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Abstract Data fusion, within the evidence theory frame-
work, consists of obtaining a unique belief function by the
combination of several belief functions induced from var-
ious information sources. Considerable attention has been
paid to combination rules dealing with beliefs induced from
non-distinct information sources. The most popular fusion
rule is the cautious conjunctive rule, proposed by Denœux.
This latter has the empty set, called also the conflict, as an
absorbing element. In fact, the mass assigned to the conflict
tends toward 1 when applying a high number of the cautious
conjunctive operator, and consequently, the conflict loses its
initial role as an alarm signal, announcing that there is a kind
of disagreement between sources. This problem has led to
the introduction of the normalized cautious rule which to-
tally ignores the mass assigned to the conflict. An interme-
diate rule between the cautious conjunctive and the normal-
ized cautious rules, named the cautious Combination With
Adaptive Conflict (cautious CWAC), has been proposed to
preserve the initial alarm role of the conflict. Despite this di-
versification, no great effort has been devoted until now to
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find out the most convenient combination rule. Thus, in this
paper, we suggest to evaluate and compare the cautious con-
junctive, the normalized cautious and the cautious CWAC
rules in order to pick out the most appropriate one within
the classifier fusion framework.

Keywords Belief function theory · combination rules ·
dependent information sources · multiclassifier fusion
framework.

1 Introduction

Pattern recognition is an exciting field in machine learn-
ing which has been widely studied over the past few years
to solve classification problems. Among the proposed so-
lutions, some have relied on an advanced method named
multiple classifier systems or ensemble classifier (Wolpert,
1992; Kittler, Hatef, Duin, & Matas, 1998; Dietterich,
2000; Reformat & Yager, 2008). The underlying idea be-
hind the use of ensemble classifier is that different classi-
fiers can provide higher classification accuracy about pat-
terns to be classified (Sharkey & Sharkey, 1997; Kuncheva,
Skurichina, & Duin, 2002; Kuncheva & Whitaker, 2003).
Ensemble classifier can take different forms: A such en-
semble can be constructed by learning different machine
learning classifiers using all the training examples (Trabelsi,
Elouedi, & Lefevre, 2015a, 2015b), by training the same
classifier on different subsets of training instances [bagging
(Breiman, 1996), boosting (Freund & Schapire, 1997) and
cross- validation] or on different subsets of features [Ran-
dom Subspaces (Ho, 1998; Bertoni, Folgieri, & Valentini,
2005; Kuncheva, Rodrı́guez, Plumpton, Linden, & Johnston,
2010), Rotation Forests (Rodriguez, Kuncheva, & Alonso,
2006)] and also by introducing randomness into a learn-
ing procedure [e.g., using different initial weights for the
Nearest Neighbor classifier, picking different splits for the
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decision tree classifier (Dietterich, 2000; Geurts, Ernst, &
Wehenkel, 2006), etc]. Up to now, various combination ap-
proaches have been proposed to combine diverse classifiers
such as voting-based systems (Ruta & Gabrys, 2005), plu-
rality (Hansen & Salamon, 1990), fuzzy integrals (Cho &
Kim, 1995; Pizzi & Pedrycz, 2010), classifier local accu-
racy (Woods, Kegelmeyer, & Bowyer, 1997), Bayesian the-
ory (L. Xu, Krzyzak, & Suen, 1992; Kuncheva, Skurichina,
& Duin, 2002), multilayered perceptrons (Huang, Liu, &
Suen, 1995) and belief function theory (L. Xu, Krzyzak,
& Suen, 1992; P. Xu, Davoine, & Denoeux, 2014; P. Xu,
Davoine, Zha, & Denoeux, 2016; Mercier, Cron, Denœux,
& Masson, 2005; Le, Huynh, Shimazu, & Nakamori, 2007;
Quost, Denœux, & Masson, 2007, 2008; Bi, Guan, & Bell,
2008; Reformat & Yager, 2008). The belief function theory,
originated from the work of Dempster (1967) and Shafer
(1976), is regarded as a convenient method for represent-
ing and managing different kinds of imperfect data and has
proved to be an efficient tool for merging. Thanks to its com-
bination rules, a member of classifiers such that their outputs
are expressed in terms of mass functions (Al-Ani & Deriche,
2002) can be combined. The basic rule of combination is
Dempster’s rule also called orthogonal sum. This latter re-
quires a normalization task in order to maintain the basic
properties of the belief functions (Lefevre, Colot, & Van-
noorenberghe, 2002; Yen, 1990). Zadeh (1986) has proved
that this normalization can involve counterintuitive behav-
iors in the case where the initial conditions of the Dempster
rule are not respected (e.g., where the information sources
to be combined are not reliable). Thus, several combination
rules have been developed to address this problem such as
Yager’s rule (1987), Dubois and Parde’s rule (1988), Smets’s
rule (1990a) and Murphy’s rule (2000). However, these rules
can only be used when the combined information sources
are independent. A source is presumed to be independent
on another one when its belief knowledge does not affect
the belief of the other one. Quite recently, considerable at-
tention has been paid to the combination of beliefs coming
from dependent sources of information such as the cautious
rule and its unnormalized version (Denœux, 2006), the bold
rule (Denœux, 2008), the cautious Combination With Adap-
tive Conflict rule (cautious CWAC) (Boubaker, Elouedi, &
Lefevre, 2013), the t-norms-based rules (2008) and Catta-
neo’s rule (2003), etc. An information concerning the inde-
pendence of sources or not guides the choice of the type of
combination rules to be used. Nevertheless, the selection of
the most convenient rule among several alternatives is cru-
cial, but the criteria to be based on have not been deeply re-
ported until now. Thus, in this paper, we suggest to evaluate
and compare combination rules within the classifier fusion
framework to find out the most adequate rule. More con-
cretely, we evaluate and compare combination rules deal-
ing with non-independent information sources, in particular

the cautious conjunctive rule, the normalized cautious rule
and the cautious CWAC rule. This choice is justified by the
fact that these alternative rules mainly differ according to the
way of managing the mass assigned to the empty set called
also conflict. Indeed, the cautious conjunctive rule, which
is the first proposed rule to deal with non-independent in-
formation sources, does not keep the initial alarm role of
the conflict owing to the use of the conjunctive operator
that has the empty set as an absorbing element (Lefevre &
Elouedi, 2013). In view of this problem, the normalized cau-
tious rule, obtained by the use of the Dempster operator, has
been proposed to ignore completely the value of the conflict
yielded by combining pieces of evidence. On the other hand,
the cautious Combination With Adaptive Conflict rule (cau-
tious CWAC), which is defined by an adaptive weighting be-
tween the cautious conjunctive and the normalized cautious
rules, gives the conflict its initial role as an alarm signal in-
dicating that there is a sort of disagreement between sources
(Boubaker, Elouedi, & Lefevre, 2013). Therefore, in this in-
vestigation, we propose to compare the cautious CWAC rule
with the cautious conjunctive and the normalized cautious
rules according to some proposed assessment criteria. The
remaining of this paper is organized as follows: We provide
in Sect 2 a brief overview of the fundamental concepts of
the belief function theory. We outline various combination
rules in Sect 3. We present the procedure of combining mul-
tiple classifiers within the belief function framework in Sect
4. Sect 5 is dedicated to highlighting our comparative ap-
proach. Our experiments and results are given in Sect 6. The
conclusion is reported in Sect 7.

2 Fundamental concepts of the belief function theory

The belief function theory is regarded as a practical and ef-
ficient framework for representing and managing uncertain
knowledge. This section briefly recalls some basic concepts
of this theory.

2.1 Information representation

Let Θ be a finite non-empty set of N elementary events re-
lated to a given problem. These events are assumed to be
exhaustive and mutually exclusive. Such set Θ , called the
frame of discernment, is defined as:

Θ = {θ1,θ2, . . . ,θN} (1)

The agent beliefs on 2Θ are represented by the so-called
basic belief assignment (bba), named originally by Shafer
(1976) basic probability assignment (bpa) . The bba is de-
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fined as follows:

m : 2Θ → [0,1]

m( /0) = 0 and ∑
A⊆Θ

m(A) = 1 (2)

The amount m(A), called basic belief mass (bbm), states
the part of belief that exactly supports the event A. All
the subsets A of Θ such that m(A) is strictly positive are
refereed to the focal elements of m.

In Shafer’s original work (1976), the mass assigned
to the empty set should have a null value (i.e., impossible
proposition). Such bba is called a normalized basic belief
assignment. However, Smets (1990b) allows unnormalized
bba and interprets m( /0) as the amount of conflict between
the pieces of evidence or as the part of belief given when
the true value is not included in the frame of discernment.

As well, it is possible to transform any unnormalized
bba, denoted by m′, into a normalized one, denoted by m.
The normalization process is defined by:

m(A) =

{
0 if A = /0

k.m′(A) otherwise
(3)

where k−1 = 1-m( /0) is called the normalization factor.

From the bba m, a belief function ,bel, a plausibility
function pl and a communality function q are defined, re-
spectively, as:

bel(A) = ∑
/0 6=B⊆A

m(B) (4)

pl(A) = ∑
A∩B6= /0

m(B) (5)

and

q(A) = ∑
B⊇A

m(B) (6)

The quantity bel(A) represents the total mass of belief
that supports the event A, while pl(A) quantifies the maxi-
mum possible support that could be given to a subset A of
the frame of discernment Θ . On the other hand, the com-
munality q(A) stands for the sum of masses allocated to the
supersets of A . It is important to note that m, bel, pl and q
are regarded as various expressions of the same information
(Denœux, 1999).

2.2 Special bbas

In this subsection, we will focus on some special cases of
bbas used for expressing particular situations of uncertainty.
A vacuous bba is a normalized bba that has Θ as its unique
focal element (Shafer, 1976). Such bba, representing the
state of total ignorance, is defined as follows:

m(Θ) = 1 and m(A) = 0 ∀ A 6= Θ (7)

A categorical bba is a normalized bba that has a unique
focal element A different from the frame of discernment Θ .
It is defined as follows:

m(A) = 1, for some A ⊂Θ (8)

m(B) = 0, for B ⊆Θ , B 6= A

A certain bba is a particular case of the categorical belief
function where its unique focal element is a singleton. This
bba represents the state of total certainty. It is defined as
follows:

m(A) = 1 for some A ⊂Θ and |A|=1 (9)

m(B) = 0 for all B ⊆Θ and B 6= A

A bba is called simple support function (ssf) if it has at
most two focal elements: the frame of discernment Θ and a
strict subset of Θ called the focus of the ssf (Smets, 1995). A
simple support function is defined as follows (Smets, 1995):

m(X) =


w if X = Θ

1−w if X = A for some A ⊆Θ

0 otherwise

(10)

In simple terms, such ssf can be written as Aw where A is
the focus and w ∈ [0,1].

A bba is named dogmatic only if the frame of discern-
ment Θ is not a focal element (m(Θ) = 0); otherwise it is
called non-dogmatic (m(Θ)> 0).

2.3 Discounting

The combination of bbas induced from not fully reliable in-
formation sources may lead to a non-informative bba. How-
ever, a method of discounting seems to be imperative before
combining sources. Let m be a bba induced from an infor-
mation source with a reliability rate (1−α) (Shafer, 1976).
The discounted bba mα is obtained as follows:

mα(A) = (1−α)m(A) ∀ A ⊂Θ . (11)

mα(Θ) = α +(1−α)m(Θ)

where the coefficient α ∈ [0,1] is called the discounted fac-
tor.
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2.4 Distance between two bbas

The distance measures of evidence represent the degree of
dissimilarity between pieces of evidence. One of the well-
known distances is the one proposed by Jousselme. The
Jousselme et al. et al. (2001) distance between two bbas m1
and m2 is found as follows:

d(m1,m2) =

√
1
2
(m1−m2)T D(m1−m2) (12)

where D is the Jaccard similarity measure defined by:

D(A,B) =


1 if A=B= /0

|A∩B|
|A∪B|

∀ A,B ∈ 2Θ
(13)

2.5 Pignistic transformation

To make a decision within the belief function framework,
Smets (1988) proposes to transform beliefs into a probabil-
ity measure called the pignistic probability and denoted by
BetP. It is defined as follows:

BetP(A) = ∑
B⊆Θ

|A∩B|
|B|

m(B)
1−m( /0)

∀ A ∈Θ (14)

3 Combining information sources

Data fusion consists in obtaining a relevant information by
the combination of several imperfect data (uncertain, impre-
cise and incomplete) (Lefevre, Colot, & Vannoorenberghe,
2002). The belief function framework provides numerous
tools for ensuring fusion. Some of them treat the prob-
lem of independent information sources, while others as-
sume sources of information combined to be dependent.
Two information sources are dependent in the case where
the knowledge of the belief induced by one source affects
the belief of the other source; otherwise these sources are
independent (Denoeux & Masson, 2012).

3.1 Combining independent pieces of evidence

As mentioned earlier, there exist several combination rules
assuming items of evidence combined to be independent.
In this subsection, we emphasize on the conjunctive rule
(Smets, 1998), the Dempster’s rule (1967) and the CWAC
rule (Lefevre & Elouedi, 2013).

The conjunctive rule, proposed by Smets (1998), is used
to combine two bbas provided by reliable and distinct in-
formation sources. The resulting bba, denoted m1 ∩©m2, is

defined by:

(m1 ∩©m2)(A) = ∑
B,C⊆Θ :B∩C=A

m1(B).m2(C) (15)

The mass assigned to the empty set (m1 ∩©m2( /0)) quantifies
the degree of disagreement between the two combined
sources. In the case where the number of information
sources increases, the conflict tends toward 1 and conse-
quently loses its initial role as an alarm signal reflecting the
existence of disagreement between sources.

The Dempster rule, based on the orthogonal sum, is a
normalized version of the conjunctive rule where the mass
of the empty set must be reallocated over all focal elements
in the case where m1 ∩©m2( /0) 6= 0 thanks to a normalization
factor, denoted k (Shafer, 1976). This rule, assuming pieces
of evidence combined to be reliable and distinct, is defined
as follows:

(m1⊕m2)(A) = k(m1 ∩©m2)(A) (16)

and

(m1⊕m2)( /0) = 0 (17)

where

k−1 = 1− (m1 ∩©m2)( /0) (18)

The conjunctive and the Dempster rules are commutative,
associative but not idempotent which make them unusable
when sources are non-distinct.

Authors, in Lefevre and Elouedi (2013), have proposed
the CWAC combination rule which is defined by an adaptive
weighting between the conjunctive and the Dempster rules.
This adaptive weighting offers an effective way to obtain the
same behavior as the conjunctive rule when the bbas are con-
tradictory and the same behavior as the Dempster rule when
the bbas are similar. Assume we have M bbas, denoted as
m1,. . . , mM , the result of their combination using the CWAC
operator is noted as m↔© and is defined as follows:

m↔©(A) = Dm∩©(A)+(1−D)m⊕(A) (19)

and

m↔©( /0) = 1 when m∩©( /0) = 1 (20)

with m∩©(A) = (∩©
i

mi)(A), m⊕(A) = (⊕
i
mi)(A) and

D = max
i, j

[d(mi,m j)] is the Jousselme distance between mi

and m j ∀ i, j ∈ [1,M].

The CWAC rule is commutative, not associative and
non-idempotent.



Comparing dependent combination rules under the belief classifier fusion framework 5

3.2 Combining dependent pieces of evidence

By against of the conjunctive operator, the cautious conjunc-
tive rule, proposed by Denœux and denoted by ∧©, is used to
combine pieces of evidence induced from reliable dependent
information sources based on the conjunctive canonical de-
composition stated by Smets (1995). Let m1 and m2 be two
non-dogmatic bbas, the result of their combination, denoted
by m1 ∧©m2, is given as follows (Denœux, 2006):

m1 ∧©m2(A) = ∩©A⊂Θ Aw1(A)∧w2(A) (21)

where w1(A)∧w2(A) corresponds to the weight function of
a bba m1 ∧©m2 and ∧ represents the minimum operator. The
weights w(A) for every A ⊂ Θ can be obtained from the
commonalities as follows:

w(A) = ∏
B⊇A

q(B)(−1)|B|−|A|−1
. (22)

It is important to note that information sources may be
dependent without being identical (e.g. experts may observe
different but correlated variables). As the cautious conjunc-
tive rule inherits the absorbing effect of the conjunctive rule,
the conflict may lose its initial alarm role when we apply a
significant number of cautious conjunctive combinations.

The normalized version of the cautious conjunctive rule,
denoted by ∧©∗, is inspired from the behavior of the Demp-
ster operator in order to overcome the value of the conflictual
mass (Denœux, 2006). It is defined as:

m1 ∧©∗m2 = ⊕
/06=A⊂Θ

Aw1(A)∧w2(A) (23)

We thus have:

m1 ∧©∗m2(A) = k.m1 ∧©m2(A) (24)

with k−1 = 1−m1 ∧©m2( /0) and m1 ∧©∗m2( /0) = 0.

This rule has the same properties as its unormalized
version counterpart: it is commutative, associative and
idempotent.

An intermediate rule between the cautious conjunctive
and the normalized cautious rules has been developped by
(Boubaker, Elouedi, & Lefevre, 2013) under the name of
cautious CWAC rule and denoted by m ·©. This proposed
rule is defined by an adaptive weighting between the
cautious conjunctive rule and its unnormalized version in
order to manage the conflict induced from the combination
of several information sources. As a consequence, this latter
not only ensures the combination of dependent pieces of
evidence but also keeps the conflict as an alarm signal
announcing that there is a kind of disagreement between
sources. Assuming there are M bbas, denoted as m1,...,mi,...

, mM , the result of the cautious CWAC operator is set to:

∀ A ⊆Θ , m∧©( /0) 6= 1;

m ·©(A) = Dm∧©(A)+(1−D)m∧©∗(A) (25)

with D=max
i, j

[d(mi,m j)] is the Jousselme distance measure

between mi and m j ∀ i, j ∈ [1,M].

The cautious CWAC rule is commutative but not asso-
ciative. It is idempotent only in case where D is equal to
0.

4 The combination of multiple classifiers within the
belief function framework

An increasing interest in the classification process has re-
lied on the so-called ensemble classifier systems (Dietterich,
2000; Kittler, Hatef, Duin, & Matas, 1998; Wolpert, 1992).
These kinds of systems are based on the paradigm of com-
bining the outputs of a member of individual classifiers in
order to achieve the best classification accuracy. The belief
function framework has proved to be an efficient tool for
ensuring classifier fusion (Al-Ani & Deriche, 2002).

Authors, in Xu et al. (1992), have shown that the proce-
dure of merging the outputs of numerous classifiers, when
using the framework of belief functions, comprises two dis-
tinct levels. The first one consists of building mass functions
from classifiers’ outputs, whereas the second one is dedi-
cated to combining these mass functions through a combina-
tion rule R to finally give an improved information decision
DF (see Fig 1).

Fig. 1 Classifier fusion within the belief function framework
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4.1 Modeling classifiers’outputs

One of the most important key points within the belief
function framework concerns the assignment of masses.
Therefore, several assignments have been discussed based
on the performance of classifiers in terms of recognition
rate (correct answer), substitution rate (wrong answer) and
rejection rate which are computed from a confusion matrix.
Let C = {C1, . . . ,CM} be a set of M classifiers, and let Θ =
{θ1, . . . ,θK} be a set of K class labels. Each classifier takes
as input a pattern test x and outputs either a class label θk or
a rejection class θk+1. The confusion matrix Mi relative to a
classifier Ci is given by:

Mi =

∣∣∣∣∣∣∣∣∣∣∣

ni
11 · · · ni

1K
ni

21 · · · ni
2K

...
...

ni
K1 · · · ni

KK
ni
(K+1)1 · · · ni

(K+1)K

∣∣∣∣∣∣∣∣∣∣∣
where each row k corresponds to the predicted class θk, each
column l corresponds to the actual class θl , an element ni

kl
represents the number of test patterns of class θl which have
been classified by Ci in class θk and ni denotes the total
number of patterns classified by the classifier Ci. The per-
formance rates of Ci are computed as follows:

– The recognition rate:

Ri =
∑

K
k=1 ni

kk
ni (26)

– The substitution rate:

Si =
∑

K
k=1 ∑

K
l=1;l 6=k ni

kl

ni (27)

– The rejection rate:

Ti = 1− (Ri +Si) (28)

There exist several assignments based on the perfor-
mance rates of classifiers (Mercier, Cron, Denœux, & Mas-
son, 2005) such as the Xu’s assignment (1992), the reliabil-
ity assignment (Johansson, Boström, & Karlsson, 2008), the
calibration method (P. Xu, Davoine, & Denoeux, 2014). In
this paper, we propose to model each classifier output using
the reliability assignment. Suppose that the classifier Ci out-
puts a class label θk, the basic belief assignment is computed
as follows:

mi(θk) = Ri (29)

mi(Θ) = 1−Ri

The output results associated with M classification meth-
ods are different; by the way, we will have M number of
mass functions for each test pattern. In the case where the

outputs of all classifiers are converted into bbas, we move
on to the next step which consists of the classifier fusion
through some combination rules provided by the belief func-
tion framework.

4.2 Classifier fusion

This level concerns the problem related to the question
”How to aggregate the results from a set of classifiers such
a way that we obtain the best result?”. As there exist several
combination rules within the belief function framework, the
choice of the most efficient one becomes really a challeng-
ing task and it still requires non-trivial effort. In a previous
work (Trabelsi, Elouedi, & Lefevre, 2015a), we have proved
that the CWAC rule is the well-suited rule in the case of in-
dependent classifiers. In this paper, we propose to carry out
a comparative study which allows to select the best fusion
rule among the cautious conjunctive, the normalized cau-
tious and the cautious CWAC ones.

5 Comparative approach

Let us remind that our purpose is to compare the cautious
CWAC rule with the cautious conjunctive and the normal-
ized cautious ones. To achieve our goal, we suggest to resort
on the distance and the PCC criteria. The distance criterion,
corresponding to the Jousselme distance between the testing
instance’s bba and its real class, is used to compare the cau-
tious CWAC rule with the cautious conjunctive one, whereas
the PCC criterion, representing the percent of the correctly
classified instances, is used to compare the cautious CWAC
rule with the normalized cautious one.

– For comparing the cautious CWAC rule with the cau-
tious conjunctive one, we should proceed as follows:
1. The real class θ j of all test instances must be trans-

formed into a mass function as follows:

mr({θ j}) = 1 (30)

mr(A) = 0 ∀ A ⊆Θ and A 6= {θ j}

2. Subsequently, we compute for each instance the
Jousselme distance between the mass function rel-
ative to its real class (mr) and the mass function ob-
tained by combining bbas induced from M classi-
fiers.

3. At last, we sum the Jousselme distances produced by
all test instances to get a total one.

4. The most adequate fusion rule is the one that has the
minimum value of total distance.

– The comparison of the cautious CWAC rule with the
normalized cautious one requires the use of 3 variables
n1, n2 and n3 which, respectively represent the number
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of well-classified, misclassified and rejected instances.
Whence, for each combination rule, we suggest the fol-
lowing stages:
1. At first, we have set tolerance threshold values to be

S = {0.1,0.2, . . . ,1}. Then, for any test pattern, we
verify the mass assigned to the empty set m( /0). In the
case where m( /0) is greater than the threshold s, the
classifier rejects instance in place of misclassifying
it and consequently, the number of rejected instances
n3 must be incremented. On the contrary, if m( /0) is
less than the threshold s, we calculate the pignistic
probability (BetP) to make a decision about the class
to be chosen. Besides, the actual class will be com-
pared to the real one: We increment n1 if there are
similar and n2 if they are different.

2. Once we have calculated our well-classified, mis-
classified and rejected instances, we calculate then
the PCC for each threshold s ∈ S as follows:

PCC =
n1

n1 +n2
∗100 (31)

3. Finally, we compute the average of all PCCs to ob-
tain a mean PCC.

4. The best combination rule is the one that has the
highest value of mean PCC.

Note that the use of two evaluation criteria is justified
by the fact that the mass assigned to the empty set is almost
high for the cautious conjunctive rule. In such a case, apply-
ing the PCC criterion may cause a high number of rejected
instances leading to erroneous results. In addition, the mass
attributed to the empty set, when using the normalized cau-
tious rule, is null, and consequently, the Jousselme distance,
which mostly tends toward 0, may adversely affect the re-
sults.

6 Implementation and simulation

In this section, we detail the different experimentation tests
that we have employed to compare the cautious CWAC rule
with both conjunctive and normalized cautious rules under
the classifier fusion framework.

6.1 Experimental settings

To ensure the implementation of our approach, we have
developed our program with MATLAB V7.13 (R2013a).
We have further performed our experiments on several real
databases obtained from the UCI. repository (P. Murphy
& Aha, 1996). A brief description of these databases is
presented in Table 1 where # Instances, #Attributes and
#Classes denote, respectively, the total number of instances,
the number of attributes and the number of classes. Although

the classes number of all chosen databases is equal to either
two or three, our alternative combination rules can also sup-
port a class number greater than three.

Table 1 Description of databases

Databases #Instances #Attributes #Classes
Nursery 12960 8 5
Chess 3196 36 2
Tic-Tac-Toa 958 9 2
Diabetes 768 2 2
Car Evaluation 1728 6 4
Hepatitis 155 19 2
Iris 150 4 3
Parkinson’s 195 23 2
Wine 178 13 3

We have carried out experiments using four popular ma-
chine learning algorithms implemented in Weka (Hall et al.,
2009); Naive Bayes (NB), k-Nearest Neighbors (k-NN), De-
cision Tree (DT) and Neural Network (NN) algorithms. We
have run these Weka classifiers on Matlab based on the prin-
ciple of the leave-one-out cross validation method which di-
vides a data set with N instances into N-1 parts for training
and the remaining instance for testing. This process is re-
peated N times where each instance is used once as a test
set. As a result, we get N test patterns with their predicted
class labels from each classifier.

6.2 Experimental results

Within the framework of classifier fusion, several factors
including the number of classifiers, the performance of in-
dividual classifiers and the dependency between classifiers
may affect the combination rule behavior. The influence of
classifier dependencies on the performance of various com-
bination rules has been the interest of numerous researchers
(Quost, Masson, & Denœux, 2011). As a matter of fact, sev-
eral correlation measures have been proposed in the litera-
ture. One of the most commonly used measures is the one
proposed by Goebel and Yan (2004). This latter, denoted
by ρ , allows to quantify the dependency between a mem-
ber (r (≥2) of classifiers. Based on the outputs of the indi-
vidual classifiers, the correlation coefficient is computed as
follows:

ρ =
m.N f

N−N f −Nt +m.N f (32)

where m is the number of classifiers, N is the number of
test patterns, Nt is the number of test patterns for which
all classifiers had a right answer, and N f is the number of
test patterns for which all classifiers had a wrong answer. In



8 Asma Trabelsi et al.

0.1 0.3 0.5 0.7 0.9

96

98

100

Threshold s

PCC(%)
Normalized cautious

Cautious CWAC

(a) Nursery database

0.1 0.3 0.5 0.7 0.9

99

99.5

100

Threshold s

PCC(%)
Normalized cautious

Cautious CWAC

(b) Chess database

0.1 0.3 0.5 0.7 0.9

96

98

100

Threshold s

PCC(%)
Normalized cautious

Cautious CWAC

(c) Tic-Tac-Toa database

0.1 0.3 0.5 0.7 0.9

60

80

100

Threshold s

PCC(%) PCCs for Diabetes database
Normalized cautious

Cautious CWAC

(d) Diabetes database

0.1 0.3 0.5 0.7 0.9

60

80

100

Threshold s

PCC(%)
Normalized cautious

Cautious CWAC

(e) Car Evaluation database

0.1 0.3 0.5 0.7 0.9

80

90

100

Threshold s

PCC(%)
Normalized cautious

Cautious CWAC

(f) Hepatitis database

0.1 0.3 0.5 0.7 0.9

90

95

100

Threshold s

PCC(%)
Normalized cautious

Cautious CWAC

(g) Parkinons database

0.1 0.3 0.5 0.7 0.9

96

98

100

Threshold s

PCC(%)
Normalized cautious

Cautious CWAC

(h) Iris database

0.1 0.3 0.5 0.7 0.9

98

99

100

Threshold s

PCC(%)
Normalized cautious

Cautious CWAC

(i) Wine database

Fig. 2 PCC results of the normalized cautious and the cautious CWAC rules

the following, we will study the influence of classifier de-
pendencies on the relative performance of the cautious con-
junctive, the normalized cautious and the cautious CWAC
rules. Thus, we propose to carry out different experimental
tests where classifier dependency degrees will differ from
one experimentation to another. The results carried out from
the different tests will be presented and analyzed in order to
pick out the most appropriate fusion rule.

6.2.1 Experimentation 1

As a first experimentation, we look forward to combine a
set of classifiers with a low correlation through the cau-
tious conjunctive, the normalized cautious and the cautious
CWAC rules. Thus, we propose to combine heterogeneous
sets of classifiers which are able to make different errors
on a new pattern to be classified. Exactly, we have chosen
to combine the 1-NN, the NB, the NN and the DT classi-
fiers. The correlation coefficient between these classifiers
is presented in Table 2. As seen in Table 2, the degree of
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Table 2 Correlation coefficient between 1-NN, NB, NN and DT clas-
sifiers

Databases ρ-correlation
Nursery 0.005
Chess 0.01
Tic-Tac-Toa 0
Diabetes 0.535
Car Evaluation 0.05
Hepatitis 0.505
Iris 0.2667
Parkinsons 0.1
Wine 0

correlation between the 1-NN, the NB, the NN and the DT
classifiers is almost low for the different databases (e.g., the
ρ-correlations are equal to 0 for Iris database and 0.1 for
Parkinson’s database). Accordingly, we will study the be-
havior of the three alternative operators, where classifiers to
be combined have low correlation, in the purpose of finding
out the most convenient one. Let us lead off by comparing
the cautious conjunctive rule with the cautious CWAC one
in terms of the distance criterion. The total distance results
are given in Table 3 where we can notice that the total dis-
tance relative to the cautious CWAC rule is lower than the
one obtained by applying the cautious conjunctive rule for
all the databases. For instance, the total distance relative to
the Car Evaluation database by the use of the cautious con-
junctive operator is equal to 876.39, whereas the total dis-
tance obtained by applying the cautious CWAC operator is
equal to 852.50. This interpretation is also available for all
the other databases. Accordingly, we can say that the cau-
tious CWAC rule is more efficient than the cautious con-
junctive one in terms of the distance criterion. From this
conclusion, we move on to the comparison of the cautious
CWAC rule with the normalized cautious rule in terms of
the PCC criterion. Figure 2 represents the mean PCC values
for both the normalized cautious and the cautious CWAC
rules relative to all the mentioned databases. This latter in-
dicates that the cautious CWAC rule has the highest value of
mean PCC compared with the normalized cautious one for
all the databases. These results may be explained by the fact
that the mean number of the rejected instances relative to
the cautious CWAC rule is greater than 0, while that relative
to the normalized cautious one is equal to 0. Accordingly,
we can conclude that the cautious CWAC rule is more effi-
cient than the normalized cautious rule in terms of the PCC
criterion.

6.2.2 Experimentation 2

We recall that we aim to study the behavior of the cau-
tious conjunctive, the normalized cautious and the cautious
CWAC rules with different classifier dependency degrees.
Thus, in this experimentation, we tend to increase the corre-

Table 3 Distance results

Databases Cautious conjunctive Cautious CWAC
Nursery 8624.19 8481.42
Chess 1731.05 1713.93
Tic-Tac-Toa 280.17 252.50
Diabetes 334.87 312.45
Car Evaluation 876.39 852.50
Hepatitis 54.90 51.56
Iris 15.09 14.78
Parkinsons 60.92 55.31
Wine 24.47 23.83

Fig. 3 Two fusion rules to combine classifiers

lation between the 1-NN, the NB, the NN and the DT clas-
sifiers. To achieve our goal, we propose to construct three
correlated classifiers, denoted by C1, C2, C3, obtained re-
spectively by combing 1-NN classifier with NB classifier,
1-NN classifier with DT classifier and 1-NN and NN clas-
sifiers. Subsequently, the outputs obtained by C1, C2 and C3
will be combined in a same way to obtain a consensus re-
sult (see Figure 3 where R1 corresponds to the conjunctive
rule and R2 will be either the cautious conjunctive rule, the
normalized cautious rule or the cautious CWAC rule).

The correlation coefficient between C1, C2 and C3 is
given in Table 4 for the different mentioned databases. It
is clear from the results in Table 4 that the ρ-correlation co-
efficient remains high for the different databases (e.g., for
the Parkinsons we have 1 as ρ-correlation value). As a re-
sult, we can conclude that C1, C2 and C3 are highly cor-
related. From this conclusion, we move on to analyze the
performance of the three alternative combination rules. The
total distance and the mean PCC results are presented in Ta-
ble 5. From this latter, we can notice that the total distance
of the cautious conjunctive rule is greater than that relative
to the cautious CWAC one for the different databases (e.g.
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Fig. 4 Distances for both cautious conjunctive and cautious CWAC rules

for the database Diabetes, the total distance of the cautious
conjunctive and the cautious CWAC rules are respectively
334.87 and 295.23). Accordingly, it can be said that the cau-
tious CWAC rule is better than the cautious conjunctive one
in term of the distance criterion. Besides, we can note that
the mean PCC of the cautious CWAC rule is greater than
that relative to the normalized cautious one for the differ-
ent databases. For instance, for Hepatitis database, we have
83.22% as normalized cautious mean PCC and 85.79% as
cautious CWAC mean PCC. So far, we can assume that this
interpretation is also available for the other databases. From

this, there is no doubt that the cautious CWAC rule is the
best fusion rule compared with the normalized cautious ac-
cording to the PCC criterion.

6.2.3 Experimentation 3

In the previous experimentation, we have generated a set of
correlated classifiers based on the output of mutiple distinct
classifiers (the NB, the DT the NN and the 1-NN classifiers).
However, there exist other ways for building highly depen-
dent classifiers from a unique learning algorithm. One of



Comparing dependent combination rules under the belief classifier fusion framework 11

0.1 0.3 0.5 0.7 0.9

90

95

100

P

PCC(%))
Normalized cautious

Cautious CWAC

(a) Nursery database

0.1 0.3 0.5 0.7 0.9

96

98

100

P

PCC(%))
Normalized cautious

Cautious CWAC

(b) Chess database

0.1 0.3 0.5 0.7 0.9

68

70

72

74

P

PCC(%))
Normalized cautious

Cautious CWAC

(c) Tic-Tac-Toa database

0.1 0.3 0.5 0.7 0.9

74

76

78

80

P

PCC(%))
Normalized cautious

Cautious CWAC

(d) Diabetes database

0.1 0.3 0.5 0.7 0.9

60

80

100

P

PCC(%))
Normalized cautious

Cautious CWAC

(e) Car Evaluation database

0.1 0.3 0.5 0.7 0.9

86

88

90

P

PCC(%))
Normalized cautious

Cautious CWAC

(f) Hepatitis database

0.1 0.3 0.5 0.7 0.9

70

72

74

P

PCC(%))
Normalized cautious

Cautious CWAC

(g) Parkinons database

0.1 0.3 0.5 0.7 0.9

96

98

100

P

PCC(%))
Normalized cautious

Cautious CWAC

(h) Iris database

0.1 0.3 0.5 0.7 0.9

96

98

100

P

PCC(%))
Normalized cautious

Cautious CWAC

(i) Wine database

Fig. 5 PCCs for both cautious conjunctive and cautious CWAC rules

Table 4 Correlation coefficient between the classifiers C1,C2 and C3

Databases ρ-correlation
Nursery 0.725
Chess 0.938
Tic-Tac-Toa 0.723
Diabetes 0.900
Car Evaluation 0.821
Hepatitis 0.950
Iris 0.981
Parkinsons 1
Wine 0.974

the proposed solutions consists of training the same learn-
ing algorithm with different learning subsets. Thus, in this
experimentation, we propose to randomly divide the train-

ing set into four training partitions of equal size denoted
P1, P2, P3 and P4. These partitions have common instances
which are dependent on the rate P. Besides, we suggest to
learn four Naive Bayes classifiers NB1, NB2, NB3 and NB4
from respectively P1, P2, P3 and P4. Subsequently, we should
quantify the degree of dependency between the naive Bayes
classifiers for the different values of P before any combina-
tion level takes place. As partitions will be randomly gen-
erated, the learning procedure should be executed several
times (100 times) and consequently the 100 estimate re-
sults will be averaged to yield an overall estimate result.
If classifiers are highly correlated, we move on to combine
them through the cautious conjunctive, the normalized cau-
tious and the cautious CWAC rules. Table 6 presents the ρ-
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Table 5 Combination results of the classifiers C1,C2 and C3

Databases Total distance criterion Mean PCC criterion
Cautious

conjunctive
Cautious
CWAC

Normalized
cautious

Cautious
CWAC

Nursery 8624.19 8312.07 98.90 % 99.63 %
Chess 1731.055 1653.72 99.52 % 99.53 %
Tic-Tac-Toa 280.17 220.31 99.16 % 99.69 %
Diabetes 334.87 295.23 75.65 % 77.44 %
Car Evaluation 876.39 842.03 53.76% 88.53%
Hepatitis 54.90 49.07 83.22% 85.79%
Iris 15.51 14.52 96.66% 98.75%
Parkinsons 60.92 46.99 96.41% 97.53%
Wine 24.47 19.71 99.43% 99.88%

Table 6 ρ-correlation for the different databases

P Nursery Chess Tic-Tac-Toa Diabetes Car Evaluation Hepatitis Iris Parkinsons Wine
0.1 0.823 0.930 0.679 0.794 0.870 0.760 0.917 0.827 0.886
0.2 0.835 0.936 0.696 0.804 0.890 0.769 0.920 0.831 0.890
0.3 0.848 0.942 0.720 0.815 0.896 0.784 0.923 0.840 0.894
0.4 0.852 0.946 0.738 0.827 0.903 0.798 0.927 0.851 0.901
0.5 0.863 0.951 0.752 0.843 0.916 0.813 0.930 0.867 0.910
0.6 0.871 0.954 0.782 0.858 0.924 0.836 0.933 0.877 0.919
0.7 0.873 0.957 0.814 0.877 0.936 0.858 0.943 0.895 0.932
0.8 0.884 0.986 0.847 0.900 0.941 0.880 0.950 0.912 0.945
0.9 0.892 0.991 0.887 0.927 0.950 0.918 0.959 0.941 0.965
Mean 0.860 0.957 0.768 0.849 0.914 0.824 0.934 0.871 0.913

correlation measure for the different databases in term of
P value. This latter clearly show that the degree of depen-
dency between the Naive Bayes classifiers remains high for
all the mentioned databases. For instance, it equals 0.934 for
Iris database and it is equal to 0.849 for Diabetes database.
Therefore, it can be said that the NB1, NB2, NB3 and NB4 are
highly correlated and consequently we try to combine them
using the cautious conjunctive, the normalized cautious and
the cautious CWAC rules. The total distance result for the
different databases is given in Figure 4, where we can note
that the total distance of the cautious conjunctive rule is al-
most greater than that relative to the cautious CWAC rule
for the different databases. So, we can deduce the efficiency
of the cautious CWAC rule compared with the cautious con-
junctive one in term of the distance criterion. Let’s move on
now to compare the cautious CWAC rule with the normal-
ized cautious rule in term of the PCC criterion. The mean
PCC of the different databases is given in Figure 5 where
we can notice that the cautious CWAC rule has the highest
values of mean PCC compared with the normalized cautious
rule for the different databases. So, it can be said that the
cautious CWAC rule is better than the normalized cautious
one in the context of the PCC criterion.

7 Conclusion

In this paper, we have introduced classifier fusion approach
adapted to the framework of belief functions using depen-
dent combination rules; the cautious conjunctive, the nor-
malized cautious and the cautious CWAC combination rules.
Our objective is to pick out the most appropriate fusion
rule among these three ones. To this end, we have pro-
posed a comparative approach that aims to compare the cau-
tious CWAC rule with the cautious conjunctive and the nor-
malized cautious ones in terms of two evaluation criteria,
namely the Jousselme distance and the PCC. Experimental
results have shown the efficiency of the cautious CWAC rule
compared with the cautious conjunctive one according to the
distance criterion. Furthermore, we have proved that mostly
the cautious CWAC rule is more efficient than the normal-
ized cautious one in term of the PCC criterion. In sum, we
can deduce that the cautious CWAC rule is the most ade-
quate fusion rule compared with the two others. As future
works, we look forward to using the correlation coefficient
as a new assessment criterion to enhance our approach. We
also intend to compare the cautious CWAC rule with other
existing dependent rules.
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