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Abstract—Multi-target tracking using multiple sensors is an
important research field in application areas of mobile systems
and military applications. This paper proposes a decentralized
multi-sensor, multi-target tracking and belief (credal) based clas-
sification approach, applied to maritime targets. A given number
of sensors, considered as unreliable, are designed to locally
predict and update targets states using Interacting Multiple
Model (IMM) algorithms (one IMM for one target). Targets
IMMs are updated by sequentially acquired measurements. The
measurements are assigned to the targets by the means of
a generalized Global Nearest Neighbor (GNN) algorithm. The
generalized GNN algorithm is able to provide information onthe
newly detected or non-detected targets and these information is
used by score functions which manage the targets appearances
and disappearances. In addition to the tracking task of multiple
targets, each sensor performs a local classification of eachone
of the targets. The unreliability of the sensors makes the local
classifications weak. In this article, a global classification method
is shown to improve the sensors classification performances.

I. I NTRODUCTION

Combining multiple unreliable sensors information can
provide more accurate results than using single sensor [1].This
paper proposes a decentralized multiple sensors architecture
which aims to correctly track and classify a set of randomly
appearing and disappearing multiple maneuvering targets.

To deal with a such complex problem, each sensor performs
a complete tracking solution. This solution consists on targets
states estimation task, sequentially acquired measurements to
known targets assignment and targets appearances and disap-
pearances management.

Concerning the adaptive estimation of the targets states, the
designed solution uses the Interacting Multiple Model (IMM)
algorithm, one of the best approaches related to multi-target
estimation theory [2], [3]. Spite of that, the estimation accuracy
still depends on the manner that the real measurements are
assigned to the known targets [3]–[5]. In our solution this
issue is ensured by the means of a generalized Global Nearest
Neighbor (GNN) algorithm. In literature, multiple other assign-
ment approaches exist, namely, probabilistic ones like: Joint
Probability Data Association (JPDA), Integrated Probability
Data Association (IPDA) [6], [7], etc. These approaches update
the different targets states with a weighted sum of all the
real measurements, due to their probabilistic aspect these
methods are known to have some difficulties to handle targets
appearances and disappearances. Multi-Hypotheses Tracking
(MHT) algorithm [3] has a different principle, it is a multi-
scan approach that holds on the assignment decision until

having clearer data. Considered as the best assignment ap-
proach, it is also the most computationally intensive. More
recently, Markov Chain Monte Carlo (MCMC) based assign-
ment algorithms are proposed [8], [9]. They are based on
Monte Carlo sampling and their performance depends on the
number of the performed samples. As well as MHT, IPDA
and JPDA, MCMC methods are considered inefficient in a
dense targets environment, due to their high computational
complexity. The assignment algorithm adopted in this work,
namely the generalized GNN, belongs to the deterministic
approaches, beyond its its limits in conflicting scenarios,it is
appreciated for its simplicity and low computation complexity,
it is largely used in real time applications, even in a dense
targets environment. In addition to this, its generalized version
can provide information on the newly detected and non-
detected targets. Using score functions representing targets
tracks quality, these information is smartly used to handle
targets appearances and disappearances.

Concerning the classification problem, in the single target
framework, the work of Smets and Ristic [10] about credal
classification, based on belief functions [11], reveals a capital
weakness of the already existing Bayesian solutions [12], [13],
namely, imprecise classification situations which are handled
by the belief theory but not by the Bayesian one. The same
credal classification method is extended to multi-target frame-
work in [14]. The credal classification is highly performing
when data are acquired by a reliable sensor. However, it
is shown in this article that the classification performance
decreases when the sensor’s data are quit imprecise, this is
why a multi-sensor approach is adopted. Simulation results
shows that the multi-sensor approach with an adequate fusion
strategy achieve a classification performance better than the
local classifications achieved by all the sensors.

Section II of this article provide an introduction to multi-
target tracking problem and the local tracking solution is
depicted in Section III. Section IV describes the local clas-
sification algorithm and Section V proposes a high level sen-
sors’ classifications fusion. Finally, in Section VI, simulation
results on multiple maritime targets are given to highlightthe
advantage of the adopted decentralized approach.

II. M ULTI -TARGET TRACKING PROBLEM POSITION

Targets in their environment can perform different ma-
neuvers, their evolution can be seen as a switching Markov
process. One possible modeling of this process consists on a
finite set of linear models. Details on the derivation of the
targets motion models can be found in [15]–[17]. For a given



targett being in evolution modelml, with l = {1, ...r} andr
being the number of possible known acceleration models, the
state vector evolution can be given as follows:

xt
k = Fxt

k−1
+Gut

k(ml) + wt
k (1)

where,xt
k ∈ R

p is the tth target state vector at timek, with
F being the (p × p) state matrix andut

k represents thetth

target deterministic input, which represents simply a known
acceleration modeml, wherel = 1, ..., r andr represents the
number of possible accelerations modes. The parameterwt

k

represents the state Gaussian noise with covariance matrixQ.
The input matrix is denotedG. For simplicity, the measure-
ments are taken according to a linear model given as follows:

zjk = Hxk + vk, (2)

where, zjk ∈ R
q is the jth received observation at timek,

with j ∈ {1, 2, ...,m}. The observation matrix of dimension
(q × p) is notedH and vk represents the measurement error,
it is considered as a Gaussian noise with zero mean value
and covariance matrixR. Note that the number of targetsn
is not constant over the time and a given measurementzjk at
time k can come from a known targett, a new targett′ or
a clutter. The number of known targetsn or/and of acquired
measurementsm can be different from a sensor to an other,
so the number of targets known by a sensori are notedni

and the number of measurements acquired by the same sensor
is notedmi. For simplicity, the sensor’s index is not used to
describe the local tracking and classification algorithms.The
set of measurements taken by the sensori at timek is noted
Zi = {z1k, z

2

k, ..., z
mi

k }, with i ∈ {1, 2, ..., S} and S is the
number of sensors. The optimal Bayesian estimation of thetth

target state at timek requires the calculation of the following
probability density function:

p(xt
k|z

t
1,...,k, u

t
k(m1,...,r)), i = 1, ..., n, (3)

where,zt
1,...,k represents the cumulative measurement for the

targett until the timek.

III. L OCAL TRACKING ALGORITHM

The Gaussian assumption of the state and measurement
noises allows the probability density functions, in Equation
(3), of n maneuvering targets, to be estimated byn different
Interacting Multiple Model (IMM) algorithms. Each target’s
IMM is composed ofr Kalman filters (one Kalman filter for
one evolution modelml, with l = 1, ..., r). A switching process
between the different Kalman filters keeps track of the complex
targets maneuvers. At each time stepk, each IMM performs
two main steps, namely: state and measurement prediction
step and state update step. The prediction step of the IMMs
provides a set of predicted measurementsẑt, t = {1, 2, ..., n}
with n the number of already known targets at timek − 1.
In addition to this information the prediction step provides n
covariance matricesP t concerning the expected measurement
prediction errors. At time stepk a set of real measurements
zj, j = {1, 2, ...,m} are received. They are compared to the
predicted ones following the resolution of an assignment prob-
lem. The assignment solution is a generalized GNN algorithm
which is performed on two main steps, namely:

• generalized assignment matrix calculation: the as-
signment matrix elements are normalized Euclidean
distances calculated as follows:

dt,j = (zj − ẑt)T (P t)−1(zj − ẑt), (4)

with t = {1, 2, ..., n}, j = {1, 2, ...,m}.

• Assignment matrix resolution, using the generalized
Munkres algorithm [18] in such a way that: targets
that have received an observation will be updated fol-
lowing their IMMs update process. Targets that have
not received any observation are considered as non-
detected. The non-assigned measurements are used to
initialize new targets.

It is mentioned in [19] that the Euclidean normalized distances
calculated in Equation (4) follows aχ2 distribution with a
degree of freedomq (dimension of the measurement vector).
For example, a measurementj satisfying the following test is
candidate to initialize a new target.

If dt,j > T, ∀ t ∈ {1, 2, ..., n}, (5)

whereT , is a threshold drawn from theχ2 table, basing on
an a priori probability that the measurement corresponds to a
new target and the degree of freedomq. The information about
newly detection measurements and non-detected targets are
smartly handled by score function in order to manage targets
appearances and disappearances. Score function is a log-
likelihood L(t) ratio sequentially calculated for each target,
it has an increasing evolution when the target is detected
and a decreasing evolution when the target is not detected.
The quantityL(t) is compared to two thresholdsT1 and
T2, respectively, the deletion and confirmation thresholds. For
example, a non-detected target is not immediately deleted,the
algorithm continue to predict its trajectory (maybe the non-
detection is caused by a simple occlusion). The non-detected
target is left when its score function reaches the deletion
thresholdT1. The use of the score function is described in
[14] and detailed in [15]. The last tracking step is the IMMs
update step, it uses the managed measurements to provide the
targets state estimation notedx̂t, t = {1, 2, ..., n}.

IV. L OCAL CLASSIFICATION

It is considered that the IMM algorithms contain an ex-
haustive list of all the targets’ possible evolution models. The
list of models is given by:

M = [m1,m2, ...,mr] , (6)

wherer represents the total number of models.

An a priori knowledge on the tracked targets classes’ and
their behaviors allows to cluster ther different models inM .
The models are clustered in such a way to define the set
models belonging to each specific behavior. The set of possible
behaviors can be defined by:B = [b1, b2, ..., bnb], wherenb
is the number of behaviors. The set of models belonging to
the behaviorbi, for example, is defined byMbi ⊆ M , with
i = 1, ..., nb. The number of models inMbi is noted byrbi .

Ones the different behaviors are defined, their likelihoods
l(bi) are calculated basing on the different models likelihoods
λ(mj) and probabilitiesµ(mj), with j = 1, ..., r which are
provided from the IMMs update steps.



A. Behaviors likelihoods calculation

Calculation of the behaviors likelihoods is performed as
follows:

lbi =
∑

j:mj∈Mbi

µ′

jλj , i = 1, ..., nb , (7)

with:
µ′

j =
µj

∑

j:mj∈Mi

µj

, j = 1, ..., rbi . (8)

Based on the behaviors likelihoods and using the Generalized
Bayesian Theorem [10], [20], a mass function on the behaviors
spaceB can be calculated. In order to obtain the classes
probabilities or pignistic probabilities, the calculatedbehaviors
likelihoods, can either be processed by a Bayesian or credal
classifiers, respectively.

B. Bayesian classifier

The following Bayesian classifier is first presented in [12],
it is based on the Bayesian rule.

P (bi/z1,...,k) =
lbi

∑S

j=1
lbjP (bj |z1,...,k−1)

P (bi/z1,...,k−1),

(9)

where,P (bi/z1,...,k−1) represents thea priori probability
of the behaviorbi.
The initial a priori probabilities can be taken equal to an
equiprobability, then they are simply the previous values.

C. Credal classifier

This step is ensure by the Generalized Bayesian Theorem,
it proceeds on two mean steps:

• Mass function calculation using the following equa-
tion:

mk(D) =
∏

bi∈D

l(bi)
∏

bi∈D̄

(1− l(bi)), (10)

whereD ⊆ B.

• Recursive mass functions combination: the mass func-
tion mk of time k is combined with the mass function
mk−1 of timek−1, using the conjunctive combination
[21]:

mk(D) =
∑

D1,D2|D1∩D2=D

mk(D1)mk−1(D2), (11)

where the initial beliefm0 being a vacuous mass
function [11].

D. Classes mass function calculation

According to relations knowna priori, the behaviors
mass function can be precisely transferred on a classes mass
function, with C = {c1, c1, ..., cnc} is the set of possible
classes andnc is the number of classes. For example, a go-fast
boat’s class is related to a specific behavior which is complex
maneuvers, so the mass function on complex maneuvers is
transferred to the go-fast boat’s class. The belief is transferred

from the mass function on2B to a mass function on2C using
the following equation:

mC
k = M̄ ×mB

k , (12)

whereM̄ is a matrix expressing the relations between behav-
iors and classes, it contains the conditional massesm(A|D),
with A ⊆ C andD ⊆ B. This step is application depending,
more details are given in the example of Section VI.

The resulting mass functionmC
k is supposed having all the

available information. In order to make a decision, the mass
function is simply transformed to pignistic probabilitiesusing
the following equation:

BetP (ci) =
∑

ci∈A

1

|A|

mC
k (A)

1−mC
k (∅)

, (13)

whereA ⊆ C and∅ being the empty set.

Note that the described classification algorithm is executed
by each sensor, for each tracked target. For a global credal clas-
sification purpose, the local decision making can be avoided
and the classification mass functions of then targets are used to
perform a global classification. The set of mass functions given
by a sensori at time k is denotedMi = {m1

k,m
2

k, ...,m
n
k},

wherei = 1, ..., S andS is the number of sensors.

As it was shown in [10] for a single target classification,
and extended to multiple targets classification in [14], the
credal kinematic data based classification outperforms the
Bayesian one, therefore, the interest of this article is focused
on the application of the credal classification, in multiple
unreliable sensors. In Section VI, a comparison between the
credal and Bayesian classifications is given at a local level,
but for lack of space, only the most interesting multi-sensor
results will be given, namely, the global credal classification
results.

V. GLOBAL CLASSIFICATION

Figure 1 illustrates the complete multi-sensor and multi-
target algorithm. Each sensori among theS designed ones
makes a set of estimated state vectorsX̂i = {x̂1

k, x̂
1

k, ..., x̂
n
k}

basing on the set of taken measurementsZi at time k, by
performing the described local tracking algorithm. Using the
local classification algorithm, the sensor provide a set of mass
functionsMi concerning targets classifications.

Fig. 1. Decentralized classification approach flowchart.



Box ”Track-to-track association” in Figure 1 aims to es-
tablish a matching between sensors estimates setsX̂1,...,S

elements in order to recognize in which order the belief
setsM1,...,S have to be combined for a global classification
purpose. The matching step is ensured by the means of a
generalize GNN algorithm, as described in Section III, it is
executed for each pair of sensors. The cost of assigning target
t of sensori to targetl of sensorj is defined as follows:

Dt,l = (x̂t
i − x̂l

j)
T (P t + P l)−1(x̂t1

i − x̂l
j), (14)

where t = 1, ..., ni and l = 1, ..., nj , with ni and nj are,
respectively, the number of targets tracked by sensorsi and
j. The distances of Equation (14) [15] form the track-to-
track generalized assignment matrix, which is resolved by the
generalized Munkres algorithm.

Once a consensus is reached between sensors about the
commonly tracked targets, their local classifications are fused
using Dempster’s conjunctive rule and disjunctive rule of
combination.

A. Fusion using Dempster’s rule

According to the provided matching solution, the elements
of all the local sets{M1,M2, ...,MS} have to be combined us-
ing Dempster’s conjunctive combination in Equation (15) and
give a common set of mass functionsM1⊕2⊕...⊕S. Dempster’s
normalized conjunctive combination of two mass functionsm1

andm2, provided by sensors1 and2, is defined as follows:

m1⊕2(A) =
m1 ∩©2(A)

1−m1 ∩©2(∅)
=

∑
A1,A2|A1∩A2=A

m1(A1)m2(A2)

1−m1 ∩©2(∅)
,

(15)

with A ⊆ C and∅ being the empty-set.

In order to make a global classification decision, the
elements of the setM1,2,...,S has to be transformed on
pignistic probabilities using Equation (13).

B. Fusion using disjunctive rule

According to the matching solution, the mass functions in
the sets{M1,M2, ...,MS} are distinctively combined. The
disjunctive rule of combination of two mass functionsm1

and m2 which are provided by sensors1 and 2, is defined
as follows:

m1 ∪©2(A) =
∑

A1,A2|A1∪A2=A

m1(A1)m2(A2). (16)

Note that all mass function contained in the setsMi,
with i = 1, ..., S, are combined using the above described
fusion rules according to the order given by the track-to-track
assignment step. In order to take a decision concerning the
target global classifications, the obtained global mass functions
are transformed to pignistic probabilities using Equation(13).

VI. M ARITIME PIRACY MULTI -TARGET TRACKING AND
CLASSIFICATION EXAMPLE

A. Description

This section describes an example of piracy targets en-
vironment. Targets are randomly appearing, disappearing and
performing different maneuvers. The identification of the tar-
gets type (cargo, military boat, go-fast boat (generally pirates
boats), etc.) is based on the complexity of the performed
maneuvers. The distinctive behaviors of the considered targets
are given as follows:

• behavior 1 (b1): behavior of targets having a low
maneuvering capacities (e.g. cargo).

• Behavior2 (b2): behavior of targets having a medium
maneuvering capacities (e.g. military boat).

• Behavior 3 (b3): behavior of targets having a high
maneuvering capacities (e.g. go-fast boat).

Where the set of targets’ possible classesC = {c1, c2, c3}
corresponds toC = {Cargo,Military boat,Go-fast boat}.

The state vector of all the targets is represented by
x = [x ẋ y ẏ], it represents the position and the velocity
on (x, y) directions. The state vector of each target evolves
following the model in Equation (1), with a sate matrixF
given by:

F =

[

1 ∆T 0 0

0 1 0 0

0 0 1 ∆T

0 0 0 1

]

where∆T is the sampling time.

The deterministic input vectoru(ml) = [ax ay]
T in

Equation (1) representing the targets different acceleration
modes. For exampleu(m1) = [0 0]

T represents a constant
velocity mode. The differences in the acceleration capabilities
allow the distinction to be made between the targets different
classes’ behaviors. The acceleration limitations for thea priori
known classes are expressed by:−Li ≤ {ax, ay} ≤ Li, where
Li = 0g, 0.2g and0.4g respectively, for the classesc1, c2 and
c3, with g = 9.81 m/s2 is the gravitational acceleration.

In the performed simulation, each target’s IMM is
composed of13 evolution models according to the different
maneuvers which can be made inx andy directions (see the
example described in [12]). The different evolution models
are distributed over the three possible targets’ behaviors, as
follows:
Mb1 = [m1]: models belonging to the behaviorb1.
Mb2 = [m1, ...,m5]: models belonging to the behaviorb2.
Mb3 = [m1, ...,m13]: models belonging to the behaviorb3.

Once the different behaviors are defined and their mass
function is calculated (based on the local classification algo-
rithm described in Section IV), it is transformed on classes
mass according to the following relation:

• relation 1: target in behavior1 can correspond to
cargo, military or go-fast boats. All of them can evolve
with a constant velocity. This relation can be written
as:b1 = {c1, c2, c3}.



• Relation2: target in behavior2, which has performed
a medium maneuver, may corresponds to a military
or go-fast boats only. Cargos is supposed unable to
perform any maneuver. This relation can be written
as: b2 = {c2, c3}.

• Relation3: target in behavior3, which has performed
a sharp maneuver, can only be a go-fast boat, because
cargos and military boats can not perform sharp ma-
neuvers. This relation can be written as:b3 = {c3}.

The belief transfer is performed using Equation (12). It trans-
fers the belief on the power set2B of behaviors to the power set
2C of classes, according to the relations described above. The
corresponding complete transfer matrix̄M , in Equation (12),
has a size(23 = 8)× (23 = 8), and is given by:

M̄ =









1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 1 0 1 0 1









.

Details concerning the derivation of the above matrix can
be found in [10]. This matrix enables to compute the mass
functions on the classes spaceC, in order to take a decision
on the targets’ classifications.

B. Simulation and results

Two unreliable sensors taking measurements according to
Equation (2) are observing, all or some, of multiple maneu-
vering and randomly appearing and disappearing targets. The
trajectories of the targets on (x, y) space, are depicted in
Figure 2.

Note that target2 is observed by the two designed sensors
and only its classification results are presented in this section
(lack of space).

As it can be seen in Figure 2 and described above, target
2 evolution consists on three constant evolution segments
separated by two maneuvers. First, it begins its trajectorywith
a constant velocity, which corresponds to zero acceleration
vectoru = [0 0]

T . Then in time window[62, 66], it performs
a medium acceleration inx direction (according to the input
vectoru = [0.2 0]T ), after that it takes a constant evolution
until its second sharp maneuver iny direction (according to the
input vectoru = [0 0.4]

T ) during the time window[80, 86].
Finally, it finishes its evolution with a constant velocity.
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Fig. 2. Multi-target trajectories.

Normally, we expect that target2 has to be in doubt
between the three classes during the first constant velocity
evolution step, and has to be in doubt between the second
and third classes after its medium maneuver, because targets
of class1 can not perform any maneuver, and finally, it has to
be classified in class3 after its sharp maneuver.
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Fig. 3. Sensor1 and2, respectively, local classification results.
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Fig. 4. Sensor1 and2, respectively, local classification results.

As expected, Figure 3 shows that both sensors succeed to
classify target2 as a go-fast boat after its sharp maneuver,
this using the Bayesian or the credal algoithm. It can also be
shown that in the double situation, where it is supposed to
have a perfect doubt, in the first movement step for example,
the Bayesian classifier favors the classc1 which leads quickly
to a wrong decision, the explanation is given in [14]. Due to
the sensors unreliability, the sensors’ credal classification are
also deteriorated. Indeed, as it is shown in the Figures 3 and
4 the doubt in the first and second movement steps is badly
managed, even in the credal results. The following results try
to enhance the sensors classifications by fusing them. It is
shown, with an explanation, that the disjunctive fusion gives
the best classification result.
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Fig. 5. Conjunctive and disjunctive combinations, respectively, global
classification results.

Figure 5, shows the classification results obtained after
global classification performing, using conjunctive and dis-
junctive rules of combination, respectively. It can be seen
that the conjunctive combination accentuates the classification
deterioration. This is due to the nature of the conjunctive
combination which favors singletons or specific subsets over



the doubt. In fact, for example, if sensor’1 belief is given by:
m1({c2, c3}) = 0.4 andm1({c1, c2, c3}) = 0.6, and sensor’2
belief is given by:m2({c2, c3}) = 0.5 andm2({c1, c2, c3}) =
0.5, the conjunctive combination gives:m1 ∩©2({c2, c3}) = 0.7
and m1 ∩©2({c1, c2, c3}) = 0.3. This corresponds, in the
simulated example, to classification deterioration accentuation.

In the other hand, it can be seen that the disjunctive
global classification is more corresponding to the expected
classification result. It gives a more refined classificationresult
than both sensors local ones and also the conjunctive global
one. It can be remarked that the doubt is well managed in
the first and second steps of movement so, the deterioration
caused by the sensors high noises is reduced. This is taking
advantage of the prudence of the disjunctive rule of combina-
tion. Indeed, for example, the disjunctive combination of the
belief masses defined above gives:m1 ∪©2({c2, c3}) = 0.2 and
m1 ∪©2({c1, c2, c3}) = 0.8. This illustrates the cautious nature
of the disjunctive combination and its utility in the considered
classification problem.
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Fig. 6. Classification mean square error.

Figure 6 gives the local and global classifications Mean
Square Errors (MSE) according to different sensors’ noises
variance values. The MSE represents the difference between
the expected classes pignistic probabilities and the calculated
ones, it is calculated by:MSE = ( ˆBetp − Betp)′( ˆBetp −
Betp), where ˆBetp is the theoretical expected pignistic prob-
abilities. For each sensors’ noise value the MSE is averaged
over 20 simulations with different noises distributions. It can
be seen, in Figure 6, that indeed, the disjunctive combination
brings the best performance when it comes to fuse unreliable
and independent sensors information.

VII. C ONCLUSION

This paper proposes a multi-sensors architecture where
each sensor is able to, locally, track and classify multiple
targets basing on its sequentially acquired measurements.
A large imprecision on measurements taking is simulated,
which corresponds to the unreliability of the sensors. Due
this unreliability, the local classifications performed bythe
senors are deteriorated. The aim is to combine the local weak
classifications in order to obtain a global more robust one.

Many combination rules are presented in the belief theory
framework. In this work, the two most general ones are taken,
namely: the conjunctive and disjunctive rules of combination.
The disjunctive rule, which suppose any information on the
sensors reliability, provides the most robust classification re-
sults.

The capacity of the belief theory to model both the uncer-
tainty and imprecision makes its use, in multiple target tracking
and classification context, challenging and promising. Our
future works will aim to integrate belief functions in the es-
timation theory and reformulate the assignment (observations-
to-tracks or tracks-to-tracks) problem in the same framework.

REFERENCES

[1] D. Smith and S. Singh. Approaches to multisensor data fusion in
target tracking: A survey.IEEE Transactions on Knowledge and Data
Engineering, 18(12):1696–1710, 2006.

[2] Y. Bar-Shalom, X.R. Li, T. Kirubarajan, and J. Wiley.Estimation with
applications to tracking and navigation. Wiley Library, 2001.

[3] S.S. Blackman. Multiple hypothesis tracking for multiple target track-
ing. Aerospace and Electronic Systems Magazine, 19(1):5–18, 2004.
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