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Abstract

Ensemble classifier is a well-known method that has been used to solve several machine learning
problems. To have reliable results, one should ensure the build of a good ensemble. In order to
do so, researchers have proposed some heuristics like Random Subspace Ensemble (RSM), Rough
set based ensemble, etc. The drawback of these mentioned approaches is their disability to handle
uncertain data especially when uncertainty is represented by the evidence theory. The aim of this
paper is to adapt both RSM and Rough set based ensemble in order to let them working in the
context of evidential data. Three ensemble classifier approaches based on the rough set theory
have been proposed and have been compared with each other. For the comparison purpose, we
have relied on Ensemble Enhanced Evidential k Nearest Neighbor (EEk-NN) classifier, real world
datasets from the UCI repository as well as synthetic databases.
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1. Introduction

Recent years have witnessed the revival of artificial intelligence (AI) in academic and indus-
try circles. One of the popular applications of AI is Machine Learning (ML), which has seen
spectacular developments, and continues to find applicability in a wide range of domains, such as
Information search, Information retrieval [1], speech recognition [2], and personal assistants on
mobile phones [3], etc.

The ever-growing availability of data imposes an increasing demand for new and more power-
ful learning techniques. Therefore, in the last decade, we have seen the growth of several learning
techniques, such as the ensemble learning [4, 5]. This approach allows a significant improvement
in the machine learning results by combining several models. Thus, this approach offers better pre-
dictive/classification performance compared to a single model [5]. That is why ensemble methods
ranked first in many prestigious machine learning competitions, such as the Netflix Competition,
KDD 2009, and Kaggle.

The construction of an ensemble system requires two substantial steps. The first one is to select
a set of individual classifiers while the second one consists of combining the output predictions of
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these classifiers. The choice of the set of individual classifiers as well as the fusion operator could
influence the ensemble performance.

The diversity between the base classifiers has been defended as a successful mean to construct
a performing ensemble system and could be ensured in different manners. One among the diversity
techniques that has been proven to be efficient and effective [6] is to vary the input feature space.

The process of generating diverse feature subsets with good predicting potential is still under-
going research study. The Random Subspace Method (RSM) is often used in the literature [7],
but its major limitation is to randomly partition the original input set. So, random selection may
potentially increase the risk of selecting irrelevant and redundant features.

Despite the promising results of RSM based ensemble classifier, several other techniques and
frameworks have been developed to enhance the prediction performance [8]. Among them, we
highlight the rough set theory that has been successfully used to reduce the set of features of any
dataset [9]. This theory has been successfully applied in machine learning, particularly for feature
reduction. It consists of finding the minimal feature subsets allowing the same discrimination as
the initial set. The reduced set is called a reduct.

Ensemble classifiers through rough set reducts have been applied in a wide range of practical
problems, such as text classification [10], biomedical classification [11], tumor classification [12],
web services classification [13], etc.

It is important to note that real world data are almost imperfect (i.e. incomplete or/ and uncer-
tain). This imperfection is due to multiple external factors such as obstacles, interference, missing
information, etc. Several studies have been made to handle data imperfection. From these lines of
research, we mention evidential theory [14], the probability theory [15] and the fuzzy set theory
[16].

The evidence theory is commonly used to represent data imperfection thanks to its flexibility
and capability to represent all kinds of imperfection including total and partial ignorance [17]. The
data represented with the evidence framework are called evidential data [18].

In spite of their great importance, rough set ensemble classifiers has not been applied on data
with evidential features [19, 20]. To unlock this research field, we propose a rough set based en-
semble for processing such kind of data. More particularly, we treat the case of imperfect features
represented within the evidence framework. Our approach consists of three main levels: reduct
generation, reduct selection for training individual classifiers and classifier fusion.

To sum up, the idea of this paper is to propose new ensemble classifier approaches to cope with
uncertain data, more precisely when the uncertainty affects the values of attributes and is repre-
sented with the evidence theory. To the best of our knowledge, we are among the first to develop
ensemble rough set classifiers in the context of evidential data. Three new approaches based on the
rough set theory have been proposed and compared with each other. They will also be compared
with individual EEk-NN classifier and the RSM technique. The choice of the rough set theory is
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justified by the fact that it has given promising results in a which context [10, 11, 12, 13].

The remaining of this paper is organized as follows. In Section 2, we provide a brief description
of the main concepts underlying the evidence theory, we define the concept of data with evidential
features and we highlight the fundamental concepts of the rough set theory. We present, in Section
3, our ensemble classifier through rough set reducts to cope with evidential data, particularly data
with evidential features. The experimentation settings and results are given in Section 4. We draw
conclusions and some future work directions in Section 5.

2. Preliminary knowledge

In this section, we present the preliminary knowledge of two well known mathematical theories,
namely the evidence theory and the rough set theory.

2.1. The evidence theory
The evidence theory, also referred to as belief function theory, is regarded as a very effective and

efficient way for representing and managing uncertainty [21, 22]. This theory is extensively used for
handling several real-world applications, including image processing [23], business decision [24],
multi-sensor fusion [25, 26], pattern recognition [27], medical diagnosis [28, 29], classification
[30, 31, 32], clustering [33] and target tracking [34]. In what follows, we provide a brief overview
of its fundamental concepts as interpreted by the Transferable Belief Model (TBM) [35]. We also
point out other basic concepts including the special belief functions, the belief function bel and the
decision making process. We at last present the Dempster rule for combining distinct information
sources.

2.1.1. Frame of discernment
Let Θ = {θ1,θ2, . . . ,θc} denotes the frame of discernment including a finite non empty set of c

elementary hypotheses that are assumed to be exhaustive and mutually exclusive. The power set of
Θ, denoted by 2Θ, is made up of all the subsets of Θ:

2Θ = { /0,{θ1},{θ2},{θ1,θ2}, . . . ,Θ} (1)

where each element of 2Θ is called a proposition or an event.

2.1.2. Basic belief assignment
An expert’s belief over the subsets of the frame of discernment Θ are represented by the so-

called basic belief assignment (bba) denoted by m. It is carried out in the following manner:

∑
A⊆Θ

m(A) = 1 (2)

The basic belief mass (bbm), denoted by m(A), implies the degree of belief exactly assigned
to the event A. Because of a lack of information, this quantity cannot be distributed to any strict
subset of A. It is worth noting that every subset A of 2Θ having fulfilled m(A)> 0 is called a focal
element.
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With the aim of expressing some particular uncertainty situations, some special bbas have been
proposed, including the vacuous, the certain bbas and the simple support mass function. The vac-
uous bba represents the total ignorance (i.e. m(Θ) = 1). The certain bba is a bba with a singleton
as its unique focal element. A bba is called simple support function (ssf) if it has at most two focal
elements: the frame of discernment Θ and a strict subset of Θ called the focus of the ssf.

2.1.3. Belief function bel
A belief function bel, relative to a bba m, assigns to any subset A of Θ the sum of beliefs

exactly committed to every subset of A by m [22]. In other words, it implies the total belief that
one commits to A without being also committed to A. It has to be noted that m( /0) is not included
in bel(A), since /0 is a subset of both A and A. The belief function bel is defined as follows:

bel : 2Θ→ [0,1]

bel(A) = ∑
/0 ̸=B⊆A

m(B) (3)

2.1.4. The Dempster combination rule
The combination of a set of imperfect data is a crucial task owing to its ability to achieve a piece

of more accurate information and improve decision making. The evidence theory is considered as a
powerful tool to merge imperfect data including uncertain, imprecise and incomplete data. Indeed,
several fusion rules have been proposed to aggregate a set of data induced from distinct information
sources. The Dempster rule is one among the commonly used rules. Let m1 and m2 be two bbas
defined in the same frame of discernment Θ. The Dempster rule is set to:

(m1⊕m2)(A) = k(m1 ∩⃝m2)(A) (4)
(m1⊕m2)( /0) = 0

where

k−1 = 1− (m1 ∩⃝m2)( /0) (5)

and

(m1 ∩⃝m2)(A) = ∑
B,C⊆Θ:B∩C=A

m1(B).m2(C) (6)

where ∩⃝ represents the conjunctive fusion rule also proposed within the evidence framework.

2.1.5. Data with evidential features
A dataset with evidential features is a dataset composed by M objects O j (i.e. j ∈ {1, . . . ,M})

where each of them is described by N features A = {A1, . . . ,AN} that are expressed within the
evidence theory and a class label d j ∈ d. Each feature Ak (i.e. k ∈ {1, . . . ,N}) has a domain of
discrete values denoted by ΘAk . The advantage of evidential data over the other theories is the
ability to represent all kinds of data uncertainty. In fact, it allows us to manage total certainty,
partial ignorance and total ignorance. An example of data characterized by evidential attributes is
given below.
Example: Overall, a bank loan officer has to predict the customer profitability levels d={Good,
Bad} on the basis of some parameters (features). To put it simply, in this example, Table 1 describes
the data knowledge for training, where we relied on three characteristics:
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• Income with possible values ΘIncome={No, Low, Average, High}.

• Property: This feature reflects whether the loan requested by the client is greater or less than
its property value and consequently it takes values into ΘProperty={Greater, Less}.

• Unpaid Credit: This feature provides information about client’s unpaid Credit with possible
values ΘUnpaidCredit={Yes, No}.

Table 1: Example of data with evidential attributes
O Income Property UnpaidCredit d
O1 mIncome

1 ({High}) = 1 mProperty
1 ({Greater}) = 0.6 mProperty

1 ({Less}) = 0.3 mProperty
1 (ΘProperty) = 0.1 mUnpaidCredit

1 ({Yes}) = 1 Good
O2 mIncome

2 ({Average}) = 1 mProperty
2 ({Greater}) = 1 mUnpaidCredit

2 ({No}) = 1 Good
O3 mIncome

3 ({Low}) = 1 mProperty
3 ({Less}) = 0.5 mProperty

3 (ΘProperty) = 0.5 mUnpaidCredit
3 ({Yes}) = 1 Bad

O4 mIncome
4 ({No}) = 1 mProperty

4 ({Less}) = 1 mUnpaidCredit
4 ({No}) = 1 Bad

O5 mIncome
5 ({Average}) = 1 mProperty

5 ({Greater}) = 0.8 mProperty
5 (ΘProperty) = 0.2 mUnpaidCredit

5 ({No}) = 1 Good
O6 mIncome

6 ({High}) = 1 mProperty
6 ({Greater}) = 0.2 mProperty

6 ({Less}) = 0.7 mProperty
6 (ΘProperty) = 0.1 mUnpaidCredit

6 ({Yes}) = 1 Bad

The example of Table 1 presents different kinds of bbas. The objects of both Income and
UnpaidCredit are represented by certain mass functions. For the feature Property, objects O2 and
O4 are also represented by certain mass functions, objects O3 and O5 are represented by simple
support mass functions and objects O1 and O6 are represented by general mass functions.

2.2. Basic concepts for rough set theory
The rough set theory, proposed by Pawlak [9], is an efficient way for dealing with various

machine learning problems such as clustering [36], classification [37], feature selection [38, 39],
etc. One of our ultimate goals throughout this paper is to extract the most suitable feature subsets
for classifier ensemble. Thus, we mainly relied on rough sets for generating the smallest subsets
of relevant features (i.e. called reducts) and selecting the appropriate ones. In practical terms,
a data set has to be represented through a Decision Table (DT ) which is defined as a pair DT =
(U,A∪{d}). The universe U = {O1, . . . ,OM} reflects a non-empty finite set of M objects, A =
{A1, . . . ,AN} is a non-empty finite set of N features with values V (Oi) = {V1(Oi), . . . ,VN(Oi)} for
each object Oi and d corresponds to the decision value (i.e. the decision class). The discernibility
function is one among the efficient solutions for reduct extraction. It consists firstly of computing a
discernibility matrix DM from a given decision table DT . Each element DM(Oi,O j) represents the
set of all features discerning objects Oi and O j with different class d. Entries of the discernibility
matrix DM are computed as follows:

DM(Oi,O j) = {Ak ∈ A|Vk(Oi) ̸=Vk(O j) and di ̸= d j} (7)
∀ i, j = {1, . . . ,M}

Once the discernibility matrix DM is computed, the discernibility function can be defined as fol-
lows:

f (DM) = ∧{∨(DM(Oi,O j))|∀Oi,O j ∈U,DM(Oi,O j) ̸= /0} (8)

The discernibility function has to be converted from a conjunctive normal form into a disjunctive
normal form for picking out all possible reducts.
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3. A rough set based ensemble for data with evidential features

We propose to develop a rough set based ensemble classifier for dealing with data with eviden-
tial features. It aims to construct an ensemble of evidential classifiers (i.e. classifiers trained from
data with evidential features) through rough set reducts. The general structure of our proposed
framework is depicted in Figure 1 where ECi (i.e. i ∈ {1, . . . ,L}) corresponds to the ith selected
Evidential Classifer. As depicted in this figure, our proposed framework consists of three main
steps: reduct generation from data with evidential features, reduct selection to ameliorate the pre-
diction performance and classifier combination. In the following, we describe in further detail each
of these steps.

3.1. A framework for generating reducts from data with evidential features
Reduct computation has been proven as an NP-hard problem which has led to the introduction

of several heuristics. The Rosetta software is one among the most effective approaches for reducts
generation. It includes a set of algorithms for extracting multiple reducts such as the SAVGenetic
Reducer [40], a genetic algorithm for picking out approximate reducts. As our main purpose is to
address data with evidential features, we propose to extend the SAVGenetic algorithm for process-
ing such kind of data. By analogy to the standard version, our evidential SAVGenetic reducer starts
by calculating a discernibility matrix Λ′ [41]. Assume that U={O1,. . .,OM} is a given data set with
M objects. Each object Oi (i ∈ {1, . . . ,M}) is described by N evidential features A = {A1, . . . ,AN}
and a certain class label di ∈ d. Note that each attribute Ak (i.e. k ∈ {1,. . . ,N}) has a domain of
discrete values denoted by ΘAk . The entries of the discernibility matrix Λ′ are set to:

Λ
′(Oi,O j) = {Ak ∈ A|bel(Oi ̸= O j|Ak)> T and di ̸= d j} (9)

where T refers to a tolerance threshold (i.e. T is set to 0.1 with the aim of maximizing the search
space) and:

bel(Oi ̸= O j|Ak) = ∑
Ei,E j,∀ai∈Ei,a j∈E j,ai ̸=a j

mk
i (Ei)mk

j(E j) (10)

with Ei and E j are subsets of ΘAk . The idea behind Equation 10 is to link between the events:
attribute Ak of objects Oi and O j having different values as well as the distance between two mass
functions. In particular, two mass functions may well be identical, while we would have absolutely
no idea of whether their attribute values are equal or not. Even worse, we may have strong evidence
of equal values that would give a positive distance (say, two probabilities slightly different, but with
an important weight on the same value), and no evidence at all of equality that would give a null
distance (say, two vacuous mass functions). This is obviously an undesirable property.

The process of extracting reducts through a discernibility matrix is regarded as a set cover
problem. It consists of finding the minimal hitting sets from the non empty sets of the obtained
discernability matrix. Since the minimal hitting set is an NP-hard problem, we relied on the genetic
algorithm for picking out approximate hitting sets, meaning approximate reducts. Let us denote
by A the set containing the elements of the discernibility matrix Λ′ and let us denote by ζ ′ the set
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Figure 1: Ensemble evidential classifier through rough set reducts
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containing the non empty sets of Λ′, the fitness function corresponds to our genetic algorithm for
each candidate solution B ∈ 2N is set to [42]:

f (B) = (1−α)× |A|− |B|
|B|

+α×min{ε, |[𭟋 ∈ ζ ′|𭟋∩B ̸= /0]|
|ζ ′|

} (11)

The fitness function f (B) rewards not only subsets that are hitting sets (i.e. meaning subsets having
a non empty intersection with all elements of the discernability matrix) but also subsets with short-
est size. Herein, α ∈ [0,1] refers to the adaptive weighting between the two parts and ε reflects the
minimal hitting set fraction. In this paper, we set ε with the aim of extracting minimal sets and we
set α to 0.5 to balance the two parts.

3.2. Reduct selection for ensemble learning
We could very well wind up with hundreds or even thousands of reducts. The process of con-

structing ensemble systems with all generated classifiers is extremely costly, especially for high
dimensional databases. An alternative solution consists of selecting the most appropriate reducts
for ensemble learning. We present, in what follows, three approaches enabling us to pick out the
most suitable reducts for an ensemble of evidential classifiers.

3.2.1. Select Diverse Reducts (DR)
One of the main keys for constructing a successful rough set ensemble is to ensure a good

diversity between the chosen reducts. Getting inspiration from [43], we propose a new heuristic for
selecting diverse reducts from the pool of generated ones. Our algorithm (see Algorithm 1) starts
by picking out the reduct with the minimum cost, meaning the smallest one. Then, it computes the
diversity between the chosen reduct and the remaining ones using Algorithm 2. The reduct which
has to be chosen is the one with the highest diversity degree. As in [43], the diversity measure
is the inverse of the average similarity between a candidate reduct R j and the L′ chosen ones (i.e
RED_Chosen) as follows:

Div j = 1− 1
L′ ∑

Ri∈RED_Chosen

|R j∩Ri|
|R j∪Ri|

(12)

The most diverse reduct R j will then be chosen for constructing the ensemble system and it will be
removed from the current reduct set RED. This process will be repeated until at most L reducts are
selected or the reduct pool RED is empty.

3.2.2. Accuracy-Diversity Assessment Function for reduct selection (AD-AF)
The study conducted by Opitz [44] has demonstrated that both the accuracy of individual clas-

sifiers and the diversity of base classifiers may improve the performance of an ensemble system.
So, a good classifier ensemble has to be constructed on the basis of accurate individual classifiers
that are diverse as much as possible. As already stated above, an ensemble system with rough set
reducts is considered as a valid alternative for ensuring good diversity between the base classifiers.
Herein, we propose to construct a good rough set based ensemble classifier by making a trade-off
between the diversity and the accuracy of each individual classifier. More precisely, we relied on
the assessment function, proposed by Opitz [44], to extract the reducts enabling the construction
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Algorithm 1 Select diverse reducts
1: input: A pool of reducts RED, L is the maximum Number of chosen reducts
2: output: L′ diverse reducts
3: RED_Chosen← /0
4: R1=minR∈RED cost(R)
5: RED_Chosen← {RED_Chosen, R1}
6: L′=1
7: RED= RED - R1;
8: While L′ < L or isEmpty(RED) = f alse Do
9: Div←− ReductDiversity(RED_Chosen,RED) {%Computed through Algorithm 2}

10: R_best= arg maxR j∈RED Div j
11: RED_Chosen← {RED_Chosen, R_best}
12: RED= RED - R_best;
13: L′ = L′+1
14: end while

Algorithm 2 ReductDiversity(RED_Chosen,RED)
1: input: Candidate reducts RED and selected reducts RED_Chosen
2: output: Diversity between reducts Div
3: for j= 1 to |RED|
4: Sim j=0;
5: for each Ri ∈ RED_Chosen
6: Sim j= Sim j + |RED j∩Ri|

|RED j∪Ri|
7: end for
8: Div j = 1- Sim j

|RED_Chosen|
9: end for
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of accurate individual classifiers with the greatest possible level of diversity. Opitz’s assessment
function for a classifier f is set to:

Fitness( f ,Ens_Cls) = Acc( f ,Ens_Cls)+ω×Div( f ,Ens_Cls) (13)

where Ens_Cls states the current ensemble of classifiers, Acc( f ,Ens_Cls) reflects the average ac-
curacy of the base classifiers, Div( f ,Ens_Cls) represents the diversity between base classifiers and
ω corresponds to the parameter that balances Accuracy and Diversity.

Several classifier diversity measures exist in the literature. Authors in [45] have distinguished
pairwise and non-pairwise diversity measures. The choice of the most convenient one remains a
tricky problem. In this paper, we relied on the disagreement measure, which is a pairwise one, for
computing classifier diversity. The parameter ω has to be adjusted automatically for maximizing
the fitness function value. More concretely, we keep the value of ω when Fitness is increasing,
while we increase it if Accuracy is stable and Diversity is decreasing and we decrease it if Accuracy
is decreasing and Diversity is stable. The value of ω will be set to 1 as the initial value and the
changing amount of ω will be set to 10% based on its current value. Our method differs from
Opitz’s approach in the extent to which it takes into consideration the accuracy between reducts in
addition to the diversity and the accuracy of individual classifiers. The diversity between reducts
is used to reduce the search space of reducts to improve search efficiency. It will be computed at
each iteration, using Equation 12, and the candidate reducts with a diversity measure smaller than a
threshold S (i.e. in the experimentation parts, we have set S to 0.7 to enable the selection of the most
diverse reducts) will then be removed from the search space of reducts. Our proposed framework
is detailed in Figure 2 and Algorithm 3.

We start by retrieving the reduct R1 with the lowest cost and constructing the first evidential
Classifier EC1 (i.e. RED_Choosen = {R1} and Ens_Cls= {EC1}).

The diversity Div j between the current selected reducts RED_Choosen and each reduct R j ∈
RED is the calculated. The reducts R j with a diversity measure smaller then a threshold S will
be removed from the reduct pool RED. Each candidate reduct R j ∈ RED will be evaluated using
Equation 13. The reduct Rk enabling the highest fitness function will be selected for constructing
our ensemble learning (i.e. Ens_Cls = {Ens_Cls,ECk}). This process has to be repeated until at
most a number L of reducts is reached or the current reduct pool RED is empty.

3.2.3. Ensemble Accuracy Assessment Function for reduct selection (EA-AF)
The wrapper approach, using the classifier accuracy as feature selection criterion, has been

successfully used for solving several pattern recognition problems. In fact, it allows us to pick out
the feature subset that achieves the greatest classification accuracy. Herein, we follow the same
process as the previously presented approach but we relied on the ensemble accuracy as a fitness
function for extracting the most appropriate reducts for an ensemble of evidential classifiers. The
fitness function is set to:

Fitness( f j,Ens_Cls) = max
Rk∈RED

(EnsAcc( fk,Ens_Cls)) (14)

where EnsAcc( fk,EnsCls) reflects the ensemble accuracy of the already chosen classifiers
RED_Chosen and the candidate classifier fk.
One important element which has to be highlighted is the maximum number L of selected reducts,
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Figure 2: Reduct selection for ensemble learning
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Algorithm 3 Accuracy-Diversity assessment function for reduct selection
1: input: A pool of reducts RED, L is the maximum Number of chosen reducts
2: output: Chosen L′ diverse reducts
3: RED_Chosen← /0
4: Ens_Cls← /0
5: R1=minR∈RED cost(R)
6: RED_Chosen← {RED_Chosen, R1}
7: L′=1
8: RED= RED - R1;
9: Ens_Cls← {Ens_Cls, f1}

10: Repeat
11: Div←− ReductDiversity(RED_Chosen,RED) {% Computed through Algorithm 2}
12: RED_New←− R j ∈ RED with Div j > S
13: RED = RED_New
14: Choose a new reduct R j from RED satisfying:
15: Fitness( f j,Ens_Cls) = maxRk∈RED(Fitness( fk,Ens_Cls)) {% See Equation 20}
16: Ens_Cls← {Ens_Cls, f j}
17: RED_Chosen← {RED_Chosen,R j}
18: RED=RED-R j
19: L′=L′+1
20: until L′ = L or isEmpty(RED) = true

meaning selected classifiers. According to a study conducted in [44], ensembles of 25 classifiers
are sufficient to improve the ensemble performance. In the remaining of this paper, we set L to 25.

3.2.4. Time complexity
It is important to point out the complexity of our different proposed approaches. Let us denote

by N the total number of reducts, N
′

the number of candidate reducts, L the maximum number of
chosen reducts and L

′
the real number of chosen reducts, the time complexity of each approach is

given computed as:

• DR: For the approach Select Diverse Reducts, we repeat the process L times and for each
time, we compare reducts with the L′ chosen ones. So the process takes O(L∗L

′ ∗N).

• AD-AF: A part of the DR approach is included in the AD-AF one. We only need to compute
the accuracy induced by all candidate reducts. The time complexity will be computed as
O(L∗ (L′ ∗ (N +N

′
)))

• EA-AF: This third approach is the more complex one in terms of time complexity which is
computed as O(L∗ (L′ ∗ (N +(N′∗(N′+1)

2 ))))

3.3. Multiple classifier integration
As previously mentioned, each individual evidential classifier yields decisions in terms of belief

functions. Numerous combination operators have been proposed within the evidence theory to ag-
gregate the classifiers outputs. In this paper, we relied on the Dempster combination rule presented
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Table 2: Description of databases
Databases Heart Japanese Vote records Hepatitis Wine Thoracic Surgery SD SD_0.15 SD_0.30 SD_0.50

Total instances 270 690 435 155 178 470 700 700 700 700
Total attributes 13 15 16 19 13 17 9 9 9 9
Missing values No No Yes Yes No No No No No No

Number of classes 3 2 2 2 3 2 4 4 4 4

in subsection 2.1.4. This choice is justified by the fact that we combine individual classifiers trained
with diverse reducts.

4. Experimentation settings and results

This section is devoted to examining the performance of the three proposed reduct selection
approaches for ensemble learning. In what follows, we detail our experimentation settings and
results.

4.1. Experimentation settings
We have relied on some numerical and mixed real world databases acquired from the UCI ma-

chine learning databases [46], where some of them contain missing values. We have also generated
some Synthetic datasets using Python and Scikit-Learn, a Machine Learning Library. The advan-
tage of this library is that it accepts various parameters allowing to control the looks and feels of
datasets. One Artificial dataset has been generated using Python. Then, we have added noise to
the attributes of this generated data in order to create newest datasets. Different noise intensities
have been explored like 0.15, 0.30 and 0.5. These values represent the fraction of samples whose
attributes have been assigned randomly. Consequently, we have obtained four synthetic databases,
the first one with no noise is called SD, the second one with a 0.15 as noise intensity is called
SD_0.15, the third one with 0.30 as noise intensity is called SD_0.30 and the last one with 0.50 as
noise intensity is called SD_0.50. Table 2 provides a description of the used databases.

Once data are collected and generated, we have modeled data thanks to the evidence theory.
In a practical point of view, missing values have to be imputed and continuous variables have
usually to be discretized into bins. However, the uncertainty introduced by missing values imputa-
tion and continuous variables discretization have to be addressed. Herein, we propose to generate
databases with evidential features from the mentioned ones. That is, the missing values will be
represented by vacuous bbas and symbolic attributes have to be expressed through certain bbas.
With regards to continuous variables, they have been transformed into beliefs using the Evidential
c-Means approach (EcM) [47]. The EcM approach enables to associate for each instance feature
a bba representing its membership to each cluster. In our case, we have set c to 3 for reducing
the time complexity. The EcM algorithm starts by creating the user requested number of clusters
for each feature. It then estimates, for each feature, the distance between each instance and each
cluster’s center and generates a bba using the distance value. Afterwards, it tries to minimize an
objective function and computes recursively the cluster’s center until no more minimization is pos-
sible [47, 48].

The choice of the base classifier is also a crucial task. To the best of our knowledge, ma-
chine learning classifiers that handle data with evidential features are limited. Note that we have
introduced, in previous work, a novel classifier for handing such a kind of data called Enhanced
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Evidential k Nearest Neighbor (EEk-NN) [49]. For the evaluation process, we relied on the (EEk-
NN) as a base classifier. A key issue that has to be addressed is the parameter k which reflects
the number of neighbors. For our tests, we evaluate three k values which correspond to 3, 5 and
7 respectively. To do so, we were based on some standard information retrieval measures, notably
the Percentage of Correctly Classification (PCC), the recall and the precision.

4.2. Experimentation results
We conduct some experiments to compare our proposed approach for reduct selection and to

pick out the best one among them. Our comparison is based on the ensemble size, the ensemble
reduct diversity and the performance measure. We also make comparisons using an hypothesis test.

4.2.1. Comparison in terms of the ensemble size
The comparison results between our three heuristics for reduct selection in terms of the ensem-

ble size are given in Table 3 where GR represents the total number of generated reducts. From these
tables, we can see that a huge number of reducts may be produced for a given database (e.g. we
have 8191 reducts for the Hepatitis database and 975 reducts for the Thoracic Surger database). So,
it is crucial to select the most appropriate reducts for an ensemble of classifiers. As previously men-
tioned, we have proposed three approaches for reduct selection, namely the DR, the AD-AF and
EA-AF methods. The experimentation results have proven that both AD-AF and EA-AF methods
have yielded smallest ensembles compared with the DR approach. Let’s take the Hepatitis database
with k equals 3 as an example, the ensemble size achieved by the DR, the AD-AF and the EA-AF
are equal to 25, 5 and 3 respectively. From this point of view, we can deduce the efficiency of the
AD-AF and EA-AF approaches for generating ensemble EEk-NN with reduced size.

4.2.2. Comparison in terms of the Reduct diversity
We have mainly relied on the Jaccard distance Jδ for measuring the reduct diversity. This

measure highly depends on the number of reducts. In fact, the maximum diversity is yielded when
there is an empty intersection of the generated reducts. It is set to:

Jδ =
|R1∪R2∪ . . .∪RM′|− |R1∩R2∩ . . .∩RM′|

|R1∪R2∪ . . .∪RM′|
(15)

The obtained results are given in Table 4 where we can remark that the DR method has achieved in
most cases the most diverse reducts comparatively with the AD-AF and EA-AF approaches. This
can be explained by the specific feature of the Jaccard measure. In fact, it promotes the ensemble
constructed with the largest number of reducts. The results still show that the AD-AF and EA-AF
methods are able to provide sets of reducts with higher diversity compared to DR on some datasets
(e.g., Hepatitis).

4.2.3. Classification performance Comparison
The evidence theory has not only the advantage to manage and represent uncertainty but it also

proposes a set of combination rules to merge evidence acquired from several information sources,
notably the evidential outputs of an ensemble of classifiers. The Dempster operator is a well used
rule in the context of classifier fusion within the evidence theory [5]. From this, we use the Demp-
ster rule for combining the selected individual classifiers obtained by the DR, the AD-AF and the
EA-AF techniques. Following a 5-folds cross-validation process, we carry out a comparative study

14



Table 3: Comparison in terms of ensemble size
(a) Ensemble size for Heart database

GR DR AD-AF EA-AF
k=3 127 25 3 3
k=5 127 25 2 3
k=7 127 25 4 2

(b) Ensemble size for Japanese database

GR DR AD-AF EA-AF
k=3 511 25 3 2
k=5 511 25 3 3
k=7 511 25 3 3

(c) Ensemble size for Vote Records database

GR DR AD-AF EA-AF
k=3 136 25 3 2
k=5 136 25 3 2
k=7 136 25 3 3

(d) Ensemble size for Hepatitis database

GR DR AD-AF EA-AF
k=3 8191 25 5 3
k=5 8191 25 4 4
k=7 8191 25 3 3

(e) Ensemble size for Thoracic Surgery
database

GR DR AD-AF EA-AF
k=3 975 25 4 3
k=5 975 25 4 4
k=7 975 25 4 4

(f) Ensemble size for Wine database

GR DR AD-AF EA-AF
k=3 1824 25 4 3
k=5 1824 25 4 3
k=7 1824 25 3 3

(g) Ensemble size for SD

GR DR AD-AF EA-AF
k=3 153 25 4 3
k=5 153 25 4 3
k=7 153 25 4 3

(h) Ensemble size for SD_0.15 database

GR DR AD-AF EA-AF
k=3 153 25 4 3
k=5 153 25 4 3
k=7 153 25 4 3

(i) Ensemble size for SD_0.30 database

GR DR AD-AF EA-AF
k=3 153 25 4 3
k=5 153 25 4 3
k=7 153 25 4 3

(j) Ensemble size for SD_0.50 database

GR DR AD-AF EA-AF
k=3 153 25 4 3
k=5 153 25 4 3
k=7 153 25 4 3
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Table 4: Comparison in terms of reduct diversity
(a) Reduct diversity for Heart database

DR AD-AF EA-AF
k=3 0.6 0.5 0.5
k=5 0.6 0.5 0.54
k=7 0.6 0.42 0.86

(b) Reduct diversity for Japanese
database

DR AD-AF EA-AF
k=3 0.69 0.67 0.69
k=5 0.69 0.65 0.63
k=7 0.69 0.69 0.64

(c) Reduct diversity for Vote Records
database

DR AD-AF EA-AF
k=3 0.5 0.49 0.47
k=5 0.5 0.5 0.48
k=7 0.5 0.48 0.50

(d) Reduct diversity for Hepatitis
database

DR AD-AF EA-AF
k=3 0.54 0.58 0.58
k=5 0.54 0.58 0.46
k=7 0.54 0.58 0.54

(e) Reduct diversity for Thoracic Surger
database

DR AD-AF EA-AF
k=3 0.94 0.93 0.94
k=5 0.94 0.93 0.92
k=7 0.94 0.92 0.90

(f) Reduct diversity for Wine Data
database

DR AD-AF EA-AF
k=3 0.82 0.75 0.81
k=5 0.82 0.79 0.76
k=7 0.82 0.81 0.74

(g) Reduct diversity for SD database

DR AD-AF EA-AF
k=3 0.79 0.77 0.74
k=5 0.79 0.77 0.74
k=7 0.79 0.75 0.73

(h) Reduct diversity for SD_0.15
database

DR AD-AF EA-AF
k=3 0.79 0.78 0.79
k=5 0.79 0.77 0.78
k=7 0.79 0.78 0.77

(i) Reduct diversity for SD_0.30 database

DR AD-AF EA-AF
k=3 0.79 0.77 0.73
k=5 0.79 0.76 0.73
k=7 0.79 0.77 0.74

(j) Reduct diversity for SD_0.50 database

DR AD-AF EA-AF
k=3 0.79 0.76 0.75
k=5 0.79 0.76 0.74
k=7 0.79 0.76 0.75
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Table 5: Results for Heart database
EEk-NN RSR DR AD-AF AE-AF

k=3
PCC 60.75 61.48 75.92 75.92 77.77
Recall 66.18 67.90 75.82 75.99 77.77
Precision 56.10 57.49 75.64 75.39 77.52

k=5
PCC 71.23 72.96 78.14 78.88 78.88
Recall 72.75 73.84 78.16 78.82 78.93
Precision 70.13 71.70 77.59 78.53 78.59

k=7
PCC 71.98 72.96 78.88 78.88 82.86
Recall 73.12 74.74 79.32 78.98 83.34
Precision 70.91 71.13 78.27 78.62 82.43

Table 6: Results for Japanese database
EEk-NN RSR DR AD-AF AE-AF

k=3
PCC 45.03 45.21 73.76 76.37 78.69
Recall 55.71 56.22 65.99 67.22 68.68
Precision 70.89 71.38 71.10 72.05 73.79

k=5
PCC 51.25 52.17 71.59 78.40 80.86
Recall 62.24 65.83 64.95 69.26 71.00
Precision 55.21 57.33 71.81 74.27 76.04

k=7
PCC 54.28 55.94 70.86 79 42 80.00
Recall 62.01 63.72 65.65 69.19 69.90
Precision 59.45 61.05 68.55 73.33 74.04

between these methods when based on the PCC, the Recall and the Precision. This approach has
also been compared with individual EEk-NN classifier and the Random Selected Reduct (RSR) that
consists of selecting a defined number of reducts to build the ensemble system [50]. The exper-
imentation results for Heart, Japanese, SD, SD_0.15, SD_0.30 and SD_0.50 databases are given
from Table 5 to Table 10. From the obtained results, we can remark that the performance of an
ensemble system is greatly influenced by the selected reduct approach.

From those tables, we can also remark that both individual EEk-NN classifier and ensemble
classifiers built from the RSR method provide the most poorly performance comparatively with
the DR, the AD-AF and the EA-AF approaches for all the tested databases and for all values of k
but RSR still a little bit better than individual EEk-NN classifier. We can conclude that ensemble
systems stay anyway better than individual classifier and we can attribute the failure of RSR with

Table 7: Results for SD database
EEk-NN RSR DR AD-AF AE-AF

k=3
PCC 65.83 67.90 77.95 82.34 85.39
Recall 55.15 56.93 73.87 77.23 85.83
Precision 56.20 58.43 75.36 81.19 86.66

k=5
PCC 67.43 69.03 78.17 84.52 85.39
Recall 57.46 59.89 75.78 79.38 85.83
Precision 60.12 60.67 76.13 83.24 86.74

k=7
PCC 70.21 71.80 79.43 84. 21 85.9
Recall 60.13 60.07 76.18 80.33 86.43
Precision 61.72 62.86 77.15 84.81 86.94
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Table 8: Results for SD_15 database
EEk-NN RSR DR AD-AF EA-AF

k=3
PCC 59.76 60.18 70.02 73.19 76.89
Recall 53.20 54.67 68.07 74.15 76.31
Precision 54.10 55.34 70.24 76.12 78.38

k=5
PCC 63.67 64.50 73.89 76.56 78.30
Recall 55.01 55.16 70.11 76.13 79.43
Precision 56.17 57.78 73.24 76.34 77.50

k=7
PCC 55.99 66.78 74.50 77.89 79.6
Recall 56.63 57.05 71.67 77.43 78.90
Precision 58.04 58.09 72.45 77.13 80.88

Table 9: Results for SD_30 database
EEk-NN RSR DR AD-AF EA-AF

k=3
PCC 57.15 58.67 60.01 68.04 69.6
Recall 52.71 53.22 67.62 68.16 69.2
Precision 53.24 54.90 65.67 67.18 69.98

k=5
PCC 58.35 59.14 61.45 70.08 71.4
Recall 53.52 54.63 65.34 67.66 69.80
Precision 55.73 56.82 67.89 69.90 72.13

k=7
PCC 60.04 60.89 63.56 71.41 72.2
Recall 54.18 55.14 66.02 67.31 68.43
Precision 56.74 57.20 69.33 73.50 75.03

Table 10: Results for SD_50 database
EEk-NN RSR DR AD-AF EA-AF

k=3
PCC 54.17 55.24 57.34 58.51 59.3
Recall 50.25 51.73 59.80 61.71 64.59
Precision 55.10 52.97 60.81 63.23 58.21

k=5
PCC 55.19 56.12 58.26 60.41 61.80
Recall 52.71 53.24 59.85 60.05 60.59
Precision 56.15 57.21 62.43 64.88 65.19

k=7
PCC 60.99 61.07 62.15 62.98 63.15
Recall 51.17 52.20 59.43 62.76 67.21
Precision 53.20 54.34 59.91 60.97 61.89
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respect to DR, the AD-AF and the EA-AF to the existence of redundant features as part of the RSR
selected reducts. To cope with a redundancy problem, we have firstly proposed the DR approach
allowing the selection of diverse reducts from the original pool. The experimentation results have
proven the impact of diversity when constructing an ensemble system. In fact, the PCC, the Recall
and the Precision results achieved by the DR approach are greater than those obtained by the RSR
method for almost all cases. Since the diversity between reducts is not sufficient for achieving the
best performance, we have proposed the AD-AF method that takes into consideration in addition
to the diversity between the selected reducts the diversity and the accuracy of base classifiers. The
obtained results have proven the effectiveness of this method over the DR approach for almost all
databases. Thus, we can deduce the effectiveness of the AD-AF technique over the DR in terms of
the ensemble size as well as the classification performance. At last, we showed that the EA-AF has
yielded the best classification performance for these databases and for the different values of k. We
have obtained the same interpretation for all databases.

In this paper, we have also studied the effect of noise on our proposed approach. Different
noise levels have been considered 0, 0.15, 0.30 and 0.50. The experimentation results are given
from Table 7 to Table 10 and from Figure 3 to Figure 6. From these tables, we can remark that
the more uncertainty we have, the lower accuracy we obtain but the EA-AF approach still yield the
best results compared with the other approaches. For that reason, we have shown the precision-
recall curves only for EA-AF results. These curves show the tradeoff between the Precision and
the Recall for different thresholds. We can remark that in case of no and low uncertainty, we have
a high area under the curves representing high recall and high precision and consequently low false
positive and low false negative rate. For high uncertainty (Figure 5 and Figure 6), we can remark
that curves approach the less accurate area.

4.2.4. Results based on hypothesis test
As presented earlier, a big part of machine learning is to select the best machine learning ap-

proach. That means that we have to select the model maximizing the accuracy. Researchers today
ask this key question "Is the difference in skill between two machine learning models real, or due
to a statistical chance?". In this part of the paper, we use statistical hypothesis testing to address
this question. There exist several statistical tests. To cite a few, we mention the McNemar’s test
and 5×2 Cross-Validation, Paired t-test, etc. These statistical tests are widely used for comparing
machine learning approaches. The idea is to compute a p−value and to compare it with a variable
al pha to decide if we have to reject null hypothesis or not (i.e. null hypothesis means that there is
no difference between two models).To sum up:

• if p− value >= α , we fail to reject null hypothesis

• if p− value < α , we reject null hypothesis

In this paper, we have chosen to compare the different machine learning approaches based on the
Paired t-test Test Statistic. We have ten pairs of models to check: {EEk-NN, RSR}, {EEk-NN,
AD−AF}, {EEk-NN, EA−AF}, {RSR, DR}, {RSR, AD−AF}, {RSR, EA−AF}, {EEk-NN,
RSR}, {DR,AD−AF}, {DR, EA−AF},{AD−AF , EA−AF}. For the statistical test, we set α to
0.05, the default value used in the majority of scientific articles.

The achieved results have mentioned that the p− value for this present case study is between
0.001 and 0.023 for all pairs of models, all databases and all values of k, As the p−value is smaller
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than the considered significance level (i.e., 0.05), we can reject the null hypothesis. Therefore, the
results statistically provide convincing evidence that the EEk-NN, the DR, the AD−AF and the
EA−AF approaches perform differently. On average, the accuracy for the EA−AF approaches is
better than the DR and the AD−AF approaches.

5. Conclusion and future works

In this paper, we have proposed a novel framework for selecting a successfully ensemble of
classifiers for addressing data with evidential features. Our framework consists firstly of generat-
ing all possible reducts and then selecting the most suitable ones for training individual classifiers.
Three approaches have been proposed for selecting the best reducts, namely the Diversity Reduct
method (DR), the Accuracy-Diversity Assessment Function method (AD-AF) and the Ensemble
Accuracy Assessment Function method (EA-AF). These mentioned approaches have been com-
pared in terms of ensemble size, reduct diversity, classification performance and the difference
between the approaches using a statistical test. The achieved results have shown that the EA-AF
approach has yielded the best results in terms of the performance criterion using the Dempster
combination rule to merge the outputs of the classifiers. Unfortunately, we cannot demonstrate
that our method brings better or similar results to further other methods as we are almost the first
authors providing this framework. The comparison could not be limited to ensemble classifiers, but
generally to classification methods. One limitation of the proposed approach is that bba calculation
for big databases requires too many computation resources, as clustering can be numerically hard.
As a future work, we look forward to reducing the approach’s complexity. We also aim to study the
impact of some combination rules in the ensemble performance as well as to use other interesting
evaluation criteria like the statistical test.

Figure 3: The precision-recall curves for the SD dataset
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Figure 4: The precision-recall curves for the SD_0.15 dataset

Figure 5: The precision-recall curves for the SD_0.30 dataset

Figure 6: The precision-recall curves for the SD_0.50 dataset
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