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Abstract—Multi-target tracking using multiple sensors is an  having clearer data. Considered as the best assignment af
important research field in application areas of mobile systms  proach, it is also the most computationally intensive. More
and military applications. This paper proposes a decentrated  recently, Markov Chain Monte Carlo (MCMC) based assign-
ml.,lltl-.sensor, mU|t|'target. tI’aCkIng and belief (Credal) based clas- ment algorlthms are propOSed [8], [9] They are based on
sification approach, applied to maritime targets. A given number — \1onte Carlo sampling and their performance depends on the
of sensors, considered as unreliable, are designed to lolyal number of the performed samples. As well as MHT, IPDA

predict and update targets states using Interacting Multide . X . .
Model (IMM) algorithms (one IMM for one target). Targets and JPDA, MCMC methods are considered inefficient in a

IMMs are updated by sequentially acquired measurements. Ta ~ dense targets environment, due to their high computational
measurements are assigned to the targets by the means of complexity. The assignment algorithm adopted in this work,
a generalized Global Nearest Neighbor (GNN) algorithm. The namely the generalized GNN, belongs to the deterministic
generalized GNN algorithm is able to provide information onthe ~ approaches, beyond its its limits in conflicting scenarib
newly detected or non-detected targets and these informath is appreciated for its simplicity and low computation comjitigx
used by score functions which manage the targets appeararge it is largely used in real time applications, even in a dense
and disappearances. In addition to the tracking task of muliple  targets environment. In addition to this, its generalizetsion
targets, each sensor performs a local classification of eaabne can provide information on the newly detected and non-
of the targets. The unreliability of the sensors makes the Ial detected targets. Using score functions representingetiarg

classifications weak. In this article, a global classificatin method track litv th inf tion i " d to handl
is shown to improve the sensors classification performances racks quallty, In€se intormation 1S smartly used to handie
targets appearances and disappearances.

l. INTRODUCTION Concerning the classification proble_m_, in the single target
framework, the work of Smets and Ristic [10] about credal
Combining multiple unreliable sensors information canclassification, based on belief functions [11], reveals gitah
provide more accurate results than using single sensoffil§.  weakness of the already existing Bayesian solutions [13], [
paper proposes a decentralized multiple sensors aralmiéect namely, imprecise classification situations which are hethd
which aims to correctly track and classify a set of randomlyby the belief theory but not by the Bayesian one. The same
appearing and disappearing multiple maneuvering targets. credal classification method is extended to multi-targatre-
work in [14]. The credal classification is highly performing

lete tracki lution. Thi Ui ot o MFhen data are acquired by a reliable sensor. However, it
a compiete tracking solution. 1his solution consists og is shown in this article that the classification performance

states estimation t_ask, sequentially acquired MeasUsMeN 4o reases when the sensor's data are quit imprecise, this i
known targets assignment and targets appearances and d'smy a multi-sensor approach is adopted. Simulation results

pearances management. shows that the multi-sensor approach with an adequaterfusio

Concerning the adaptive estimation of the targets stdtes, t Strategy achieve a classification performance better then t
designed solution uses the Interacting Multiple Model (IMM local classifications achieved by all the sensors.

algorithm, one of the best approaches related to multetarg  gection |11 of this article provide an introduction to multi-
estimation theory [2], [3]. Spite of that, the estimatiom@@cy  (4rget tracking problem and the local tracking solution is
still depends on the manner that the real measurements i icted in Section Ill. Section IV describes the local clas
assigned to the known targets [3]-[5]. In our solution thisgjfication algorithm and Section V proposes a high level sen-
issue is ensured by the means of a generalized Global Nearegis ¢jassifications fusion. Finally, in Section VI, siratibn
Neighbor (GNN) algorithm. In literature, multiple others&gn-  eqyits on multiple maritime targets are given to highlitte

ment approaches exist, namely, probabilistic ones likétJo ,qyantage of the adopted decentralized approach.
Probability Data Association (JPDA), Integrated Prokgbil

Data Association (IPDA) [6], [7], etc. These approachesaied
the different targets states with a weighted sum of all the
real measurements, due to their probabilistic aspect these Targets in their environment can perform different ma-
methods are known to have some difficulties to handle targetseuvers, their evolution can be seen as a switching Markov
appearances and disappearances. Multi-Hypotheses fgackiprocess. One possible modeling of this process consists on e
(MHT) algorithm [3] has a different principle, it is a multi- finite set of linear models. Details on the derivation of the
scan approach that holds on the assignment decision untérgets motion models can be found in [15]-[17]. For a given

To deal with a such complex problem, each sensor perfor

II. MULTI-TARGET TRACKING PROBLEM POSITION



targett being in evolution modein;, with [ = {1,...r} andr e generalized assignment matrix calculation: the as-

being the number of possible known acceleration models, the signment matrix elements are normalized Euclidean
state vector evolution can be given as follows: distances calculated as follows:
j sNT (pt\—1(_7 st
xi = Fx};_l + Gu}i(ml) + wz (1) dt,j = (Zj -z ) (P ) (Z] -z )7 (4)

. : h _ , with t = {1,2,....,n}, 7 = {1,2,...,m}.
where,z; € R? is thet'" target state vector at time, with

F being the f x p) state matrix andu, represents the'" e Assignment matrix resolution, using the generalized
target deterministic input, which represents simply a kmow Munkres algorithm [18] in such a way that: targets
acceleration mode;, wherel = 1, ....r andr represents the that have received an observation will be updated fol-
number of possible accelerations modes. The paramelter lowing their IMMs update process. Targets that have
represents the state Gaussian noise with covariance ndatrix not received any observation are considered as non-
The input matrix is denoted’. For simplicity, the measure- detected. The non-assigned measurements are used t
ments are taken according to a linear model given as follows: initialize new targets.
j It is mentioned in [19] that the Euclidean normalized dis&s
Zi:HCCk+Uk, (2) [ ]

calculated in Equation (4) follows g2 distribution with a
degree of freedong (dimension of the measurement vector).
For example, a measuremensatisfying the following test is
candidate to initialize a new target.

where, z; € RY is the j'" received observation at timk,
with j € {1,2,...,m}. The observation matrix of dimension
(¢ x p) is notedH and v, represents the measurement error,
it is considered as a Gaussian noise with zero mean value If dij >T, Vte{l,2,..,n}, (5)
and covariance matrixt. Note that the number of targets
is not constant over the time and a given measuremgrait
time k can come from a known target a new target’ or
a clutter. The number of known targetsor/and of acquired
measurements: can be different from a sensor to an other,
so the number of targets known by a sensa@re notedn;
and the number of measurements acquired by the same sen
is notedm,;. For simplicity, the sensor’s index is not used to . : ) . .
describe the local tracking and classification algorithitge 't Nas an increasing evolution when the target is detected
set of measurements taken by the serisat time & is noted and a decyeasmg .evolutlon when the target is not detected
Z; = {z},22,...2™}, with i € {1,2,...,S} and S is the The quantl_tyL(t) is com_pared to two th_resholdﬁl and

T,, respectively, the deletion and confirmation thresholads. F
example, a non-detected target is not immediately deléted,
algorithm continue to predict its trajectory (maybe the nhon
detection is caused by a simple occlusion). The non-detecte
D, i=1,.0n 3) target is left when its score function reaches the deletion
o T thresholdT;. The use of the score function is described in
where,z! , represents the cumulative measurement for thdé14] and detailed in [15]. The last tracking step is the IMMs
targett until the timef. update step, it uses the managed measurements to provide tr

targets state estimation note, ¢ = {1,2,...,n}.

whereT, is a threshold drawn from thg? table, basing on
an a priori probability that the measurement corresponds to a
new target and the degree of freedgnT he information about
newly detection measurements and non-detected targets ar
smartly handled by score function in order to manage targets
earances and disappearances. Score function is a log
Ikelihood L(t) ratio sequentially calculated for each target,

number of sensors. The optimal Bayesian estimation of'the
target state at timé requires the calculation of the following
probability density function:

,,,,,,,,,

I11. L OCAL TRACKING ALGORITHM IV. L OCAL CLASSIFICATION

The Gaussian assumption of the state and measurement It is considered that the IMM algorithms contain an ex-
noises allows the probability density functions, in Eqoati haustive list of all the targets’ possible evolution moddlse
(3), of n maneuvering targets, to be estimatedsbylifferent  list of models is given by:

Interacting Multiple Model (IMM) algorithms. Each target’ _
IMM is composed ofr Kalman filters (one Kalman filter for M = [my,ma, o o (6)
one evolution modekh,;, withl =1, ..., r). A switching process wherer represents the total number of models.

?;%?g%}gﬁ:&gggn%a;?;n tﬁﬁirssgegscgamﬁf tk;?fgﬁ?nmspl An a priori knowledge on the tracked targets classes’ and
9 ’ pe P their behaviors allows to cluster thedifferent models inM/ .

two main steps, namely: state and measurement predictiaphe models are clustered in such a way to define the set

step and state update step. The pred;;:ﬁtmn step of the IMMg, 4015 helonging to each specific behavior. The set of plessib
provides a set of predicted measurementst = {1,2,...,n} behaviors can be defined byg — [by, bs, ..., buy], Wherenb

with n the number of already known targets at tirhe- 1. : ; X
. o : - : is the number of behaviors. The set of models belonging to
In addition to this information the prediction step pro\sde the behaviorb;, for example, is defined byf, C M, with

covariance matrice®’ concerning the expected measurement. . ’

prediction errors. At time steg a set of?eal measurements * ~ L,.,nb. The number of models iaf,, is noted byrs,.

27, j={1,2,..,m} are received. They are compared to the  Ones the different behaviors are defined, their likelihoods
predicted ones following the resolution of an assignmeabpr [(b;) are calculated basing on the different models likelihoods
lem. The assignment solution is a generalized GNN algorithmk\(m;) and probabilitiesu(m;), with j = 1,..., which are
which is performed on two main steps, namely: provided from the IMMs update steps.



A. Behaviors likelihoods calculation from the mass function o2” to a mass function o8¢ using

Calculation of the behaviors likelihoods is performed asthe following equation:

follows: m{ = M x mp, (12)
o= Y piXj, i=1,.,nb, (7)  whereM is a matrix expressing the relations between behav-
Jim; €My, iors and classes, it contains the conditional masséd|D),
- with A C C and D C B. This step is application depending,
with: , 1 . @) more details are given in the example of Section VI.
= =1,...,7p; -

Hi , >owy ’ The resulting mass function$ is supposed having all the
gim; €M available information. In order to make a decision, the mass
Based on the behaviors likelihoods and using the Genedalizefunction is simply transformed to pignistic probabilitiesing
Bayesian Theorem [10], [20], a mass function on the behaviorthe following equation:
space B can be calculated. In order to obtain the classes
probabilities or pignistic probabilities, the calculateghaviors

likelihoods, can either be processed by a Bayesian or credal c
classifiers, respectively BetP(c;) = Y 1 _mp(4) (13)
, . Z c;€EA |A| 1- mkc(®>’
B. Bayesian classifier .
) _ - ) where A C C and( being the empty set.
The following Bayesian classifier is first presented in [12], ) T _ )
it is based on the Bayesian rule. Note that the described classification algorithm is exetute
by each sensor, for each tracked target. For a global criedal ¢
Pbi/z... k) = by, Pbi/1... 51 sification purpose, the local decision making can be avoided

and the classification mass functions of thiargets are used to
9) perform a global classification. The set of mass functionsmi
o y by a sensot at time k is denotedM; = {m},m3,...,m}},
where, P(b;/z1,....k—1) represents the priori probability  \herej = 1,...,.5 and S is the number of sensors.
of the behavion;.

The initial a priori probabilities can be taken equal to an  As it was shown in [10] for a single target classification,
equiprobability, then they are simply the previous values. and extended to multiple targets classification in [14], the
credal kinematic data based classification outperforms the
Bayesian one, therefore, the interest of this article izi$ed
on the application of the credal classification, in multiple
This step is ensure by the Generalized Bayesian Theoreranreliable sensors. In Section VI, a comparison between the
it proceeds on two mean steps: credal and Bayesian classifications is given at a local Jevel
) ) ) ) but for lack of space, only the most interesting multi-senso
J Jl[\./lass function calculation using the following equa- results will be given, namely, the global credal classifarat
on: results.

mi(D) = T 1ba) [T 1= 1(0)),  (20)
bieD b;eD
whereD C B. Figure 1 illustrates the cqmplete multi—sensor and multi-
target algorithm. Each senseramong theS designed ones
e Recursive mass functions combination: the mass funcmakes a set of estimated state vectdis= {i}, 7L, ...,#7}
tion my of time k is combined with the mass function basing on the set of taken measuremefitsat time k, by
my—1 of time k—1, using the conjunctive combination performing the described local tracking algorithm. Usihg t

Zle Iy, P(bj|z1,...k—1)

C. Credal classifier

V. GLOBAL CLASSIFICATION

[21]: local classification algorithm, the sensor provide a set aésn
functions M; concerning targets classifications.
mD)= S muDymea(D), (A1) : 97
D1,D2 ‘ D1nDy=D Targets environnement
where the initial beliefmy being a vacuous mass z 7 P
function [11]. [ Semort | [ Semor2 Joccooooooooos Sensor 5

l ]

Local tracking

D. Classes mass function calculation

According to relations knowra priori, the behaviors

mass function can be precisely transferred on a classes mass o o] [Tt o]

function, with C' = {c1,c1,...,cnc} is the set of possible D ", "
classes andc is the number of classes. For example, a go-fast

boat's class is related to a specific behavior which is cormple Global lassification

maneuvers, so the mass function on complex maneuvers is
transferred to the go-fast boat’s class. The belief is fearesd ~ Fig. 1. Decentralized classification approach flowchart.



Box "Track-to-track association” in Figure 1 aims to es- VI. MARITIME PIRACY MULTI -TARGET TRACKING AND
tablish a matching between sensors estimates Xets g CLASSIFICATION EXAMPLE
elements in order to recognize in which order the beliefA Description
setsM; ... s have to be combined for a global classification”™ P
purpose. The matching step is ensured by the means of a This section describes an example of piracy targets en-
generalize GNN algorithm, as described in Section lll, it isvironment. Targets are randomly appearing, disappeatring a
executed for each pair of sensors. The cost of assigningttargperforming different maneuvers. The identification of tae t

t of sensor; to target! of sensorj is defined as follows: gets type (cargo, military boat, go-fast boat (generalhatgis
T 1ot ¥ boats), etc.) is based on the complexity of the performed
Dy = (27 — &;)" (P"+ P")" (27 — #;), (14)  maneuvers. The distinctive behaviors of the consideregbtar

are given as follows:
wheret = 1,...,n; and! = 1,...,n;, with n; andn; are,
respectively, the number of targets tracked by sens@sd e behavior1 (b1): behavior of targets having a low
j. The distances of Equation (14) [15] form the track-to- maneuvering capacities (e.g. cargo).
track generalized assignment matrix, which is resolvedhiey t

generalized Munkres algorithm. Behavior2 (b2): behavior of targets having a medium

maneuvering capacities (e.g. military boat).
Once a consensus is reached between sensors about the |

commonly tracked targets, their local classifications ased

using Dempster's conjunctive rule and disjunctive rule of

combination. Where the set of targets’ possible classgs= {ci,c2,c3}
corresponds t@' = {Cargq Military boat Go-fast boa}.

Behavior 3 (b3): behavior of targets having a high
maneuvering capacities (e.g. go-fast boat).

A. Fusion using Dempster’s rule The state vector of all the targets is represented by
, . ) ) x=[x & y gl itrepresents the position and the velocity

According to the provided matching solution, the elementsn (z,4) directions. The state vector of each target evolves

of all the local set§ M, M, ..., Mg} have to be combined us-  following the model in Equation (1), with a sate mattx

ing Dempster’s conjunctive combination in Equation (1501an given by:

give a common set of mass functioh g2q .. ¢s. Dempster’s

normalized conjunctive combination of two mass functiens F= {

andms, provided by sensors and?2, is defined as follows:

>

N

oroo
>

oo

[

1

0 1
0 0
0 0
where AT is the sampling time.

mi@2(A) DAy asiasnay_n M1 (A1)ma(As) The deterministic input vecton(m;) = [a, a,]" in
= ) Equation (1) representing the targets different acceterat
(15)  modes. For example(m) = [0 0]" represents a constant
velocity mode. The differences in the acceleration capisl
with A C C and( being the empty-set. allow the distinction to be made between the targets differe
classes’ behaviors. The acceleration limitations forahiori
In order to make a global classification decision, theknown classes are expressed B\; < {a,a,} < L;, where
elements of the setM;, ¢ has to be transformed on L; = 0g,0.2g and0.4g respectively, for the classes, c; and
pignistic probabilities using Equation (13). c3, With g = 9.81 m/s? is the gravitational acceleration.

miea(A) = 7 0@ 1= m0:(0)

In the performed simulation, each target's IMM is
composed ofl3 evolution models according to the different
B. Fusion using disjunctive rule maneuvers which can be madedrandy directions (see the
example described in [12]). The different evolution models
According to the matching solution, the mass functions inare distributed over the three possible targets’ behaviass
the sets{Mi, M, ..., Mg} are distinctively combined. The follows:
disjunctive rule of combination of two mass functions;  M;, = [m4]: models belonging to the behaviby.
and mq which are provided by sensoiis and 2, is defined  M,, = [m1, ..., m5]: models belonging to the behaviby.
as follows: My, = [m1, ..., m13]: models belonging to the behaviby.

mi1Q2(A4) = S mi(A)ma(42).  (16)

Ay Azl ATuAz=A Once the different behaviors are defined and their mass

function is calculated (based on the local classificatiayoal
) _ ) rithm described in Section 1V), it is transformed on classes
Note that all mass function contained in the séis, mass according to the fo||owing relation:
with i+ = 1,...,5, are combined using the above described

fusion rules according to the order given by the track-tahr e relation 1: target in behaviorl can correspond to
assignment step. In order to take a decision concerning the cargo, military or go-fast boats. All of them can evolve
target global classifications, the obtained global masstfons with a constant velocity. This relation can be written

are transformed to pignistic probabilities using Equati®8). as:b; = {c1,c2,c3}.



e Relation2: target in behavio, which has performed Normally, we expect that targe? has to be in doubt
a medium maneuver, may corresponds to a militarybetween the three classes during the first constant velocity
or go-fast boats only. Cargos is supposed unable tevolution step, and has to be in doubt between the seconc
perform any maneuver. This relation can be writtenand third classes after its medium maneuver, because garget
as:by = {ca, c3}. of classl can not perform any maneuver, and finally, it has to
be classified in clas8 after its sharp maneuver.

e Relation3: target in behavioB, which has performed

a sharp maneuver, can only be a go-fast boat, because ayesion cassifcaton (Sensor ) ot dasscason Gemsr
cargos and military boats can not perform sharp ma- e J=ges

—Class 3

neuvers. This relation can be written &s:= {cs}.

°
°

°
°

The belief transfer is performed using Equation (12). lhga
fers the belief on the power s2f of behaviors to the power set

2¢ of classes, according to the relations described above. The
corresponding complete transfer matfix, in Equation (12), W, W W )
has a sizg23 = 8) x (23 = 8), and is given by:

Classes probabilties

°
°

Classes pignistic probabilities.

02|

o

Fig. 3. Sensod and2, respectively, local classification results.

Bayesian ciassifcaion (sensor2) Credal classification (Sensor 2)
——Classe 1

Classe 2
——Classe 3

——Class 1
Class 2
——Class 3

Hrooooocoo

cococoococor
oroO0OOOCOO
Hrooooocoo
cocoroocoo
mooooocoo
o~roooooO
mooooocoo
°
°

°
°

Details concerning the derivation of the above matrix can
be found in [10]. This matrix enables to compute the mass
functions on the classes spa€g in order to take a decision
on the targets’ classifications. N N N

Time Time

Classes probabilities

°
Y

S

Classes pignistic probabilities.

°
o

B. Simulation and results Fig. 4. Senson and2, respectively, local classification results.

Two unreliable sensors taking measurements according 10 og oy hected, Figure 3 shows that both sensors succeed t
Equation (2) are observing, all or some, of multiple maneu-

classify target2 as a go-fast boat after its sharp maneuver,

;’ggg;gd rgpiﬁ?'}(’a?pgteagg and d;?%g'%%taégeedB:anhis using the Bayesian or the credal algoithm. It can also be
J 1es gets ) space, P! N shown that in the double situation, where it is supposed to

Figure 2. have a perfect doubt, in the first movement step for example,

Note that targe® is observed by the two designed sensorsthe Bayesian classifier favors the clagswhich leads quickly

and only its classification results are presented in thiisec t0 a wrong decision, the explanation is given in [14]. Due to
(lack of space). the sensors unreliability, the sensors’ credal classifinare

. o . also deteriorated. Indeed, as it is shown in the Figures 3 and

As it can be seen in Figure 2 and described above, targef the doubt in the first and second movement steps is badly
2 evolution consists on three constant evolution segmentganaged, even in the credal results. The following resnjts t
separated by two maneuvers. First, it begins its trajeatdlty  to enhance the sensors classifications by fusing them. It is
a constant velocity, which corresponds to zero accelaratioshown, with an explanation, that the disjunctive fusionegiv
vectoru = [0 O]T. Then in time window[62, 66], it performs  the best classification result.
a medium acceleration im direction (according to the input
vectoru = [0.2 0]7), after that it takes a constant evolution e o e——
until its second sharp maneuverjmirection (according to the z
input vectoru = [0 0.4]") during the time window80, 86].
Finally, it finishes its evolution with a constant velocity.

——Class 1
Class 2

—Class 3

°
°

°
°

°
2
°
=

Classes pignistic probabilies

Classes pignistic probabilties
o

T
Target 1

v 20 20 60 80 100 120 20 20 60 80 100 120
Target 2 Time Time

A Target3
Target 4

*

1000} s 1 Fig. 5. Conjunctive and disjunctive combinations, resigebt, global
s classification results.

y-distance

500

Figure 5, shows the classification results obtained after
global classification performing, using conjunctive and-di
‘ ‘ ‘ ‘ junctive rules of combination, respectively. It can be seen
° ® @ e o e e that the conjunctive combination accentuates the claatiic
deterioration. This is due to the nature of the conjunctive
Fig. 2. Multi-target trajectories. combination which favors singletons or specific subsets ove




the doubt. In fact, for example, if sensdrbelief is given by:
ml({CQ, 05}) =04 andml({cl, Cca, Cd}> = 0.6, and sensor2
belief is given by:mg({CQ, 03}) =05 andmg({cl, c2, 03}) =
0.5, the conjunctive combination givest; @2 ({cz, c3}) = 0.7
and mi@2({c1,c2, c3}) 0.3. This corresponds, in the
simulated example, to classification deterioration accidn.

In the other hand, it can be seen that the disjunctive
global classification is more corresponding to the expected
classification result. It gives a more refined classificatesult [1]
than both sensors local ones and also the conjunctive global
one. It can be remarked that the doubt is well managed in
the first and second steps of movement so, the deterioratioff]
caused by the sensors high noises is reduced. This is takin%|3
advantage of the prudence of the disjunctive rule of combina ]
tion. Indeed, for example, the disjunctive combination loé t
belief masses defined above gives;g2({c2,c3}) = 0.2 and
mi1©Q2({c1,c2,c3}) = 0.8. This illustrates the cautious nature
of the disjunctive combination and its utility in the conesidd [5]
classification problem.

(4]

0.7,

Sensor 1
= = = Sensor 2

PYTT

0.6 1=+ =1+ Conjunctive solution
Disjunctive solution

Mean Square Error

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Sensors noises variance

[10]
Fig. 6. Classification mean square error.

Figure 6 gives the local and global classifications Mear(11]
Square Errors (MSE) according to different sensors’ noises
variance values. The MSE represents the difference betwed?]
the expected classes pignistic probabilities and the tzted
ones, it is calculated byM SE = (Betp — Betp)'(Betp —
Betp), where Betp is the theoretical expected pignistic prob-
abilities. For each sensors’ noise value the MSE is averagegly
over 20 simulations with different noises distributions. It can
be seen, in Figure 6, that indeed, the disjunctive comhinati
brings the best performance when it comes to fuse unreliable
and independent sensors information.

(13]

[15]

VIl. CONCLUSION [16]

This paper proposes a multi-sensors architecture where
each sensor is able to, locally, track and classify multipl 17]
targets basing on its sequentially acquired measurements.
A large imprecision on measurements taking is simulated,
which corresponds to the unreliability of the sensors. Dugg;
this unreliability, the local classifications performed tye
senors are deteriorated. The aim is to combine the local weak
classifications in order to obtain a global more robust one. [19]

Many combination rules are presented in the belief theor)gzo]
framework. In this work, the two most general ones are taken,
namely: the conjunctive and disjunctive rules of combimati
The disjunctive rule, which suppose any information on the21]
sensors reliability, provides the most robust classificatie-
sults.

The capacity of the belief theory to model both the uncer-
tainty and imprecision makes its use, in multiple targethkiag
and classification context, challenging and promising. Our
future works will aim to integrate belief functions in the-es
timation theory and reformulate the assignment (obsarmati
to-tracks or tracks-to-tracks) problem in the same franrkwo
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