertain and imprecise. Therefore,
it introduces a new way to cope with expert judgments. Thus to express his
assessments, the decision maker is allowed to use subjective assessments instead
of using numerical values. Then, a preference degree may be assigned to each
expert’s response. With our method, the expert does not require to complete
all the comparison matrix. He can then derive priorities from incomplete set of
judgments. Therefore, a new procedure is employed, he only selects the related
linguistic variable to indicate whether a criterion or alternative was more or less
important to its partner by “yes” or “no”.

The proposed method uses the pair-wise comparisons with the minimal in-
formation. Therefore, using our proposed approach, we cannot get the best al-
ternative but at least we can choose the most cautious one.

In what follows, we first present some definitions needed for belief function
context. Next, we describe the belief AHP method in section 3. Then, section 4
details our new MCDM method, and gives an example to show its application.
Finally, section 5 concludes the paper.

2 Belief Function Theory

2.1 Basic Concepts

The Transferable Belief Model (TBM) is a model to represent quantified belief
functions [9]. Let Θ be the frame of discernment representing a finite set of
elementary hypotheses related to a problem domain. We denote by 2Θ the set
of all the subsets of Θ [6].

The impact of a piece of evidence on the different subsets of the frame of
discernment Θ is represented by the so-called basic belief assignment (bba) [6].
A bba is a function denoted by m that assigns a value in [0, 1] to every subset
A of Θ such that: ∑

A⊆Θ

m(A) = 1 . (1)

The value m(A), named a basic belief mass (bbm), represents the portion of
belief committed exactly to the event A.

2.2 Operations on the Product Space

Vacuous Extension. This operation is useful, when the referential is changed
by adding new variables. Thus, a marginal mass function mΘ defined on Θ will
be expressed in the frame Θ ×Ω as follows [7]:
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mΘ↑Θ×Ω(C) = mΘ(A) if C = A×Ω,A ⊆ Θ . (2)

Marginalization. Given a mass distribution defined on Θ×Ω, marginalization
corresponds to mapping over a subset of the product space by dropping the extra
coordinates. The new belief defined on Θ is obtained by [7]:

mΘ×Ω↓Θ(A) =
∑

{B⊆Θ×Ω|B↓Θ=A)}

mΘ×Ω(B),∀A ⊆ Θ . (3)

B↓Θ denotes the projection of B onto Θ.

Ballooning Extension. Let mΘ[ω] represents your beliefs on Θ conditionnally
on ω a subset of Ω. To get rid of conditioning, we have to compute its ballooning
extension. The ballooning extension is defined as [7]:

mΘ[ω]⇑Θ×Ω(A× ω ∪Θ × ω̄) = mΘ[ω](A),∀A ⊆ Θ . (4)

3 Belief AHP Method

The belief AHP method is a MCDM method that combines the AHP approach
with the belief function theory [3]. This method investigates some ways to define
the influences of the criteria on the evaluation of alternatives.

3.1 Identification of the Candidate Alternatives and Criteria

Let Ω = {c1, . . . , cm} be a set of criteria, and let Ck be the notation of a subset
of Ω. The groups of criteria can be defined as [2]:

∀ k, j|Ck, Cj ∈ 2Ω , Ck ∩ Cj = ∅ and ∪j Cj = Ω (with Cj exclusive). (5)

This method suggests to allow the expert to express his opinions on groups
of criteria instead of single one. So, he chooses these subsets by assuming that
criteria having the same degree of preference are grouped together. On the other
hand and similarly to the criterion level, the decision maker compares not only
pairs of single alternatives but also sets of alternatives between each other (Θ =
{a1, . . . , an} is a set of alternatives)[2].

3.2 Pair-wise Comparisons and Preference Elicitation

After identifying the set of criteria and alternatives, the weights of each element
have to be defined. The expert has to provide all the pair-wise comparisons
matrices. In this study, Saaty’s scale is chosen in order to evaluate the importance
of pairs of grouped elements in terms of their contribution. Thus, the priority
vectors are then generated using the eigenvector method.
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3.3 Updating the Alternatives Priorities

Within this framework, we have Ci ⊆ 2Ω and we have the criterion priority
vector is regarded as a bba, denoted by mΩ .

Furthermore, Belief AHP tries to model the influences of the criteria on the
evaluation of alternatives by conditional belief. So, given a pair-wise comparison
matrix which compares the sets of alternatives according to a specific criterion, a
conditional bba can be represented by: mΘ[cj ](Ak) = wk, ∀Ak ⊆ 2Θ and cj ∈
Ω where mΘ[cj ](Ak) means that we know the belief about Ak regarding cj .

Then, the aggregation procedure can be represented as follows. In fact, pri-
orities concerning criteria and groups of criteria are defined on the frame of
discernment Ω, whereas the sets of alternatives are defined on Θ. The idea was
to standardize the frame of discernment. First, at the criterion level, the bba
that represents criteria weights is extended from Ω to Θ ×Ω:

mΩ↑Θ×Ω(B) = mΩ(Ci) B = Θ × Ci, Ci ⊆ Ω . (6)

Second, at the alternative level, the idea was to use the deconditionalization
process in order to transform the conditional belief into a new belief function.
In this case, the ballooning extension technique is applied:

mΘ[cj ]
⇑Θ×Ω(Ak × cj ∪Θ × c̄j) = mΘ[cj ](Ak),∀Ak ⊆ Θ . (7)

Once the frame of discernment Θ×Ω is formalized, the belief AHP approach
proposes to combine the obtained bba with the importance of their respective
criteria to measure their contribution using the conjunctive rule of combination
∩© and we get [8]:

mΘ×Ω =
[
∩©j=1,...,mm

Θ[cj ]
⇑Θ×Ω

]
∩©mΩ↑Θ×Ω . (8)

Finally, to choose the best alternatives, this method proposes to marginalize
the obtained bba (in the previous step) on Θ (frame of alternatives) by trans-
ferring each mass mΘ×Ω to its projection on Θ. Then, the pignistic probabilities
[8] are used to make our choices:

BetP (aj) =
∑
Ai⊆Θ

|aj ∩Ai|
|Ai|

mΘ×Ω↓Θ(Ai)

(1−mΘ×Ω↓Θ(∅))
,∀aj ∈ Θ . (9)

3.4 Example

To describe this approach, we consider the problem of “purchasing a car” pre-
sented in [3]. Suppose that this problem involves four criteria: Ω = {Comfort
(c1), Style (c2), Fuel (c3), Quietness (c4)}, and three selected alternatives: Θ =
{Peugeot(p),Renault(r),Ford(f)}. For more details see [3].

At the criterion level, the criterion weights are expressed by a basic belief as-
sessment (bba). We get: mΩ({c1}) = 0.58, mΩ({c4}) = 0.32 and mΩ({c2, c3}) =
0.1.
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Table 1. Priorities values

c1 Priority c2 Priority c3 Priority c4 Priority

{p} 0.806 {p} 0.4 {r} 0.889 {f} 0.606
{p, r, f} 0.194 {r, f} 0.405 {p, r, f} 0.111 {p, r, f} 0.394

{p, r, f} 0.195

Next, we propose to model the alternative score by means of conditional bba
(see Table 1).

According to the belief AHP approach, the next step is to standardize the
criterion and the alternative frames of discernment. For the criterion level, the
resulting bba’s is summarized in Table 2.

Table 2. Vacuous extension of bba

bbm Vacuous extension Values

mΩ({c1}) {(p, c1), (r, c1), (f, c1)} 0.58

mΩ({c4}) {(p, c4), (r, c4), (f, c4)} 0.32

mΩ({c2, c3}) {(p, c2), (r, c2), (f, c2), (p, c3), (r, c3), (f, c3)} 0.1

After normalizing the criteria’s bba, the next step is to transform the condi-
tional belief into joint distribution using Equation 7 (see Table 3).

Table 3. Ballooning extension of conditional bba

Conditional bbm Ballooning extension Values

mΘ[c1]({p}) {(p, c1), (p, c2), (p, c3), (p, c4), (r, c2),
(r, c3), (r, c4), (f, c2), (f, c3), (f, c4)} 0.806

mΘ[c1]({p, r, f}) {(p, c1), (p, c2), (p, c3), (p, c4),
(r, c1), (r, c2), (r, c3), (r, c4), (f, c1), (f, c2), (f, c3), (f, c4)} 0.194

As explained before, once the ballooning extensions are obtained, we can
apply Equation 8, to combine the obtained bba with the criterion weights (bba).

Next, to choose the best alternatives, we must define the beliefs over the
frame of alternatives Θ and the pignistic probabilities can be computed. We get:
BetP (p) = 0.567, BetP (r) = 0.213 and BetP (f) = 0.220.

As a consequence, the alternative “Peugeot” is the recommended car since it
has the highest values.

4 An extension of the Belief AHP Method

The Belief AHP method is an interesting tool for solving multi-criteria decision
problems. It provides the expert the possibility to select only some subsets of
alternatives and groups of criteria.
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However, this approach suffers from some weaknesses. In fact, in reality,
the elicitation of preferences may be rather difficult since expert would not be
able to efficiently express any kind of preference degree between the available
alternatives and criteria. Therefore, the belief AHP method is extended to handle
the presented problems.

4.1 Belief Pair-wise Comparison

Under this approach, a new elicitation procedure is introduced. Thus to model
his assessments, the decision maker has to express his opinions qualitatively.
He indicated whether a criterion (or alternative) was more or less important to
its partner by “yes” or “no”. Moreover, we accept that the expert may define
uncertain or even unknown assessments. Indeed, we assume that each subset
of criteria is described by a basic belief assignment defined on the possible re-
sponses. For instance, in a problem of purchasing a car, the following type of
subjective judgments was frequently used: “the comfort criterion is evaluated to
be more important than style with a confidence degree of 0.8”. In fact, the deci-
sion maker responses to the question “is comfort criterion important regarding
the style criterion?”. Thus, the answer was: comfort criterion is more preferable
than style criterion and 0.8 is referred to the degree of belief. Then, to compute
the criteria weight, we describe a new pair-wise comparison procedure where the
following steps must be respected:

1. The first step is to model the pair-wise comparison matrix. Let dij is the
entry from the ith column of pair-wise comparison matrix (dij represents the
different bbm’s of the identified bba).

If m
ΩCi
j (.) = dij , then m

ΩCj
i (.) = m̄

ΩCi
j (.) = dij (10)

where m
ΩCi
j represents the importance of Ci with respect to the subset of

criteria Cj (for simplicity, we denote the subset of criteria by j instead of
Cj), i 6= j, and m̄ is the negation of m. The negation m̄ of a bba m is defined
as m̄(A) = m(Ā),∀A ⊂ Ω.
As regarding the previous example, if we have “the comfort criterion (C) is
evaluated to be more important than style criterion (S) with a confidence
degree of 0.8”, that is mΩC

S ({yes}) = 0.8, then we can say that “the style
criterion is evaluated to be less important than comfort criterion with a
confidence degree of 0.8”: mΩS

C ({no}) = 0.8.
2. Once the pair-wise comparison matrix is completed, our objective is then

to obtain the priority of each subset of criteria. The idea is to combine the
obtained bba using the conjunctive rule of combination [8] ((m1 ∩©m2)(A) =∑
B,C⊆Θ,B∩C=Am1(B)m2(C)).

Indeed, this function is chosen since we can regard each subset of criteria as
a distinct source of information which provides distinct pieces of evidence.
We will get the following bba:

mΩCi = ∩©mΩCi
j ,where j = {1, . . . , k} (11)
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At this stage, we want to know which criterion is the most important. In
fact, the obtained bba measures the confidence degree assigned to a specific
criterion regarding the overall criteria. However, these obtained bba repre-
sents the belief over all possible answers (yes or no). The idea is then to
standardize all the frames of discernment. Obviously, we propose to use the
concept of refinement operations [6], which allows to establish relationships
between different frames of discernment in order to express beliefs on any-
one of them. The objective consists in obtaining one frame of discernment
Ω from the set ΩCk by splitting some or all of its events:

mΩCk↑Ω(ρk(ω)) = mΩCk (ω) ∀ω ⊆ ΩCk (12)

where the mapping ρk from ΩCk to Ω is a refinement, and ρk({yes}) = {Ck}
and ρk({no}) = {Ck}.

3. Finally, the obtained bba mΩCk↑Ω can be combined using the conjunctive
rule of combination in order to get mΩ .

The similar process is repeated to get the alternatives priorities mΘ[ck](Ai)
representing the opinions-beliefs of the expert about his preferences regarding
the set of alternatives.

Then, the vacuous extension is used at the criterion level and the ballooning
extension is assumed at the alternative level in order to standardize the frame
of discernment. So, the vacuous extension is used to extend the frame of criteria
to the frame of alternatives and the ballooning is applied for the deconditioning
process. After that, these obtained bba can be combined. Next, the marginal-
ization technique is applied by transferring each mass to its projection on Θ.
The final priority is then computed using the pignistic probabilities to make our
choice.

4.2 Illustrative Example

Let us consider the previous example (see Section 3.5). After identifying the
subsets of criteria and alternatives, the pair-wice comparison matrices should be
constructed.

Computing the Criteria Weights. After collecting the expert beliefs, we
have generated the following associated belief functions (see Table 4).

From Table 4, the expert may say that {c1} is evaluated to be more important
than {c4} with a confidence degree of 0.4. That means, 0.4 of beliefs are exactly
committed to the criterion {c1} is more important than {c4}, whereas 0.6 is
assigned to the whole frame of discernment (ignorance).

Then, the next step consists in combining the bba’s corresponding to each
criterion using the Equation 11. The obtained bba is reported in Table 5.

Subsequently, we proceed now with the standardization of our frame of dis-
cernment. By applying the Equation 12, we get for example: mΩ{c1}↑Ω({c1}) =
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Table 4. The weights preferences assigned to the criteria according to the expert’s
opinion

{c1} {c4} Ω1 = {c2, c3}

{c1}
m
Ω{c1}
{c1} (Ω{c1}) = 1 m

Ω{c1}
{c4} ({yes}) = 0.4 m

Ω{c1}
Ω1

({yes}) = 0.9

m
Ω{c1}
{c4} (Ω{c1}) = 0.6 m

Ω{c1}
Ω1

(Ω{c1}) = 0.1

{c4}
m
Ω{c4}
{c1} ({no}) = 0.4 m

Ω{c4}
{c4} (Ω{c4}) = 1 m

Ω{c4}
Ω1

({no}) = 0.3

m
Ω{c4}
{c1} (Ω{c4}) = 0.6 m

Ω{c4}
Ω1

(Ω{c4}) = 0.7

Ω1 = {c2, c3}
m
ΩΩ1
{c1}({no}) = 0.9 m

ΩΩ1
{c4}({yes}) = 0.3 m

ΩΩ1
Ω1

(ΩΩ1) = 1

m
ΩΩ1
{c1}(ΩΩ1) = 0.1 m

ΩΩ1
{c4}(ΩΩ1) = 0.7

Table 5. Belief pair-wise matrix: Partial combination

{c1} {c4} Ω1 = {c2, c3}

Weight
mΩ{c1}({yes}) = 0.94 mΩ{c4}({no}) = 0.58 mΩΩ1 ({yes}) = 0.03

mΩ{c1}(Ω{c1}) = 0.06 mΩ{c4}(Ω{c4}) = 0.42 mΩΩ1 ({no}) = 0.63
mΩΩ1 (∅) = 0.27

mΩΩ1 (ΩΩ1) = 0.07

Table 6. Belief pair-wise matrix: Refinement

{c1} {c4} Ω1 = {c2, c3}

Weight
mΩ
{c1}({c1}) = 0.94 mΩ

{c4}({c1, c2, c3}) = 0.58 mΩ
{c2,c3}({c2, c3}) = 0.03

mΩ
{c1}(Ω) = 0.06 mΩ

{c4}(Ω) = 0.42 mΩ
{c2,c3}({c1, c4}) = 0.63

mΩ
{c2,c3}(∅) = 0.27

mΩ
{c2,c3}(Ω) = 0.07

mΩ{c1}({yes}). To simplify, we can note by mΩ
{c1} the bba mΩ{c1}↑Ω . These bba’s

are presented in Table 6.

At this stage, the obtained bba’s can be combined using the conjunctive rule
of combination. We get: mΩ(∅) = 0.2982, mΩ({c1}) = 0.6799, mΩ({c2, c3}) =
0.0018, mΩ({c1, c2, c3}) = 0.0024, mΩ({c1, c4}) = 0.0159 and mΩ(Ω) = 0.0018.

Computing the Alternatives Priorities. Like the criterion level, the judg-
ments between decision alternatives over different criteria are dealt within an
identical manner. For example, to evaluate the alternatives according to the
criterion c1 we get Table 7.

As in the criterion level, for the subset of alternatives {p}, we use Equa-

tion 11 in order to combine the obtained bba: mΘ{p} [c1] = m
Θ{p}
{p} [c1] ∩©mΘ{p}

{r,f}[c1]

(mΘ{p} [c1]({yes}) = 0.95 andmΘ{p} [c1]({Θ{p}}) = 0.05). Then, a similar process

is repeated for the rest of alternatives, and we getmΘ{r,f} [c1] (mΘ{r,f} [c1]({no}) =
0.95 and mΘ{r,f} [c1](Θ{r,f}) = 0.05).

Subsequently, we proceed now with the standardization of our frame of dis-
cernment. By applying Equation 12, we get the following: mΘ{p}↑Θ[c1]({p}) =
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Table 7. Belief pair-wise matrix regarding c1 criterion

c1 {p} {r, f}

{p} m
Θ{p}
{p} [c1](Θ{p}) = 1 m

Θ{p}
{r,f}[c1]({yes}) = 0.95

m
Θ{p}
{r,f}[c1](Θ{p}) = 0.05

{r, f} m
Θ{r,f}
{p} [c1]({no}) = 0.95 m

Θ{r,f}
{r,f} [c1](Θ{r,f}) = 1

m
Θ{r,f}
{p} [c1](Θ{r,f}) = 0.05

0.95 andmΘ{p}↑Θ[c1](Θ) = 0.05. Also,mΘ{r,f}↑Θ[c1]({p}) = 0.95 andmΘ{r,f}↑Θ[c1](Θ) =
0.05.

Finally, the obtained bba’s can be directly combined using the conjunctive
rule of combination. For simplicity, we denote mΘ{p}↑Θ[c1] by mΘ[c1], we get:
mΘ[c1]({p}) = 0.9975 and mΘ[c1]({Θ}) = 0.0025.

Then, as shown in the previous step, the computation procedure is repeated
for the rest of comparison matrices.

Updating the Alternatives Priorities. As shown in the previous example,
at the criterion level, the vacuous extension is used to standardize the frame
of discernment mΩ↑Θ×Ω . At the alternative level, the ballooning extension is
applied mΘ[cj ]

⇑Θ×Ω . Then, the obtained bba can be directly combined by using
Equation 8 as exposed in Table 8.

Table 8. The obtained bba: mΘ×Ω

mΘ×Ω bbm mΘ×Ω bbm

{(p, c1), (f, c1), (r, c1)} 0.28 {(p, c1), (f, c1)} 0.16

{(p, c1)} 0.008 {(r, c2), (r, c3), (f, c2), (p, c2)} 0.03

{(f, c4)} 0.0016 {(p, c4), (f, c4), (r, c4)} 0.11

{(p, c2), (f, c2), (r, c2), (p, c3), (f, c3)} 0.007 ∅ 0.4034

To choose the best alternatives, we must define our beliefs over the frame
of alternatives. As a result, the obtained bba is marginalized on Θ, we obtain
the following distribution: mΘ×Ω↓Θ({p, r, f}) = 0.427, mΘ×Ω↓Θ({p}) = 0.008,
mΘ×Ω↓Θ({f}) = 0.0016, mΘ×Ω↓Θ({p, f}) = 0.16 and mΘ×Ω↓Θ(∅) = 0.4034.

We can now calculate the overall performance for each alternative and de-
termine its corresponding ranking by computing the pignistic probabilities:

BetP (p) = 0.3863, BetP (r) = 0.3752 and BetP (f) = 0.2385.
As a consequence, the alternative “Peugeot” is the recommended car since it

has the highest values. The alternative r may also be chosen since it has a value
close to p. For the sake of comparison, we have obtained the same best alternative
as in the previous example. This would give the expert reasonable assurance in
decision making. Our objective is then not to obtain the best alternative but to
identify the most cautious one since it is defined with less information.
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5 Conclusion

In this paper, the proposed method has extended the belief AHP model into
more uncertain environment. Indeed, our approach develops a new pair-wise
comparison technique in order to facilitate the elicitation process and to han-
dle the problem of uncertainty. It leads to more simple comparison procedure
without eliciting additional information. In fact, experts do not need to provide
precise comparison judgments. They select only some subsets of alternatives in
accordance with a certain criterion, and groups of criteria. Then, the proposed
method models the imprecise judgments based on an appropriate mathematical
framework of the belief function theory.
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