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Abstract

The problem tackled in this paper deals with obstacle
tracking in the context of vehicle driving aid, espe-
cially the association step, which consists in associat-
ing perceived objects with known objects detected at
a previous time. A contribution in the modeling of
this association problem in the belief function frame-
work is introduced. By interpreting belief functions as
weighted opinions according to the Transferable Be-
lief Model semantics, pieces of information regarding
the association of known objects and perceived ob-
jects can be expressed in a common global space of
association to be combined by the conjunctive rule of
combination, and a decision making process using the
pignistic transformation can be made. This approach
is validated on real data.

Keywords. Obstacle tracking, association step, be-
lief functions, Transferable Belief Model.

1 Introduction

In obstacle tracking, the association step consists in
establishing a correlation between tracks (known ob-
jects) and targets (perceived objects) from informa-
tion usually provided by different sensors or captors.
Such a mapping can be even more complex depending
on the number of targets and tracks, as well as the
quality of the provided information. Introduced by
Dempster [5] and Shafer [21], belief functions consti-
tute a suitable framework for the representation and
manipulation of imperfect information. Thus, next to
architectures based on Bayesian probabilistic frame-
work [2, 3], Rombaut [18, 19] develops a first modeling
based on belief functions. In this model, information
regarding the association of couples (known objects,
perceived objects) is represented by belief functions,
which are combined using, for simplicity reasons, an
adapted combination introduced by Rombaut. In [12]
this latter model is developed by using a decision-
making system based on belief matrices and the ap-

plication of a coupling algorithm.

In this paper, a modeling of this association step prob-
lem is introduced in the Smets’ semantic approach of
belief functions: the Transferable Belief Model (TBM)
[24], a subjectivist and non-probabilistic interpreta-
tion of the Dempster-Shafer theory of belief function.
In particular, it is shown that TBM classical tool
like the conjunctive combination rule and the pignis-
tic decision-making can be implemented and tested
in a real time application, these experimental results
demonstrating the effectiveness of this approach as
compared to Rombaut’s combination rule.

Let us note that the works presented here reexpress
and extend in the Transferable Belief Model a for-
mer model presented by some of the authors in [13].
Likewise, the association problem described here has
many similarities with the works undertaken by Ristic
and Smets in [17].

This paper is organized as follows. The TBM basic
concepts we need are recalled in Section 2. An associ-
ation algorithm based on belief functions is introduced
in Section 3 and discussed in particular with the other
approaches in Section 4. Then, experimental results
on real data are presented in Section 5. Finally, Sec-
tion 6 concludes this paper.

2 Transferable Belief Model (TBM):
basic concepts

The Transferable Belief Model (TBM) is a model
of uncertain reasoning and decision-making based on
two levels [10, 24]:

• the credal level, where available pieces of infor-
mation are represented by belief functions, and
manipulated;

• the pignistic or decision level, where belief func-
tions are transformed into probability measures



when a decision has to be made, and the expected
utility is maximized.

2.1 Representing information with belief
functions

2.1.1 Belief functions

The knowledge held by an agent is represented by the
allocation of a finite mass of belief to subsets of the
universe of discourse.

Let Ω = {ω1, ω2, . . . , ωN}, called the frame of discern-
ment, be a finite set composed of all possible answers
to a given question Q of interest. The beliefs held by
a rational agent Ag regarding the answer to question
Q can be quantified by a belief mass function or basic
belief assignment (BBA) mΩ

Ag : 2Ω → [0, 1] s.t.:

∑

A⊆Ω

mΩ
Ag(A) = 1 . (1)

The quantity mΩ
Ag(A) represents the part of the unit

mass allocated to the hypothesis that the answer to
question Q is in the subset A of Ω. When there is
no ambiguity, the notation mΩ

Ag will be simplified as

follows mΩ or m.

• A subset A of Ω such that m(A) > 0 is called a
focal set of m.

• A BBA m with only one focal set A is called a cat-
egorical BBA and is denoted mA; then mA(A) =
1.

• Total ignorance is represented by the BBA mΩ

called the vacuous BBA.

• A normal BBA m satisfies the condition m(∅) =
0.

• Let A be a subset of Ω, the cardinality of A,
denoted |A|, is the number of elements of Ω in A;
if |A| = 1, A is said to be a singleton.

The belief and plausibility functions associated with
a BBA m are defined, respectively, as:

bel(A) =
∑

∅6=B⊆A

m(B) ∀A ⊆ Ω , (2)

pl(A) =
∑

B∩A 6=∅

m(B) ∀A ⊆ Ω . (3)

Functions m, bel and pl are in one-to-one correspon-
dence, and thus constitute different forms of the same
information.

2.1.2 Refinements and Coarsenings

When applying the TBM to a real-world applica-
tion, the determination of the frame of discernment
Ω, which defines the set of states on which beliefs will
be expressed, is a crucial step. As noticed by Shafer
[21, chapter 6], the degree of granularity of Ω is al-
ways, to some extent, a matter of convention, as any
element of Ω representing a given state can always
be split into several alternatives. Hence, it is funda-
mental to examine how a belief function defined on
a frame may be expressed in a finer or, conversely,
in a coarser frame. The concepts of refinement and
coarsening can be defined as follows.

Let Θ and Ω denote two frames of discernment. A
mapping ρ : 2Θ → 2Ω is called a refining of Θ (Figure
5) if it verifies the following properties:

1. The set {ρ({θ}), θ ∈ Θ} ⊆ 2Ω is a partition of Ω,
and

2. For all A ⊆ Θ:

ρ(A) =
⋃

θ∈A

ρ({θ}). (4)

Θ is then called a coarsening of Ω, and Ω is called a
refinement of Θ.

Figure 1: Illustration of a coarsening Θ of Ω associ-
ated with a refining ρ of Θ.

2.2 Manipulating information with belief
functions

2.2.1 Vacuous extension

The vacuous extension operation allows one to convey
a belief mass function mΘ, expressing a state of belief
on Θ, to a finer frame Ω, a refinement of Θ. Stemming
from the least committed principle [22], this operation
is denoted with an arrow pointing up, and is defined
by:

mΘ↑Ω(ρ(A)) = mΘ(A), ∀A ⊆ Θ , (5)

where ρ is the refining of Θ in Ω.



2.2.2 Combining beliefs

Two BBAs m1 and m2, induced by distinct and re-
liable sources of information, can be combined using
the conjunctive rule of combination (CRC), also called
unnormalized Dempster’s rule of combination, defined
for all A ⊆ Ω by:

m1 ∩©m2(A) =
∑

B∩C=A

m1(B)m2(C) . (6)

The normalization hypothesis (m(∅) = 0) can be re-
covered with the following normalization step:

m1 ⊕ m2(A) =

{

m
1 ∩©2

(A)

1−m
1 ∩©2

(∅) if ∅ 6= A ⊆ Ω ,

0 otherwise.
(7)

This latter rule of combination is called Dempster’s
rule of combination.

2.3 Decision-making level

When a decision has to be made regarding the answer
to question Q, some rationally principles [4] justify the
strategy consisting in choosing the decision d among
a set of possible decisions D, which minimizes the ex-
pected risk defined by:

R(d) =
∑

ω∈Ω

c(d, ω)PΩ({ω}), (8)

where PΩ : 2Ω → [0, 1] is a probability measure and
c : D × Ω → IR a cost function, c(d, ω) representing
the cost to decide d while the truth is ω.

At this level, the mass function mΩ representing the
available information regarding the answer to ques-
tion Q belonging to Ω (resulting in practice from a
fusion process) has then to be transformed in a prob-
ability measure. A solution [7] consists in computing
the pignistic probability [23] defined by:

BetPΩ({ω}) =
∑

{A⊆Ω,ω∈A}

m(A)

|A| (1 − m(∅))
, ∀ω ∈ Ω.

(9)

The chosen decision is then the one that minimizes
the pignistic risk defined by:

RBet(d) =
∑

ω∈Ω

c(d, ω)BetPΩ({ω}) . (10)

In the case of 0-1 costs with D = Ω, which means
that c(ωi, ωj) = 1 if i = j, 0 otherwise, choosing the
decision d which minimises the pignistic risk (10) is
equivalent to choose the decision d which maximizes
the pignistic probability (9).

An other case consists in choosing 0-1 costs with
D = Ω ∪ {d0}, where d0, called rejection decision [7],
consists in refusing to make a decision belonging to
D \ {d0} when the risk is judged too high. By de-
noting c0 = c(d0, ωi) ∀i ∈ {1, . . . , N}, minimizing the
pignistic risk (10) is equivalent to choose the decision:

• d0 if max
i=1,...,N

BetP ({ωi}) < 1 − c0,

• ωj if BetP ({ωj}) = max
i=1,...,N

BetP ({ωi}) ≥ 1−c0.

The cost c0 is called the rejection cost.

3 Object association algorithm

3.1 Representing information with belief
functions

The first step when building belief functions is to de-
fine the universe of discourse.

Let us consider the following notations:

• Xi: designate a perceived object at time t, i ∈
I = {1, . . . , N}, N being the number of perceived
objects at time t;

• Yj : designate a known object at previous time
t − 1, j ∈ J = {1, . . . , M}, M being the number
of known objects at time t − 1;

• ⋆: a proposition meaning “no object”.

The association process objective consists in finding
the best possible association between a set of per-
ceived objects {X1, X2, . . . , XN ,⋆ } and a set of known
objects {Y1, Y2, . . . , YM ,⋆ }, under the following con-
straints:

• each perceived object Xi is associated with at
most one known object;

• each known object Yj is associated with at most
one perceived object;

• proposition ⋆ can be associated to any objects.

Frames of discernment involved in this application are
then the followings:

• Ωi,j = {yi,j , ni,j}, containing the two possible
answers (yes or no) to the question Qi,j : “Is the
perceived object Xi associated with the known
object Yj?”;



• ΩXi
= {Y1, Y2, . . . , YM ,⋆ }, containing the set of

possible answers to the question QXi
: “Who is

associated with the perceived object Xi?”, propo-
sition ⋆ meaning that Xi has appeared;

• ΩYj
= {X1, X2, . . . , XN ,⋆ }, containing the set of

possible answers to the question QYj
: “Who is

associated with the known object Yj?”, propo-
sition ⋆ meaning that Yj has disappeared or is
hidden.

Let us remark that ΩYj
= ΩYk

, for all j, k ∈ J , and
ΩXi

= ΩXℓ
, for all i, ℓ ∈ I. Thus, ΩXi

(respectively
ΩYj

) can be denoted ΩX ∀i (respectively ΩY ∀j). At
last, when there is no ambiguity, the frames elements
will be simplified as follows :

• ΩXi
= J ∪ {⋆} = {1, . . . , M, ⋆},

• ΩYj
= I ∪ {⋆} = {1, . . . , N, ⋆}.

In the domain of intelligent vehicles, sensors or mea-
sures generally provide information regarding the as-
sociation between each perceived object Xi and each
known object Yj [18, 19, 12, 11]. More precisely, ini-
tial information is represented by belief mass func-
tions mΩi,j on frames Ωi,j , i ∈ I, j ∈ J :

• the mass allocated to {yi,j} expresses information
on the fact that Xi is associated with Yj ;

• the mass allocated to {ni,j} expresses informa-
tion on the fact that Xi is not associated with
Yj ;

• the mass allocated to Ωi,j = {yi,j, ni,j} expresses
the ignorance regarding the association of Xi and
Yj .

N ×M belief mass functions mΩi,j have been defined
regarding the association of each object (perceived ob-
jects Xi, known objects Yj). These pieces of informa-
tion have then to be fused to determine:

• Where do perceived objects Xi come from?

• What are known objects Yj become?

3.2 Expressing pieces of information in a
common frame

To answer these questions, the N × M belief mass
functions can be combined when expressed on two
possible common frames: ΩX and ΩY . Frames ΩXi

and ΩYj
being refinements of Ωi,j , each information

mΩi,j can be expressed either on ΩXi
or on ΩYj

by
the vacuous extension operation (5):

mΩi,j↑ΩXi (ρi,j(A)) = mΩi,j (A), ∀A ⊆ Ωi,j , (11)

where ρi,j is the refining of Ωi,j on ΩXi
illustrated

in Figure 2, and defined by ρi,j({yi,j}) = {j} and

ρi,j({ni,j}) = {j}.

Figure 2: Refining ρi,j allowing one to transport the
information mΩi,j on ΩXi

.

Thus, for all (i, j) ∈ I × J :











mΩi,j↑ΩXi ({j}) = mΩi,j ({yi,j})

mΩi,j↑ΩXi ({j}) = mΩi,j ({ni,j})

mΩi,j↑ΩXi (ΩXi
) = mΩi,j (Ωi,j)

(12)

In the same manner, it is also possible to vacuously
extend mΩi,j on ΩYj

:











m
Ωi,j↑ΩYj ({i}) = mΩi,j ({yi,j})

m
Ωi,j↑ΩYj ({i}) = mΩi,j ({ni,j})

mΩi,j↑ΩYj (ΩYj
) = mΩi,j (Ωi,j)

(13)

In the following of this paper, mΩi,j↑ΩXi (respectively

m
Ωi,j↑ΩYj ) is denoted m

ΩXi

j (respectively m
ΩYj

i ).

3.3 Combining belief mass functions

At this level:

• for each i ∈ I = {1, . . . , N}, M belief mass func-

tions m
ΩXi

j have been created regarding the asso-
ciation of each object Xi toward the Yj , the focal

elements of each one being {j}, {j}, and ΩXi
.

• for each j ∈ J = {1, . . . , M}, N belief mass func-

tions m
ΩYj

i have been created regarding the asso-
ciation of each object Yj toward the Xi, the focal

elements of each one being {i}, {i}, et ΩYj
.

The M belief mass functions m
ΩXi

j , considered as dis-
tinct and reliable, are combined using the conjunctive
rule of combination (6).



Let us denote mΩXi the resulting mass function:

mΩXi = ∩©j∈J m
ΩXi

j . (14)

For all k ∈ J :

mΩXi ({k}) =
∑

∩Aj={k}

∏

j∈J

m
ΩXi

j (Aj) , (15)

where, for all j ∈ J , Aj = {j}, {j}, or ΩXi
.

But:

∩j∈JAj = {k} ⇔ Ak = {k} and (Aj = {j} or

Aj = ΩXi
, ∀j ∈ J \ {k}),

⇔ Ak = {k} and

Aj 6= {j}, ∀j ∈ J \ {k} .

Thus, for all k ∈ J :

mΩXi ({k}) = m
ΩXi

k ({k})
M
∏

j=1

j 6=k

(1−m
ΩXi

j ({j})) . (16)

Similarly, for all K ⊆ J :

mΩXi (K) =
∑

∩Aj=K

∏

j∈J

m
ΩXi

j (Aj) ,

=
∏

j∈K

m
ΩXi

j ({j})
∏

j∈K

m
ΩXi

j (ΩXi
) .

In particular:

mΩXi ({⋆}) = mΩXi (J) =
∏

j∈J

m
ΩXi

j ({j}) ,

mΩXi (ΩXi
) = mΩXi (∅) =

∏

j∈J

m
ΩXi

j (ΩXi
) .

At last:

mΩXi (∅) =
∑

∩Aj=∅

∏

j∈J

m
ΩXi

j (Aj) , (17)

=
∑

j,k∈J

j 6=k

m
ΩXi

j ({j}) m
ΩXi

k ({k}). (18)

In the same manner, the N belief mass functions m
ΩYj

i

can also be conjunctively combined to result in a mass
function m

ΩYj .

Example 1 Let us consider one perceived object X1

and two known objects Y1 and Y2 s.t.:






mΩ1,1({y1,1}) = .2
mΩ1,1({n1,1}) = .45
mΩ1,1(Ω1,1) = .35







mΩ1,2({y1,2}) = .45
mΩ1,2({n1,2}) = .15
mΩ1,2(Ω1,2) = .4

(19)

By expressing this information on ΩX1
(X1 point of

view: with which known object, the perceived object
X1 is associated? In other words: Where does X1

come from?), it is obtained:










m
ΩX1

1 ({1}) = .2

m
ΩX1

1 ({1}) = .45

m
ΩX1

1 (ΩX1
) = .35











m
ΩX1

2 ({2}) = .45

m
ΩX1

2 ({2}) = .15

m
ΩX1

2 (ΩX1
) = .4

(20)

The conjunctive combination of m
ΩX1

1 and m
ΩX1

2 pro-
vides the following result:

mΩX1 ({1}) = .2 × (1 − .45) = .2 × .55 = .11
mΩX1 ({2}) = .45 × (1 − .2) = .45 × .8 = .36

mΩX1 ({1}) = mΩX1 ({2, ⋆}) = .45 × .4 = .18

mΩX1 ({2}) = mΩX1 ({1, ⋆}) = .15 × .35= .05

mΩX1 ({1, 2})= mΩX1 ({⋆}) = .45 × .15= .07
mΩX1 (ΩX1

) = mΩX1 ({1, 2, ⋆})= .35 × .4 = .14
mΩX1 (∅) = .2 × .45 = .09 .

(21)

3.4 Decision-making

The pignistic probability BetPΩXi (9) computed from
mΩXi is defined for all ω ∈ ΩXi

by:

BetPΩXi ({ω}) =
∑

{A⊆ΩXi
,ω∈A}

mΩXi (A)

|A| (1 − mΩXi (∅))
.

(22)
Then, for all k ∈ J :

BetPΩXi ({k}) = K1






m

ΩXi

k ({k})
M
∏

j=1

j 6=k

(1 − m
ΩXi

j ({j}))

+
∑

k∈K
K⊆J

1

|K|

∏

j∈K

m
ΩXi

j ({j})
∏

j∈K

m
ΩXi

j (ΩXi
)






,

(23)

where

K1 =
1

1 − mΩXi (∅)
=

1

1 −
∑

j,k∈J

j 6=k

m
ΩXi

j ({j}) m
ΩXi

k ({k})
.

(24)
At last:

BetPΩXi ({⋆}) =

K1

∑

K⊆J

1

|K|

∏

j∈K

m
ΩXi

j ({j})
∏

j∈K

m
ΩXi

j (ΩXi
) . (25)

Once the pignistic probabilities BetPΩXi computed
for each i ∈ I, the chosen decision is the one that max-
imizes the pignistic probability associated to the joint



law BetPΩX1
×...×ΩXN which verifies the constraints

expressed in Section 3.1.

Similarly, an equivalently justified solution con-
sists in computing the decision from the Yj points
of view, by maximizing the pignistic probability
BetPΩY1

×...×ΩYM .

Example 2 (Example 1 continued) Let us con-
sider again one perceived object X1 and two known
objects Y1 and Y2 with the information represented by
the BBAs mΩ1,1 and mΩ1,2 defined by Equation 19.

From X1 point of view, the conjunctive combination

of m
ΩX1

1 and m
ΩX1

2 has been detailed in Example 1.
The pignistic probability BetPΩX1 regarding the asso-
ciation of X1 is then given by:

A ∅ {1} {2} {⋆} {1, ⋆} {2, ⋆} {1, 2, ⋆}
mΩX1 (A) .09 .11 .36 .07 .05 .18 .14

BetPΩX1 (A) .20 .55 .25 .45 .80 1

Conclusion from X1 point of view:

1. The singleton maximizing BetPΩX1 is {2}, so X1

is associated with Y2;

2. knowing that Y1 is not associated, Y1 has disap-
peared (or is hidden).

On the other hand, it is also possible to express the
available information on ΩY1

and ΩY2
:











m
ΩY1

1 ({1}) = .2

m
ΩY1

1 ({1}) = .45

m
ΩY1

1 (ΩY1
) = .35











m
ΩY2

1 ({1}) = .45

m
ΩY2

1 ({1}) = .15

m
ΩY2

1 (ΩY2
) = .4

As there is only one perceived object X1, no combina-
tion is necessary:

A ∅ {1} {⋆} {1, ⋆}
mΩY1 (A) .2 .45 .35

BetPΩY1 (A) .375 .625 1
mΩY2 (A) .45 .15 .4

BetPΩY2 (A) .65 .35 1

From the association constraints (Section 3.1), the
known objects (Y1, Y2) can be associated to (1, ⋆),
(⋆, 1), or (⋆, ⋆). As:

• BetPΩY1
×ΩY2 ({1, ⋆}) = .375 × .35 = .131;

• BetPΩY1
×ΩY2 ({⋆, 1}) = .625 × .65 = .406;

• BetPΩY1
×ΩY2 ({⋆, ⋆}) = .625 × .35 = .219,

then BetPΩY1
×ΩY2 reaches its “valid” maximum in

{⋆, 1}, so (Y1, Y2) is associated with (⋆, 1); in other
words, Y1 has disappeared and Y2 is associated with
X1.

In the previous example, the decision coming from X1

and the decision coming from the Yj are the same.
Unfortunately, as illustrated by the following exam-
ple, the decision providing by the criteria of maxi-
mizing the joint pignistic probability can be different
depending on which point of view (perceived objects
Xi or known objects Yj) it is computed.

Let us also remark that the introduction of a rejec-
tion decision, as presented in Section 2.3, can also
imply a different decision according to the Xi or Yj

points of view. For instance, by choosing c0 equal to
0.5 in the previous Example 2, from X1 the same de-
cision is made as BetPΩX1 ({2}) ≥ 1 − c0, however
as BetPΩY1

×ΩY2 ({⋆, 1}) < 1 − c0, the decision made
according to the Yj is d0 (a rejection).

Example 3 Let us considered one perceived object
X1, and two known objects Y1 and Y2, s.t.:






mΩ1,1({y1,1}) = .5
mΩ1,1({n1,1}) = 0
mΩ1,1(Ω1,1) = .5







mΩ1,2({y1,2}) = .7
mΩ1,2({n1,2}) = .3
mΩ1,2(Ω1,2) = 0 .

By expressing the beliefs on the frames ΩXi
:











m
ΩX1

1 ({1}) = .5

m
ΩX1

1 ({1}) = 0

m
ΩX1

1 (ΩX1
) = .5











m
ΩX1

2 ({2}) = .7

m
ΩX1

2 ({2}) = .3

m
ΩX1

2 (ΩX1
) = 0 ,

the following results are obtained:

A ∅ {1} {2} {⋆}
mΩX1 (A) .35 .15 .35 0

BetPΩX1 (A) .35 .54 .11

A {1, ⋆} {2, ⋆} {1, 2, ⋆}
mΩX1 (A) .15 0 0

BetPΩX1 (A) .46 .65 1

Then from object X1 point of view:

• X1 is associated with Y2,

• Y1 has disappeared.

From Y1 and Y2 points of view:










m
ΩY1

1 ({1}) = .5

m
ΩY1

1 ({1}) = 0

m
ΩY1

1 (ΩY1
) = .5











m
ΩY2

1 ({1}) = .7

m
ΩY2

1 ({1}) = .3

m
ΩY2

1 (ΩY2
) = 0 .

(26)



So:

A {1} {⋆}
BetPΩY1 .75 .25
BetPΩY2 .70 .30

(27)

As .75× .3 > .7× .25, BetPΩY1
×ΩY2 reaches its valid

maximum in {1, ⋆}, which implies that:

• Y1 is associated with X1,

• Y2 has disappeared.

This decision is then different from the previous one.

Works are currently undertaken by the authors to in-
vestigate properties input BBAs mΩi,j should verify
to not encounter this problem. A conjecture to be
proved, is that if BBAs mΩi,j are simple BBAs, which
means BBAs that have two focal elements: the uni-
verse Ωi,j and an other one element, then no conflict-
ing decision appears. In other words, BBAs mΩi,j

should not assign masses to both propositions {yi,j}
and {ni,j}.

Until something better turns up, a practical solution
consists in choosing a decision by favoring either the
perceived objects or the known objects. However, to
relativize this problem, it is shown on a particular ap-
plication described in Section 5, that conflicting deci-
sions can happen in very few cases, less than 1% in
this instance.

4 Discussion

4.1 What’s new in comparison to Rombaut
and Gruyer’s approaches?

The approach presented in this paper differs mainly
from Rombaut and Gruyer’s approaches [18, 12] by
regarding two points:

1. the combination of BBAs m
ΩXi

j = mΩi,j↑ΩXi and

m
ΩYj

i = mΩi,j↑ΩYj ;

2. the decision-making process.

In both Rombaut’s approach [18] and Gruyer’s ap-

proach [12], BBAs m
ΩXi

j and m
ΩYj

i are not classically
conjunctively combined with (14). To simplify the
combination and to make it computationally efficient,
it is proposed to allocate masses only on singletons
and the universe. Thus the following mergers are pro-

posed, ∀i ∈ I:

m
ΩXi

Rombaut({∅}) = mΩXi ({∅})

m
ΩXi

Rombaut({k}) = mΩXi ({k}), ∀k ∈ J,

m
ΩXi

Rombaut({⋆}) = mΩXi ({⋆})

m
ΩXi

Rombaut(ΩXi
) =

∏

j∈J

(m
ΩXi

j (ΩXi
) + m

ΩXi

j ({j}))

−
∏

j∈J

m
ΩXi

j ({j}).

(28)

In [12], the authors suggest a decision-making system
based on BBAs mΩXi and mΩYj whose focal elements,
thanks to Rombaut’s combination, are either a single-
ton or the universe. In outline:

• An association matrix N × M is built such that
each of its elements (i, j) is equal to the prod-
uct mΩXi ({j}) × m

ΩYj ({i}). Each row i is then
associated with a perceived object Xi, and each
column j is associated with a known object Yj .

• If necessary, fictive objects are added to make the
latter matrix squared.

• A coupling algorithm, the Hungarian algorithm,
is then applied to this matrix, this latter algo-
rithm providing an optimal decision regarding
the sum of the beliefs.

• A final treatment deals with the objects appear-
ance.

In the examples presented in [18] and [12], the model
presented in this paper and Gruyer’s approach lead
to the same results.

4.2 About Ristic and Smets’ approach

The problem tackled by Ristic and Smets in [17] is
somewhat different from the association problem de-
scribed in this paper. Ristic and Smets consider a
given volume of interest containing an unknown num-
ber of objects. While sensors we consider give infor-
mation regarding the associations of each object de-
tected at a time step t, with previous objects detected
at a previous time step t− 1, Ristic and Smets’s sen-
sors provide information regarding the class of each
object they have detected in the scene, for instance he-
licopter, airplane, . . . The “association problem” they
try to solve consists then in determining the number
of objects as well as the class of each one. Besides, the
appearance and disappearance of objects do not take
directly part of their problem. The application of Ris-
tic and Smets’ works to our problem is consequently
not straightforward.



However, some technical points of this model should
be taken into account and investigated.

Following [8], the authors remark that the mass given
to the empty set, after conjunctively combining two
BBAs expressing themselves on the class of two dif-
ferent objects is equal to the belief that these two
objects do not belong to the same class, an idea al-
ready present in [1] (multi-sensor fusion for submarine
detection) and in [20] (intelligence clustering).

At last, the criteria the authors maximize is based
on the plausibility of each possible associations. As
justified in [23], the pignistic transformation has been
chosen to make the decision in this paper. A first
investigation in the direction of the plausibility con-
sists in using the plausibility-probability transforma-
tion [16].

5 Results on real data

In this section, the approach presented in this paper
(Section 3) is compared to the approach of Rombaut
and Gruyer on real data coming from a DV camera
placed behind the windshield of a car. This DV cam-
era has a CCD sensor, a 720×576 pixels resolution, an
angle ranging from −0.5 to +0.5 radians (i.e. approx-
imately ±30◦), and works at 25 images per second
(∆t = .04s), a filmed image example being presented
in Figure 3.

Figure 3: Four vehicles in a selected filmed image.

The video sequence allowing one to compare the two
approaches includes 3250 images corresponding to a
130-second playing time. Images contain 1 to 8 ob-
jects. During the sequence, 75 distinct objects were
manually identified as illustrated in Figure 3, the
number of associations to realize being equal to 6800.
The ground truth is known, which allows one to com-

pute the good recognition rate of each approach dur-
ing this sequence.

Distance and angle criteria allow the creation of two

belief functions denoted m
Ωi,j

distance and m
Ωi,j

angle, regard-
ing the association between each perceived object Xi

and known object Yj .

The distance was estimated as a function of the height
and the width in pixels of the object observed in the
scene thanks to an interpolation method illustrated in
Figure 4.

On the other hand, the angle between two objects
is computed from the gravity center of the perceived
object in the image (Figure 3).

The measurements provided are very noisy. For in-
stance, there can be a variation of 20m for the same
object from an image to the next one. Likewise, an-
gle variations can be as high as 100%, from 0.01rd to
0.02rd for two consecutive measurements of the same
object.

Figure 4: Interpolation function giving the distance
in meter depending on the height and the width in
pixels of the object in the scene.

In this application, masses are fixed in the following
way:











mΩi,j ({yi,j}) = β φi,j(ei,j)

mΩi,j ({ni,j}) = β (1 − φi,j(ei,j))

mΩi,j (Ωi,j) = 1 − β

(29)

where:

• 0 < β < 1 is a constant representing the degree
of reliability of the source of information (cf the
discounting operation [21, page 252], and [14, 15]
for other correction mechanisms).



• φi,j(.) is a monotone decreasing function s.t.
φi(0) = 1 and lim

e→∞
φi(e) = 0;

• ei,j is the dissimilarity measure between the per-
ceived object Xi and the known object Yj , which
means the difference of distance and the differ-
ence of angle in this application.

The function φi,j is chosen as follows [6]:

φi,j(ei,j) = exp(−(ei,j)
2). (30)

Constant β being fixed at 0.9, these two belief mass
functions are combined thanks to the Dempster’s rule
of combination to obtain a mass function mΩi,j :

mΩi,j = m
Ωi,j

distance ⊕ m
Ωi,j

angle ∀i ∈ I, ∀j ∈ J . (31)

The association model presented in Section 3 only
need one BBA expressing the information regarding
the association between object Xi and object Yj . In
this application, we are lucky enough to have two in-
formation sources. Thus these two pieces of informa-
tion are firstly combined using a well justified rule for
the combination of two distinct sources. The choice
to combine theses sources at this step, and the choice
of the rule have been left for further study.

In Figure 5, the good recognition rate of the two ap-
proaches presented in this paper obtained in this video
sequence is represented as a function of the rejection
cost (Section 2.3). It can be observed that as soon as
the rejection cost becomes greater than 0, the good
recognition rates obtained with the conjunctive com-
bination are greater than those obtained with Rom-
baut’s combination, which is recalled to be also used
in Gruyer’s approach.

Let us note that the decisions have been computed on
the basis of the perceived objects. As mentioned in
Section 3.4, these decisions are not necessary identical
with those computed from the known objects point of
view. However, as illustrated in Figure 6, this conflict-
ing decision rate remains very low in this application
(from 0% to less than 1% depending on the rejection
cost). Let us also recall that, as illustrated at the
end of Example 2, the introduction of a rejection cost
enhances the appearance of conflicting decisions.

6 Conclusion and prospects

In this paper, a modeling of the association step prob-
lem in obstacle tracking in the belief function frame-
work has been presented. In particular, it has been
shown how tools from the theory of belief functions
such as the vacuous extension, the conjunctive com-
bination rule and the pignistic transformation can

Figure 5: Good recognition rate in function of the
rejection cost.

Figure 6: Conflicting decision rate in function of the
rejection cost.

be applied. Validated on real data, this approach
can perform better good recognition rates than Rom-
baut’s initial approach as soon as a rejection cost is
introduced.

Concerning the prospects, even if it concerns a reduce
number of cases, a more convincing solution has to
be brought regarding the resolution of the possible
conflicting decisions between the perceived and known
objects points view. This points is currently under
investigation.

The decomposition of the BBAs [9] expressing the be-
liefs regarding the associations between known objects
and perceived objects could also be studied in order
to use a more adapted rule.

Subsequently, this approach should be enhanced by
introducing information coming from the tracking of



vehicles at time steps preceding the current analysis.
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