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bLGI2A, Univ. Artois, EA 3926, 62400 Béthune, France

Abstract

Cases and vocabulary maintenance presents a crucial task to preserve high competent Case-Based Reasoning (CBR)
systems, since the accuracy of their offered solutions are strongly dependent on stored cases and their describing
attributes quality. The maintenance aims generally at eliminating two types of undesirable knowledge which are
noisy and redundant data. However, inexpedient Case Base Maintenance (CBM) or vocabulary maintenance may
not only greatly decrease CBR competence in solving new problems, but also reduce its performance in term of
retrieval time. Besides, to provide a high maintenance quality, it is necessary to manage uncertainty within knowledge
since ”real-world data are never perfect” and stored cases within a CBR system’s Case Base (CB) describe real-
world experiences. Hence, we propose, in this paper, a new integrated method that maintains both of the CB and
the vocabulary knowledge containers of CBR systems by offering a new alternating technique to properly detect
noisiness and redundancy whether in cases or features. During the learning steps of our new integrated maintenance
policy, which drives the decision making about cases and attributes selection, we manage uncertainty using one among
the most powerful tools called the Belief Function Theory.

Keywords: Case-Based Reasoning, Case Base Maintenance, Vocabulary Maintenance, Machine Learning,
Uncertainty, Belief Function Theory.

1. Introduction

In CBR systems, reasoning is quite special comparing to reasoning in databases and logic [1]. It can be described
as a mimicking of the human reasoning way to solve new problems. The basic operating assumption in CBR is that
”Similar problems have similar solutions”, which makes CBR a kind of approximate reasoning. Basically, CBR
systems call past recorded experiences to solve new problems and make decisions. The set of these experiences is
stored in form of problem-solution couples in a memory structure called a Case Base (CB). To solve a new problem,
the well-known 4R cycle of traditional CBR [5] can be applied. First, the CBR system Retrieved from the CB the
closest case(s) to the current problem using a similarity measure and the vocabulary describing cases. Second, the
Reuse phase consists at applying some adaptations to the solution of the retrieved case to fit the current problem. In
case of rejection to the proposed solution (e.g., by a domain expert), it should be Revised. Finally, the new problem
with its solution are Retained in the CB as a new case, and the system is supposed to boost its competence in problem
resolution. This ability to learn incrementally makes that kind of reasoning widely applied in several contexts such as
medicine and health area [2], finance [3], design and manufacturing [4], etc. However, after a given period of time,
we can note some decreasing of the competence and/or the performance of the system, which is originated mainly
of two causes. First, the emergence of noisy cases inside the CB which can introduce negative impact. Second,
the emergence of a large number of redundant cases that cover the same problem space and degrades, therefore, the
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system’s performance in term of retrieval time. The two latter discussed problems are massively tackled under the
Case Base Maintenance (CBM) [6] field, where a large number of policies aim to clean up CBs from irrelevant cases.

Obviously, the CB is the basic and essential component of any CBR system. However, if we look to CBR from the
knowledge viewpoint, we distinguish different repositories containing distinct varieties of knowledge [1] that should
be given some attention. In CBR, these knowledge are stored in four knowledge containers [9]: The Case Base, the
vocabulary, the similarity measures, and the adaptation knowledge (Figure 1).
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Figure 1: The four knowledge containers of CBR

In addition to CBs, the vocabulary knowledge plays an important role in offering relevant solutions. Actually,
vocabulary container holds knowledge that describe explicitly used elements [1]. For instance, in the context of
Structural CBR systems1 where cases are described in form of attribute-value pairs, we can suppose that the vocabulary
is restricted to the set of attributes describing cases. Actually, in every real-world experience, there is a really huge
number of attributes that can describe it. However, only some of them are relevant for the decision making about
a particular task. For that reason, the vocabulary container presents also the subject of a considerable maintenance
target [10] to provide a competent and up-to-date CBR system.

In the context of these requirements, we propose in this paper an integrated method that maintains simultaneously
both of the CB and the vocabulary knowledge containers by eliminating noisiness and redundancy in both cases and
attributes. Our objective behind this work is to maintain efficiency and competence of CBR systems by keeping
only accurate and relevant attributes and cases. However, it is obviously easier said than done, especially that cases
descriptions are not quite precise and exact. This imperfection in data makes birth of the necessity in managing,
measuring and minimizing uncertainty. Since this uncertainty can appear in different aspects and with graduated
levels, we make use, during the learning steps of our new maintaining method, some powerful managing uncertainty
tools offered in the frame of the belief function theory [11, 12].

The remind of this paper is organized as follows. The next Section recalls the fundamental concepts of the belief
function theory, as well as the two used evidential machine learning techniques. Section 3 focuses on presenting
the field of Case-Based Reasoning Maintenance along with the related work. The details about our new integrated
method named IMMEP (Integrated Maintaining Method based on Evidential Policies for CBR maintenance) as well
as its algorithm are presented throughout Section 4. Thereafter, we establish, during Section 5, an experimental study
followed by results exposition and discussion. Conclusions and outlook are finally stated in Section 6.

2. Belief Function Theory

As our contribution, for this paper, aims to manage the uncertainty involved in past experiences while performing
a two-dimensional maintenance task (CB and vocabulary), we provide, in Section 2.1, the fondamental concepts of
the belief function theory, which is named also Demspter-Shafer or Evidence theory [11, 12]. During Section 2.2, the
concept of credal partition is defined to model the doubt about cases assignment to clusters within this theory. For the
learning steps, the two used evidential clustering algorithms are presented respectively in Sections 2.3 and 2.4.

2.1. Fundamental Concepts
To model and quantify the evidence under the framework of the belief function theory, we consider ω as a variable

referring to K elementary events to a given problem defined by Ω = {ω1, ω2, ..., ωK}, called the frame of discernment.

1There is also Conversational CBR and Textual CBR which differ by their way in representing cases [1].
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The power set of that problem is defined by the set of all the 2K possible subsets of the predefined events taking
values in Ω. The key point of the belief function theory is the basic belief assignment (bba) which represents the
item of evidence (partial knowledge) regarding the actual value of ω. It is defined as a function m from 2Ω to [0, 1]
verifying

∑
A⊆Ω m(A) = 1. If m(A) > 0, then A is called focal element. The basic belief mass m(A), which denotes

the belief degree assigned to the hypothesis ”ω ∈ A”, can be attached to a subset of variables regardless any additive
assumption. A bba corresponds to the open world assumption [13], if we allow evidence assignment to the empty set.
This means that Ω is incomplete and ω can be taken outside. This interpretation is meaningful especially in clustering
when we aim to detect noises [14]. Contrariwise, the bba function corresponds to the closed-world assumption [12] if
it is normalized (m(∅) = 0).

Among the functions that can be computed through the bba, we cite the plausibility which presents the maximum
amount of belief supporting a subset A, and it is defined as follows:

pl(A) =
∑

B∩A,∅

m(B) ∀A ⊆ Ω (1)

If we consider two mass functions m1 and m2 defined within the same frame of discernment, then we can compute
the degree of conflict with several manners. One among the most known methods is defined, in [12], such that:
κ =
∑

A∩B=∅ m1(A) m2(B). Last but not least, to make decision about the best hypothesis regarding a normalized bba
m, we can use the pignistic probability transformation defined within the TBM framework [13] as follows:

BetP(ω) =
∑
ω∈A

m(A)
|A|

∀ω ∈ Ω (2)

2.2. Credal Partition
Managing uncertainty using the belief function theory within clustering problem has been largely applied. The

clustering is a machine learning technique aiming at revealing some structures on data by organizing objects according
to their similarity. The more the objects are somehow similar, the more probable to belong to the same group.

Under the evidential clustering problem, the concept of Credal Partition is built through assigning a belief degree
of membership not only to singletons of the frame of discernment, but also to all possible subsets of clusters. Actually,
the frame of discernment, within the evidential clustering frame, refers to the set of K possible clusters. The partial
knowledge regarding the membership of an object oi to a partition of clusters A is defined by a mass function denoted
mi(A). Its value supports the hypothesis ”The real cluster of object oi belongs to the partition A”. That bba quantifies
the uncertainty regarding the membership of only one object. If we have n objects, then the credal partition presents
the set of n − tuple bbas (m1,m2, ...,mn).

Thereafter, we present two evidential clustering techniques that are used in our contribution to quantify uncertainty
through their generated credal partitions: The first is object-based (used for CB maintenance) and the second is
dissimilarity-based (used for vocabulary maintenance).

2.3. Evidential Object Clustering: Evidential C-Means (ECM)
Evidential C-Means (ECM) [14] is an object clustering method that manages the uncertainty of their membership

to clusters and generates the credal partition. Within ECM, each cluster ωk is presented by its center vk in form of data
features vector. Therewith, a partition A j of clusters is presented by a prototype v j, which is defined by the barycenter
of the different prototypes of each single cluster in A j, as follows:

v j =
1
|A j|

K∑
k=1

sk jvk (3)

where sk j = 0 if ωk < A j and sk j = 1 otherwise, with K presenting the total number of clusters.
The main idea of ECM algorithm is to generate the credal partition by minimizing the following cost function:

JECM(M,V) =

n∑
i=1

∑
j/A j,∅,A j⊆Ω

|A j|
αmβ

i jd
2
i j +

n∑
i=1

δ2mβ
i∅ (4)
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subject to ∑
j/A j⊆Ω,A j,∅

mi j + mi∅ = 1 ∀i = 1...n (5)

where n is the data size, M presents the space of the credal partition, V presents the space of prototypes, mi j denotes
mi(A j), and di j is the euclidean distance between object oi and the partition A j. The parameter α aims at controlling
the penalization degree for partitions having high cardinality, while β and δ treat noisy objects.
More details about the minimization of the cost function JECM can be found in [14].

2.4. Evidential dissimilarity-based Clustering: k-EVCLUS method

Evidential dissimilarity clustering methods aim to generate the credal partition regarding objects membership to
clusters not through their attributes values, but through the relation between them in term of dissimilarity. EVCLUS
[15] is one among the most known relational evidential clustering methods. In this paper, we make use of an im-
provement of that technique called k-EVCLUS [16]2 which makes the original algorithm more able to handle larger
dissimilarity data.

Let consider D = (di j) a square matrix of size n containing the dissimilarities between n objects. The main idea of
k-EVCLUS is to generate the credal partition M in such a way that the conflict degrees κi j between any two bbas mi

and m j
3 fit the dissimilarities di j between objects oi and o j. By this way, the credal partition is generated by assigning

mass functions with low (respectively high) conflict to similar (respectively dissimilar) objects. k-EVCLUS consists,
therefore, at minimizing, for only a subset of pairs of objects (oi, o j), the sum of the square error terms (κi, j − ϕ(di j))2,
where ϕ(d) = 1− exp(−γ d2) and γ can be fixed to −logα/d2

0 , with a recommendation to fix α to 0.005 and d0 to some
quantile of dissimilarities di j. If the number of clusters is large, it was recommended to assign a small value to d0.
To be done, some value of k < n is chosen4 and, for each object oi, k other objects ( j1(i), j2(i), ..., jk(i)) are randomly
selected to minimize, over the object pairs (oi, o jr(i)), the following stress function:

Jk(M) = η

n∑
i=1

k∑
r=1

(κi, jr(i) − δi, jr(i))2 (6)

where δi, jr(i) = ϕ(d), with d is the dissimilarity between object oi and object o jr(i).

3. Case-Based Reasoning Maintenance (CBRM)

Actually, CBR systems are designed to work for long time frame. Hence, some maintenance operations to their
knowledge containers are needed between-whiles, and this need remains as well as the system survives. We propose,
therefore, modeling this idea by the loop shown in Figure 2.

In this work, we focus, on the maintenance of the CB and the vocabulary since we consider the Null-Adaptation
[17] and apply an automated update when calculating the similarity according to the remaining features after mainte-
nance. Hence, during the rest of this Section, we will pay attention to the CB and vocabulary maintenance.

3.1. Vocabulary Maintenance

What is Vocabulary? As shown in Figure 1, the vocabulary container is the basis of all the other three knowledge
containers [18]. It responses to the question ”Which elements of the data structures are used to present fundamental
notions?” [19]. Actually, the vocabulary depends on the nature of knowledge sources which can be attribute-value
data with an object-oriented organization5 or more complex data types such as text, image, sensor data, speech, etc.

2https://CRAN.R-project.org/package=evclust
3In other term, the plausibility to belong to the same cluster.
4It presents the origin of the letter k within the term k-EVCLUS.
5The most common structure in CBR systems.

4



CBR system with some weaknesses: 

Performance and competence degradation

CBR system with good

performance and competence

• Aberrant 
experiences

• Redundant
experiences

• Context
Modification

• Knowledge
update

Similarity

Case Base Vocabulary

Adaptation

Figure 2: CBR systems maintenance

Hence, the vocabulary can be attributes, predicates, functions, set of words, and related constructs. For our purpose in
the current work, it is sufficient to restrict the vocabulary on the set of attributes6 describing cases.

Why maintenance? As mentioned in the introduction, an experience can be described by an infinite number of
features with different levels of granularity. However, only few of them conduct to the accurate decision. We can
defend the necessity of maintaining the vocabulary from two points of view. Firstly, the redundancy of attributes
can overburden the retrieval process without any added-value in term of competence for problem solving. Secondly,
noisy features prevent the overall systems to be conducted to the good solution. For the redundancy in attributes,
it can be presented as a kind of high-correlated features where the deletion of some of them does not influence the
whole system’s capability of decision making. For noisy attributes, they present the set of features that their deletion
conducts to the improvement of the system’s decision making accuracy.

Why uncertainty management? According to authors in [20], the vocabulary as well as the three other knowledge
containers are the origins of uncertainty in CBR systems. In fact, we cannot handle vocabulary and maintain the
set of attributes without well analyze the set of values describing each one. Since these values are never exact, they
are undoubtedly full of uncertainty and imprecision, which gives birth to the vital need to manage this imperfection
during the learning steps at the aim of making the most accurate decision.

Related work. Actually, the maintenance of features is widely explored within the context of Feature Selection (FS)7

or Feature Reduction (FR). Hence, we find, in the literature, several works that select, reduce or delete features
describing cases to ensure accurate retrieval outcomes, such that in [10, 21, 22, 23]. One among the useful concepts
to select relevant features within CBR is the Attribute Clustering which has been carried out, for that matter, in
several works [10, 24, 25]. Similarly to object clustering, features belong to the same cluster are somehow similar.
Conversely, dissimilar attributes should belong to different clusters. Basically, features similarity reflects the relation
between them. It can actually be in term of correlation, dependency, etc8.

Discussion. While maintaining vocabulary for CBR systems, it is important to take into account and preserve the
relation between cases features. That’s why, recommendations are offered [10, 24] to regroup features during the
learning step in order to eliminate redundant and irrelevant attributes. Besides, attribute clustering provides a flexibility
to CBR systems by offering the possibility to replace any feature by another one belonging to the same cluster.
However, existing policies aiming to maintain CBR vocabulary are neither able to preserve the relation between
attributes nor to manage the imperfection within data.

6During the rest of this paper, we use attribute and feature terms exchangeably.
7It is an NP-Hard problem.
8The choice of this relation depends basically on the research goal.
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3.2. Case Base Maintenance (CBM)
The CB, that stores the set of past experiences to be retrieved, is the basic element of any CBR system. Since

CBR systems differ from the other knowledge-based systems in their way of reasoning, and especially in their ability
to learn incrementally, the maintenance of case bases becomes essential to revise the CB organization [6]. For that
reason, CBM is more explored in-depth, and we find, in the literature, a considerable number of CBM policies that
target CBR systems for some performance objectives. For instance, numerous CBM policies revise CB’s content
through the selection of only representative cases that are able to cover the remaining set of cases’ problems such as
the Condensed Nearest Neighbor (CNN) [7] which represents the baseline of data reduction methods. Its idea is to
iteratively and randomly select cases and add them in a new CB. During each iteration, CNN tests if the new CB is
able to successfully solve all problems in the original one. If not, a new iteration is carried out. Otherwise, CNN stops
iterations and the new maintained CB is totally built. We cite, moreover, the Reduced Nearest Neighbor (RNN) [8]
which initializes its maintained CB to the original one, then reduce it case by case while no case from the original CB
is misclassified by the reduced one.

Besides, we find other CBM policies [30, 31, 32, 33] that apply maintenance operations according to some evalu-
ation criteria such that (1) the performance which is quantified by the time spent to solve a target problem, and (2) the
competence which represents the range of problems that the CB can successfully solve [26, 29].

Some CBM are based on partitioning CBs which gives the ability to treat the original CB in form of small ones.
Actually, cases clustering is widely used within the CBM field due to its approved utility in detecting cases to be
maintained. For instance, Clustering, Outliers and Internal cases Detection method (COID) [34] performs the density
based clustering technique called DBSCAN [35] and, then, selecting only cases that their deletion affects the whole CB
quality. A variant of COID method called WCOID-DG [36], for Weighting, Clustering, Outliers, Internal Detection
and Dbsan-Gmeans based policy, is established by combining a weighted version of COID with the Gaussian-means
clustering technique so as to well fix the number of clusters. Besides, authors in [37] propose a clustering based
deletion policy that exploits the K-Means as a clustering technique.

However, all the mentioned policies are not able to manage imperfection within knowledge. Therefore, we cite
others, that aim to tackle the problem of uncertainty management within CBM. SCBM method [38], for instance, is
one among the soft partitioning based CBM policies that is based on the fuzzy logic [28] and uses the Soft DBSCAN-
GM (SDG) [39] as a clustering technique. On the other hand, the policies Evidential Clusterering and case Types
Detection for CBM (ECTD) [40], Dynamic policy CBM based on EK-NNclus algorithm and case Types Detection
(DETD) [41] and Constrained Evidential Clusterering and case Types Detection for CBM (CECTD) [42] use the
belief function theory tools [11, 12] (see Section 2) to manage uncertainty for cases partitioning as well for the
decision about cases removal. The main maintenance principle of all these policies consists at classifying cases into a
number of types according to their characteristics regarding the overall CB’s competence (see Section 4.2).

We remark, after this study, numerous works interested in maintaining CBR systems, which expresses their signif-
icance in real applications. However, no work is perfect and some weaknesses are noted. Therefore, we tackle some
of them by proposing, in the following Section, a new integrated maintaining approach that is characterized by (1) an
alternation between Cases and Vocabulary learning, (2) an uncertainty management within both CB and vocabulary,
and (3) a removal of redundant and noisy cases with a selection of only relevant and representative attributes.

4. Integration of CBM and Vocabulary Maintenance Policies within the Belief Function Framework

The overall outcome of CBR systems is affected by the maintenance operations. Hence, we aim to repair CBR
systems weaknesses (Figure 2) by proposing an integrated maintenance policy that targets CBR systems knowledge,
named IMMEP for ”Integrated Maintaining Method based on Evidential Policies”. All concepts and tools offered
by the belief function theory9 (Section 2) can only indicate its richness and flexibility to be used in different fields.
For that reason, we choose to use it, within our new IMMEP method, for knowledge uncertainty management, during
the maintenance of CBR systems. As mentioned in the introduction, we aim, in this paper, to eliminate noisiness and
redundancy in both of cases and attributes. The intuitive idea that arises is to perform successively a CBM method
then a vocabulary maintaining method. However, in that case, we will use, during cases learning, the set of features

9A lot of other tools within this theory are not mentioned in this paper.
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that probably contains some noisy attributes which distort CB learning. Similarly, the learning of features is done
through using cases description (attributes values) that, also, can be characterized by some distortions. Actually, this
can negatively affect the accuracy of maintenance operations whether in attributes level or cases level. Therefore, a
number of alternations between two main learning and maintaining phases is followed by our new IMMEP method:

• The first phase, that is inspired from our preliminary work described in [10], concerns vocabulary maintenance.

• The second phase regarding case base maintenance uses steps of a new weighted version of our preliminary
work described in [40].

In what follows, we describe, therefore, our vocabulary maintenance strategy (Section 4.1), our new weighted policy
for CBM (Section 4.2), and our integrated IMMEP method for CB and vocabulary maintenance (Section 4.3).

4.1. Vocabulary maintenance with uncertainty management: Evidential Vocabulary Maintenance policy (EVM)
As already mentioned, we aim to eliminate noisy and redundant features. To do, we use a machine learning

technique that deals with this problem and able to manage uncertainty. In our context, we call attributes as redundant
if they are highly correlated, since they offer the same information. From the other side, noisy features distort the
CBR system’s outcome and their elimination improves the supplied solution’s accuracy. As shown in Figure 3, the
vocabulary knowledge is used in form of an ensemble of features to describe the set of cases. For instance, if the
vocabulary is described in term of p attributes Γ = {A1, A2, ..., Ap}, then the description of one case xi within the
vocabulary Γ is defined by {ai1, ai2, ..., aip}. In the current research work, these values are considered as numeric to
reach our four steps for vocabulary maintenance as detailed in Figure 3 and during the following Subsections.

Case Base

n cases

P attributes

P × P Attribute

relational matrix

A1

A2

.

.

AP

A1 A2 . . AP

P × P Attribute

dissimilarity matrix

A1

A2

.

.

AP

A1 A2 . . AP

• Correlation between features • Dissimilarity = Offering different

information

• Evidential attribute clustering 

using k-EVCLUS

• Maintaining cases vocabulary knowledge

Step 1 Step 2

Step 3

Step 4

Figure 3: The mains steps of our vocabulary maintenance strategy

4.1.1. Step 1: Relational matrix generation
In our method, relation between features reflects their amount of correlation. Hence, given a CB containing n

cases described by p features, we define R = (rAiA j ) as attributes relational matrix where rAiA j measures the linear
association between the two features Ai and A j using the Pearson’s correlation coefficient [43], which is defined as
follows:

rAiA j =

n∑
l=1

(ail − ai) (a jl − a j)√√ n∑
l=1

(ail − ai)2

√√ n∑
l=1

(a jl − a j)2

(7)

where ail (respectively a jl) represents the different values of attribute Ai (respectively A j) for case l, and ai and a j are
their mean values.
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4.1.2. Step 2: Dissimilarity matrix generation
Two features are said to be similar if they are highly correlated. According to this idea, the dissimilarity matrix

D = (dAiA j ) is calculated in function of attributes correlations, which are bounded between −1 and 1. By this way, the
following three main situations arise:

• Situation 1: If rAiA j ' 1⇒ High correlation (positive)⇒ Similar provided information⇒ High similarity.

• Situation 2: If rAiA j ' −1⇒ High correlation (negative)⇒ Similar provided information⇒ High similarity.

• Situation 3: If rAiA j ' 0⇒ No correlation⇒ Different provided information⇒ High dissimilarity.

Consequently, the similarity between two features Ai and A j is equal to |rAiA j | and their dissimilarity is, therefore,
calculated such that: dAiA j = 1 − |rAiA j |.

4.1.3. Step 3: Evidential attribute clustering
At this step, we aim to regroup features through the generated dissimilarity matrix by using an evidential dis-

similarity based clustering technique. For that, we use k-EVCLUS (presented in Section 2.4) which is a recent and
powerful technique for that matter. Its ability to regroup cases into clusters with managing uncertainty, as well as in
detecting outliers, eases the next task regarding maintenance.

4.1.4. Step 4: Features maintenance
Ultimately, this step ensures vocabulary maintenance by eliminating usefulness and irrelevant features. Hence, it

is divided into three main sub-steps summed up as follows:

• Removing noisy features, detected during the previous step, since they can seriously decrease the problem-
solving competence.

• Making decision about attributes membership to clusters, from the credal partition, using the Pignistic proba-
bility transformation (Equation 2).

• Selecting only one representative feature from each cluster and eliminating all the redundant attributes.

4.2. CBM with uncertainty management: Weighted version of ECTD (WECTD)
Aiming to select relevant cases from the CB, our strategy performs a new weighted evidential clustering and

detects four types of cases according their competence in covering problem-space. They are briefly defined such as:

• Noisy cases: They represent the set of cases with distortion of values that, logically, cannot belong to the CB.

• Similar cases: The set of cases that have similar descriptions presents the majority of experiences in a CB and,
hence, considered as redundant.

• Isolated cases: They are somehow different comparing to the majority of cases. This set of cases is important
to cover non-common problems.

• Internal cases: Each internal case represents the prototype of each group of similar cases. They aim at covering
all redundant cases.

The new weighted evidential clustering consists at developing a weighted version of the Evidential C-Means
clustering technique (Section 2.3). It serves mainly at managing features competence within learning by affecting a
normalized weight for every attribute describing cases. This version, hence, does not believe that the set of features
has the same degree of relevance. The more a weight is near to one, the more its corresponding attribute offers valu-
able information in solving problems. Actually, these weights regarding the importance or relevancy of features may
be provided directly by domain-experts or also elicited in different ways like using feature weighting algorithms as
presented in [44]. For instance, in the main contribution of this paper, weights have been elicited through the mix
between initialization and penalization (Section 4.3). A general depict of this strategy with the different steps are
illustrated in Figure 4, where more details about each step are given within the following Subsections.
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4.2.1. Step 1: Evidential clustering of cases using weighted metric
First of all, our CBM maintenance policy aims to perform a learning step on the set of cases. Therefore, this

step consists at regrouping cases with membership uncertainty management, since cases contain a high amount of
inaccuracy. In our preliminary work [40], the default version of Evidential C-Means (ECM) [14] has been used.
However, the latter evidential clustering technique uses the basic euclidean distance during the optimization of its cost
function. This metric does not allow assigning more importance and significance to more relevant features in solving
problems than the others. At the aim of targeting the main objective of this paper in building an integrated vocabulary
and CB maintenance method, we developed a Weighted version of ECM (WECM) to be used within our new IMMEP
method (Section 4.3). The difference between ECM and WECM is the way in calculating distances and the use of
weights. Consequently, WECM presents the first step of our WECTD policy, which is used as the evidential clustering
technique that aims to generate the credal partition regarding cases membership to partitions of clusters, as well as
partitions’ centers (see Section 2.3).

4.2.2. Step 2: Case types detection
The idea behind dividing a CB into some case types has been used in several works such in [27, 34, 36, 38, 40, 41].

This categorization is generally based on two fundamental concepts related to the CB’s competence called Case
reachability and Case coverage [29]. Hence, we detect our four types of cases based on the following definitions [40]:

Definition 4.1. A case xi is said reachable by a CB if it contains at least one case similar or close to xi.

Definition 4.2. Each case belonging to a set of similar cases is able to cover all the other cases set items.

Noisy cases detection. Noisy cases can be detected in the same way as in [45]. The idea consists at allocating a
cluster to which noises will be assigned. Actually, ECM clustering technique, which is applied during the first step,
assigns noises, that cannot be assigned to any one among clusters, to the empty set partition. By this way, we detect
noisy cases as those having a membership degree to belong to the empty set partition higher than to belong to all the
other partitions. It is defined as follows:

xi ∈ NC i f f mi(∅) >
∑

A j⊆Ω,A j,∅

mi(A j) (8)

where xi presents one case from the CB and NC represents the set of Noisy Cases.
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Similar and Isolated cases detection. Without considering cases already detected as noises, we categorize the remain-
ing as Similar or Isolated through measuring distances between cases and partitions centers. In fact, Similar cases are
situated around partitions centers, and isolated cases are found in their borders. Hence, the distinction between them
is done, foremost, after measuring cases distance to clusters, and comparing them, afterwards, to a threshold, which
is defined by the mean of distances.
To manage uncertainty, also, in distance measuring, we take advantage of the generated credal partition and use the
Belief Mahalanobis Distance [40] defined such that:

BMD(xi, vk) =

√
(xi − vk)T Σ−1

k (xi − vk) (9)

where vk represents the center of cluster ωk and Σk is the Belief Covariance Matrix of the kth cluster which has been
defined, in [46], as follows:

Σk =

n∑
i=1

∑
A j3ωk

m2
i j|A j|

α−1(xi − v j)(xi − v j)T ∀k = 1, ..,K and A j ⊆ Ω (10)

where K represents the total number of clusters, mi j and v j present respectively the credal partition and their prototypes
as defined during the evidential clustering step. The parameter α serves to penalize the belief’s allocation to partitions
with high cardinality.

The distinction between similar and redundant cases is, hence, achieved as follows:

xi ∈

{
S Ck i f ∃k/BMD(xi, vk) < Thresholdk

IsC Otherwise (11)

where S Ck represents the set of Similar cases that are situated in the core of cluster k where IsC collects the set of
Isolated cases which are more distant to the different clusters centers. We propose to fix Thresholdk as the mean of
cases distances towards the cluster ωk such as:

Thresholdk =

∑
xi∈CB;xi<NC BMD(xi, vk)

#TotalCases − #NoisyCases
(12)

Internal cases detection. For every group of similar cases, we have to flag one as a representative that will cover all
of them. We call this case Internal since we choose it to be the closest case to the center of each cluster. Formally, we
can define Internal cases as follows:

xi ∈ InC i f f ∃k;¬∃x j/BMD(x j, vk) < BMD(xi, vk) (13)

where InC represents the set of Internal cases.

4.2.3. Step 3: Case base editing
By reaching this step, the ensemble of all cases are labeled. During the current maintenance step, two types of cases

will be removed while the two others will be retained. On the one hand, Noisy cases lead to decrease CBR systems
competence in problem-solving. Hence, they should be removed from the CB. For Similar cases, they reduce the CBR
system’s performance in term of retrieval time without any additional value in term of competence. Therefore, this
type of cases, which represents the redundancy, should also be eliminated. On the other hand, Isolated cases are very
important towards the overall CB’s competence, and their deletion can make some problems permanently unsolvable
by the system, so they have to be maintained. Finally, Internal cases should definitely be retained since they cover all
the removed similar cases.

4.3. The integrated IMMEP policy for vocabulary and CB maintenance
The IMMEP method provides two-dimensional maintenance for CBR systems. Its principle consists at repeating,

for a number of iterations, an alternation between CB learning, on the one hand, and vocabulary learning, on the other
hand. From one iteration to another, we make some updates on parameters to conduct the algorithm to the most occur
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result. If the first alternation phase concerns features learning, then we apply our strategy of vocabulary maintenance
(EVM) as shown in Section 4.1 without proceeding to features maintenance (Step 4). Then, an update of weights, in
form of penalization, will be performed on features that are detected, during Step 3, as noises. Further, we mention
that we chose to apply iterations of the two alternated phases as times as the number of features. Consequently, we
update weights of features flagged as noises, from one iteration to another, as follows:

i f fi ∈ NF wi ←− wi −
1

#Features
∀i = 1..p (14)

where wi is the weight of feature fi, NF represents the set of features detected as noises in one iteration, and p is the
total number of features. At the beginning of every iteration, NF is reinitialized to the empty set (NF ←− ∅).

To make use of the updated features weights, we use, for the second phase regarding CB learning, the first step of
our new Weighted version of ECTD policy that we call WECM (Section 4.2). This step defines actually a weighted
version of ECM algorithm (WECM) that uses a weighted similarity metric. Hence, we apply WECM on the CB
using feature weights from phase 1. Then, we detect noisy cases using the credal partition generated by WECM and
Equation 8. These cases flagged as noises will be removed before moving to the next iteration. Let note that we
keep redundancy in both of cases and features during alternations at the aim of improving learning. Finally, through
using outputs from the last iteration, we (1) select only representative features according to Step 4 of vocabulary
maintenance (Section 4.1), and (2) remove redundant cases by eliminating those attached to the Similar type (Section
4.2).

For the sake of clarity, we provide, in what follows, an algorithm (Algorithm 1) of our integrated IMMEP main-
taining method. After that, we move on to validate our contributions through an experimental study.

Algorithm 1 IMMEP algorithm
Require: Original case base CB with n cases and p features;

Kc: Number of clusters for cases learning;
K f : Number of clusters for features learning;
/* Some other required parameters are presented during Section 5.1 */

Ensure: Maintained case base CB′ with n′ cases and p′ features (with n′ ≤ n and p′ ≤ p);
1: BEGIN
2: Initialize table of all features weights W to 1.
3: CB′ ← CB
4: j← 1 /* To count the number of iterations */

5: while j < p do
6: /* Alternate between two phases */

7: Phase 1: Feature learning using cases descriptions
8: Apply Steps 1, 2 and 3 of vocabulary maintenance strategy (Section 4.1) using CB′ and K f .
9: Set weights for features detected as noisy using Equation 14.

10: Phase 2: Case Base learning based on attributes
11: Apply Step 1 of WECTD policy for CBM (Section 4.2) using CB′, Kc, and W.
12: Detect the set of noisy cases NC using Equation 8.
13: CB′ ← CB′ \ NC /* Delete noisiness to improve the next iteration’s learning */

14: j← j + 1
15: end while
16: Apply Step 4 of vocabulary maintenance strategy (Section 4.1) on CB′.
17: Apply Steps 2 and 3 of CBM strategy (Section 4.2) on CB′.
18: END

5. Experimental Analysis

Since the main purpose of the experimentation is to validate the benefit of our contribution in maintaining CBR
systems, we devote Section 5.1 to mention the used data and the setting of parameters, Section 5.2 to show the
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Table 1: Description of used case bases
Case Base Ref Number of attributes Size Number of classes Class distribution
German Credit GR 2 1000 2 700/300
Sonar SN 60 208 2 111/67
Breast Cancer BC 31 569 2 357/212
Phishing PH 10 1353 3 103/548/702
Glass GL 9 214 6 70/76/17/13/9/30
Australian AU 14 690 2 383/307
Indian IN 10 583 2 416/167
Vehicle VH 18 946 4 240/240/240/226
Ionosphere IO 34 351 2 225/126
Yeast YS 8 1484 10 463/429/244/163/51/44/37/30/20/5

maintenance testing strategy with the evaluation criteria, and Section 5.3 to present three experiments along with their
results and discussions.

5.1. Data and parameter settings
The different maintenance methods, in the frame of this paper, are implemented using the software R, version

3.5.2, and tested on 10 case bases from the UCI Machine Learning database repository at California University, Irvine
[47]. Each CB from these sets of data presents an ensemble of experiences that are collected from a real-world
application in some domain. Their description is given, in Table 1, in term of reference, number of attributes to
describe problems, size, and number of classes (or solutions) along with their distribution in dataset.

During the implementation of our Weighted Evidential Clustering and case Types Detection policy for CBM
(WECTD), our Evidential Vocabulary Maintenance policy (EVM), and our Integrated Maintaining Method based on
Evidential Policies (IMMEP), some parameters have to be fixed especially those for the ECM (Section 2.3) and the
k-EVCLUS (Section 2.4) algorithms. Let, on the one hand, set parameters of the ECM algorithm, which serves at
regrouping cases, as follows:

• The number of clusters Kc is taken equal to the actual number of solutions for every CB (Table 1).

• The initial prototypes of the different clusters are randomly fixed.

• The exponent α of cardinality, appearing within the cost function JECM (Equation 4) and the Belief Covariance
Matrix Σ (Equation 10), is set equal to 1. It means that, during the optimization process, we do not penalize
partitions of clusters with high cardinatity.

• The exponent of masses β, appearing in Equation 4, is set to 2, which makes it equal to the exponent of distances
within the same function.

• The distance to the empty set partition, denoted δ in Equation 4, is set to 10 (default value)

• The minimum required improvement amount of JECM , to stop iterations, is set to 0.001.

On the other hand, we set parameters of the k-EVCLUS algorithm, which is used to regroup the set of attributes, such
that:

• The number k (referred in k-EVCLUS), which matches the number of distances to compute for each attribute,
is taken equal to the number of attributes p (by default). If we set k < p, the matrix J of size p × k is built to
contain the indices of attributes where D[i, j] is the distance between attribute i and J[i, j].

• For all the bbms of the initial credal partition, the belief’s degrees assigned to all the items of the power set are
equitably initialized.

• The parameter d0 is fixed as the ninth quantile regarding attributes distances matrix D (by default).
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• The minimum required improvement amount of Jk, to stop iterations, is set to 10−5.

• The number of clusters K f , which defines also the retained number of features to express problems’ vocabulary,
has been varied from 2 to 9. For every fixed value, we measure the accuracy offered by the overall CBR
system after applying the corresponding maintaining approach. K f takes, therefore, the value that corresponds
to the highest accuracy for every tested CB through matching between the offered results after applying every
implemented vocabulary maintenance policy and the different values of K f (taken values of K f are mentioned
within Table 3).

Let us mention that some of these tested datasets contain missing values. Hence, we opted to fill this partial knowledge
using one of the most known and practiced missingness mechanism called EM imputation, which consists to use the
Expectation-Maximization algorithm (EM) [48] to predict incomplete cases regarding missing values at random.
Then, we may move on to apply our maintenance strategy for experimentation as shown in the following Section.

5.2. Maintenance testing strategy and evaluation criteria
To evaluate the performance of the different maintenance policies, the following testing strategy, as shown in

Figure 5, is performed. Each CB, mentioned in Table 1, has been divided into training set Tr and test set T s. The
maintenance policy is therefore applied on Tr to generate a maintained set of cases named Tr′.

Training folds (Tr) Test fold (Ts)

CB and/or Vocabulary
Maintenance Policy

Case Base:

Edited training set (Tr’)

k-NN

PCC (%) RT (s)SS (%)
Evaluation
criteria:

Figure 5: One trial for testing a CBR maintenance policy

Using the k-NN algorithm, which is the most commonly used classification algorithm in CBR systems, the set of
problems in Tr will be solved through the labeled experiences in T s. Therefore, we use the accuracy criterion which
is a measure aiming to assess the performance method. It presents the Percentage of Correct Classifications (PCC)
and defined such that:

Accuracy (PCC%) =
Number o f correct classi f ications in T s

S ize o f T s
× 100 (15)

If we apply different maintenance methods on the same CB with the same k-NN algorithm, then the one that offers
the highest accuracy corresponds to a better maintenance performance.
Besides, the time spent (in seconds) by the CBR system to retrieve and classify problems presents our second evalu-
ation criterion, denoted RT for Retrieval Time. Finally, our third evaluation criterion concerns the data retention rate
of the maintenance policy, which is defined in term of Storage Size such that:

S S (%) =
S ize o f Tr′

S ize o f Tr
× 100 (16)
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To obtain the final values of the three evaluation criteria mentioned above (PCC, RT , and S S ), we average results
of then trials derived from the 10-folds cross validation technique. The idea consists at dividing the CB into ten
equivalent folds, and, at each trial, only one fold is used as T s and the other nine folds are used as Tr. The test set T s
is changed from one trial to another.

5.3. Experimentation and results

The main objective of this paper is to build an integrated editing method for CBR systems that aims to maintain
both of the CB and the vocabulary knowledge, which is modeled by the set of attributes. This method presents the
integration of two maintenance strategies regarding two levels: WECTD (Section 4.2) for CBM and EVM (Section
4.1) for vocabulary maintenance. That’s why, we have performed three experiments in order to show, on the one hand,
the performance of CB and vocabulary maintenance strategies separately (Experiments A and B) and, on the other
hand, the performance of their integration, building our IMMEP method, comparing to their simple hybridization
(Experiment C).

Experiment A. It aims at comparing our case base maintenance strategy (ECTD policy10) to two CBM or instance
based reduction algorithms, denoted CNN [7] and RNN [8], as well as to the original non-maintained CBR system
(Original-CBR). Table 2 shows results offered according to the three evaluation criteria mentioned in Section 5.2.

Table 2: Case base maintenance evaluation

CB Original-CBR CNN RNN ECTD

SS (%) PCC (%) RT (s) SS PCC RT SS PCC RT SS PCC RT

GR 100 67.10 0.1018 54.90 54.20 0.0608 54.80 55.25 0.0612 45.30 68.88 0.0603
SN 100 81.28 0.0481 37.55 64.22 0.0231 31.7 62.85 0.0312 63.54 84.62 0.0401
BC 100 59.39 0.0422 62.93 71.45 0.0352 62.93 71.45 0.0355 55.48 74.25 0.0337
PH 100 87.73 0.1023 48.75 65.33 0.0718 36.92 60.20 0.0677 28.49 84.46 0.0518
GL 100 87.38 0.0092 10.48 48.33 0.0061 10.48 48.33 0.0059 47.82 89.75 0.0051
AU 100 64.49 0.0501 54.06 59.66 0.0328 51.55 59.84 0.0311 36.11 64.33 0.0299
IN 100 65.26 0.0414 50.08 61.88 0.0301 49.84 61.75 0.0314 37.43 67.15 0.0331
VH 100 58.55 0.0802 64.89 61.24 0.0567 60.45 60.88 0.0478 50.31 61.25 0.0412
IO 100 86.61 0.0568 21.36 34.46 0.0297 21.36 34.46 0.0303 44.27 86.61 0.0309
YS 100 51.47 0.1125 66.91 50.24 0.0643 66.91 51.02 0.0621 49.82 52.33 0.0591

From the CBM point of view, each one from the three developed approaches (Table 2) offers a strategy for reducing
the number of cases, which results to a new storage size comparing to the non-maintained CBR system (Original-CBR)
which contains the totality of instances (100%). In term of the SS criterion, our evidential CBM approach (ECTD)
has been able to reduce more than half of almost all the tested CBs, where it keeps between about 28 and 63% of
the original ones. Comparing to CNN and RNN strategies, competitive results have been offered. For the retrieval
time criterion, our ECTD policy offers interesting results, especially comparing to the initial non-maintained CBs.
Obviously, reducing CB’s size and retrieval time improves the performance of CBR systems. However, we should
ensure a high competence which is expressed through the accuracy criterion. In fact, we note, from Table 2, that our
ECTD method offers good accuracy values whether comparing to Original-CBR or to the other two case reduction
methods. For ”Sonar” dataset, for instance, our ECTD method offers an accuracy of 84.62%, where Original-CBR,
CNN, and RNN offer accuracy values equal to 81.28%, 64.22%, and 62.85%, respectively.

Experiment B. It is established in order to evaluate the effectiveness of our strategy in maintaining the vocabu-
lary knowledge or the decision making regarding features retention. Our evidential vocabulary maintenance strategy

10We are not interested on the elicitation of feature weights if they are not automatically generated. Hence, we use ECTD since it is equivalent
to WECTD when setting all weights to 1.
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(EVM) has been compared to the Original-CBR and to two well-known feature reduction methods, denoted ReliefF-
CBR [49] and InfoGain-CBR [50]. Since, in this experiment, the CB size is unchangeable, results are presented, in
Table 3, only in term of accuracy and retrieval time criteria. As already mentioned, the number K f corresponds to the
most convenient number of retained features11 that is extracted after some tests.

Table 3: Vocabulary maintenance evaluation

CB Original-CBR ReliefF-CBR InfoGain-CBR EVM

PCC (%) RT (s) K f PCC RT K f PCC RT K f PCC RT

GR 67.10 0.1018 2 71.70 0.0844 3 73.10 0.0842 4 74.11 0.0845
SN 81.28 0.0481 75.42 0.0321 9 72.59 0.0419 8 76.07 0.0355
BC 59.39 0.0422 5 76.66 0.0333 4 75.75 0.0392 5 76.66 0.0346
PH 87.73 0.1023 8 86.25 0.0941 7 88.62 0.0932 7 88.62 0.0893
GL 87.38 0.0092 6 89.52 0.0099 6 89.52 0.0091 6 91.54 0.0089
AU 64.49 0.0501 4 84.90 0.0443 3 84.49 0.0352 4 86.12 0.0391
IN 65.26 0.0414 8 65.60 0.0301 4 67.50 0.0298 4 67.50 0.0299
VH 58.55 0.0802 4 69.11 0.0733 8 61.80 0.0789 6 68.45 0.0710
IO 86.61 0.0568 7 90.02 0.0422 9 91.44 0.0461 9 91.45 0.0466
YS 51.47 0.1125 8 51.47 0.1012 8 51.47 0.0999 7 56.22 0.0998

From a vocabulary maintenance point of view, our EVM’s strategy as well as the implemented ReliefF-CBR and
InfoGain-CBR try to select the most powerful attributes in providing the high-competence level of CBR systems,
without assigning any interest in maintaining cases instances. Hence, the values of S S criterion, for every method’s
output, in this experiment, is equal to 100. The most convenient number of selected attributes is referred by K f , as
shown in Table 3. For every CB, the same values of K f , that offered the best results with EVM approach, have been
set during the forthcoming experiment.
Regarding the comparison with Original-CBR, and based on PCC values shown in Table 3, we conclude that our EVM
method’s strategy has a high maintenance quality. For instance, if a CBR system contains the ”Breast Cancer” dataset
as a CB, it will know an improvement of competence after applying our EVM policy, going from 59.39% to 76.66%.
Comparing to ReliefF-CBR and InfoGain-CBR methods, competitive results are obtained in term of accuracy as well
as in term of retrieval time. Nevertheless, our EVM method offers the best results for some CBs such as ”Glass” and
”Australian” datasets.

Experiment C. After separately evaluating our CBM and vocabulary maintenance strategies, Experiment C aims at
evaluating the main contribution of the current work regarding our IMMEP method that integrates both of WECTD
(Section 4.2) and EVM (Section 4.1) policies. Further, its objective is to compare this integration strategy to the simple
hybridization of ECTD and EVM, which consists at (a) applying ECTD then EVM successively (ECTD-EVM), and
(b) applying EVM then ECTD successively (EVM-ECTD).

The different results, presented in Table 4, clearly show the significance of our integration strategy embedded
within IMMEP method (Algorithm 1) comparing to the two methods regarding the hybridization of the two main-
tenance levels policies. In term of storage size and retrieval time, our IMMEP method offers an intrinsically better
results for almost all the CBs, especially comparing to Original-CBR. Let mention the example of ”Phishing” dataset,
where the IMMEP method offered a SS equal to 21.85% and a RT equal to 0.0265s, where Original-CB offers values
of 100% as storage size, 0.1023s as retrieval time. Comparing to the two other straight hybrid methods, close RT
values have been provided, where SS results are to our favor. For example, IMMEP keeps only 28.3% of the original
”German” dataset, where ECTD-EVM and EVM-ECTD keep respectively 44.92% and 49.5%.
The two discussed evaluation criteria are obviously important for the performance of any CBR system. However, we
should ascertain about their competence, which is defined, in the present work, by the accuracy of provided solutions.
In that level, we remark that our new IMMEP method offers the best accuracy for 9 case bases from 10, comparing to

11It presents also the number of clusters, during attribute learning, within our EVM and IMMEP methods.
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Table 4: Case base and vocabulary maintenance evaluation

CB Original-CBR ECTD-EVM EVM-ECTD IMMEP

SS (%) PCC (%) RT (s) SS PCC RT SS PCC RT SS PCC RT

GR 100 67.10 0.1018 44.92 65.12 0.0622 49.50 62.45 0.0710 28.30 74.99 0.0460
SN 100 81.28 0.0481 63.54 68.24 0.0219 60.12 59.32 0.0202 43.22 81.05 0.0211
BC 100 59.39 0.0422 54.88 44.18 0.0222 42.13 51.78 0.0261 56.33 77.21 0.0288
PH 100 87.73 0.1023 29.21 75.11 0.0451 39.15 71.04 0.0498 21.85 89.75 0.0265
GL 100 87.38 0.0092 47.82 79.68 0.0051 48.24 92.88 0.0071 40.46 92.88 0.0077
AU 100 64.49 0.0501 34.82 62.18 0.0315 39.75 59.00 0.0398 28.75 86.06 0.0254
IN 100 65.26 0.0414 37.44 55.80 0.0271 72.18 63.14 0.0382 35.53 67.15 0.0253
VH 100 58.55 0.0802 51.36 57.84 0.0503 50.79 43.89 0.0511 52.60 70.12 0.0601
IO 100 86.61 0.0568 44.27 79.76 0.0336 45.25 83.94 0.0344 44.80 91.56 0.0299
YS 100 51.47 0.1125 50.75 49.18 0.0621 32.95 47.47 0.0589 43.70 56.21 0.0607

the straight hybridization of ECTD and EVM (Table 4). Comparing to all the compared methods in experiments A, B,
and C (Tables 2, 3, and 4), our main contribution IMMEP shows also a lot of interesting results. For instance, it pro-
vided an accuracy of 77.21% for ”Breast Cancer” dataset, where Original-CBR, CNN, RNN, ECTD, ReliefF-CBR,
InforGain-CBR, EVM, ECTD-EVM, and EVM-ECTD offer, respectively, accuracy values equal to 59.39%, 71.45%,
71.45%, 74.25%, 76.66%, 75.75%, 76.66%, 44.18%, and 51.78%.

As a feedback of the three previous experiments, we can conclude that our proposed strategies have been highly
supported by results offered in Tables 2, 3, and 4. Figure 6 presents a snapshot towards the ensemble of the already pre-
sented accuracy results in form of 10 bars. The first bar corresponds to results offered by the original non-maintained
CBR system, and the others refer to accuracy results offered respectively by three CBM policies, three vocabulary
maintenance policies, two hybrid policies, and our proposed integrated maintenance method. Every bar represents
the cumulative of PCCs offered by the ten tested case bases (Table 1). Through this accumulation of results offered
by the most important criterion in term CB’s competence evaluation, we can straightforward note, from Figure 6, the
valuable results offered by our contribution of the current work.

These encouraging results have already been discussed during each experiment. However, we note a slightly
competence degradation with some case bases after applying some maintenance methods. This fact can be tolerated
at the aim of accelerating the time of case indexing and retrieval. The difference between the time criterion values
can be more observable if the CBR system uses more complex knowledge type, or some more complex problem
solving methods rather than the k-NN. Moreover, in CBR systems, these accuracy values, offered by our strategies
of maintenance, may know a notable improvement, going until 100%, if an acceptable level of adaptation effort is
applied.

6. Conclusion and Future Work

In this work, we mainly propose an integrated strategy for maintaining CBR systems through removing noisy and
redundant cases, as well as irrelevant and redundant features. After providing a try to give a somehow exhaustive
state-of-the art of this research field, we presented our IMMEP method, which is based on integrating two dependent
strategies for CBR maintenance: The first concerns ”Case Base Maintenance”, and the second regards ”Vocabulary
Maintenance”. For the sake of efficiency and relevance, we manage knowledge imperfection, that overwhelms such
systems, using the belief function theory since it presents one of the most powerful theoretical frameworks for uncer-
tainty management.

Three different experiments have been performed to validate our contributions. Results offered by Experiment A
supported our case base maintenance in term of cases retention rate, retrieval time, and problem-solving competence.
The variation of these offered results is conducted by noisiness and redundancy rate from one case base to another.
Through Experiment B, we conclude that maintaining cases’ vocabulary is also so interesting in term of accuracy.
From that point of view, we deduce that it is more important to eliminate noisy features than redundant ones. If we
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Figure 6: Global accuracy comparison

intend to perform a two-dimensional maintenance task for CBR systems, we can conclude, from Experiment C, that it
is highly recommended to use our new IMMEP method, that integrates the two latter maintenance strategies, instead
of using the straight hybridization of both of them.

Since we focused, in this paper, on maintaining structured CBR systems through their CB and vocabulary editing,
we aim, as future work, to tackle the problem of CBR maintenance by giving more interest to the two other knowledge
containers, which are similarity measures and adaptation knowledge, while managing uncertainty. Ultimately, more
results and comparisons with more recent maintaining approaches will be reported in a forthcoming paper.
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