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Abstract Associative classification has been shown to provide interesting re-
sults whenever of use to classify data. With the increasing complexity of new
databases, retrieving valuable information and classifying incoming data is be-
coming a thriving and compelling issue. The evidential database is a new type
of database that represents imprecision and uncertainty. In this respect, ex-
tracting pertinent information such as frequent patterns and association rules
is of paramount importance task. In this work, we tackle the problem of perti-
nent information extraction from an evidential database. A new data mining
approach, denoted EDMA, is introduced that extracts frequent patterns over-
coming the limits of pioneering works of the literature. A new classifier based
on evidential association rules is thus introduced. The obtained association
rules, as well as their respective confidence values, are studied and weighted
with respect to their relevance. The proposed methods are thoroughly exper-
imented on several synthetic evidential databases and showed performance
improvement.
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1 Introduction

The extraction of hidden information from large databases held a great im-
portance. Within the encountered masses of data in databases lie hidden
knowledge nuggets of strategic importance. One of the newest answer for this
problematic is the knowledge discovery domain. Indeed, the latter proposes
a process that uses a variety of data analysis tools to discover patterns and
relationships in data that may be used to make valid predictions. For that
reason, the application fields of data mining are so various that it assimilates
many fields, e.g., image mining [25], web mining [22], medical domain [24] and
classification of multiple databases [35], to cite but a few.
Chronologically, the Apriori algorithm [3] was the first one that aimed to ex-
tract frequent patterns and then derive interesting association rules thanks
to a level-wise sweeping of the search space. Later, several improvements
were brought giving rise to new and more efficient extraction algorithms such
that [6,26,33]. Provided algorithms were applied on precise and certain data
constituting boolean databases.
Nevertheless, in real world, gathering such types of data is hard achievable
since almost all acquired data might suffer from imperfection. Therefore, un-
certain data mining has become a hot topic in data mining community [1,2,
34,36]. Uncertainty is generally represented with probabilities. Recently, this
discipline has flourished with new mining algorithms such as UApriori [7],
UFP-Growth [20] and UH-Mine [2]. However, the uncertainty is not the only
origin of imperfection. In [9], Dubois and Prade highlighted two possible ori-
gins for imperfection that are imprecision and uncertainty. In [18], Lee de-
tailed both sides of imperfection that could manifest in data and proposed a
new database handling imperfection. This database uses the belief function
theory, also called the evidence theory, as a formalism to represent informa-
tion [19]. This data structure was denoted as the evidential database. In [5]
an imprecise and uncertain answer tuples of a query with evidence theory is
presented. This permits the partial values to be overlapping sets, rather than
disjoint sets forming a partition. Correspondingly, mass function values are
attached to the partial values in order to represent degrees of uncertainty in
the attribute values.
With the growing interest for those databases, studying them from a data
mining view has never been more challenging. The redefinition of data mining
tools gave rise to a particular interest as it was also the case for fuzzy data
mining [15]. In this context, Hewawasam et al. [13] proposed a methodology
to assess patterns’ support and model them through a tree-based represen-
tation. Interestingly enough, the authors [13] paid attention to associative
classification where the authors introduced association rules. The pertinence
of association rule is assessed through a conditional belief.
In this work, we tackle the problem of the extraction of hidden and pertinent
information from an evidential database. To do so, we shed the light on ev-
idential support measure limits and we introduce a new alternative that is
denoted precise support. The latter not only brings coherence with binary and
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probabilistic support measures but also flags out interesting running time.
In addition, we address the problem of association rules’ extraction. A new
confidence measure is provided. The gathered rules are used for classification
purposes. An Evidential Data Mining Apriori algorithm (EDMA) is then in-
troduced for the information extraction. The retrieved association rules are
then used for classification with a rule fusion system thanks to the Evidential
Associative Classifier algorithm (EvAC).
This paper is organized as follows: Section 2 recalls the main concepts of belief
function theory and the evidential database. The pioneering state-of-the-art
works on confidence measure are scrutinized and we highlight their limits. In
Section 3, a ramification for their method that improves the performance is
presented. In addition, we introduce a new method for evidential itemsets’
support computing providing more precision in its estimation. In Section 4, a
new method for association rule generation is detailed. The provided rules are
screen out and combined through a fusion system with the EvAC algorithm.
The performance of this algorithm is studied in Section 6. Finally, we conclude
and we sketch issues of future work.

2 Evidential Database: fundamental concepts

In this section, we briefly review evidence theory, also known as belief func-
tions theory or Dempster-Shafer theory, and extend it to introduce the basic
concepts of evidential databases [19].

2.1 Belief Function Theory

The belief function theory presents a large framework for imperfection han-
dling. As highlighted by [9], the belief function theory not only models impre-
cision but also uncertainty. Several interpretations for this theory exist such
that [8,12,32]. In our work, we rely on the Transferable Belief Model (TBM)
interpretation that was originally introduced by Smets in [32]. The TBM model
is a non-probabilistic interpretation of the belief function theory that repre-
sents quantified beliefs following two distinct levels: (i) a credal level where
beliefs are entertained and quantified by belief functions; (ii) a pignistic level
where beliefs can be used to make decisions and are quantified by probability
functions. The evidence theory is based on several fundamentals such as the
Basic Belief Assignment (BBA). A BBA m is the mapping from elements of
the power set 2Θ onto [0, 1], i.e.,

m : 2Θ −→ [0, 1]

where Θ is the frame of discernment. It is the set of possible answers for a
treated problem and is composed of N exhaustive and exclusive hypotheses:

Θ = {H1, H2, ...,HN}.
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A BBA m also fulfills some constraints such that:
∑
A⊆Θ

m(A) = 1

m(∅) ≥ 0.
(1)

Each subset X of 2Θ fulfilling m(X) > 0 is called a focal element. A
categorical BBA is a BBA with only one focal element A and is defined as
follows:

m(A) = 1 ∀A ⊂ Θ and m(B) = 0 ∀B ⊆ Θ, B 6= A. (2)

Constraining m(∅) = 0 is the normalized form of a BBA and this corresponds
to a closed-world assumption [30], while allowing m(∅) ≥ 0 corresponds to an
open world assumption [32].

From a BBA, other functions are commonly defined from 2Θ into [0, 1]: the
first one, Bel(A), called as the belief function, is interpreted as the degree of
justified support given to the proposition A by the available evidence and is
defined as:

Bel(A) =
∑
∅6=B⊆A

m(B). (3)

On the other hand, Pl(.) is the plausibility function and is defined as follows:

Pl(A) =
∑

B∩A6=∅

m(B). (4)

The plausibility denotes the maximum potential support that could be given
to a hypothesis, if further evidence becomes available.
One of the asset of belief function theory is information fusion. From a multi-
source context, a combination operator can be applied in order to extract the
veracious proposition. In the case of two sources S1 and S2, both defined in
Θ, we define the conjunctive combination rule that was initially introduced in
Smets’ work [32]:

m ∩©(A) =
∑

B∩C=A

m1(B)×m2(C) ∀A ⊆ Θ. (5)

The normalized version of conjunctive combination rule, proposed by Demp-
ster [8], integrates a conflict management approach that redistributes the gen-
erated conflictual mass. For two sources S1 and S2 having respectively m1

and m2 as BBA, the Dempster’s rule of combination, aka orthogonal sum, is
defined as follows:

m⊕(A) =
1

1−m ∩©(∅)
∑

B∩C=A

m1(B)×m2(C) =
1

1−m ∩©(∅)
m ∩©(A) ∀A ⊆ Θ,A 6= ∅

(6)
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where m ∩©(∅) is defined by:

m ∩©(∅) =
∑

B∩C=∅

m1(B)×m2(C). (7)

m ∩©(∅) represents the conflict mass between m1 and m2.
Generally in an information fusion problem, all considered sources do not

share the same domain (frame of discernment). This constraint prevents from
using usual combination tools [8]. Let us consider two belief functions m1 and
m2 defined respectively in Θ1 and Θ2, the conjunctive combination rule can
be extended to this special case. A unique and larger frame Θ = Θ1 × Θ2 is
used so that the combination can be expressed as follows:

mΘ
1×2 = mΘ1↑Θ

1 ∩©mΘ2↑Θ
2 (8)

where ↑ is the vacuous extension that can be written as follows:

mΘ1↑Θ(A) =

{
mΘ1(B) ifA = B ×Θ2

0 otherwise.
(9)

The result of Equation (8) can be retrieved following the Cartesian product
as follows:

mΘ
1×2(A×B) = mΘ1

1 (A)×mΘ2
2 (B). (10)

After source combination which integrates the credal stage of the TBM
model, taking decision is necessary. In [31], the pignistic probability is intro-
duced allowing probabilistic decision from BBA following this formula:

BetP (Hn) =
∑
A⊆Θ

|Hn ∩A|
|A| (1−m(∅))

×m(A) ∀Hn ∈ Θ (11)

where |·| is the cardinality operator. In the following subsection, we present
the basic concepts of the evidential databases that rely on the evidence theory
to handle uncertainty.

2.2 Evidence database concept

An evidential database stores data that could be either perfect or imper-
fect [18]. Data’s imperfection in such database is expressed through the belief
function theory. An evidential database, denoted by EDB, with n columns and
d lines where each column i (1 ≤ i ≤ n) has a domain Θi of discrete values.
mij the cell, of line j and column i, contains a normalized BBA as follows:

mij : 2Θi → [0, 1] with
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mij(∅) ≥ 0∑
A⊆Θi

mij(A) = 1. (12)

Unlike binary, probabilistic or fuzzy database, the columns of the evidential
database represent attributes rather than items. Indeed, columns are assimi-
lated to questions. Each line is an information source. The BBA mij could be
seen as the answer of an information source i to a question j. Such kind of
modelling makes the evidential database a generalisation of several types of
databases [29]. For example, a fuzzy database can be obtained by constructing
a consonant BBAs within its cells.

Table 1: Example of an evidential database EDB

Transaction Attribute A Attribute B
T1 m11(A1) = 0.7 m12(B1) = 0.4

m11(ΘA) = 0.3 m12(B2) = 0.2
m12(ΘB) = 0.4

T2 m21(A2) = 0.3 m22(B1) = 1
m21(ΘA) = 0.7

In an evidential database, as shown in Table 1, an item corresponds to a
focal element. An itemset (i.e., pattern) corresponds to a conjunction of focal
elements having different domains. Two different itemsets can be related via
the inclusion or intersection operator. Indeed, the inclusion operator [4,27] for
itemsets is defined as follows, let X and Y are two itemsets:

X ⊆ Y ⇐⇒ ∀xi ∈ X,xi ⊆ yj .

where xi and yj are the ith and the jth elements of respectively X and Y . For
the same itemsets X and Y , the intersection operator [27] is defined as follows:

X ∩ Y = Z ⇐⇒ ∀zi ∈ Z, zi ⊆ xj and zi ⊆ yk.

An association rule [28] R is a causal relationship between two itemsets
that can be written as follows R : X → Y fulfilling X ∩ Y = ∅.

Example 1 In Table 1, A1 is an item and ΘA × B1 is an itemset such that
A1 ⊂ ΘA ×B1 and A1 ∩ΘA ×B1 = A1. In Table 1, A1 → B1 is considered as
an association rule.

In the following, we present how to extract hidden information within evi-
dential databases. Evidential data mining is detailed through the definition of
literature support and confidence measures.
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2.3 Evidential Data mining

Unfortunately, only a few studies were carried out on evidential data mining. In
[14], Hewawasam et al. proposed a methodology to estimate itemsets’ support
and model them in a tree-based representation: Belief Itemset Tree (BIT).
The BIT representation brings easiness and rapidity for the estimation of the
association rule’s confidence. Their proposed support measure relies on the
following inclusion operator:

X ⊆ Y ⇐⇒ ∀xi ∈ X,xi ∈ Y.

In [4], the authors introduced a new approach for itemset support comput-
ing and applied it on a Frequent Itemset Maintenance (FIM) problem. All
approaches [4,13] were based on Cartesian product between BBAs. In this
context, we study the support of an itemset X =

∏
i∈[1...n]

xi such that xi is an

item belonging to the frame of discernment Θi. Since, items do not share the
same frame of discernment, fusion rules cannot be applied. The belief support
introduced by [4] is computed by the following equation:

mj(X) =
∏
xi∈X

mij(xi) (13)

where mj(X) is the Cartesian product of all BBA in the transaction Tj . Thus,
the BBA of the itemset X expressed in the EDB database becomes:

mEDB(X) =
1

d

d∑
j=1

mj(X). (14)

Then, the support of X in the EDB database is deduced as follows:

SupportBelEDB(X) = BelEDB(X). (15)

Remark 1 An itemset or a pattern is said to be frequent if and only if its
allocated support is greater than or equal to a min-threshold fixed by the user
otherwise it is called infrequent.

The Cartesian product-based support, as presented above, fulfils several
mathematical properties such that the anti-monotony property, i.e., the su-
persets of an infrequent itemset are also infrequent. The opposite is true, all
subsets of a frequent itemset are also frequent. Owe to this property, the con-
struction of an Apriori-based algorithm becomes straightforward [4].

The aim of frequent itemsets is to find all interesting association rules.
Originally, the retrieval of frequent itemsets and association rules were carried
out on binary databases [3]. The proposed approach considers every itemset
of size k from which it generates 2k − 2 potential interesting rules. The set
of generated rules are then filtrated following their confidence measure. The
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confidence denotes the relevance of a rule and only valid1 rules are retained.
For a rule R : Ra → Rc, such that Rc and Ra are respectively the conclusion
and the antecedent (premise) part of the rule R, the confidence is expressed
as follows:

Confidence(R) = P (Rc|Ra) =

d∑
i=1

PTi(Ra ∩Rc)

d∑
i=1

PTi
(Ra)

. (16)

The confidence is seen as an apriori probability (i.e., the probability of
having Rc knowing that Ra is true). PTi

(X) indicates the probability of X
appearance within the transaction Ti. In addition, even in fuzzy data mining
association rule’s confidence is built upon conditional fuzzy measures [16]. In
this respect, Hewawasam et al. [13] applied the conditional reasoning in evi-
dential data mining. The confidence is computed with the basics of conditional
belief. Thus, the confidence of a rule R in the set of all rules R, i.e., R ∈ R, is
computed as follows:

Confidence(R) = Bel(Rc|Ra) (17)

where Bel(.|.) is the conditional belief. Despite the existence of several in-
terpretations and formulations for conditional belief, Hewawasam et al. [13]
defined the confidence following Fagin et al. [10] interpretation such that:

Bel(Rc|Ra) =
Bel(Ra ∩Rc)

Bel(Ra ∩Rc) + Pl(Ra ∩ R̄c)
. (18)

In [10], this conditional belief interpretation is considered more consistent
than the original work of Dempster [8] which is written as follows:

Bel(Rc|Ra) =
Bel(Rc ∪Ra)−Bel(Ra)

1−Bel(Ra)
. (19)

Example 2 Through the following example, we highlight the inadequacy of
the conditional belief use. Let us consider the Transaction 1, of Table 1, from
which we try to compute the confidence of A2 → B1 (i.e., Bel(B1|A2)). The
conditional belief, introduced in [8] , is equal to:

Bel(B1|A2) =
Bel(B1 ∪A2)−Bel(A2)

1−Bel(A2)
=
Bel(B1)

1
= 0.4

The belief of B1, knowing that A2 is true, is equal to that of Bel(B1) due to
the independence between A2 and B1. In addition, both hypothesis might be
correlated so that the event B1 does not occur knowing already the happening
of A2.

1 An association rule is considered as valid if its confidence is greater than or equal to a
threshold minconf .
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In the following section, we study existing support measures within eviden-
tial databases. First, a simplification of the belief-based support is introduced.
Then, we highlight the limits of this approach and we introduce a new measure
called the precise support.

3 Evidential precise support

In the following, the state-of-the-art of evidential support measures is scruti-
nized. A simplification for the existing approach is discussed. The simplifica-
tion brings easiness and computation rapidity. A new alternative is proposed
that brings more precision comparatively to existing works. The introduced
support estimation is denoted in the sequel precise support.

3.1 Support ramification

The support definition proposed by [4,13] relies on a Cartesian product. De-
spite being adequate in case of combining BBAs with different frames of dis-
cernment, its computational complexity is exponential. Indeed, for an eviden-
tial database, with d transactions, we have k attributes having each n focal
elements, the arithmetic complexity of a Cartesian product is: C = d × nk =
O(nk). In the following, we provide a new formulation for the belief-based
support.

Proposition 1 Let us consider an evidential database EDB and the itemset
X = x1 × · · · × xn constituted by the product of items (focal elements) xi
(1 ≤ i ≤ n) of the exclusive frames of discernment Θi. For a transaction Tj,
we have:

SupportBelTj
(X) =

∏
i∈[1...n]

SupportBelTj
(xi) =

∏
i∈[1...n]

Bel(xi) (20)

SupportBelEDB(X) =
1

d

d∑
j=1

SupportBelTj
(X) (21)

Proof Let us consider two items and focal elements x1 and x2 belonging re-
spectively to m1 and m2 BBA such that m = m1 ×m2.

Bel(
∏

xi∈Θi,1≤i≤n
xi) =

∑
a⊆x1×···×xn

m1×···×n(a)

Bel(
∏

xi∈Θi,1≤i≤n
xi) =

∑
y1⊆x1,...,yn⊆xn

m1(y1)× · · · ×mn(yn)

Bel(
∏

xi∈Θi,1≤i≤n
xi) =

∑
y1⊆x1

m1(y1)× · · · ×
∑

yn⊆xn

mn(yn)

Bel(
∏

xi∈Θi,1≤i≤n
xi) = Bel(x1)× · · · ×Bel(xn) =

∏
i∈[1...n]

Bel(xi)
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Owe to this new formulation, the initial theoretical complexity is lowered to
about C = d× |X|O(1).

Example 3 Let us consider the evidential database given in Table 1, the sup-
port of A1 ×B1 is computed by using Equations (14) and (15) as follows:

mEDB(A1 ×B1) = m11(A1)·m21(B1)+m12(A1)·m22(B1)
2 = 0.14

mEDB(A1 ×B2) = m11(A1)·m21(B2)+m12(A1)·m22(B2)
2 = 0.07

mEDB(A1 ×ΘB) = m11(A1)·m21(ΘB)+m12(A1)·m22(ΘB)
2 = 0.14

...

Thus, the support of A1 ×B1 becomes:

SupportBelEDB(A1 ×B1) = Bel(A1 ×B1) = 0.14

The same result can be found by:

SupportBelEDB(A1×B1) =
BelT1

(A1)×BelT1
(B1) +BelT2

(A1)×BelT2
(B1)

2
= 0.14

The main concern of the literature approaches for the support computa-
tion rely on the belief function. As highlighted by [8], the plausibility is an
upper bound whereas the belief is lower one for each hypothesis happening
(occurrence probability). In fact, Bel(.) assesses the belief by referring only to
a small subset of the superset. The support of X is evaluated by considering
only subsets included in it. In the following, we introduce the precise support
definition that gets rid of this limitation.

3.2 Precise support

Let us consider an evidential database EDB and the itemset X = x1×· · ·×xn
constituted by the product of items (focal elements) xi (1 ≤ i ≤ n) of the
exclusive frame of discernment Θi. The degree of presence of an item xi in a
transaction Tj (BBA) can be measured as follows:

Pr : 2Θ → [0, 1] (22)

Pr(xi) =
∑
x⊆Θi

|xi ∩ x|
|x|

×m(x) ∀xi ∈ 2Θi . (23)

As illustrated above, the Pr(.) is a measure that computes a probability in
a single BBA. The Pr is also assimilated to the pignistic probability in case of
xi ∈ Θi. The evidential support of an itemset X =

∏
i∈[1...n]

xi is then computed

as follows:
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SupportPrTj
(X) =

∏
Xi∈Θi,i∈[1...n]

Pr(Xi) (24)

SupportPrEDB(X) =
1

d

d∑
j=1

SupportPrTj
(X). (25)

Interestingly enough, the precise support definition presents a larger ele-
ment inclusion than those given in respectively [4,13]. The proposed definition
allows us to overcome the limits of the belief-based support previously men-
tioned. Indeed, Pr(.) function does not only consider all subsets of X but also
those having intersection with it. The probabilistic formulation of the support
sustains previous data mining support works such that [3] pioneering work on
binary databases in case of certain BBAs2. Even fuzzy support definition [16]
is consistent with the precise support in case of consonant BBAs3. Moreover,
the formulation of the support provides an interesting performance since we
avoid the pitfall of the computation of the Cartesian product.

Property 1 The precise support estimation function fulfils the anti-monotony
property, i.e.,

SupportPrEDB(A) ≤ SupportPrEDB(B) ∀A ⊆ B. (26)

Proof Assuming an evidential database EDB, let us consider two evidential
itemsets A and A ×X where A ⊂ A ×X such that ∀x ∈ A, x ∈ A ×X. We
aim at proving this relation SupportPrEDB(A×X) ≤ SupportPrEDB(A):

SupportPrTj
(A×X) = Pr(A)× Pr(X)

SupportPrTj
(A×X) ≤ SupportPrTj

(A) Since Pr(X) ∈ [0, 1] then

SupportPrEDB(A×X) ≤ SupportPrEDB(A).

The definition of the proposed support is computed with transactional pre-
cise probability (i.e., SupportPrTj

(.)). To avoid the computation of the support
of a single item several times, we store all item’s support in a table, which is
called Precise Table (PT).

Example 4 Table 2 shows the precise table constructed from the evidential
database EDB (Table 1). Each item in EDB rows has a Pr value.

The extraction of frequent itemsets is detailed in Algorithm 1. This Algo-
rithm is denoted EDMA that stands for Evidential Data Mining Apriori. It
generates frequent evidential itemsets in a level-wise manner as did the Apri-
ori [3]. The use of a Apriori-based algorithm is justified for several reasons. In

2 A BBA with only one focal element H and H ∈ Θ is said to be certain and is denoted
m(H) = 1.

3 A BBA is said consonant if focal elements are nested.
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Table 2: Precise Table deduced from the evidential database EDB presented
in Table 1

Transaction Transactional Support

T1

PrΘA (A1) = 0.85
PrΘA (A2) = 0.15
PrΘA (ΘA) = 1.00
PrΘB (B1) = 0.60
PrΘB (B2) = 0.40
PrΘB (ΘB) = 1.00

T2

PrΘA (A1) = 0.35
PrΘA (A2) = 0.65
PrΘA (ΘA) = 1.00
PrΘB (B1) = 1.00
PrΘB (B2) = 0.00
PrΘB (ΘB) = 1.00

fact, UApriori which is the uncertain probabilistic version of Apriori, actually
performs rather well among the other tree-based algorithms and is usually
faster one in dense uncertain dataset [34]. The evidential databases are nat-
urally dense. Even though, more efficient algorithms were so far introduced,
Apriori is of extensive use owe the efficiency of its pruning of candidates, that
relies on the anti-monotony property [1]. Indeed, the majority of approaches
in imperfect data mining uses Apriori [1], undoubtedly due to the difficulty
to replicate binary simplification approaches. Finally, as a result for the lack
of research in this thematic, evidential data mining works rely on a level-wise
approach for frequent patterns generation [4,13]. As the UApriori, EDMA in-
cludes a trimming part [7]. The basic idea behind it is to trim away items with
low existential presence from the evidential database and then to mine the
trimmed structure. As a result, a structure called Trim Table is constructed
that stores either the precise values (i.e., Pr(.)) or the belief function (i.e.,
Bel(.)) of interesting items. The trimming module has two benefits. First, it
allows removing items with low existential presence within the database and
therefore a low probability of being either frequent or generates ones. More
importantly, it allows to remove uninteresting items. For example, considering
a medical predictive model, some items should be removed before any mining
process. Indeed, predicting a patient disease is a critical application. Therefore,
items as disjunction focal elements or total ignorance items (e.g Θi) should be
removed.

The extraction of the frequent patterns relies on two main functions.
Support estimation(), in line 11, computes the precise support of an itemset
taken as an input. Frequent itemset() (line 24) determines whether an itemset
is frequent based on the minsup and the precise support values. Furthermore,
support computing within evidential databases has a cost. Indeed, for an ev-
idential database of n attributes and d rows, an approximative complexity of
support estimation can be expressed as follows: C = d× (CBBAtreatment × n)
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where CBBAtreatment indicates the complexity of a BBA treatment (i.e., pig-
nistic probability computing, belief function computing, etc). For the precise
support, the computational complexity is higher than the belief one. For an
attribute of l focal elements, the belief-based support has O(l2) as complexity
since for each focal element the inclusion is studied with other elements. This
complexity drops to O(l×log(l)) with some heuristics. However, for the precise
support, the computational complexity is 2×O(l2).

Algorithm 1 Evidential Data Mining Apriori (EDMA) algorithm

Require: EDB,minsup, PT, Size EDB
Ensure: EIFF
1: Trim Table← construct trim(PT,minsup)
2: EIFF ← ∅
3: size← 1
4: candidate← candidate apriori gen(Trim Table, size)
5: While (candidate 6= ∅)
6: freq ← Frequent itemset(candidate,minsup, Trim Table, Size EDB)
7: size← size+ 1
8: EIFF ← EIFF ∪ freq
9: candidate← candidate apriori gen(EDB, size, freq)

10: End While
11: function Support estimation(Trim Table , I, d)
12: SupI ← 0
13: for j=1 to d do
14: SupTrans ← 1
15: for all i ∈ Trim Table(j).focal element do
16: if Trim Table(j).focal element ∈ I then
17: SupTrans ← SupTrans × Trim Table(j).value
18: end if
19: end for
20: SupI ← SupI + SupTrans
21: end for
22: return SupI

d
23: end function
24: function Frequent itemset(candidate, minsup, Trim Table, Size EDB)
25: frequent← ∅
26: for all X in candidate do
27: if Support estimation(Trim Table,X, Size EDB) ≥ minsup then
28: frequent← frequent ∪ {X}
29: end if
30: end for
31: return frequent
32: end function

4 Associative classification in evidential databases

In the following, we introduce a new association rules-based classifier. This
classifier is based on valid association rules found by the use of the newly
defined support measure.
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4.1 Precise confidence measure

As highlighted in subsection 2.3, measuring the confidence of an evidential as-
sociation rule with a conditional belief function has many shortcomings. In the
following, we introduce a new evidential measure of confidence for association
rules that relies on probabilistic fundamentals. This measure is denoted as the
precise measure and is equal to:

Confidence(R) =

d∑
j=1

PrTj (Ra)× PrTj (Rc)

d∑
j=1

PrTj (Ra)

(27)

where d is the number of transactions in the evidential database. In ad-
dition, the proposed metric sustains previous confidence measure such that
introduced in [3].

Example 5 Let us consider the example of the evidential database given in
Table 1. The confidence of the association rule R1 : A1 → B1 is computed as
follows:

Confidence(R1) =
PrT1

(A1)× PrT1
(B1) + PrT2

(A1)× PrT2
(B1)

PrT1(A1) + PrT2(A1)
= 0.75

The generated rules, with their respective values of confidence, could be useful
in many applications. In the following, we tackle the classification problem
case, in which an associative classifier is introduced. In this section, we study
how to select valid association rules for classification purposes. Two types of
rule are introduced: the generic and the precise association rules.

4.2 Generic and precise rules

To perform a classification with association rules, we retain only those conclud-
ing on a class label. Indeed, from a rule such that

∏
i∈[1,I],I<n

Xi →
∏

j∈[1,J],J<n
Yj ,

we only keep those having in the conclusion part, a class hypothesis (i.e.,
Yj ∈ ΘC where ΘC is the frame of discernment).

Example 6 Considering the following set of the association rules S = {A1 →
C1;A1, B2 → C1;A1 → B1} and the class frame of discernmentΘC = {C1, C2}.
After the classification rule reduction step, the set S is reduced to S′ = {A1 →
C1;A1, B2 → C1}.

Even with the classification rule reduction, their number is still overwhelm-
ing requiring further filtrating strategies. Two main ideas can be distinguished.
A first one consists in retaining only the generic rules (i.e., the most generic in
terms of premise). The second one is the opposite. It relies on pruning all rules
and keeping those having the largest premise (those types of rule are denoted
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precise rules). In the following, we explicitly define those two heuristics for
rule filtration.

The generic rule reduction approach consists in retaining only classification
rules with a minimal premise. These rules can be viewed as a generalization
for other redundant ones. Indeed, a rule R1 is considered as a redundant one
if and only if it does not bring any additional information having at hand a
rule R2. The retained rules from the reduction process constitute the set of
generic rules extracted from the set of frequent itemsets FI.

Another heuristic consists in retaining only the rule of the largest premise.
Those kind of rules are considered as the most precise and the brought infor-
mation is considered as reliable.

Example 7 Considering the previous set of the association rules S = {A1 →
C1;A1, B2 → C1;A1 → B1}. After redundant rule reduction, the set S be-
comes equal to S′ = {A1 → C1;A1 → B1}. The rule A1, B2 → C1 is not re-
tained since it brings no further information having already the rule A1 → C1.
The set S of precise rules is, then, equal to S′′ = {A1, B2 → C1}.

In the next subsection, we describe our approach of classification based on
association rules within evidential databases.

4.3 Classification with association rules

Let us suppose the existence of an instance X, to classify, represented by a set
of BBAs belonging to the evidential database EDB such that:

X = {mi|mi ∈ X,xji ∈ Θi} (28)

where xji is a focal element of the BBA mi. Each retained association rule,
from the rule set R, is considered as a potential piece of knowledge that could
be helpful for the class retrieval of X. In order to select rules that may lead
to the adequate classification, we look for rules having a non null intersection
with X such that:

RI = {R ∈ R,∃xji ∈ Θi, x
j
i ∈ Ra}. (29)

Each rule found in the setRI constitutes a piece of information concerning the
membership of the instance X. Since several rules can be found and fulfilling
the intersection condition, it is of importance to benefit from them all. In
our work, we assume that all information is valuable and should be handled
within the information fusion problem. From the set RI, we extract the set of
generic or precise classification rules. Indeed, each rule from the computed set
Rl ⊂ RI, l ∈ [1 . . . L] and L < |RI|, that brings a new information (different
Ra) is transformed into a BBA with respect to the frame of discernment ΘC
(i.e.,frame of discernment of Rc):{

mΘC

Rl
({Rc}) = Confidence(Rl)

mΘC

Rl
(ΘC) = 1− Confidence(Rl)

(30)
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Table 3: The evidential transaction X under classification

Attribute A Attribute B
m1(A1) = 0.6 m2(B1) = 0.5

X m1(A2) = 0.2 m2(B2) = 0.1
m1(ΘA) = 0.2 m2(ΘB) = 0.4

where Rc is the conclusion part of the rule Rl. The L constructed BBAs are
then fused following the Dempster’s rule of combination [8] as follows:

m⊕ = ⊕Ll=1m
ΘC

Rl
. (31)

Equation (31) combines all association rules with the same consideration. In-
deed, each secant rule is considered and summed with the other ones having
even more intersection with X. From this point, it is interesting to make dis-
tinction between rules during the combination. To do so, it is important to
distinguish between the reliability of a rule and the confidence found through
the use of the function Confidence(.). The confidence expresses the pertinence
of a rule in the studied database. However, the reliability of a rule describes
the weight accorded to a rule during the fusion process.

In order to compute the reliability of a rule, enumerating all possible crite-
ria for rule distinction held a great importance. In the following, we highlight
the importance of weighting up the classification association rules in use (i.e.,
RI). The rule’s selection is an important step in our classification process.
However, it does not guarantee the presence of only quality rules. Indeed,
since the set RI of classification rules relies on secant rules (i.e., rules having
an intersection with the instance under classification), several non pertinent
rules could be retained for fusion. Besides that fact, the performance of the or-
thogonal sum (Equation (31)) could be deteriorated by the number of retained
rules (i.e., rule’s BBA in Equation (30)) as well as by its combination prop-
erty. The property 2 shows both properties that must be used for weighting
the association rules.

Property 2 Let us assume a set of association rules RI having a non-null
intersection with X, two properties must be fulfilled:

– P1: A significant weight must be assigned to the highest precise rule with
regard to the instance X under classification, i.e., R1a ⊂ R2a.

– P2: The mass assigned to each focal element within the instance X should
be a criteria for rule weighting

The following example sheds light on the encountered problem in rules’
aggregation.

Example 8 Let us consider the evidential transaction X under classification
shown in Table 3.

Let RI = {R1 : A1, B1 → C1;R2 : ΘA, B1 → C1;R3 : A1 → C1;R4 : B2 →
C2} be a set of classification association rules. R1 would get a higher weight
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than R2 with respect to the property P1. R4 is not P2-pertinent since m2(B2)
is too low.

In the following, we introduce a new approach for weighting the classifica-
tion association rules. This method has to fulfil both criteria risen in Example
8. Let us assume an association rule R : Ra → Rc that we aim to assess the
relevance of the rule’s premise part with the instance X under classification.
For each item part of the considered premise {xji ∈ Ra|x

j
i ∈ Θi, i ∈ [1, I], j ∈

[1, J ]}, we compute its distance with the appropriate part of the instance under
classification. From each xji ∈ Ra, i ∈ [1, I], j ∈ [1, J ], we build a categorical
BBA mc

i ({xj}) (Equation (2)). The resulting BBA is compared to mi to assess
their separating distance in terms of the P1-criterion. The distance is computed
as follows:

di(m
c
i ,mi) =

√
1

2
(mc

i −mi)t.D.(mc
i −mi) (32)

where:

D(A,B) =

{
1 if A = B = ∅
|A∩B|
|A∪B| if A,B ⊆ 2Θ.

(33)

di is the Jousselme’s distance [17]. The matrix D(A,B) establishes the in-
clusion relationship between superset elements. The rule’s weight is found by
considering all computed distances {di|i ∈ I} as follows:

weight(R) = 1−

∑
i∈[1,I]

di

I
. (34)

Thus, Equation (30) becomes:{
αmΘC

Rl
({Rc}) = weight(Rl)× Confidence(Rl)

αmΘC

Rl
(ΘC) = 1− weight(Rl)× Confidence(Rl)

(35)

Example 9 Let us assume the set of rules shown in Example 8. Table 4 is a
numerical example of association rules’ fusion. Considering the case of four
association rules, the column Reliability shows association rules’ weight based
on the computed distance dl (Equation (34)). The reliability factors flag out
the expected results, e.g., R1 is more P1-reliable than R2 and that sustains
the P1 property. On the other hand, R3 is more P2-reliable than R4. The rules
are then modelled and weighted following Equation (35). The decision with
pignistic probability gives the C1 class which is naturally the case.

4.4 Evidential Associative Classifier: EvAC

In the following, we introduce the Evidential Associative Classifier (EvAC)
that extracts all valid association rules from frequent patterns and classifies
evidential instances. The EvAC algorithm, whose pseudo-code is sketched by
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Table 4: Numerical example of rule’s weighting and fusion

Rule Reliability (weight) m
ΘC
Rl

αm
ΘC
Rl

m⊕ BetP

R1 : A1, B1 → C1 0.66 m
ΘC
R1

(C1) = 0.59 αm
ΘC
R1

(C1) = 0.39

m
ΘC
R1

(ΘC) = 0.41 αm
ΘC
R1

(ΘC) = 0.61 m⊕(C1) = 0.59

R2 : ΘA, B1 → C1 0.60 m
ΘC
R2

(C1) = 0.32 αm
ΘC
R2

(C1) = 0.19

m
ΘC
R2

(ΘC) = 0.68 αm
ΘC
R2

(ΘC) = 0.81 m⊕(C2) = 0.06 BetP (C1) = 0.77

R3 : A1 → C1 0.69 m
ΘC
R3

(C1) = 0.32 αm
ΘC
R3

(C1) = 0.22

m
ΘC
R3

(ΘC) = 0.68 αm
ΘC
R3

(ΘC) = 0.78 m⊕(ΘC) = 0.35 BetP (C2) = 0.23

R4 : B2 → C2 0.27 m
ΘC
R4

(C2) = 0.66 αm
ΘC
R4

(C2) = 0.18

m
ΘC
R4

(ΘC) = 0.34 αm
ΘC
R4

(ΘC) = 0.82

Algorithm 2, extracts all interesting classification association rules by com-
puting their confidence. The rule extraction is caried out at the beginning of
the algorithm. In fact, the user can select to work with either generic or pre-
cise rules. The confidence is computed thanks to Find Confidence() function
(line 4) that implements the precise confidence, given in section 4, and only
retains valid rules. In addition, rules are filtrated by redundancy. Interested
reader may refer to [28] for further details about rule’s filtration. From each
secant rule R to the instance under classification X, EvAC models a BBA
through invoking the construct BBA() function (line 19). The resulting BBA
is studied and weighted via a reliability factor. Those reliability factors are
retrieved in the compute reliability() function (line 25), which integrates the
Jousselme’s distance. Finally, the decision is made upon the use of the pignis-
tic probability and the class of the instance under classification is returned.
EvAC algorithm computational complexity depends highly on the associa-
tion rules used for classification. The computational complexity is polynomial
CcombO(l2). Ccomb is the complexity of combining l BBAs with the Dempster’s
rule of combination.

5 Experiments

In this section, we assess the performance of EDMA and EvAC algorithms on
evidential databases. The evidential databases are obtained through dataset
transformation. In the following, evidential databases’ construction is high-
lighted. Different practical uses of evidential database can exist. We can imag-
ine a medical database in which we store patients medical records. Those
records are doctors diagnostics expressed with BBAs relatively to their cer-
tainty about patient’s sickness. Even though some works are worth of cite, e.g
[4,13], none of them worked on a real evidential database. In [4], tests were
carried out on a synthetic database. On the other hand, Hewawasam et al.
[13] worked on a simplified naval anti-surface warfare scenario and such kind
of databases is hardly accessible. In the following, we propose a method that
makes it possible to straighforwardly construct an evidential database from a
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Algorithm 2 Evidential Associative Classifier (EvAC)

Require: Pr Table,minconf,ΘC , X, EIFF
Ensure: Class
1: for all x ∈ EIFF do
2: R← Construct Rule(x,ΘC)
3: if R 6= ∅ then
4: confidence← Find Confidence(R,Pr Table,minconf)
5: R← Redundancy(R, R, confidence)
6: end if
7: end for
8: for all R ∈ R do
9: if X ∩R 6= ∅ then

10: RI ← RI ∪R
11: end if
12: end for
13: for all R ∈ RI do
14: weightI ← compute reliability(R,X)
15: αBBA← construct BBA(R,weightI)
16: m← m⊕α BBA
17: end for
18: Class← argmaxHk∈ΘC

BetP (Hk)
19: function Construct BBA(R,weightI)
20: mR(R.conclusion)← weightI ×R.confidence
21: mR.(Θ)← 1− weightI ×R.confidence
22: BBA← mR
23: return BBA
24: end function
25: function compute reliability(R,X)
26: d← 0
27: for all r ∈ Ra do
28: d← d+ Jousselme distance(mr, Xi)
29: end for
30: weightI ← d

sizeof(Ra)

31: return αI
32: end function

numerical dataset. We based our evidential database construction on the ECM
clustering approach [23]. It is an FCM-like-based algorithm on the concept of
credal partition, extending those of fuzzy and possibilistic ones. To derive such
a structure, we minimized the proposed objective function:

JECM (M,V ) ,
d∑
i=1

∑
{j/Aj 6=∅,Aj⊆Ω}

cαjm
β
ijdist

2
ij +

n∑
i=1

δ2mβ
i∅ (36)

subject to: ∑
{j/Aj 6=∅,Aj⊆Ω}

mij +mi∅ = 1 ∀i = 1, . . . , d (37)

where mi∅ and mij respectively denote mi(∅) and mi(Aj). M is the credal
partition M = (m1, . . . ,md) and V is a cluster centers matrix. cαj is a weight-
ing coefficient and distij is the Euclidean distance. In our case, we use the
default values prescribed by the authors in [23], i.e. α = 1, β = 2 and δ = 10.
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The ECM algorithm was successfully applied on several UCI benchmarks [11]
in order to construct our evidential databases. The characteristics of the con-
structed evidential databases are summarized in Table 5 in terms of number of
instances and attributes. For each dataset, the number of focal elements, after
the ECM application, was addressed. The number of focal element is related to
the objective function JECM that was minimized (the reader is referred to the
appendix A for further details). The fourth column of Table 5 illustrates the
sum of all generated focal elements that indicates the actual width size of each
evidential database. Indeed, the actual column’s size of the database is com-
puted as follows:

∑n
i=1 fi. The variable fi is the number of focal element of the

ith attribute found by the minimization of the subjective equation (Equation
(37)). We used two types of benchmarks. The largest databases such as Skin
Segmentation EDB, KEGG EDB and MAGIC EDB were used to assess the
scalability of the mining algorithm. The smallest databases such as Iris EDB,
Wine EDB, Vertebral column EDB and Diabetes EDB were tested to assess
the accuracy of the classifier.

Table 5: Database characteristics

Database #Instances #Attributes #Focal elements
Iris EDB 150 5 40
Vertebral Column EDB 310 7 116
Diabetes EDB 767 9 132
Wine EDB 178 14 196
Magic EDB 19020 11 30
KEGG EDB 53414 24 96
Skin Segmentation EDB 245057 4 32

5.1 Pattern extraction performance

In the following, we compare the precise support measure introduced in sec-
tion 3 that of the belief-based support [4]. The performance and the quality
of both support measures are scrutinized. The quality is highlighted in terms
of the number of frequent patterns. In addition, the performance is shown by
the computational time. Table 6 shows the performance of the precise support
(denoted precise) and the belief-based support (denoted Bel). For our exper-
iments, we integrated the ramification support (proposed in subsection 3.1)
into the mining itemsets algorithm.

In terms of quality, as expected, the precise support discovers more frequent
patterns than do the belief-based one. This result corroborates the theoreti-
cal bases found in subsection 3.2. Indeed, precise support evaluates properly
the support. On the contrary, the belief-based support under-evaluates the
support because of the intrinsic Bel(.) function nature. The number of fre-
quent patterns increases linearly as far as the considered minsup threshold
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Table 6: Comparative results in terms of the number of frequent extracted
patterns

Support
Iris EDB Diabete EDB Vertebral Column EDB Wine EDB Magic EDB

Precise Bel Precise Bel Precise Bel Precise Bel Precise Bel

0.9 23 23 1013 757 56 56 4850 4082 1011 1011
0.8 42 23 3831 1013 88 56 7155 4082 1011 1011
0.7 107 23 12408 1397 411 56 24565 8179 1011 1011
0.6 244 91 38887 3958 795 88 71258 12275 3574 3574

decreases. In addition to the study of generated frequent patterns, Table 7
shows the difference in terms of performance between precise and two variants
of the belief-based support. A first version applies the Cartesian product (de-
noted Cart-Bel) in order to find the support which computes all possible BBAs
needed for support measure. The second one is the proposed ramification of
the belief support that uses the Table Bel (denoted Bel) which is the belief
version of the precise table.

Table 7: Comparative results in terms of execution time (seconds)

Support
Iris EDB Diabete EDB Vertebral Column EDB Wine EDB Magic EDB

Precise Bel Cart-Bel ≈ Precise Bel Cart-Bel ≈ Precise Bel Cart-Bel ≈ Precise Bel Cart-Bel ≈ Precise Bel Cart-Bel ≈

0.9 0,18 0.17 6.38E+12 14.60 9.35 3.29E+72 0.77 0.21 4.60E+24 58.88 37.32 1.83E+188 163.86 94.92 2.75E+50
0.8 0.21 0.17 6.38E+12 120.36 9.36 3.29E+72 0.82 0.21 4.60E+24 109.39 40.70 1.83E+188 159.40 92.92 2.75E+50
0.7 0.58 0.17 6.38E+12 851.70 17.77 3.29E+72 4.28 0.22 4.60E+24 1536.93 89.42 1.83E+188 161.59 90.87 2.75E+50
0.6 2.29 0.50 6.38E+12 11586 71.01 3.29E+72 9.05 0.30 4.60E+24 16172.59 179.88 1.83E+188 867.72 771.78 2.75E+50

The extraction performances, running time-wise, of the belief-based sup-
port is better than those of the precise one. This observation can be explained
by the number of extracted patterns. The more frequent candidates gener-
ated are, higher the consumed time is. In addition, the precise support studies
more subsets than does the belief-based one that badly influences the obtained
performances.

Figure 1 shows the runtime performances of several algorithms on the
largest datasets. In fact, we compared EDMA algorithm to B-Apriori which
is the Apriori-based algorithm that use the belief-based support [13]. It is im-
portant to notice that B-Apriori outperforms EDMA in terms of computation
times as far as the size of the database increases. This can be explained by
two reasons. First, by the cost of using the precise support rather than the
belief-based one. In fact, the precise-based support computes the intersections
between sets. Finally, since EDMA generates more candidates in a level-wise
manner than B-Apriori, the support computation is a costly task.
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Fig. 1: Runtime performance on several database benchmarks

5.2 EvAC classification performance

In the following, we study the classification result performance of the generic
and precise rules. Table 8 compares the classification differences in the use
of precise rules. The precise rules are studied, in this table, by adding the
weighting approach. The weighting approach has shown its usefulness since
we improved the classification for Iris EDB and Vertibral EDB. We main-
tained the same perfect result for the Wine EDB whereas it has dropped in
Diabete EDB. Overall, the rule weighting approach has proven its efficiency
and has optimized the results of non weighted precise rules.

The results of the weighting approach has been carried out using the generic
rules. The performance of EvAC associative classifier has been scrutinized by
investigating the generic rules. The results are shown in Table 9. The rule’s
weighting approach has also proven its efficiency for classification with generic
rules. Indeed, the results have been drastically improved comparatively to
the classification with non weighted generic rules. Wine EDB and Iris EDB
classification rates have been improved and we maintained the same results
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for the other databases. It is also worth of to mention that the proposed
weighting approach for rule use in classification has shown promising results
without being tested on an adequate experimental field. Indeed, the premise
of generic rules are constituted with at most two items. In that case, not all
criteria evoked in subsection 4.3 are considered since only the genericity and
pertinence are considered. The same also holds for precise rules.

The comparison between the generic and the precise association rules is
possible. The precise rules (with and without weighting) better highlight re-
sults than do the generic ones. Indeed, the larger the rule’s premise is, the
more pertinent the rule becomes. On the other hand, EvAC with generic rules
merges much more rules than do with precise ones. In addition, all generic
rules are considered with the same weight in the fusion process despite their
pertinence difference. These characteristics along with the Dempster’s rule of
combination behaviour mislead the fusion process to errors. Indeed, as shown
in Figure 2, the high number of fused rules depends highly from the minsup
value. Unlike the generic approach, the number of precise rule is defined by
number of larger premise’s rule which is dependent from the treated evidential
transaction.

Table 8: Comparative result with precise classification rules

Database Iris EDB Vertebral Column EDB Diabetes EDB Wine EDB Magic EDB
Precise rules 80.67% 88.38% 83.20% 100% 93.88%

Precise rules with weighting 82.00% 89.03% 82.81% 100% 94.39 %

Table 9: Comparative result with Generic classification rules

Database Iris EDB Vertebral Column EDB Diabetes EDB Wine EDB Magic EDB
Generic rules 78.67% 67.74% 65.10% 51.68% 64.83%

Generic rules with weighting 80.00% 67.74% 65.10% 76.40% 67.58%

Table 10: Classification accuracies for several evidential databases

Dataset EvAC EDMA [28] CMAR [21] SVM Neural Networks
Iris EDB 82.00% 80.67% 94.00% 96.00% 97.33%

Diabete EDB 82.81% 83.20% 75.10% 77.47% 80.60%
Wine EDB 100% 100% 95.00% 99.43% 100%

Vertebral column EDB 89.03% 88.38% 81.61% 80% 87.74%

In Table 10, we confront the EvAC associative classifier to several well-
known other classifiers. We compared the accuracy of classification of the intro-
duced EvAC to other associative classifiers such as EDMA [28] and CMAR [21].
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EDMA [28] is an associative classifier on evidential databases, as EvAC, de-
prived from association rules weighting whereas CMAR [21] is a classical as-
sociation rule classifier. The results through the table show the EvAC outper-
forms EDMA for all databases except the Diabete EDB. This comfort us on
the importance of the association rule weighting process. We also outperform
CMAR for all datasets except Iris one. A possible reason would be the non
effectiveness of imprecision modelling on Iris dataset with belief functions. Fi-
nally, by comparing EvAC accuracy to those of SVM and Neural Networks,
we notice that our algorithm is competitive and provides better classification
accuracy on several datasets. This could be explained by the contribution of
imprecision modelling since EDMA outperforms them too.

6 Conclusion

In this paper, we tackled data mining problem in evidential databases. We
detailed state-of-the-art of evidential support metric and confidence. In the
first part of the remainder, we proposed a simplification of existing support
measure. We also introduced a new support formula that brings precision
by analysing deeply the BBA’s frame of discernment. The proposed precise
measure extracts more hidden frequent patterns than the usual method. In
addition to frequents generation, we tackled association rule’s extraction from
evidential databases. We proposed a new confidence measure for association
rules in evidential databases. The proposed measure is based on precise support
(i.e., probability measure). The rules are then filtrated to retain only classi-
fication and non redundant rules. We also introduced an algorithm, denoted
EvAC, that makes it possible to classify with evidential association rules. All
generated rules are scrutinized following two criteria and a new measure for
rule’s relevance is introduced. The classification is based on rule’s fusion with
regards to their relevance. As illustrated in the experimentation section, the
proposed method provides an interesting performance rates. In this work, all
transaction’s database are considered with the same weight. In real life ap-
plications, a transaction may represents expert’s opinion. In future work, we
may overcome this constraint by revising the support formula if not all expert
are reliable.
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A Evidential database creation through Evidential C-Means

From a set of numerical data such as those in Table 11, it is possible to construct an evidential
database with ECM. For example, the database, presented in Table 11, is composed of 30
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instances and 2 features. This dataset is composed of 2 classes {C1, C2}. Figure 3 illustrates
the representation of these data in the feature space. From this database, the case of instance
#28 will be studied (in bold in Table 11). In Figure 3, this point is represented by a
pentagram.

ECM starts by creating the user requested number of cluster for each feature. In this
example, we choice respectively 3 and 2 clusters for Feature n◦1 and Feature n◦2.

According to one feature, ECM estimates the distance between each instance and each
cluster’ center. A BBA is created depending on the computed distance. Afterwards, ECM
tries to minimize the objective function defined in Equation (36). ECM computes recursively
the cluster’s center until the objective function is no more minimization is possible. From
evidential data mining point of view, ECM allows us to construct for each instance, according
to each feature, a BBA that represents its membership to each cluster. The clusters are
different categories that we may extract for a dataset feature (column). In the proposed
example, results of clustered are illustrated in Figure 4. In this figure, the studied instance
is also represented by a pentagram. Thus for this instance, a BBA m1 is obtained, with
ECM, on frame of discernment ΘA = {A1, A2, A3} according to Feature n◦1. A second
BBA, m2, is computed on frame of discernment ΘB = {B1, B2} according to Feature n◦2.
These BBAs correspond to mass functions of the evidential database for each attribute
(column). Table 12 shows BBAs obtained for instance #28 according to these 2 features.

Instance Feature n◦1 Feature n◦2
#1 1.572823 2.178659
#2 3.374233 1.243512
#3 2.216990 1.885116
#4 1.586457 1.584009
#5 2.248950 3.157813
#6 1.603087 2.270480
#7 1.720469 2.988283
#8 2.272330 0.965524
#9 1.154969 0.998604
#10 1.276800 0.953602
#11 0.719646 1.061612
#12 1.390259 0.700845
#13 0.939414 1.251207
#14 0.519969 1.156361
#15 1.188240 1.053371
#16 2.614883 2.996433
#17 3.046593 3.467626
#18 3.331759 2.824884
#19 3.809939 2.974583
#20 2.593651 2.780790
#21 3.429305 3.097608
#22 3.444431 3.034611
#23 4.243411 1.583589
#24 1.896018 1.978944
#25 2.022313 2.364037
#26 2.054863 1.971281
#27 2.017151 2.187874
#28 1.827643 2.112703
#29 1.608744 1.980301
#30 1.764552 1.836785

Table 11: Numerical Dataset.
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Fig. 3: Representation of data proposed in Table 11.
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Fig. 4: ECM clustering from the given dataset of Table 11
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Transaction Attribute n◦1 Attribute n◦2
(from Feature n◦1) (from Feature n◦2)
m1({A1}) = 0.6855
m1({A2}) = 0.0175

m1({A1, A2}) = 0.0260 m2({B1}) = 0.0425
#28 m1({A3}) = 0.0060 m2({B2}) = 0.8146

m1({A1, A3}) = 0.0147 m2(ΘB) = 0.1429
m1({A2, A3}) = 0.0712
m1(ΘA) = 0.1791

Table 12: BBAs obtained with ECM for instance #28.
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