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Abstract. In many real-world binary classification problems, one class
tends to be heavily underrepresented when it consists of far fewer
observations than the other class. This results in creating a biased
model with undesirable performance. Different techniques, such as
undersampling, have been proposed to fix this issue. Ensemble methods
have also been proven to be a good strategy to improve the performance
of the resulting model in the case of class imbalance. In this paper,
we propose an evidential undersampling-based ensemble approach. To
alleviate the issue of losing important data, our undersampling technique
assigns soft evidential labels to each majority instance, which are
later used to discard only the unwanted observations, such as noisy
and ambiguous examples. Finally, to improve the final results, the
proposed undersampling approach is incorporated into an evidential
classifier fusion-based ensemble. The comparative study against well-
known ensemble methods reveal that our method is efficient according
to the G-Mean and F-Score measures.

Keywords: Imbalanced classification · Ensemble learning ·
Undersampling · Evidence theory

1 Introduction

Imbalanced classification is a common issue in modern machine learning
problems. In binary classification, it is a scenario that occurs when a class,
refereed to as the minority class, is highly under-represented in the dataset,
while the other class represents the majority [14]. Due to the naturally-skewed
class distributions, class imbalance has been widely observed in many real-world
applications, such as medical diagnosis [15], network intrusion detection [10],
language translation [20], and fraud detection [23]. From a practical point of
view, the minority class usually yields higher interests. For example, failing to
detect a fraudulent transaction can be crucial to a banking organization.
In addition to the skewed class distribution, the complexity of the data is

an important factor for classification models. Other related data imperfections
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include data uncertainty, i.e., class overlapping (ambiguity) and noise. The data
uncertainty issue was proven to increase the difficulty for classifiers to yield good
performance on imbalanced datasets [35].
In order to deal with the poor performance on imbalanced data, many

strategies have been developed to deal with this issue. The proposed methods
are a variety of re-sampling, classifier modifications, cost-sensitive learning,
or ensemble approaches [12]. Data re-sampling is one of the most simple
yet efficient strategies to deal with imbalanced classification. Theses methods
typically aim at re-balancing the data at the preprocessing level. This gives
it the advantage of versatility, for the reason that it is classifier-independent.
More recently, ensemble learning is incorporated and combined with different
strategies, such as resampling. Ensembles are used to improve a single classifier
by combining several base classifiers (also called weak learners) that outperform
every independent one.
However, most of these methods have been observed to suffer from limitations,

such as the presence of other data imperfections (i.e. high class overlapping, noise
and outliers).
In this paper, we propose an evidential undersampling-based ensemble, in

which we incorporate an evidential undersampling method into an ensemble
learning framework. Instead of randomly undersampling the data, our presented
approach uses evidence theory [6, 31], which was recently used for imbalanced
classification [11, 25], in order to represent majority observations with soft
evidential memberships. Consequently, this gives us an idea on the location
of each majority instance. Then, we eliminate the majority objects that are
considered ambiguous (in overlapping regions), label noise (in the minority area),
or outliers (far from both classes). The intuition behind this is to improve the
visibility of the minority class, since it usually is the main learning interest in
most class-imbalanced problems. The issue with this undersampling solution,
is that it is rather difficult to know the exact amount of ambiguity or class
overlapping present in the data. The resulting undersampled subset is heavily
controlled by our assumption of how much ambiguity is present. To fix this issue,
we integrate this evidential method into the process of a bagging ensemble. The
goal is to train multiple base classifiers using different subsets created by our
version of undersampling. Finally, we use a classifier fusion approach based on
the evidence theory.
The remainder of this paper will be divided as follows. The next section

presents related works in resampling and ensemble learning. The theory of
evidence will be recalled in Section 3. Section 4 details each step of our
contribution, i.e., the evidential mechanism used for undersampling and the
classifier combination method. Experimental evaluation and discussion are
conducted in Section 5. Our paper ends with a conclusion and an outlook on
future work in Section 6.



Evidential undersampling-based ensemble for imbalanced datasets 3

2 Resampling and ensemble methods for imbalanced
classification

In this work, we focus on binary imbalanced classification, which is the most
widely studied problem in imbalanced learning. In this section, we mainly review
existing works relative to resampling and ensemble learning.

2.1 Resampling

Resampling methods focus on modifying the training set to balance the class
distribution. It can be categorized into 3 groups: oversampling, undersampling,
or hybrid methods. Oversampling techniques aim at creating synthetic minority
examples to get rid of the class imbalance. The most traditional version is
to randomly replicate existing minority data. To avoid overfitting, Synthetic
Minority Oversampling Technique (SMOTE) was suggested [3]. SMOTE creates
minority instances by interpolating between existing observations that lie
together. Nonetheless, many works [5, 7, 13] have proposed other versions of
SMOTE, since SMOTE can cause potential amplification of noise, and overlap
already present in the data.
Undersampling is another form of resampling, which eliminates examples from

the majority class to re-balance the dataset. Similarly to oversampling, the
traditional way of undersampling is randomly selecting majority instances to
discard, which may potentially remove meaningful information from the dataset.
Henceforth, other methods were presented for safer undersampling. Commonly,
filtering techniques, such as the Edited Nearest Neighbors (ENN) [39] and Tomek
Links (TL) [16], are occasionally used for undersampling imbalanced data. More
recently, other mechanisms have been used, such as clustering [21], evolutionary
algorithms [19], and evidence theory [11].
Combining oversampling and undersampling is also a solid solution to

imbalanced learning. It usually consists of combining a SMOTE-like method
with an undersampling approach [18,28].

2.2 Ensemble learning in imbalanced classification

The main idea behind ensembles is to improve a single classifier by combining
the results of multiple classifiers that outperform every independent one. This
paper focuses on resampling-based ensembles, which combines ensemble learning
with resampling techniques to tackles class imbalance. Most works considered
the use of bagging, boosting, or a combination of the two.
Bagging builds ensembles using the concept of independent learning. This

strategy trains the base classifiers independently from each other, and uses data
re-sampling to introduce diversity into the predictions of the models. While
boosting learns of the misclassification of previous iterations by adapting the
importance of misclassified objects in future iterations. Random undersampling
is popularly used with ensembles [36]. SMOTEBagging and UnderBagging
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were suggested in [37]. The former integrates SMOTE’s oversampling into the
bagging algorithm, with an adaptive way of computing the resampling rate,
while Underbagging does the same using random undersampling. In order to
optimize the model performance, a hybrid resampling technique was combined
with bagging [17].
Boosting-based ensembles have also been proposed for the class imbalance

issue. Similar to bagging-based ensembles, these methods merge data re-sampling
techniques into boosting algorithms, more specifically the AdaBoost algorithm
[9]. SMOTEBoost [4] performs SMOTE during each boosting iteration in order
to generate minority objects. RUSBoost [30] is also similar to SMOTEBoost,
but it eliminates instances from the majority class by random undersampling in
each iteration. Evolutionary algorithms were also used to create a boosting-based
algorithm [19]. SMOTEWB [29] is another boosting ensemble, which combines
SMOTE with a noise detection method, into a boosting framework.
Some methods have used hybrid approaches involving both boosting and

bagging, such as EasyEnsemble and BalanceCascade [22].

3 Evidence theory

The theory of evidence [6,31,33], also called belief function theory or Dempster-
Shafer theory (DST), is a flexible and well-founded framework to represent and
combine uncertain information. The frame of discernment denotes a finite set of
M exclusive possible propositions, e.g., possible class labels for an object in a
classification problem. The frame of discernment is denoted as follows:

Ω = {w1, w2, ..., wM} (1)

A basic belief assignment (also referred to as bba) represents the amount of
belief given by a source of evidence, committed to 2Ω , that is, all subsets of
the frame including the whole frame itself. Formally, a bba is represented by a
mapping function m : 2Ω → [0, 1] such that:∑

A∈2Ω

m(A) = 1 (2)

Each mass m(A) quantifies the amount of belief allocated to a event A of Ω. A
bba is called unnormalized if the sum of its masses is not equal to 1, and should
be normalized under a closed-world assumption [32]. A focal element is a subset
A ⊆ Ω where m(A) ̸= 0.
The Plausibility function is another representation of knowledge defined by

Shafer [31] as follows:

Pl(A) =
∑

B∩A̸=∅

m(B), ∀ A ∈ 2Ω (3)

Pl(A) represents the total possible support for A and its subsets.
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To combine several bbas, Dempster ’s rule [6] is a popular choice. Let m1 and
m2 two BBAs defined on the same frame of discernment Ω, their combination
based on Dempster ’s rule gives the following bba:

m1 ⊕m2(A) =


∑

B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅
m1(B)m2(C) for A ̸= ∅ and A ∈ 2Ω .

0 for A = ∅.
(4)

4 Evidential undersampling-based ensemble learning

An evidential undersampling method [11] is incorporated into a bagging
ensemble, to create an Ensemble-based Evidential Undersampling (E-EVUS).
The main idea is to create diverse undersampled subsets using different
assumptions of ambiguity. This will add diversity to the resulting model, by
combining various decision boundaries created by each base learner.

Evidential classifier
fusion

Classifier 1 Classifier 2 Classifier i Classifier n....... .......

Imbalanced

data

Majority

class

Minority

class

Evidential label
assignment

Undersampling
based on rules

Balanced

dataset

Training base
classifier i

Mapping to evidential
mass functions

Undersampling Undersampling Undersampling Undersampling

Classifier

Undersampling

Fig. 1: Evidential Undersampling-based Ensemble learning (E-EVUS)
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Our idea is detailed and illustrated in Fig 1. Before training each base classifier,
the evidential undersampling process starts by assigning a soft label structure to
each majority example. The amount of ambiguity present is randomly selected
for each classifier. Then, the selection of instances to eliminate is made based on
the location of each instance. The idea is to avoid the loss of important majority
data, by only discarding unwanted observations, such as class overlapping, noise
and outliers. After performing undersampling, each subset will be used to train a
base model. In this paper, we use support vector machines [34] as weak classifiers.
However, it is important to note that one can use any other classifier. Finally, we
accomplish classifier fusion using an evidential combination, to create the final
learning model.

4.1 Evidential label assignment

We recall the method used in [11] to create soft labels, which is based on the
credal classification rule (CCR) [24]. It consists of firstly determining the center
for each class by simply computing the mean value of the training data in the
corresponding class. For the overlapping region, which is represented by a meta-
class, the center is calculated by the barycenter of the involved class centers as
follows:

CU =
1

|U |
∑
ωi∈U

Ci (5)

where U represents the meta-class, ωi are the classes involved in U , and Ci is
the corresponding center.
The evidential distribution of each majority example is represented by a bba

over the frame of discernment Ω = {ω0, ω1, ω2} where ω1 and ω2 represent
respectively the majority and the minority class. The element ω0 is included in
the frame explicitly to represent the outlier.
Let xs be an observation from the majority class. Each class center represents a

piece of evidence to the membership of the majority instance. The mass values for
xs should depend on d(xs, C), i.e., the distance between xs and the corresponding
class’s center. The greater the distance, the lower the mass value. Henceforth, if
xs is more close to a specific class center, it means that xs belongs very likely to
the respective class. Subsequently, the initial (unnormalized) masse values should
be represented by decreasing distance based functions. To deal with anisotropic
datasets, the Mahalanobis distance is used in this work as recommended by [24].
The unnormalized masses are calculated as follows:

m̂({ωi}) = e−d(xs,Ci), i ∈ [1, 2] (6)

m̂(U) = e−γ λ d(xs,CU ), U = {ω1, ω2} (7)

m̂({ω0}) = e−t (8)

where λ = β 2α. A recommended value for α = 1 can be used to obtain good
results on average, and β is a parameter such that 0 < β < 1. The latter
parameter is what gives us the ability to control the amount of overlap in the
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data, thus, allowing for diversity. In this ensemble framework, the value of β is
randomly selected for each base classifier. The value of γ is equal to the ratio
between the maximum distance of xs to the centers in U and the minimum
distance. It is used to measure the degree of distinguishability among both
classes. The smaller γ indicates a poor distinguishability degree between the
classes of U for xs. The outlier class ω0 is taken into account in order to deal
with objects far from both classes, and its mass value is calculated according to
an outlier threshold t.
Finally, the calculated unnormalized masses are normalized as follows:

m(A) =
m̂(A)∑

B⊆Ω m̂(B)
, ∀A ⊆ Ω (9)

4.2 Undersampling

After assigning bbas, each majority object will have masses in 4 focal elements
namely: m({ω1}) for the majority class, m({ω2}) for the minority class, m(U)
for the overlapping region U , and m({ω0}) for the outlier class. These masses are
used to remove problematic samples from the majority class. There are different
types of unwanted samples which could be removed namely:

– Overlapping: Ambiguous examples are usually present in regions where
there is heavy overlap between classes as seen in Figure 2a. This situation
could be described by what is called ”conflict” in Evidence Theory. In our
framework, this type of examples will have a high mass value in m(U). Thus,
majority instances whose bba has the maximum mass committed to U are
considered as part of an overlapping region, and are automatically discarded.
The mass value assigned to U is heavily influenced by the randomly selected
parameter β. Henceforth, the higher value of β will result in fewer objects
committed to the ambiguous region. As for majority objects whose highest
mass is not committed to U (i.e. not in overlapping region), the instance is
necessarily committed to one of the singletons in Ω ({ω1}, {ω2}, or {ω0}).
In this situation, we use the plausibility function defined in eq. (3) to make
a decision of acceptance or rejection. Each majority instance xs is affected
to the class with the maximum plausibility Plmax = maxω∈ΩPl({ω}).

– Label noise: Majority observations should normally have the maximum
plausibility committed to ω1 which measures the membership value towards
the majority class. By contrast, having Plmax committed to ω2 signify
that they are located in a minority region, as illustrated in Figure 2c.
Consequently, these objects are eliminated from the dataset.

– Outlier: The final scenario occurs when the sample in question is located
in a region far from both classes, as shown in Figure 2b. In our framework,
this is characterized by the state of ignorance and could be discarded in
the undersampling procedure. Hence, majority objects whose maximum
plausibility Plmax committed to ω0 are considered as outliers and removed
from the dataset.
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(a) Ambiguous samples in
an overlapping area.

(b) An outlier far from both
classes.

(c) A sample that could be
characterized as label noise.

Fig. 2: Illustrations describing the different data difficulty factors that could
worsen class imbalance. Green and red colors respectively represent the majority
class and the minority one.

4.3 Base classifier learning and combination

Our previously presented method achieved good performance in imbalanced
classification tasks because it aims at improving the visibility of the minority
class, by eliminating the unwanted examples [11]. However, the performance
is highly influenced by the selected value for the parameter β, which controls
the amount to eliminate from the ambiguous region. To tackle this issue, our
evidential undersampling method is included into a bagging ensemble. For each
iteration, a different value of the parameter β is randomly selected. As a result,
very different subsets are created, as seen in Fig 3. The figure shows the results of
undersampling performed on a real binary imbalanced example, before training
a SVM classifier. As illustrated, the undersampled subsets can yield very diverse
decision boundaries, depending on different ambiguity assumptions.

(a) SVM’s decision
boundaries on original
distribution without
resampling.

(b) SVM’s decision
boundaries on
undersampled data using
our approach with β = 0.7.

(c) SVM’s decision
boundaries on
undersampled data using
our approach with β = 0.2.

Fig. 3: Comparing the resulted decision boundaries by SVM after performing our
evidential undersampling on different amounts of overlap.
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Then, each subset is used to train a base classifier. In this paper, we use the
Support Vector Machine (SVM) classifier. It is a popular choice used in many
imbalanced learning problems [12]. Each classifier is trained independently in
bagging ensembles. Thus, we make the assumption that each model’s output
is an independent piece of evidence. Henceforth, we can use the Dempster’s
rule of combination presented in Eq. 4, as suggested in [27]. In our case, the
output of each base classifier should be represented by mass functions. For this
purpose, we propose to convert SVM’s output into probability distributions using
Platt scaling [26], before using the inverse pignistic transform [8]. As a result,
a mass function is created for each base learner. Thus, the Dempster rule of
combination can be applied to create a final combined mass function. Finally,
the decision is made by choosing the singleton with the maximum plausibility
Plmax = maxω∈ΩPl({ω}).

5 Experimental study

In this section, we will firstly detail the setup of the conducted experiments in
subsection 5.1. Lastly, we will present the results and discuss them in subsection
5.2.

5.1 Setup

Datasets. We selected 14 binary imbalanced datasets from the keel repository
[1]. The datasets are further detailed in Table 1. The imbalance ratio was
calculated as IR = #majority

#minority . The variations of the different parameters (IR,

features, and size) allowed for experimenting in different real world settings.

Reference methods and parameters. We compared our proposed method
(E-EVUS) against well-known ensemble-based methods: EasyEnsemble (EASY)
[22], RUSBoost [30], and RUSBagging [37]. For each ensemble, we use the
base classifier suggested in the respective paper. In our case, we use the SVM
classifier, as previously discussed. The following parameters were considered for
our proposal: α was set to 1 as recommended in [24], the outlier parameter t
for m({ω0}) was fixed to 2 to obtain good results in average, and the number
of base classifiers to train is set to 10. The other methods were set according to
the suggested settings by the authors.

Metrics and evaluation strategy To appropriately assess the methods in
imbalanced scenarios, we use the G-Mean (GM) [2] and the F1-score, which are
popular measures for evaluating classifiers in imbalanced learning. Following the
confusion matrix described in Table 2, the evaluation metrics used in this paper
are mathematically formulated as follows:

Precision =
TP

TP − FP
(10)
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Table 1: Description of the imbalanced datasets selected from the KEEL
repository.

Datasets Imbalance ratios (IR) Features Samples

wisconsin 1.860 9 683
vehicle3 2.990 18 846
ecoli1 3.360 7 336
yeast3 8.100 8 1484
ecoli-0-6-7 vs 3-5 9.090 7 222
ecoli-0-2-6-7 vs 3-5 9.180 7 224
ecoli-0-1-4-7 vs 2-3-5-6 10.590 7 336
glass-0-1-4-6 vs 2 11.060 9 205
glass4 15.460 9 214
winequality-red-4 29.170 11 1599
winequality-red-8 vs 6 35.440 11 656
kr-vs-k-zero vs eight 53.070 6 1460
poker-8-9 vs 6 58.400 10 1485
poker-8 vs 6 85.880 10 1477
abalone-20 vs 8-9-10 72.690 8 1916

Sensitivity =
TP

TP + FN
(11)

Specificity =
TN

TN + FP
(12)

G-Mean =
√
sensitivity × specificity (13)

F1− score =
2× sensitivity × precision

sensitivity + precision
(14)

Table 2: Confusion matrix.
Predictive Positive (P ) Predictive Negative (N)

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

In order to ensure the fairness of the observed results, we adopt a 5-
fold stratified cross validation to eliminate inconsistencies. Finally, statistical
comparisons were carried out using the Wilcoxon’s signed rank tests [38] to
further evaluate the significance of the results.
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5.2 Results and discussion

The measured scores G-Mean and F-score are reported in Table 3. The best
scores are presented in bold. According to the presented experimental results,
we can remark that our approach achieved relatively well for both assessment
measures. In fact, the results show that our method has the best scores on G-
Mean (10 out of 14) and F1-score (9 out of 14). The two chosen metrics consider
the accuracy of both classes, since, as defined in Eq. 13, G-Mean is the square root
of the product between the negative accuracy (i.e., specificity), and the positive
accuracy (i.e., sensitivity). Meanwhile, the F-measure is based on precision and
sensitivity. Therefore, we can initially argue that our proposal E-EVUS indeed
improves the learning on the minority class while keeping the accuracy for the
majority one.

Table 3: G-Mean and F1-score results for KEEL datasets using different ensemble
techniques.

G-Mean F-Measure

Datasets EASY RUSBagging RUSBOOST E-EVUS EASY RUSBagging RUSBOOST E-EVUS

wisconsin 0.962 0.971 0.945 0.975 0.973 0.976 0.962 0.976
vehicle3 0.736 0.768 0.719 0.770 0.817 0.823 0.822 0.822
ecoli1 0.782 0.823 0.810 0.874 0.905 0.921 0.919 0.918
yeast3 0.916 0.922 0.801 0.864 0.950 0.953 0.951 0.953
ecoli-0-6-7 vs 3-5 0.772 0.835 0.619 0.879 0.931 0.924 0.924 0.944
ecoli-0-2-6-7 vs 3-5 0.847 0.831 0.785 0.874 0.935 0.943 0.950 0.950
ecoli-0-1-4-7 vs 2-3-5-6 0.847 0.853 0.718 0.768 0.923 0.931 0.956 0.935
glass-0-1-4-6 vs 2 0.580 0.610 0.267 0.655 0.818 0.805 0.830 0.872
glass4 0.820 0.798 0.782 0.852 0.971 0.938 0.927 0.965
winequality-red-4 0.664 0.632 0.436 0.658 0.776 0.846 0.727 0.890
winequality-red-8 vs 6 0.740 0.674 0.368 0.770 0.875 0.854 0.893 0.956
poker-8-9 vs 6 0.377 0.611 0.177 0.675 0.510 0.872 0.881 0.932
poker-8 vs 6 0.508 0.639 0.308 0.717 0.526 0.755 0.800 0.882
abalone19 0.753 0.704 0.269 0.723 0.803 0.856 0.957 0.934

In the observed results, E-EVUS performed significantly better than the
reference methods in highly uncertain datasets, i.e., where there are significant
class overlapping, such as poker-8-9 vs 6, and winequality-red-8 vs 6. This is
likely due to the fact that our method succeeded at eliminating the difficult and
uncertain majority samples, which allowed for better learning of more difficult
minority data examples.
In order to evaluate the significance of the comparisons, Table 4 presents the

statistical analysis made by Wilcoxon’s signed ranks test. R+ represents the
sum of ranks in favor of E-EVUS, while R− reflects the sum of ranks in favor of
the other reference methods, and p-values are computer for each comparison. As
shown in Table 4, almost all p-values are lower than 0.5. Thus, one can say that
our method significantly outperformed the other techniques, for both selected
metrics, with a signficance level of α = 0.05.
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Table 4: Wilcoxon’s signed ranks test results comparing the G-Mean and F1-
score metrics against the compared approaches.

G-Mean F1-score

Comparisons R+ R− p-value R+ R− p-value

E-EVUS vs EASY 81.5 23.5 0.078491 101.0 4.0 0.0008544
E-EVUS vs RUSBagging 84.0 21.0 0.049438 103.0 2.0 0.004741
E-EVUS vs RUSBoost 105.0 0.0 0.000122 93.0 12.0 0.0341704

6 Conclusion

In this paper, we propose an evidential undersampling-based ensemble (E-
EVUS), in which we use evidence theory to better learn from imbalanced
datasets. The goal is to improve the visibility of the minority class by removing
unwanted examples, such as noisy and overlapped observations. This technique is
incorporated into a bagging ensemble framework, in order to diversify the created
subsets. Therefore, it is more likely to improve the final decision boundary of
the classifier.
In addition, our experimental study demonstrates that integrating evidential

undersampling into ensemble learning, could result to diversity of base models,
which facilitates the learning performance. Further investigations can include
the use of hybrid resampling into our ensemble learning method.
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