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Résumé :
L’arbre de décision est l’une des méthodes de classifi-

cation les plus connues et a été largement utilisé dans plu-
sieurs domaines, notamment dans la fouille de données et
l’apprentissage automatique. Cependant, les algorithmes
standards de construction de l’arbre de décision ne sont
pas capables de gérer l’incertitude, en particulier l’in-
certitude épistémique. Dans cet article, nous proposons
d’adapter la technique d’arbre de décision à un environ-
nement incertain. Concrètement, nous traitons le cas où
les valeurs d’attributs d’objets sont incertaines et où cette
incertitude est représentée dans le cadre de la théorie des
fonctions de croyance. La méthode proposée concerne à
la fois la construction de l’arbre de décision et la classifi-
cation de nouveaux objets.
Mots-clés :

Arbres de décision, théorie des fonctions de croyance,
classification, incertitude.
Abstract:

Decision tree is one of the most common classification
approaches and has been widely used in several fields,
notably in Data Mining and Machine Learning. Howe-
ver, the classical decision tree building algorithms have
not the ability to handle uncertainty, in particular the epis-
temic one. In this paper, we propose to adapt the decision
tree technique to an uncertain environment. Concretely,
we tackle the case where object’s attribute values are un-
certain and where this uncertainty is represented within
the belief function framework. Our proposed method will
concern both the decision tree building task and the clas-
sification of new objects.
Keywords:

Decision trees, belief function theory, classification,
uncertainty.

1 Introduction

Decision trees are regarded as ones of the ef-
ficient machine learning techniques that are
widely used in the artificial intelligence field.

Their success is notably explained by their abi-
lity to provide understandable representations
easily interpreted by experts and even by or-
dinary users (non-specialist readers). Numerous
decision tree building approaches have been de-
veloped [1, 7]. Such algorithms take as input
a training set that includes objects characteri-
zed by a set of known attribute values as well
as their assigned classes and outputs a deci-
sion tree enabling the classification of new ob-
jects. In several real world applications, data
may be uncertain due to some factors such as
data randomness, data incompleteness, etc. Ho-
wever, classical decision tree versions are not
able to handle uncertainty that may occur in
the attribute values or in the class values for a
given classification problem. This shortcoming
has led to the introduction of the fuzzy decision
trees [15], the possibilistic decision trees [4],
the uncertain decision trees [6] and the proba-
bilistic decision trees [8]. Although the proba-
bility theory is widely used for modeling uncer-
tainty, several researchers have proved that pro-
bability cannot always be the adequate tool for
representing data uncertainty, concretely epis-
temic uncertainty. The belief function theory,
also called the Dempster-Shafer theory, has the
advantage to represent all kinds of knowledge
availability [2]. The process of incorporating
belief function theory within the decision tree
learning algorithm has been already developed



[3, 14, 16]. In the best of our knowledge, all
existing decision tree versions under the belief
function framework handle only the case of un-
certain class labels. However, in several real-
world cases, uncertainty may also occur in the
attribute values [10]. Inspired from the belief
decision tree paradigm proposed in [3] as an ex-
tension of the standard decision tree of Quin-
lan [8] to tackle data with uncertain class la-
bels, in this paper, we develop a novel deci-
sion tree classifier within the Transferable Be-
lief Model (TBM) [12] to handle uncertainty
that may exist in the attribute values. Precisely,
we tackle both the construction and the classifi-
cation phases. The reminder of this paper is or-
ganized as follows: Section 2 is devoted to high-
lighting the fundamental concepts of the belief
function theory as interpreted by the TBM fra-
mework. In Section 3, we detail our decision
tree building procedure from partially uncertain
data. Section 4 presents our classification scena-
rio. Our experimentation on several real world
databases are given in Section 5. Finally, in Sec-
tion 6, we draw our conclusion and our main
future work directions.

2 Belief function theory

In this Section, we briefly recall the funda-
mental concept underlying the TBM framework
[12], one interpretation of the belief function
theory.

2.1 Frame of discernment

Let Θ be a finite non-empty set ofN elementary
events related to a given problem. Such set Θ,
called the frame of discernment, is set as:

Θ = {θ1, θ2, . . . , θN} (1)

The power set of Θ, denoted by 2Θ, is composed
of all the subsets of Θ. It is defined as follows:

2Θ = {Y, Y ⊆ Θ}
= {∅, θ1, θ2, ..., θN , {θ1, θ2}, ...,Θ}

2.2 Basic belief assignment

The beliefs held by a such agent over the subsets
of the frame of discernment Θ are represented
by the so called basic belief assignment (bba),
denoted by m, such that:

m : 2Θ → [0, 1] (2)∑
Y⊆Θ

m(Y ) = 1

The quantity m(Y ), called basic belief mass
(bbm), states the degree of belief committed
exactly to the event Y . All subsets Y ⊆ Θ such
that m(Y ) > 0 are called focal elements.

2.3 Combination rules

Suppose thatm1 andm2 are two basic belief as-
signments provided by fully reliable distinct in-
formation sources [11] and defined in the same
frame of discernment Θ. The combination of
m1 and m2 through the conjunctive rule is set
as:

(m1 ∩©m2)(X) =
∑

Y,Z⊆Θ:Y ∩Z=X

m1(Y ).m2(Z)

(3)

It is substantial to note that some cases require
the combination of bbas defined on different
frames of discernment. Let Θ1 and Θ2 be two
frames of discernment, the idea is to extend Θ1

and Θ2 to a joint frame of discernment Θ. This
process, known under the name of vacuous ex-
tension, is defined as:

Θ = Θ1 ×Θ2 (4)

The extended mass function of m1 which is de-
fined on Θ1 and whose focal elements are the
cylinder sets of the focal elements ofm1 is com-
puted as follows:

mΘ1↑Θ(X) = m1(Y ) where X = Y×Θ2, Y ⊆ Θ1

(5)

mΘ1↑Θ(X) = 0 otherwise



2.4 Distance between two pieces of evidence

The distance measures represent the degree of
dissimilarity between bodies of evidence. In
recent years, many researchers have investiga-
ted a set of different approaches to compute dis-
tance between a set of bbas [5, 9, 13]. The Jous-
selme distance, proposed in [5], is regarded as
one of the most commonly used distances. Let
m1 and m2 be two pieces of evidence, the Jous-
selme distance betweenm1 andm2 is computed
as follows:

dist(m1,m2) =

√
1

2
(m1 −m2)TD(m1 −m2)

(6)

where D is the Jaccard similarity measure defi-
ned by:

D(X, Y ) =


1 if X=Y = ∅
|X ∩ Y |
|X ∪ Y |

∀ X ,Y ∈ 2Θ
(7)

3 Learning Decision tree classifier
from partially uncertain data

Since real world applications may incorporate
uncertainty, the process of constructing ma-
chine learning algorithms from uncertain data
has attracted the attention of several researchers
over the past few years. Authors, in [3], have
suggested the so-called belief decision tree as
an extension of the standard decision tree for
dealing with databases described by uncertain
class labels, precisely where the uncertainty is
represented within the belief function frame-
work. However, in several domains, the uncer-
tainty may also appear in the attribute values.
Thus, it is important to develop a classification
model to handle databases characterized by un-
certain attribute values. We detail, in this Sec-
tion, our proposed decision tree classifier for
treating the problem of uncertain attribute va-
lues within the TBM framework where we have
used the following notations:

— T : a given training set composed by M
objects Oi; i = {1,. . . ,M}.

— S: a subset of objects belonging to the
training set T .

— C= {C1,. . . , CQ}: represents the Q pos-
sible classes of the classification pro-
blem.

— A={A1,. . .,An}: the set of n attributes.
— ΘAk : corresponds to all the possible va-

lues of an attribute Ak ∈ A where k =
{1, . . . , n}.

— mi
ΘAk : is the bba relative to the attribute

Ak of the object Oi.
— mi

ΘAk (v): denotes the bbm assigned to
the hypothesis that the actual attribute
value of object Oi belongs to v ⊆ ΘAk .

— L= {L1,. . . , LF}: represents the F gene-
rated leaves when building the decision
tree.

3.1 Decision Tree parameters for partially
uncertain data

We highlight, in this Section, the main parame-
ters enabling the construction of our proposed
decision tree within the belief function frame-
work. Firstly, we present our proposed attribute
selection measure. Then, we detail the splitting
strategy process and we point out the different
stopping criteria. Finally, we describe the struc-
ture of leaves in an uncertain context.

Attribute selection measure. The attribute selec-
tion measure is regarded as one of the major pa-
rameters ensuring decision tree construction. It
consists of choosing, for each decision node of
the tree, the attribute test that will best separate
the training instance into homogeneous subsets.
In this paper, we are based on an intra-group
distance that measures for each attribute value
how much objects are close to each other. We
propose the following steps to pick out the best
attribute:

1. We compute the total distance taken
over the training set T as follows:

SumD(S) =
∑
Oi∈S

∑
Oj≥i+1∈S

1

|n|

n∑
k=1

P S
i .P

S
j dist(m

ΘAk
i ,m

ΘAk
j ) (8)



where dist represents the Jousselme dis-
tance between two bbas and P S

i states
the probability of belonging of the ob-
jectOi to the set S. It is calculated as the
cross product of the pignistic probabili-
ties of the different attribute’values bbas
relative to the object Oi and allowing Oi

to belong to S.
2. Then, for each attribute value v, we

compute SumD(SAk
v ) as follows:

SumD(SAk
v ) =

∑
Oi∈S

Ak
v

∑
Oj≥i+1∈S

Ak
v

P S
Ak
v

i

.P S
Ak
v

j dist(m
ΘAk
i ,m

ΘAk
j ) (9)

where P S
Ak
v

i quantifies the probability
of the object Oi to belong to the sub-
set SAk

v . Note that it is computed as the
same manner as the computation of P s

j .
3. Once the different SumD(SAk

v ) are cal-
culated, for each attribute Ak ∈ A, we
compute SumDAk

(S) as follows:

SumDAk
(S) =

∑
v∈ΘAk

SumD(SAk
v )

(10)

4. In analogy to classical decision trees, we
compute the difference before and after
the partitioning process has been perfor-
med using the attribute Ak. This mea-
sure, denoted by diff(S,Ak), is defined
as the difference between SumD(S)
and SumDAk

(S) as follows:

diff(S,Ak) = SumD(S)− SumDAk
(S)

(11)

5. Using the SplitInfo, we compute the
DiffRatio relative to the attribute Ak.

DiffRatio(S,Ak) =
diff(S,Ak)

SplitInfo(S,Ak)
(12)

where

SplitInfo(S,Ak) = (13)

−
∑

v∈D(Ak)

|SAk
v |
|S|

log2
|SAk

v |
|S|

6. Repeat this process for each attributeAk

∈ A and then select the one that maxi-
mize the DiffRatio.

Splitting Strategy. The splitting strategy
consists of dividing the training set according
to the values of the attribute chosen as a
decision node. We associate an edge for each
attribute value. Consequently, we obtain several
training subsets where each subset includes
objects having the same attribute value. As
we deal with uncertain attribute values, each
training object may be part of more than
one subset with a probability of belonging
computed in term of the pignistic probability of
the object’s attribute bbas.

Stopping criteria. The stopping criteria are
quite similar to those used by the standard deci-
sion tree. There exist mainly four stopping stra-
tegies:

1. Only one instance is part to the treated
node.

2. Instances of the treated node belong to
the same class.

3. There is no further attribute for che-
cking.

4. The remaining attributes have gain ratio
equal or less than zero.

Structure of leaves. Our ultimate purpose is to
construct decision tree from data characterized
by uncertain attribute values. In such case an
objectOi may belong to more than one leaf with
a probability of belonging denoted by PLf

i . As
leaves may include objects with different class
values, our proposed decision tree building al-
gorithm assigns for each leaf a probability dis-
tribution over the set of classes computed from
the probability of objects belonging to this leaf.
The probability distribution relative to Lf over
a class Cq ∈ C is set as:

Pr{Lf}(Cq) =
1∑

Oi∈Lf
P

Lf

i

∑
Oi∈Lf

P
Lf

i γiq

(14)

where γiq equals 1 if the class of the objectOi is
Cq, 0 otherwise and PLf

i is the probability of the



instance Oi to belong to the leaf Lf . This latter
is calculated as the cross product of the pignis-
tic probabilities of the objectOi to belong to the
nodes that link the root node and the correspon-
ding leaf node Lf .

3.2 The construction of a decision tree clas-
sifier from partially uncertain table

The construction of our proposed decision
tree classifier within an uncertain environ-
ment will follow the same Quinlan’s algorithm
steps which requires a top down approach for
constructing standard decision tree. Assume
that T is our learning set, the different steps of
our decision tree learning algorithm will be as
follows:

1. We start by creating the root node from
the whole learning set T .

2. We check if the root node satisfies any
stopping criteria.
— If one stopping criterion is reached,

the treated node will be declared as a
leaf for which we compute the pro-
bability distribution over the set of
classes.

— else, we pick out the attribute that
maximizes the attribute selection
measure presented previously. The
chosen one will be the root node of
our decision tree relative to the set
T .

3. We create a branch for each attribute va-
lue chosen as a root. This partitioning
step leads to several subsets where each
one contains as much as possible homo-
genous objects according to the attribute
value.

4. We restart the same process from level 2
until all nodes are considered as leaves.

It is worth noting that the complexity of buil-
ding our proposed decision tree is O(n*m2*log
m) where m is the number of training instances
and n is the number of attributes.

4 Classification scenario within an
uncertain context

As stated by Quinlan [8], a decision tree pa-
radigm consists mainly in two distinct proce-
dures which are the construction and the clas-
sification steps. In this Section, we propose a
novel approach for classifying objects with un-
certain attributes. Let J be the total number of
testing instances Oj (j = {1, . . . , J}) and A =
{A1, . . . , An} be the set of n attributes descri-
bing our testing instances. The global frame of
discernment relative to all the attributes, deno-
ted by ΘA, is equal to the cross product of the
different ΘAk as follows:

ΘA = ×
k=1,...,n

ΘAk . (15)

Since objects are described by a combination of
values where each of them corresponds to one
attribute, we have firstly to compute for each
object to be classified the joint bba expressing
beliefs on its attribute values. To perform our
ultimate goal, we proceed as follows:

— Firstly, we extend the different bbas
mΘAk

j to the global frame of attributes
ΘA (see Equation 5). Thus, we get the
different bbas mΘAk↑ΘA

j .
— Then, we combine the different exten-

ded bbas using the conjunctive operator:

mΘA

j = ∩©
k=1,...,n

mΘAk↑ΘA

j (16)

If our joint bba mΘA

j is obtained, we move on to
compute the probability distribution Prj[x](Cq)
of each focal element x of an object Oj (q =
{1, . . . , Q}). It will be noted that the compu-
tation of this probability distribution depends
mainly on the focal elements of the bba mΘA

and on the subset x. This dependency is expres-
sed in what follows:

— When x is a singleton, the probability
distribution Prj[x](Cq) will be equal to
the probability of the leaf’s class Cq for
which the focal element is attached.

— else if the focal element is not a single-
ton, we explore all possible paths cor-



respond to this combination of values.
There are two possible cases:
— The case 1 is that all paths lead to

the same leaf. In this case the proba-
bility Prj[x](Cq) will be equal to the
probability of the leaf’s class Cq for
which the focal element is attached.

— The case 2 is that paths lead to dis-
tinct leaves. In this case the proba-
bility Prj[x](Cq) will be equal to
the average probability of the class
Cq relative to the different attached
leaves.

— Finally, the probability distribution rela-
tive to each object test Oj over the set of
classes will be set as:

Prj(Cq) =
∑
x⊆ΘA

mΘA

(x)Prj[x](Cq)

∀ q ∈ {1, . . . , Q} and j = {1, . . . , J}
(17)

The most probable class of the objectOj

is the one having the highest probability
Prj(C).

5 Implementation and simulation

This Section is devoted to detailing our experi-
mentation tests that we have carried out to as-
sess the performance of our proposed decision
tree classifier.

5.1 Experimentation settings

Regarding time complexity of our proposed ap-
proach, we have performed our experiments on
real small categorical databases obtained from
the UCI repository. A brief description of these
databases is presented in Table 1.

Since, in this paper, we only deal with uncertain
attributes to construct our decision tree classi-
fier, we propose to generate synthetic databases
from the original ones by including uncertainty.
We have tackled different uncertainty levels ac-
cording to a degree of uncertainty denoted by
P :

— Certain Case: P=0
— Low Uncertainty: 0.1 ≤ P < 0.4
— Middle Uncertainty: 0.4 ≤ P < 0.7
— High Uncertainty: 0.7 ≤ P ≤ 1

As previously mentioned, each attribute value v
of an object Oi such that v ⊆ ΘAk should be
expressed by a bba as follows:

mΘAk

i (v) = 1− P (18)

mΘAk

i (ΘAk) = P

To check the performance of our proposed de-
cision tree method when classifying new ob-
jects, we have relied on two evaluation crite-
ria, namely the Percentage of Correctly Classi-
fication criterion (PCC) and a distance criterion.
The former one quantifies the percent of correct
classification of objects belonging to the test set.
It is set as follows:

PCC =
Number of well classified instances

Number of classified instances
(19)

where the Number of well classified
instances represents the number of test ins-
tances for which the most probable classes yiel-
ded through our novel decision tree learning al-
gorithm are the same as the real ones and the
Number of classified instances corresponds
to the total number of classified instances.

The latter one is used in the purpose of per-
forming a comparison between each test ins-
tance’s probability distribution over the set of
classes and its real class. It is computed as fol-
lows where γjq equals 1 when Cq represents the
real class of the test instance Oj and 0 other-
wise:

DistanceCriterionj =

Q∑
q=1

(Prj(Cq)− γjq)2

(20)

Note that this distance satisfies the following
property:

0 ≤ DistanceCriterionj ≤ 2 (21)

Besides, we just have to compute the average
distance yielded from all test instances to get a
total distance.



Tableau 1 – Description of databases
Databases #Instances #Attributes #Classes
Balloons 16 4 2
Hayes-Roth 160 5 3
Monkey 432 7 2
Balance 625 4 3
Lenses 24 4 3
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Figure 1 – Experimentation results

5.2 Experimentation results
We have performed 10-fold cross-validation ap-
proach to ensure an efficient estimation of the
evaluation criteria. This paradigm splits each
database into ten parts: nine parts are used as
the training set and the remaining part is used as
the testing set. This procedure will be repeated
ten times where each part is used exactly once
as a test set. It is substantial to note that our ap-
proach for building decision trees does not give
the same result as the Quinlan C4.5 algorithm
in the case of no-uncertainty in the attribute va-
lues. This is explained by the fact that the C4.5
algorithm uses the GainRatio as a splitting cri-
terion, while our proposed classifier relies on
the DiffRatio criterion. These two mentio-
ned splitting criteria may generate different de-
cision tree structures. So, as a first experimen-
tation, we start by comparing our proposed ap-
proach with Quinlan’s algorithm in term of the
PCC criterion. The classification results are gi-
ven in Table 2 where we can remark that our
proposed approach has given the best classifi-
cation accuracy for all the mentioned databases
compared to the C4.5 algorithm. Accordingly,
we can deduce that the splitting criterion may

Tableau 2 – Comparing the Quinlan and the
co-uncertainty cases according to the PCC
criterion

Databases No-uncertainy Case (%) Quinlan Case (%)
Balloons 100 80
Hayes-Roth 72.7 57
Monkey 41.2 39.07
Balance 61.4 50
Lenses 85 70

affect the accuracy of the classifier. Then, we
have applied our proposed decision tree in se-
veral uncertainty cases. Our experimental re-
sults in terms of the PCC and the distance cri-
teria are depicted respectively in Figure 1(a)
and Figure 1(b) for the different mentioned da-
tabases. From Figure 1(a), we can notice that
our proposed decision tree algorithm has yiel-
ded good classification results in term of the
PCC criterion for the different uncertainty le-
vels of the different databases. For example, for
Hayes-Roth database, we have 72.7%, 63.1%,
59.4% and 58.6% as PCCs relative respectively
to no, low, middle and high uncertainties. Re-
garding the distance criterion, from Figure 1(b),
we remark that our proposed classifier has also



given interesting results. In fact, all distance va-
lues belong to the closed interval [1,1.37]. For
example, the distance results relative to Lenses
database are 1.15, 1.14, 1.08 and 1 for respecti-
vely no, low, middle and high uncertainties. We
can also remark that both the PCC and the dis-
tance values decrease with the increasing of the
uncertainty degree in the most of cases.

6 Conclusion

In this paper, we have developed a novel de-
cision tree algorithm for tackling epistimic un-
certainty that occurs in the attribute values. Al-
though we have yielded interesting results in
terms of the PCC and the distance criteria, time
complexity is stilling a challenging problem for
large or even medium sized databases. Thus, as
a future work, we intend to minimize time com-
plexity by reducing the dimensionality space
and also by applying a pruning procedure. Also,
we intend to develop other extensions of our
proposed approach to handle the case of nume-
rical and mixed databases.
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