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Abstract. In the framework of belief functions, information fusion is
based on the construction of a unique belief function resulting from the
combination of available belief functions induced from several informa-
tion sources. When sources are reliable and distinct, Smets’ conjunc-
tive rule, which is equivalent to Dempster’s rule of combination without
the normalization process, can be considered. This rule offers interest-
ing properties, but in return the empty set is an absorbing element: a
series of conjunctive combinations tends to bring a mass equal to 1 to
the empty set, making impossible the distinction between a real prob-
lem and an effect due to this absorbing effect of the empty set. Then
a formalism allowing the preservation of the conflict which reflects the
opposition between sources, is introduced in this paper. Based on the nor-
malization process and on distance measures between belief functions, it
is tested and compared with classic conjunctive operators on synthetic
belief functions.

1 Introduction

Since more than about twenty years, the scientific community has been showing
an increasing interest in information fusion [5, 16, 39]. Generally based on confi-
dence measures including probability measure, fuzzy sets, possibility and belief
measures, information fusion allows the consideration of the redundancy and
the complementarity of different available pieces of information to improve the
global quality of these inputs, and consequently reach a better decision-making.
In the framework of belief functions [33], information fusion has been used in
several fields such as multi-sensor fusion [1, 4], classification [17,27], diagnosis [6,
31] or multi-object tracking [2,29]. It is based on the application of an operator
allowing the combination of belief functions representing different propositions
or hypotheses relative to a given problem.

One classical rule is the conjunctive rule of combination. Introduced by
Smets [34,37], it is equivalent to Dempster’s rule of combination [12,33] with-
out the normalization process. Its properties are well established as well as the



hypotheses the sources must verify to be combined by the use of this rule [36,
Section 3.2.2].

In a nutshell, sources must be distinct, reliable and must refer to the same
object. As a consequence, this rule provides an orthogonal behaviour which is
very valuable when a rapid and clear convergence on a solution is required, but
in return the empty set is an absorbing element.

Smets [36, Section 6.1] supports the existence of this mass on the empty set
to play an alarm role. Indeed, this conflict should not be hidden as it expresses
important pieces of information which can be gathered together into two main
categories:

— prerequisites for the application of the conjunctive rule are not fulfilled:
two sources may not be distinct, one of the sources at least is not reliable
(maybe a sensor is broken or ineffective in some unknown condition, etc), or
the sources do not deal with the same object.

— the model itself suffers from a bad adequacy to the reality: the frame of
discernment is not exhaustive (it is not composed of all the possible values the
variable of interest can take), the choice of the frame(s) is not appropriate,
etc.

On account of its absorbing effect, a series of conjunctive combinations tends
then to bring a mass equal to 1 to the empty set, making impossible the dis-
tinction between a real problem and an effect due to the absorbing power of the
empty set [24][36, Section 7].

Let us note that other works have been undertaken to complete this definition
of the conflict. In [24], a definition of the conflict between belief functions is
proposed. It is based on quantitative measures of both the mass on the empty
set after a conjunctive combination of these belief functions and the distance
between betting commitments of these same belief functions, the mass on the
empty set being then no more sufficient to define the conflict. This behaviour
is also described by Osswald et al. [25,30] who defined the auto-conflict as the
amount of intrinsic conflict of a belief function.

In this paper, the opposition between belief functions is quantified by a dis-
similarity measure between these functions. This approach, called Combination
With Adapted Conflict (CWAC), allows the mass on the empty set to keep its
initial role of alarm signal.

This paper is organized as follows. A rapid overview of the basic concepts
needed on belief functions is exposed in Section 2, details can be found in [33,
37]. In Section 3, the classical combinations of information in the belief function
framework are detailed. The postulates and principles of our contribution are
explained in Section 4. Then, tests on synthetic belief functions are presented in
Section 5 showing the efficiency of the introduced formalism. Finally, Section 6
sums up our contributions and advances possible future work.



2 Belief function theory: basic concepts

2.1 Representing information

Let 2 = {ws,...,wk}, named the frame of discernment, be a finite non empty
set including all the elementary hypotheses related to a given problem. These
hypotheses are assumed to be exhaustive and mutually exclusive.

To represent, the impact of a piece of evidence on the subsets of hypotheses
of the frame of discernment (2, the so-called basic belief assignment (bba) is
defined as a function m : 2 — [0, 1] satisfying:

> m(4) =1. (1)

ACQ

The quantity m(A), called a basic belief mass (bbm) or a mass for short,
represents the part of belief which is exactly committed to the subset A of (2.

Shafer [33] has initially proposed a normality condition expressed by: m(0) =
0. As previously exposed in the introduction of this paper, Smets proposes to
keep the value m(f)) and to consider it as the amount of conflict between the
pieces of evidence, which is also considered in this paper.

All the subsets A of {2 such that m(A) is strictly positive, are called the focal
elements of m.

2.2 Discounting information

A doubt on the reliability of a bba m is sometimes possible. The discounting
operation [33] of m by a € [0,1], named discount rate, allows one to take into
account this meta knowledge on the information m. This correction operation of
m is defined by:
{mo‘(A) =(1—-a)m(4), VACQ, @)
m*(2) = (1 —a)m(2) + a.

The coefficient 5 = (1 — «) represents the reliability degree of the source. If
the source is not reliable, this degree (3 is equal to 0, the discount rate « is equal
to 1, and m® is equal to the vacuous bba mg,. On the contrary, if the source is
reliable, the discounting rate « is null, and m will not be discounted.

2.3 Pignistic transformation

To make a decision, Smets proposes to transform beliefs to a probability measure.
This latter, denoted BetP [37], is called pignistic probability and is defined by:

BetPw) = Y L mAL (3)

ACQweA [A[ 1= m(D)

where |A] is the cardinality of subset A. BetP can be extended as a function

on 29 as BetP(A) = Y. BetP(w). Beyond the pignistic, lots of probability
weA

transforms of belief functions have been proposed [7,8,10].



2.4 Distance between two belief functions

Many distance measures between two bbas have been developed (e.g. [21,22,
38]).

Tessem’s distance is among those based on the pignistic transformation [3,
18, 38|, it is used in several applications [3,24]. Let m; and m2 be two bbas
and, respectively BetP,,, and BetP,,, their pignistic transformations. Tessem’s
distance is then defined as follows:

dr (my, mz) = max(|BetPm, (A) — BetPn, (A))) (4)

In [24], this measure is called the distance between betting commitments of my
and ma.

Jousselme et al.’s distance is one of the most used in the framework of belief
functions and satisfies useful properties such as non-negativity, non-degeneracy
and symmetry. It is defined as follows:

dj(mi,mg) = \/%(ml —mg)!D(m1 —ma) (5)

where D is the Jaccard index defined by:

) ANB (93

3 Combining different pieces of information

The objective of the combination is to synthesize a set of belief functions into a
unique belief function. Two main approaches may be distinguished: conjunctive
and disjunctive rules.

3.1 Conjunctive rules of combination

When sources are considered as distinct and reliable (note that they can have
been adjusted according to their reliability, this adjustment being possibly re-
alized through a discounting operation (see equation (2)) from additional in-
formation [18,28] or by comparing the belief functions to combine with each
others [23, 25, 32] by means of a distance), the combination of Demspter [12] can
be classically used. This combination is noted & and defined, m; and ms being
two bbas, by:

1
with:
m@(A) = > mi(B)my(C) VACQ (8)



Combination m@) is called the conjunctive rule of combination [37]. The value
m(0) is called conflict because it represents the disagreement between sources
involved in the fusion. Let us note that the cautious conjunctive rule of combi-
nation developed by Denceux [13] has also a conjunctive behaviour, and it can
be applied when sources are not distinct.

3.2 Disjunctive rule of combination

When one source is not reliable, and we do not know which one and an ad-
justment is not possible, the conjunctive combination cannot be used directly.
Several combinations were then proposed like the disjunctive rule of combina-
tion [14] defined by:

mo(4) = Y mi(B)my(C) VAC L. (9)
BUC=A

This rule represents the dual rule of the conjunctive combination. It is dis-
cussed within the framework of the Generalized Bayes Theorem by Smets [35].
The universe {2 is the absorbing element of this rule. In the same spirit as the
cautious rule, Denoeux [13] has proposed the bold disjunctive rule of combina-
tion, when belief functions to combine are provided by sources which are neither
distinct nor reliable.

Other combination rules having intermediate behaviour between the con-
junctive and the disjunctive combination have been proposed. For instance, the
following rules may be mentionned: the combination of Dubois and Prade [15],
the one of Delmotte et al. [11], Martin et al.’s mixed rules [26] or more recently
the robust rule of combination of Florea et al. [20]. For other combination rules,
it is a question of distributing the partial conflict [19, 26]. Objectives of all these
rules is to distribute the conflict which arises during the fusion. This redistribu-
tion may be seen as a loss of information about a possible dysfunction.

4 Combination with adapted conflict (CWAC)

In this paper, sources are assumed to be distinct and reliable. In this context,
the conflict m(@) obtained during a conjunctive combination allows the decision
maker to turn his attention to a possible problem related to a bad modelling, an
unreliable source, etc.

However, when applying the conjunctive combination on a large number of
belief functions, the conflict can take important proportions without reflecting
a problem. This phenomenon is due to the absorbing effect of the empty set.
On the other hand, most of the combination propositions found in the literature
(see Section 3) try to redistribute this conflict and not to use it as an indicator.

Based on this analysis, we wish to develop a method which allows us to
transform the value of the conflict and to adapt it in order to be a real indicator
of problems, even if the number of sources to combine is important. This rule
is called Combination With Adapted Conflict (CWAC). Considering that there



is a serious problem when sources produce strongly different belief functions,
the conflict should be kept during the fusion. On the contrary, in the case of
the combination of information sources for which the bbas are equivalent, the
conflict does not have to exist. To define the CWAC, a measure allowing one to
distinguish similarities between bbas is necessary.

4.1 With two belief functions

First, the case of only two bbas m1 and ms is studied. The notion of dissimilarity
is obtained through a distance measure. This distance can be obtained by one
of both measures presented in Section 2.4 and is noted d(m1,m2)?. The borders
of d are:

— d(my,mg) = 0: my and mq are similar (and are thus in agreement) and their
combination should not generate a conflict. In this case, the conflict will be
redistributed in the same way as Dempster’s rule of combination.

— d(m1, mg) = 1: m; and my are antinomic (i.e. m;({w;}) = 1 and ma({w;}) =
1 with w; # w;). Their combination will produce a conflictual mass express-
ing this opposition. The conflict will be kept in the same manner as the
conjunctive rule.

The CWAC is defined by an adaptive weighting between the conjunctive and
Dempster’s rules, making the rule acting like a conjunctive rule when the belief
functions are antinomic and like Dempster’s rule when belief functions are sim-
ilar. Between these two extremes, a gradual evolution can be considered. The
following combination rule noted @) is then proposed, it is defined by:

m@(A) = 1m@(4) +y2me(A) VAC (10)

with:
me(A) = (my @ma)(A)  VAC Q (11)
m@(A) = (mi1@m2)(A) VAC (12)

and with «; and 2 are functions of the distance d(mq,ms). These functions
should satisfy the following constraints:

7 = fi(d(mi,mz))  with  f1(0)=0 and fi(1)=1 (13)
Y2 = fao(d(mi,mz))  with  f2(0)=1 and f2(1)=0 (14)

with 71 + 72 = 1. Although other functions are possible, we can take, at first,
linear functions such that:

Y1 = d(ml, mg) (15)
Y2 =1 —d(m1,ma). (16)

® However, other measures of dissimilarity could be used [7,9]. Details on distance
measure can be found in [22]. The aim of this article is not to compare these measures
but to quantify the opposition between belief functions.



Hence, the combination can be written VA C {2 and mg)(0) # 1:
m@(A4) = mi @ ma(A) = d(my, m2)m@(A) + (1 — d(my, mz)) mg(A). (17)
When m@ (@) = 1, then we get mg(0) = 1.

4.2 General case

The question of the generalization of this approach is natural when we have
more than two information sources to fuse. Indeed, the problem settles be-
cause the distance measure used here, is defined between only two bbas. Let
mi,...,mi...,my be N bbas which have to be combined. The measure of dis-
similarity between these functions, which is necessary for our proposed combina-
tion rule, may be a synthesis of the distances between these bbas. The objective
is to identify if at least one of the sources is in disagreement with the others.
This synthesis can be obtained by taking, for example, the maximal value of all
the distances. So, the value of D can be defined as D = max [d(m;,m;)] with

i € [1,N] and j € [1, N]. The combination rule becomes then YA C 2 and
m@(0) # 1:

o) = (Om) (4) = Dme() + (1~ Dmo(a) (19

and

mg(@) =1 when m@0) =1 (19)
with:

m@(A) = (@ mi) (A) and mg(A) = (@ mi) (A) Vie[l,N]. (20)

4.3 Properties

— Commutativity: The combination of two mass functions m; and ms using
the CWAC is commutative. Since the two basic rules composing the CWAC
(the conjunctive rule and Dempster’s rule) are commutative and since the
CWAC is a weighted sum of these rules based on distance which is also
commutative, the CWAC is commutative.

— Associativity: The CWAC operator is not associative. It is however possible
to find operators that produce associative rules or quasi-associative.

— Neutral element: The neutral element of the CWAC is 2. When com-
bining a piece of evidence m; with m(£2) = 1, we have m; ® m = m; and
m1@m = my. The CWAC can be written: mg(A) = d(m1, m)my(A)+(1—
d(myi,m))mi(A) = mi1(A). Thus, the CWAC preserves the neutral impact
of the m(§2) = 1.

— Absorbing element: From equation (19), the absorbing element of the
CWAC is 0.

— Idempotent: As both Dempster’s rule and the conjunctive rule of combi-
nation, the CWAC operator is not idempotent.



5 Results

In this Section, the CWAC operator is compared on synthetic data with the
conjunctive rule. The CWAC operator is used with two dissimilarity measures:
Tessem’s distance and Jousselme et al.’s distance presented in Section 2.4.

5.1 Example 1

In this first example, two sources are considered as being in agreement: they
have a similar distribution of masses. These distributions and the combinations
results by the operators @, @ and © are given in Table 1. Bba mg, is obtained
by the CWAC operator with Jousselme et al.’s distance and mg, is obtained
by the CWAC operator with Tessem’s distance. The conflict induced by the
conjunctive combination is relatively important which is not the case for the
proposed combination (0.363 against 0.004). Now these two bbas are considered

Table 1. Results of the fusion between Table 2. Results of the fusion between

two sources in agreement. two sources in disagreement.
m1|me | mg | m@ | m§g | m§ m1|ma | me | m@ | m§ |mg
{w1}][0.60]0.59]|0.742| 0.473 | 0.74 | 0.74 {w1}][0.60]0.31|0.501| 0.277 |0.436|0.436
{w2}{|0.30{0.31{0.242| 0.154 | 0.24 | 0.24 {w21}](0.30]0.59|0.481| 0.266 |0.419|0.419
{2 |(0.10|0.10{0.016| 0.01 |0.016 | 0.016 2 |/0.1/0.1|0.018| 0.01 |0.015|0.015
0 0] 0 0 ]0.363/0.004|0.004 0 0] 0 0 |0.447/0.13|0.13

in disagreement (Table 2). If we compare these results to those obtained in the
previous test, we observe that there is only 23 % of increase of the conflict
for the conjunctive combination (while the distribution of masses are radically
different). Regarding our rule, the increase of the conflict is of the order of 3150%
which reflects well the difference between the first test and the second one.

5.2 Example 2

In this second example, a number N of sources is considered with N varying
from 2 to 25. All the bbas are firstly chosen in agreement and are defined, with
2 = {w1,wa,ws}, as follows with € a random value between [—0.1;0.1]:

m({w1}) = 0.6+¢ m({wi,wa}) = 0.15—¢ m({ws}) =0.15 m(£2) =0.1.

Conflict evolution for operators @ and @ according to the number of sources
N to combine is presented in Figure 1. The absorbing effect of the empty set can
be observed: even if the bbas are in agreement the value of the conflict increases
with the number of combinations. In a second time, one bba is now chosen as
being in contradiction with the others. It is defined in the following way:

m({w1}) = 0.15+4€ m({wi,ws}) = 0.15—€ m({ws}) = 0.6 m(2) =0.1



++ Conjunctive rule
+ CWAC Jousselme B
% .. CWAC Tessem

Conflict o5~ o 7

m(0)

=3
°

Q@@
|

10 15 20 25
Number of combined sources

Fig. 1. Conflict evolution of the combination of N not contradictory bbas.

Figure 2 illustrates the evolution of the conflict in this configuration, the
latter being compared with the previous in Figure 3.
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Fig. 2. Conflict evolution of the combination of N — 1 not contradictory bbas and one
in conflict.
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Fig. 3. Comparison between the combination of N similar functions and the combina-
tion of N — 1 similar functions and of a contradictory function.

In this last figure 3, it can be observed that after more that 20 belief func-
tions to combine, the value of the conflict obtained by the conjunctive combi-
nation does not allow any more the identification of a possible contradiction
between bbas while it is not the case for the CWAC operator. The behaviour
of the CWAC operator is equivalent with both dissimilarity measures. However,
Tessem’s distance allows one to have a difference between the two simulations
more important. So, Tessem’s distance is a better measure than Jousselme et
al.’s distance for judging how contradict the two beliefs are [24].

6 Conclusion and future work

In this paper, we have proposed a combination rule with adapted conflict having
the objective to better handle the conflict induced from the fusion of several bbas.
Our proposed CWAC rule makes an adaptive weighting between conjunctive
and Dempster’s rules using Tessem’s and Jousseleme et al.’s distances in order
to reduce the absorbing power of the conflict and to more strengthen its initial
role of alarm signal. As future work, more attention will be given to obtain the
similarity measure between all belief functions involved in the combination. For
each similarity measure, different properties of CWAC will be defined. Moreover,
it will be interesting to study the behaviour of this operator when Jousselme et
al.’s distance (or others) is approximately equal to 0.5.
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