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Abstract

The Dempster-Shafer’s theory, or evidence theory, is
used in different fields such as data fusion, regression
or classification. Within the framework of this theory,
the uncertain and imprecise data are represented using
belief functions. Data fusion operators as well as the
decision rule of this theory were largely developed and
formalized. The aim of this paper is to present mod-
eling methods of knowledge for the initialization of
belief functions. Moreover, an experimental compari-
son of these different modeling on real data extracted
from images of dermatological lesions is presented.

1 Introduction

Data analysis and processing are two important tasks
in today’s information society. The data management
becomes essential when the informations are imper-
fect, that is to say imprecise and uncertain. Tradition-
ally, probability theory, which is inadequate in some
cases as well known, is used for dealing with imper-
fect data. In this paper, we deal with a classification
method of imperfect data sets using evidence theory
proposed by Shafer [1] and Smets [2]. In the frame-
work of this theory, the knowledge modeling rests on
the construction of belief functions. These last years,
several methods to initialize these functions were de-
veloped. In this paper, we present and compare some
of these methods. This paper is organized as follows.
In section 2, we introduce notations allowing to de-
scribe the Dempter-Shafer’s Theory of evidence. Sec-
tion 3 introduces several methods of basic belief as-
signments. These methods are checked and compared
on real data extracted from images of dermatological
lesions (Section 4).

2 Dempster-Shafer’s theory

The Dempster-Shafer’s theory of evidence is based
on the concept of lower and upper bounds for a set
of compatible probability distributions introduced by
Dempster [3]. On this basis, Shafer [1] showed the
advantage of using belief functions for modeling the
uncertain knowledge. The use of belief functions as
an alternative to subjective probabilities was later jus-
tified axiomatically by Smets [2] who introduced the
Transferable Belief Model providing a clear and consis-
tent interpretation of the various concept underlying
the theory.

2.1 Belief structure

Let O represents a finite set of N hypotheses. The set
O is called frame of discernment and is defined by :

QZ{Hla"'aH’na"':HN}- (1)

29 represents the set of the 2V — 1 propositions H of
O:

2° = {H/H CO}={H,,---,Hy,H UH,,---,0}.
(2)
A piece of evidence that influences our belief concern-
ing the true value of a proposition H can be repre-
sented by a basic belief assignment (bba) m(.). For
each source S; (j = {1,...,J}), a mass function m;(.)
is defined by :
m; :29 = [0,1] (3)

and verifying the following properties :

m;(0) =0 (4)
> omi(H) = 1. (5)
HCO

From the basic belief assignment m;(.), a credibility
function and plausibility function can be computed



using the following equations :

Bel;j(H) = Z mj(H') (6)

HCH

my(H) =1~ Bel;(H) (1)

Pli(H)= >
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where H denotes the negation of H. The value
Belj(H) quantifies the strength of the belief that event
H occurs. The plausibility function PI;(H) provides
a measure of no doubt about the hypothesis H. The
plausibility of #H is the sum of belief associated with
subset H' no contradicting H. The main difficulty
consists in modeling knowledge to initialize the ba-
sic belief assignment m;(.). Many modeling methods
have been proposed, which depend usually on the con-
cerned application. They are detailed in section 3.

2.2 Belief function attenuation

An additional aspect of this theory concerns the at-
tenuation of the basic belief assignment m; by a co-
efficient a; for a source S;. The aim of this step is
to introduce a reliable degree between all informa-
tion sources. For each source Sj, the attenuated belief
function, noted m,,j), can be written as it follows :

VHe2° M(a,j) (") = aj.m;(H) (8)

M(a,j)(0) = 1 — aj + a;.m;(0). (9)

The main difficulty consists in the adjustment of the
attenuation factor [4, 5].

2.3 Combination operators

In addition, Dempster-Shafer’s theory allows the fu-
sion of several independent sources using the Demp-
ster’s combination rule. It is defined like the orthogo-
nal sum (commutative and associative) following the
equation :

m(H) =mi(H) ®mz(H) @ ... omy(H).  (10)

For two sources S; and S;, the aggregation of evidence
can be written :

VHC C) mi(H').mj(H”)

(11)
where I is defined by :

K= Y miM)m;H"). (12)
H NH!'=0

The normalization coefficient K evaluates the con-
flict between two sources. This normalization step
allows to ensure the properties of mass functions.
In [6], Zadeh presents a situation where the nor-
malization step used by Dempster’s combination rule
leads to surprising results. In order to cope with this
problem, other combination operators have been pro-
posed [7, 8, 9].

2.4 Decision

Once the resulting mass m thus obtained, the decision
can then be taken. Various rules of decision were de-
fined, most current being the rule of the maximum of
plausibility and the rule of the maximum of credibil-
ity. From the functions of belief, Smets [10] defines a
function of probability called pignistic probability dis-
tribution. In a general way, one defines the decision
function § for a vector X' to classify by :
§(X'Y=H, avec H,=arg [maxY(H;)] (13)
H; €0
where Y(.) is the credibility function, the plausibil-
ity function or the pignistic probability. An analysis
of several decision rules including the concept of cost
functions is presented in [11].

3 Basic Belief Assignment

In a classification problem, we consider a pattern X'
to be clagsified. X' is a vector with J components :
X' = [z{,...,2%]". An important aspect of the dis-
crimination concerns learning knowledge using data.
In evidence theory, this problem leads to initialize the
belief functions m;. Two kind of methods to initialize
belief functions were proposed. First one is based on
the data analysis in the features space [12]. The sec-
ond kind of methods analyses separately each feature
of the pattern [4, 13]. The approach proposed by De-
noeux uses a neighborhood information. Each nearest
neighbor of a pattern to be classified is considered as
an item of evidence. The resulting belief assignment
is also defined as a function of the distance between
the pattern and its neighborhood. The approach pro-
posed by Appriou considers the belief structure must
be compatible with several axioms leading to compat-
ibility with the Bayesian approach. In fact, one of the
two proposed models can be derived from the gener-
alized Bayesian theorem [14]. These two methods are
presented (Section 3.1 and 3.2), allowing us to intro-
duce an original approach for the basic belief assign-
ment (Section 3.3).



3.1 Denoeux’s method

The presence of a training pattern X ¢ of the class H,
among the k nearest neighbors of a pattern X’ to be
classified is considered as a piece of evidence that in-
fluences our belief concerning the class membership
of the entity under consideration. This information
is represented by a bba m® over the set © of classes.
A fraction of the unit mass is assigned by m?® to the
singleton {Hp,}, and the rest is assigned to the whole
frame of discernment ©. The mass m*({H,}) is de-
fined as a decreasing function of the distance d® be-
tween X' and X? in the feature space :

m®({Hy}) = agn(d®) (14)
m®(0) =1 — ag,(d). (15)

where 0 < a < 1 is a constant, and ¢, is a mono-
tonically decreasing function verifying ¢,,(0) = 1 and
limg—soo®n(d) = 0. An exponential form can be pos-
tulated for ¢y, :

¢ (d®) = exp(—ya(d)?) (16)

where v, is a positive parameter associated to class
H,,. The k nearest neighbors of X' can be regarded as
k independent sources of information represented by a
bba. These several piece of evidence can be aggregated
by means of Dempster’s combination rule representing
our belief concerning the class membership of X’. This
evidence-theoretic &~NN rule was shown to have good
classification accuracy as compared to the voting and
distance-weighted rule [12]. A learning algorithm was
proposed by Zouhal and Denoeux [15] for determining
the parameters =, in the equation (16) by optimizing
an error criterion. This improvement was shown to
yield further reduction of classification error in most
cases.

3.2 Appriou’s method

Dealing with the problem of imprecise and unreliable
observations in the terms of evidence theory, Appriou
proposes finding for each source Sj, a model of its N
a priori probabilities p(z’; /H,) and their N respective
confidence factors g, in the form of a mass function
m;(.). Since the source S; are distinct, a global eval-
uation m(.) can the be obtained by computation of
the orthogonal sum of the m;(.). Appriou proposes
to conduct an exhaustive and exact search of all the
models that might satisfy three fundamental axioms :

e Aziom 1 : Consistency with the Bayesian ap-
proach;

e Aziom 2 : Separability of the evaluation of the
hypotheses H,,;

e Aziom 3 : Consistency with the probabilistic as-
sociation of sources S;.

The models satisfying these three axioms have been
presented by Appriou in [13] by progressively restrict-
ing the set of possible models. It appears that only
two models satisfy the three desired axioms. Model 1
is particularized by :

muj(Hn) = quj*{1— Rj*p(@}/H)}  (18)
Mnj(0) = 1—anj+ anj * Rj xp(z;/Hy)(19)

and Model 2 by :

_ ) ;% p(CU;/Hn)
— 4nj
mm(Hn) 1 + Rj *p(l';/Hn) (21)
mui(0©) = 1—qn;. )

In the both cases, the normalization factor R; is sim-
ply constrained by :

: |
" mazy, p{p(al/Hn)}

R]’ S [0 (23)

The coeflicients g,; correspond to reliability factors
computed for each information source S; according to
each hypothesis H,,. When the densities are perfectly
representative of the training then the coefficients gy
are equal to 1 and the belief functions are not dis-
counted. Moreover, Appriou shows that the choice of
the factor g,; does not involve any problem. If the
confidence into the density is high, gy; is fixed to 1
and to 0.9 otherwise. Other authors [16, 17] proposed
automatic methods to compute these confidence co-
efficients. A mass function m(.) synthesizing all the
evaluations is obtained by computing the orthogonal
sum (see Section 2.3) of the different mass functions

mn]() :

m;() = @ mas() (24)
m() = @m;() (25)

The decision rule consists in choosing H,, which max-
imizes the plausibility function.



3.3 Our method

In this section, we present a method proposed in [5,
18]. As for the modeling suggested by Appriou, each
component of vector X’ to classify is considered as an
imprecise and uncertain information source intended
to reinforce the membership of X' to a hypothesis H,,.
On the contrary, we build for an information source
only one belief structure instead of N. For a source
S;, we determine for each singleton hypothesis a not
standardized mass noted P;(.) which is defined using
the probabilities densities :

MJ(Hn) :p(ZU;/Hn) (26)

From this mass, we define the masses accorded to dis-
junctions of hypothesis using the operator min. This
operator will be applied to the hypothesis constituting
the subset :

Pj(H) = min(p(«j/Hy), ..., p(xj/Hw))  (27)

with H = Uern,.. o) Hi- Then, we build the belief
structure as it %ollows :

VH €2°  m;(H) =R, x P;(H) (28)

where R; is a normalization factor. It allows to verify
the condition given by equation (5). It is defined by:
1
e

VH €2 R; S a0 B0 (29)
An attenuation factor a; can be introduced (see Sec-
tion 2.2). This factor will intend to attenuate the be-
lief function m;(.) relative to each source S; according
to its ability to distinguish the hypotheses. It will be
given using the measure of confusion which is one of
the uncertainty measures defined in [19]. The measure
of confusion Conf(.) of a belief structure m; is defined
by :

aj =Conf(m;) = — Z m;(H).logs(Bel;(H))
He2®

(30)
The evolution of attenuation factor a; determined
with the measure of confusion according to classifi-
cation capacity of sources is represented on the figures
Fig. 1 and Fig. 2. In the first case (Fig. 1), the source
allowed a good discrimination between the hypothe-
ses. The reliability factor evolves according to the
mass distributions. We can notice that the coefficient
is minimal when ambiguity between the hypotheses is
maximum. In the second case (Fig. 2), we can note
that the attenuation zone (i.e. when the coefficient is
close to zero) is more significant than in the first case.
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Figure 2: Evolution of a.
4 Results

We applied these methods of basic belief assignment
to classification between benign and malignant lesions
in dermatology in the aim to help the clinical prac-
titioner for melanoma diagnosis. Melanoma is an in-
creasing form of cancer in the world. It has increased
twice for 15 years in Canada and it is 3% in the USA at
this time. For the classification, we propose 19 charac-
teristics (geometric as well as colorimetric) which are
robust and relevant. Details concerning the features
can be found in [20]. These characteristics show that
the melanoma class is heterogeneous. We have ap-
plied the classification process on a training set of 81
lesions : 61 benign lesions (naevi) and 20 malignant
lesions (melanoma) and a test set of 209 lesions : 191
naevi and 18 melanoma. The probability densities for
each information source according to each hypothesis
p(z}/Hy), computed in the methods presented Sec-
tion 3.2 and Section 3.3, are estimated by the well-
known Parzen’s windows method with a gaussian ker-



nel. The number & of neighbors, used in the Denoeux’s
method, is fixed at 9. However, this method is used
without optimized belief structure parameters. Final
results obtained on the training set are presented in
the following tables (Table 1, 2 and 3). The method
we propose allows to obtain 98.8% of good classifica-
tion (Table 3). This result is quite similar to the result
obtained with Appriou’s approach (97.5%). The result
obtained with Denoeux’s approach are less significant;
the good classification rate is 91.35% (Table 1).

Table 1: Result on training set of Denoeux’s method.

Decision
% | Hi (naevus) | Hy (melanoma)
Nature | H; 98.37 1.63
Nature | H, 30 70

Table 2: Result on training set of Appriou’s method.

Decision
% | Hi (naevus) | Hy (melanoma)
Nature | H; 100 0
Nature | H> 10 90

Table 3: Result on training set of our method.

Decision
% | Hi (naevus) | Hy (melanoma)
Nature | H; 100 0
Nature | H, 5 95

paper (Table 6). As for the training set, the results
obtained on the test set are quite similar.

Table 4: Result on test set of Denoeux’s method.

Decision
% | Hy (naevus) | H» (melanoma)
Nature | H; 90.6 94
Nature | H> 72.22 27.78

Table 5: Result on test set of Appriou’s method.

Decision
% | Hi (naevus) | H, (melanoma)
Nature | H; 74.9 25.1
Nature | H, 27.77 72.23

Table 6: Result on test set of our method.

Decision
% | Hy (naevus) | H» (melanoma)
Nature | H; 72.26 27.74
Nature | H, 22.22 77.78

5 Conclusions

The results obtained with the test set are presented in
the following tables (Table 4, 5 and 6). We can notice
that the best result of good classification (85.2% of
good classification) is obtained with the method pro-
posed by Denoeux (Table 4). However, the percentage
of non-detection of melanoma (72.22%) is more impor-
tant for this method. For a medical diagnosis applica-
tion, this result is not satisfactory. In this context, we
search to minimize the non-detection and false alarm
rates. This problem shows the limits of the distance
based methods in the case of heterogeneous classes
(the melanoma class). The two other methods of basic
belief assignments give percentages of good classifica-
tion of 74.65% for the method proposed by Appriou
(Table 5) and 72.72% for the method presented in this

In this paper, we have presented different methods to
initialize belief functions using data extracted from a
training set. We applied these methods to a dataset
extracted from dermatological lesions, as a tool for
help in the diagnosis of skin cancer (melanoma). Ac-
cording to the results obtained with this particular
database, the distance based method (proposed by De-
noeux) does not seem to be adapted for the classifi-
cation of heterogeneous classes. In fact, the class cor-
responding to the malign lesions, is divided in several
clusters in the feature space. The method suggested
in this paper and the one presented by Appriou are
more robust with respect to this kind of data. Future
work is concerned with a global evaluation on these
belief functions estimation methods on synthetic and
real datasets.
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