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Abstract. Recent works have studied 0-1 combinatorial optimization
problems where profits of items are measured on a qualitative scale such
as “low”, “medium” and “high”. In this study, we extend this body of
work by allowing these profits to be both qualitative and uncertain. In
the first step, we use probability theory to handle uncertainty. In the sec-
ond step, we use evidence theory to handle uncertainty. We combine their
approaches with approaches in decision making under uncertainty that
utilize the Maximum Expected Utility principle and generalized Hurwicz
criterion, to compare solutions. We show that under probabilistic uncer-
tainty and a special case of evidential uncertainty where the focal sets
are rectangles, the task of identifying the non-dominated solutions can
be framed as solving a multi-objective version of the considered prob-
lem. This result mirrors that of the case of qualitative profits with no
uncertainty.

Keywords: Combinatorial optimization · Multiple objective optimiza-
tion · Belief function · Decision making under uncertainty.

1 Introduction

A 0-1 combinatorial optimization problem (01COP) can be seen as the selec-
tion of a subset of items from a given collection of subsets, with the objective
of maximizing the total profits of the chosen items. Usually, these values are
represented quantitatively using a vector in Rn

≥0.
In many real-life situations, accurately assessing the exact numerical values of

items can be challenging due to limited information availability. It is often much
easier to make qualitative comparisons between these values. As an example,
although most people will find it hard to determine the exact weights of a laptop
and a smartphone, they can certainly say that the laptop is heavier.

Given an order between items, a mapping from the items to real values is
called a representation of this order if it maintains the empirical relations among
the items. The matroid optimization problem [6] is a special case of 01COPs in
which the optimality of solutions is independent of the choice of representa-
tion. However, in measurement theory [7], it is known that in most cases, the
optimality of solutions does depend crucially on the choice of representation,
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i.e., a solution is optimal for one representation but is not optimal for other
representation.

Recently, in [9], the authors studied the Knapsack problem (KP) where profits
of items are measured in a qualitative scale such as “low”, “medium”, “high”.
To deal with the above-mentioned issue, they provided a new way to compare
solutions i.e., a solution x is preferred to a solution y if x has higher profit
than y for any representation of the qualitative scale. They called a solution x
non-dominated if there is no other solution which is strictly preferred to x and
proceeded to enumerate all non-dominated solutions. In [9], they also observed
a strong connection between KP with qualitative profits and multi-objective KP
and this link is studied in greater details for 01COPs in a very recent paper [5].

In this paper, we further extend the works [5,9] by allowing profits of items to
be both qualitative and uncertain. First, we utilize the traditional probabilistic
framework to model uncertainty. Subsequently, following recent work encompass-
ing a wide class of optimization problems [11], of which the 01COP is a subclass,
we employ evidence theory [10], which is more general than probability theory,
to represent uncertainty. It is worth noting that such evidential uncertainty, i.e.,
belief functions on ordinal variables, e.g. on the profit of some items, can be
obtained from statistical data using, for instance, the approach described in [1].

In both cases, we adopt approaches in decision-making under uncertainty that
utilize, respectively, the Maximum Expected Utility principle and the generalized
Hurwicz criterion, to compare solutions, which still results in the concept of
non-dominated solutions. Lastly, we show that under probabilistic uncertainty
and a special case of evidential uncertainty where the so-called focal sets are
rectangles, finding non-dominated solutions can be framed as solving a multi-
objective version of the considered problem, which is similar to that of the case
with no uncertainty.

The rest of this paper is organized as follows. Section 2 presents necessary
background material. Section 3 quickly summarizes the works [5,9]. Section 4
presents the main results of the paper, where uncertainty is added and treated.
The paper ends with a conclusion.

2 Preliminaries

In this section, we present necessary background for the rest of the paper.
Throughout the paper, we denote by [m] the set {1, . . . ,m}.

2.1 Evidence theory

Let Ω = {ω1, . . . , ωq} be the set, called frame of discernment, of all possible
values of a variable ω. In evidence theory [10], partial knowledge about the
true (unknown) value of ω is represented by a mapping m : 2Ω 7→ [0, 1] called
mass function and such that

∑
A⊆Ω m(A) = 1 and m(∅) = 0, where mass m(A)

quantifies the amount of belief allocated to the fact of knowing only that ω ∈ A.
A subset A ⊆ Ω is called a focal set of m if m(A) > 0. If all focal sets of m are
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singletons, then m is equivalent to a probability distribution. The mass function
m gives rise to belief and plausibility measures defined as follows, respectively:

Bel(A) =
∑
B⊆A

m(B) and Pl(A) =
∑

B∩A ̸=∅

m(B), ∀A ⊆ Ω. (1)

We can also consider the set P(m) of all probability measures on Ω which are
compatible with m, defined as P(m) = {P : P (A) ≥ Bel(A) ∀A ⊆ Ω}.

2.2 Multi-objective optimization problem

A multi-objective optimization problem can be written as

max {f1(x), . . . , fm(x)} (2)

x ∈ X . (3)

The notion of Pareto dominance is usually used for multi-objective optimiza-
tion problems. The feasible solution x is said to Pareto dominate the feasible
solution y, denoted by x ≻Pareto y if

fi(x) ≥ fi(y) ∀i ∈ [m] and ∃j ∈ [m] such that fj(x) > fj(y). (4)

As the objectives (2-3) are typically conflicting, there is usually no solution
x that simultaneously maximizes all fi(x). Instead, we seek to find all so-called
efficient feasible solutions of (2-3), defined as:

x ∈ X such that ∄y ∈ X , y ≻Pareto x. (5)

We refer to the book [4] for a comprehensive discussion on this subject.

2.3 0-1 Combinatorial optimization problem

A general 0-1 Combinatorial Optimization Problem (01COP) can be expressed
as follows. Let S be a set of n items. Each item i has a profit ri, represented as
a vector r ∈ Rn

+. The profit of a subset of S is obtained by summing the profits
of the items within it. The goal of the decision-maker is to find a subset having
maximum profit among a predefined collection X ⊆ 2S of subsets of S. This
problem can be modeled using a binary vector x ∈ {0, 1}n, where each element
xi indicates whether item i is included in the subset (1) or not (0). The 01COP
can then be written as:

max rTx

x ∈ X ⊆ {0, 1}n.
(01COP)

The Knapsack problem (KP) is one of the most important problems in the
class 01COP, which will serve as a running example throughout the paper. It is
defined as follows.
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Example 1 (The 0-1 knapsack problem (01KP)). Suppose a company has a bud-
get ofW and needs to choose which items to manufacture from a set of n possible
items, each with a production cost of wi and fixed profit of ri. The 01KP involves
selecting a subset of items to manufacture that maximizes the total profit while
keeping the total production costs below W . The 01KP can be formulated as

max

n∑
i=1

rixi

n∑
i=1

wixi ≤ W

xi ∈ {0, 1} i ∈ [n].

(01KP)

3 01COP with qualitative levels

In this section, we quickly summarize the works in [5,9]. In many applications,
we can only express profits of items on a finite scale of qualitative levels. More
precisely, let (L,≺) = {l1, . . . , lk} be a fixed scale with k levels l1 ≺ . . . ≺ lk.
Profits of items are then represented by a fixed vector r ∈ Ln.

Example 2. Consider 5 items whose profits are measured in the qualitative scale
L = {“low”, “medium”, “high”}. Their profits are recorded by a vector r =
{“low”, “medium”, “high”, “high”, “medium”} in L5.

In general, the set of items can include absolutely unprofitable items, resulting
in the qualitative levels set L having a level that signifies “no profit at all”.
However, the decision-maker can always remove all such items from the outset.
Due to this, we exclude the case involving the “no profit at all” level. A mapping
v : L → R>0 is called a representation of L if

∀i, j, li ≺ lj ⇔ v(li) < v(lj). (6)

We denote by V the set of all representations of L. Note that V is identified with
a subset of Rk

>0, that is

V :=
{
v ∈ Rk

>0 : vi+1 > vi, ∀i ∈ [k − 1]
}
. (7)

In the following, to simplify the notation, we will use vi instead of v(li) for a
representation v.

The rank cardinality vector of an x ∈ X is defined as:

g(x) = (g1(x), . . . , gk(x)) (8)

where gj(x) = |{i : xi = 1 and ri = lj}|. Hence, the j-th component of g(x) is
nothing but the total number of items in x with profit level lj .

Let v(x) be the profit of x with respect to a representation v ∈ V. By defini-
tion,

v(x) =

n∑
i=1

xiv(ri). (9)
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We can also compute v(x) via its rank cardinality vector as

v(x) =

k∑
i=1

gi(x)vi. (10)

The preferences between feasible solutions crucially depend on the choice of v
as illustrated in the next example.

Example 3. Consider the following KP with 5 items and W = 6. The profits and
weights of items are given in Table 1. Let x = (1, 1, 1, 0, 0) (selecting items 1,2

items 1 2 3 4 5

w 2 2 2 3 4

r l1 l2 l2 l3 l3

Table 1: Profits and weights of items

and 3) and y = (0, 0, 1, 1, 0) (selecting items 3 and 4) be two feasible solutions.
If a representation v is chosen such that v(l1) = 2, v(l2) = 3, v(l3) = 4, x is
preferred to y as v(x) = 8 > v(y) = 7. However, if v is chosen such that
v(l1) = 2, v(l2) = 3, v(l3) = 6, y is preferred to x as v(x) = 8 < v(y) = 9.

To avoid the issue encountered in Example 3, the preference between feasible
solutions is defined as follows in [9]:

Definition 1. Let x, y ∈ X be two feasible solutions. Then,

1. x weakly dominates y, denoted by x ⪰ y, if for every v ∈ V, it holds that
v (x) ≥ v (y).

2. x dominates y, denoted by x ≻ y, if x weakly dominates y and there exists
v∗ ∈ V such that v∗ (x) > v∗ (y).

3. x∗ ∈ X is called efficient or non-dominated, if there does not exist any x ∈ X
such that x ≻ x∗.

In [9], it is shown that the relation ⪰ in Definition 1 is a preorder, i.e., it is
reflexive and transitive. At first glance, Definition 1 appears to require checking
every representation of L to determine the dominance relation between two
feasible solutions. However, there exists a rapid and straightforward test based
on the following key result.

Lemma 1 (see [9]). Let x, y be two feasible solutions. We have x ⪰ y iff∑k
i=j gi(x) ≥

∑k
i=j gi(y) for all j ∈ [k].

Lemma 1 is of great importance as it establishes the link between 01COP with
qualitative levels and multi-objective optimization. This link was first observed
for the KP in [9] and has been systematically studied in [5] for 01COP. Indeed,
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from Lemma 1 and material in Section 2.2, it is easy to see that x∗ is an efficient
solution according to Definition 1 if and only if it is an efficient solution of the
following problem:

max

{
k∑

i=1

gi(x),

k∑
i=2

gi(x), . . . ,

k∑
i=k

gi(x)

}
(11)

x ∈ X (12)

Note that Problem (11-12) can be rewritten so that its objective functions are
linear. Indeed, for each i ∈ [k], define vector ci ∈ {0, 1}n as follow:

cij = 0 if rj ̸= li and cij = 1 otherwise. (13)

Hence, ci is nothing but a vector that records positions of the qualitative level li
in r, and thus we have (ci)Tx = gi(x) ∀i ∈ [k]. Problem (11-12) is then rewritten
as

max

{
(

k∑
i=1

ci)Tx, (

k∑
i=2

ci)Tx, . . . , (ck)Tx

}
(14)

x ∈ X (15)

Therefore, methods in multi-objective optimization can be readily applied to
find efficient solutions of Problem 01COP with qualitative profits.

Example 4 (Example 3 continued). In the KP in Example 3, the position vectors
are c1 = (1, 0, 0, 0, 0), c2 = (0, 1, 1, 0, 0), and c3 = (0, 0, 0, 1, 1). To find non-
dominated solutions according to Definition 1 of the KP, we need to solve the
following multi-objective optimization problem:

max {x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5} (16)

x ∈ {0, 1}5 : 2x1 + 2x2 + 2x3 + 3x4 + 4x5 ≤ 6 (17)

4 01COPs with uncertain qualitative profits

In this section, we extend the approaches presented in [5,9] to address the case
where profits are uncertain and qualitative. Note that Lemma 1 is originally
proved for rank cardinality vectors in Zk

≥0 (as shown in the original proof in [9] or
a simplified version in [5]). In our extended setting, we will require a generalized
version of this lemma that can accommodate vectors in Rk

≥0. Therefore, we
present the generalized version here. Note that the proof in [9] can be easily
modified to fit the generalized version. However, we present a new proof of
Lemma 1 based on the duality theory of linear programming, which conceptually
differs from the proofs presented in [5,9].

Let A be a m× n matrix. Let us recall from linear programming that if the
primal problem is

min
{
vT b : vTA ≥ c, v ∈ Rm

≥0

}
. (18)
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then its dual problem is

max
{
cTu : Au ≤ b, u ∈ Rn

≥0

}
. (19)

Lemma 2. Let g(x), g(y) be two vectors in Rk
≥0. Then,

k∑
i=1

gi(x)vi ≥
k∑

i=1

gi(y)vi ∀v ∈ V ⇔
k∑

i=j

gi(x) ≥
k∑

i=j

gi(y) ∀j ∈ [k]. (20)

Proof. Let f(v) =
∑k

i=1(gi(x)− gi(y))vi. Then,

k∑
i=1

gi(x)vi ≥
k∑

i=1

gi(y)vi ∀v ∈ V ⇔ f(v) ≥ 0 ∀v ∈ V (21)

⇔ f(v) ≥ 0 ∀v ∈ V :=
{
v ∈ Rk

≥0 : vi+1 ≥ vi, ∀i ∈ [k − 1]
}
, (22)

since f is continuous and V is the closure of V. Let z∗ = min
{
f(v) : v ∈ V

}
. So

z∗ is the optimal value of the linear programming problem (P):

min

k∑
i=1

(gi(x)− gi(y))vi

v1 ≥ 0

vi+1 − vi ≥ 0, ∀i ∈ [k − 1]

(P)

Note that f(v) ≥ 0 ∀v ∈ V iff z∗ ≥ 0. Furthermore, z∗ ≥ 0 iff Problem (P) is
bounded, i.e., z∗ ̸= −∞.

Indeed, for the sake of contradiction, suppose that Problem (P) is bounded,
and yet there exists a v∗ such that f(v∗) = z∗ < 0. For any positive scalar λ, we
have λv∗ ∈ V, and thus f(λv∗) = λz∗ < z∗, which contradicts the optimality of
z∗. By duality, we have z∗ ̸= ∞ iff the dual Problem (D) has the finite optimal
value, or in this case Problem (D) is feasible:

max 0Tu

ui − ui+1 ≤ gi(x)− gi(y), ∀i ∈ [k − 1]

uk ≤ gk(x)− gk(y)

u ≥ 0.

(D)

It is easy to see that Problem (D) is feasible iff
∑k

i=j gi(x) ≥
∑k

i=j gi(y) ∀j ∈ [k].
Hence, we get the desired result. ⊓⊔

4.1 Under probabilistic uncertainty

In this section, we assume that information about the qualitative levels of items
is given by a probability distribution P on a subset R of Ln. Each r ∈ R is
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called a scenario. Given v ∈ V, let vr(x) be the profit of x under scenario r. The
expected utility of a feasible solution x ∈ X with respect to v is defined as:

Ev
P (x) :=

∑
r∈R

P (r)vr(x) (23)

According to the Maximum Expected Utility principle [8], it is reasonable to
compare solutions based on their expectations. Furthermore, for similar reasons
as those that lead to Definition 1, i.e., the preference between two solutions x
and y should not depend on the choice of v, we define, for any x, y ∈ X ,

x ⪰P y iff Ev
P (x) ≥ Ev

P (y) ∀v ∈ V. (24)

Let gri (x) be the number of items in x with qualitative level li under scenario r.
The next result shows how to check whether x ⪰P y.

Proposition 1. x ⪰P y ⇔
∑k

i=j gi(x) ≥
∑k

i=j gi(y) ∀j ∈ [k] , where gi(x) :=∑
r∈R P (r)gri (x).

Proof. By definition in Equation (23), we have

Ev
P (x) =

∑
r∈R

P (r)

k∑
i=1

gri (x)vi =

k∑
i=1

(∑
r∈R

P (r)gri (x)

)
vi. (25)

Equivalently,

Ev
P (x) =

k∑
i=1

gi(x)vi. (26)

Therefore, x ⪰P y ⇔
∑k

i=1 gi(x)vi ≥
∑k

i=1 gi(y)vi ∀v ∈ V. The desired result
follows by applying Lemma 2. ⊓⊔

Note that gi(x) can be interpreted as the expected number of items in x with
profit level i.

From Proposition 1, non-dominated solutions according to ⪰P are efficient
solutions of the following problem:

max

{
k∑

i=1

gi(x),

k∑
i=2

gi(x), . . . ,

k∑
i=k

gi(x)

}
(27)

x ∈ X . (28)

Note that each objective of Problem (27-28) is still linear. Indeed, let cri ∈ {0, 1}n
be a vector that records positions of qualitative level li in scenario r, defined as:

crij = 0 if rj ̸= li and crij = 1 otherwise. (29)

Therefore,
gri (x) = (cri)Tx (30)

and gi(x) =
(∑

r∈R P (r)cri
)T

x.
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Example 5 (Example 3 continued). Assume now that the information about the
profits of items in Example 3 are given by two scenarios r1 and r2 in Table 2
with P (r1) = 0.8 and P (r2) = 0.2. We can see that cr

11 = (1, 0, 0, 0, 0), cr
12 =

(0, 1, 1, 0, 0), cr
13 = (0, 0, 0, 1, 1), cr

21 = (0, 0, 1, 0, 1), cr
22 = (0, 1, 0, 1, 0) and

cr
23 = (1, 0, 0, 0, 1). For any feasible solution x, we have

items 1 2 3 4 5

w 2 2 2 3 4

r1 l1 l2 l2 l3 l3
r2 l3 l2 l1 l2 l1

Table 2: Profits of items under two scenarios

g1(x) = (0.8cr
11 + 0.2cr

21)Tx = 0.8x1 + 0.2x3 + 0.2x5. (31)

Similarly, g2(x) = x2 + 0.8x3 + 0.2x4 and g3(x) = 0.2x1 + 0.8x4 + 0.8x5.
Hence, finding non-dominated solutions boils down to solving the following
multi-objective KP.

max

 x1 + x2 + x3 + x4 + x5,
0.2x1 + x2 + 0.8x3 + x4 + 0.8x5,

0.2x1 + 0.8x4 + 0.8x5,

 (32)

x ∈ {0, 1}5 : 2x1 + 2x2 + 2x3 + 3x4 + 4x5 ≤ 6 (33)

4.2 Under evidential uncertainty

A more general approach than the one in Section 4.1 is to use evidence theory
to represent uncertainty. Let m be a mass function on a subset R of Ln. Let F
be the set of focal sets of m. Following [11], the lower and upper expected values
of a feasible solution x ∈ X with respect to a v ∈ V are defined as:

Ev(x) :=
∑
F∈F

m(F )min
r∈F

vr(x), (34)

E
v
(x) :=

∑
F∈F

m(F )max
r∈F

vr(x). (35)

For a fixed v, we may remark that the interval
[
Ev(x), E

v
(x)
]
is the range of

Ev
P (x) for all compatible probability measures P in P(m) [2].
As in [11], solutions can be compared according to the generalized Hurwicz

criterion [2], defined by Hv
α(x) = αE

v
(x) + (1 − α)Ev(x) for some chosen op-

timism/pessimism degree α ∈ [0, 1]. Furthermore, as in Sections 3 and 4.1, we
wish to compare solutions regardless of the choice of representation:

x ⪰α
hu y iff Hv

α(x) ≥ Hv
α(y) ∀v ∈ V. (36)

We first consider the case where the focal sets of m take a special form.
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Rectangular focal sets A subset F ⊆ Ln is called a rectangle iff it can be
expressed as the Cartesian product of sets, that is, F = ×n

i=1F
↓i, where F ↓i ⊆ L.

Since L is a linear order, we can associate two scenarios RF, rF for each focal
set F defined as:

RFi = maxF ↓i and rFi = minF ↓i, ∀i ∈ [n] (37)

In this case, it is easy to compute E
v
(x), Ev(x) for a given v as shown in the

Proposition 2.

Proposition 2. When focal sets of m are rectangles, for any v ∈ V we have

Ev(x) =
∑
F∈F

m(F )vrF (x) (38)

E
v
(x) =

∑
F∈F

m(F )vRF (x). (39)

Proof. For any r ∈ F , by (37) we have

vrF (x) =

n∑
i=1

xiv(rFi) ≤ vr(x) =

n∑
i=1

xiv(ri) ≤
n∑

i=1

xiv(RFi) = vRF (x) (40)

Hence, inequality (40) together with Eqs (34)-(35) lead to the desired result.
⊓⊔

Similarly to the probabilistic case in Section 4.1, we are able to derive a charac-
terization for x ⪰α

hu y:

Proposition 3. x ⪰α
hu y ⇔

∑k
i=j g

α
i (x) ≥

∑k
i=j g

α
i (y) ∀j ∈ [k] where

gαi (x) :=
∑
F∈F

m(F )
(
αgRF

i (x) + (1− α)grFi (x)
)
. (41)

Proof. By Proposition 2, we have

Hv
α(x) =

∑
F∈F

m(F )

(
(1− α)

k∑
i=1

grFi (x)vi + α

k∑
i=1

gRF
i (x)

)
vi. (42)

Exchanging the summation leads to

Hv
α(x) =

k∑
i=1

[∑
F∈F

m(F )
(
αgRF

i (x) + (1− α)grFi (x)
)]

vi =

k∑
i=1

gαi (x)vi. (43)

Hence Hv
α(x) ≥ Hv

α(y) ∀v ⇔
∑k

i=1 g
α
i (x)vi ≥

∑k
i=1 g

α
i (y)vi ∀v. The result fol-

lows then from Lemma 2. ⊓⊔
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From Proposition 3, we obtain that non-dominated solutions according to
⪰α

h are efficient solutions of the following problem:

max

{
k∑

i=1

gαi (x),

k∑
i=2

gαi (x), . . . ,

k∑
i=k

gαi (x)

}
(44)

x ∈ X . (45)

Similar to Problem (27-28), each objective of Problem (44,45) is also linear. At
first glance, the assumption that focal sets are rectangles may seem restrictive.
Still, it can appear in numerous practical situations. In the next example, we
provide such a situation.

Example 6 (Example 3 continued). Assume that the profits of items are un-
known, and an expert predicts that the profit vector is r = {l2, l3, l1, l2, l2}.
However, the expert is not entirely reliable, and from results of his past predic-
tions, we know that the probability of him being correct is 0.8. If the prediction
is accurate, the profit vector is indeed r. On the other hand, when the prediction
is wrong, we are completely ignorant about the true profit, which could be any
vector in {l1, l2, l3}5. This piece of information can be naturally modeled using a
mass function m with two focal sets: F1 = {(l2, l3, l1, l2, l2)} with a mass of 0.8,
and F2 = {l1, l2, l3}5 with a mass of 0.2. Let us choose α = 0.5. For any feasible

items 1 2 3 4 5

w 2 2 2 3 4

F1 l2 l3 l1 l2 l2
F2 {l1, l2, l3} {l1, l2, l3} {l1, l2, l3} {l1, l2, l3} {l1, l2, l3}.

Table 3: Profits of items in two focal sets

solution x, we can compute that

gα1 (x) = 0.1x1 + 0.1x2 + 0.9x3 + 0.1x4 + 0.1x5

gα2 (x) = 0.8x1 + 0.8x4 + 0.8x5

gα3 (x) = 0.1x1 + 0.9x2 + 0.1x3 + 0.1x4 + 0.1x5.

So, finding non-dominated solutions according to the ⪰α
hu can be formulated as

solving the following multi-objective KP:

max

 x1 + x2 + x3 + x4 + x5,
0.9x1 + 0.9x2 + 0.1x3 + 0.9x4 + 0.9x5,
0.1x1 + 0.9x2 + 0.1x3 + 0.1x4 + 0.1x5,

 (46)

x ∈ {0, 1}5 : 2x1 + 2x2 + 2x3 + 3x4 + 4x5 ≤ 6 (47)
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Arbitrary focal sets In this case, it is hard to derive a similar result as in
Lemma 2. As a first result in this direction, we give a sufficient condition for
x ⪰α

hu y, with x, y ∈ X . Let R∗ := {r ∈ R : ∃F ∈ F such that r ∈ F}.
Proposition 4. If for each r ∈ R∗, we have

∑k
i=j g

r
i (x) ≥

∑k
i=j g

r
i (y) for all

j ∈ [k] then x ⪰α
hu y.

Proof. Immediate from (34-35). ⊓⊔
Clearly, the condition stated in Proposition 4 is very stringent as it requires
that for each scenario in R∗, x weakly dominates y. Hence, in future research, it
would be valuable to find more relaxed conditions or, ideally, establish a char-
acterization similar to Lemma 2.

5 Conclusion

In this paper, we have investigated 0-1 Combinatorial Optimization Problems
(01COPs), where the profits of items can be both qualitative and uncertain. We
have combined approaches from [5,9] with decision-making under uncertainty
methodologies [2] to compare solutions. Our main result is that under proba-
bilistic uncertainty and a special case of evidential uncertainty where focal sets
are rectangles, we still can find non-dominated solutions by solving a multi-
objective version of the original 01COP. Going forward, we plan to study deeper
the case of evidential uncertainty with arbitrary focal sets, aiming to provide
more comprehensive insights and understanding. Another interesting direction
is to adapt the approach in [3] where the authors compared acts by means of
Sugeno integrals.
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