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2 University of Tunis, Institut Supérieur de Gestion de Tunis,LARODEC, TunisieEmail: zied.elouedi@gmx.frAbstract. In the framework of belief functions, information fusion isbased on the construction of a unique belief function resulting from thecombination of available belief functions induced from several informa-tion sources. When sources are reliable and distinct, Smets' conjunc-tive rule, which is equivalent to Dempster's rule of combination withoutthe normalization process, can be considered. This rule o�ers interest-ing properties, but in return the empty set is an absorbing element: aseries of conjunctive combinations tends to bring a mass equal to 1 tothe empty set, making impossible the distinction between a real prob-lem and an e�ect due to this absorbing e�ect of the empty set. Thena formalism allowing the preservation of the con�ict which re�ects theopposition between sources, is introduced in this paper. Based on the nor-malization process and on distance measures between belief functions, itis tested and compared with classic conjunctive operators on syntheticbelief functions.1 IntroductionSince more than about twenty years, the scienti�c community has been showingan increasing interest in information fusion [5, 16, 39]. Generally based on con�-dence measures including probability measure, fuzzy sets, possibility and beliefmeasures, information fusion allows the consideration of the redundancy andthe complementarity of di�erent available pieces of information to improve theglobal quality of these inputs, and consequently reach a better decision-making.In the framework of belief functions [33], information fusion has been used inseveral �elds such as multi-sensor fusion [1, 4], classi�cation [17, 27], diagnosis [6,31] or multi-object tracking [2, 29]. It is based on the application of an operatorallowing the combination of belief functions representing di�erent propositionsor hypotheses relative to a given problem.One classical rule is the conjunctive rule of combination. Introduced bySmets [34, 37], it is equivalent to Dempster's rule of combination [12, 33] with-out the normalization process. Its properties are well established as well as the



hypotheses the sources must verify to be combined by the use of this rule [36,Section 3.2.2].In a nutshell, sources must be distinct, reliable and must refer to the sameobject. As a consequence, this rule provides an orthogonal behaviour which isvery valuable when a rapid and clear convergence on a solution is required, butin return the empty set is an absorbing element.Smets [36, Section 6.1] supports the existence of this mass on the empty setto play an alarm role. Indeed, this con�ict should not be hidden as it expressesimportant pieces of information which can be gathered together into two maincategories:� prerequisites for the application of the conjunctive rule are not ful�lled:two sources may not be distinct, one of the sources at least is not reliable(maybe a sensor is broken or ine�ective in some unknown condition, etc), orthe sources do not deal with the same object.� the model itself su�ers from a bad adequacy to the reality: the frame ofdiscernment is not exhaustive (it is not composed of all the possible values thevariable of interest can take), the choice of the frame(s) is not appropriate,etc.On account of its absorbing e�ect, a series of conjunctive combinations tendsthen to bring a mass equal to 1 to the empty set, making impossible the dis-tinction between a real problem and an e�ect due to the absorbing power of theempty set [24][36, Section 7].Let us note that other works have been undertaken to complete this de�nitionof the con�ict. In [24], a de�nition of the con�ict between belief functions isproposed. It is based on quantitative measures of both the mass on the emptyset after a conjunctive combination of these belief functions and the distancebetween betting commitments of these same belief functions, the mass on theempty set being then no more su�cient to de�ne the con�ict. This behaviouris also described by Osswald et al. [25, 30] who de�ned the auto-con�ict as theamount of intrinsic con�ict of a belief function.In this paper, the opposition between belief functions is quanti�ed by a dis-similarity measure between these functions. This approach, called CombinationWith Adapted Con�ict (CWAC), allows the mass on the empty set to keep itsinitial role of alarm signal.This paper is organized as follows. A rapid overview of the basic conceptsneeded on belief functions is exposed in Section 2, details can be found in [33,37]. In Section 3, the classical combinations of information in the belief functionframework are detailed. The postulates and principles of our contribution areexplained in Section 4. Then, tests on synthetic belief functions are presented inSection 5 showing the e�ciency of the introduced formalism. Finally, Section 6sums up our contributions and advances possible future work.



2 Belief function theory: basic concepts2.1 Representing informationLet Ω = {ω1, . . . , ωK}, named the frame of discernment, be a �nite non emptyset including all the elementary hypotheses related to a given problem. Thesehypotheses are assumed to be exhaustive and mutually exclusive.To represent the impact of a piece of evidence on the subsets of hypothesesof the frame of discernment Ω, the so-called basic belief assignment (bba) isde�ned as a function m : 2Ω → [0, 1] satisfying:
∑

A⊆Ω

m(A) = 1. (1)The quantity m(A), called a basic belief mass (bbm) or a mass for short,represents the part of belief which is exactly committed to the subset A of Ω.Shafer [33] has initially proposed a normality condition expressed by: m(∅) =
0. As previously exposed in the introduction of this paper, Smets proposes tokeep the value m(∅) and to consider it as the amount of con�ict between thepieces of evidence, which is also considered in this paper.All the subsets A of Ω such that m(A) is strictly positive, are called the focalelements of m.2.2 Discounting informationA doubt on the reliability of a bba m is sometimes possible. The discountingoperation [33] of m by α ∈ [0, 1], named discount rate, allows one to take intoaccount this meta knowledge on the information m. This correction operation of
m is de�ned by:

{

mα(A) = (1− α)m(A), ∀A ⊂ Ω,

mα(Ω) = (1− α)m(Ω) + α.
(2)The coe�cient β = (1 − α) represents the reliability degree of the source. Ifthe source is not reliable, this degree β is equal to 0, the discount rate α is equalto 1, and mα is equal to the vacuous bba mΩ. On the contrary, if the source isreliable, the discounting rate α is null, and m will not be discounted.2.3 Pignistic transformationTo make a decision, Smets proposes to transform beliefs to a probability measure.This latter, denoted BetP [37], is called pignistic probability and is de�ned by:

BetP (ω) =
∑

A⊆Ω,ω∈A

1

|A|

m(A)

1−m(∅)
, (3)where |A| is the cardinality of subset A. BetP can be extended as a functionon 2Ω as BetP (A) =

∑

ω∈A

BetP (ω). Beyond the pignistic, lots of probabilitytransforms of belief functions have been proposed [7, 8, 10].



2.4 Distance between two belief functionsMany distance measures between two bbas have been developed (e.g. [21, 22,38]).Tessem's distance is among those based on the pignistic transformation [3,18, 38], it is used in several applications [3, 24]. Let m1 and m2 be two bbasand, respectively BetPm1
and BetPm2

their pignistic transformations. Tessem'sdistance is then de�ned as follows:
dT (m1,m2) = max

A⊆Ω
(|BetPm1

(A) −BetPm2
(A)|) (4)In [24], this measure is called the distance between betting commitments of m1and m2.Jousselme et al.'s distance is one of the most used in the framework of belieffunctions and satis�es useful properties such as non-negativity, non-degeneracyand symmetry. It is de�ned as follows:

dJ(m1,m2) =

√

1

2
(m1 −m2)tD(m1 −m2) (5)where D is the Jaccard index de�ned by:

D(A,B) =

{

0 if A = B = ∅
|A∩B|
|A∪B| ∀A,B ∈ 2Ω.

(6)3 Combining di�erent pieces of informationThe objective of the combination is to synthesize a set of belief functions into aunique belief function. Two main approaches may be distinguished: conjunctiveand disjunctive rules.3.1 Conjunctive rules of combinationWhen sources are considered as distinct and reliable (note that they can havebeen adjusted according to their reliability, this adjustment being possibly re-alized through a discounting operation (see equation (2)) from additional in-formation [18, 28] or by comparing the belief functions to combine with eachothers [23, 25, 32] by means of a distance), the combination of Demspter [12] canbe classically used. This combination is noted ⊕ and de�ned, m1 and m2 beingtwo bbas, by:
m⊕(A) =

1

1−m ∩©(∅)
m ∩©(A) ∀A 6= ∅ and m⊕(∅) = 0 (7)with:

m ∩©(A) =
∑

B∩C=A

m1(B)m2(C) ∀A ⊆ Ω. (8)



Combination m ∩© is called the conjunctive rule of combination [37]. The value
m(∅) is called con�ict because it represents the disagreement between sourcesinvolved in the fusion. Let us note that the cautious conjunctive rule of combi-nation developed by Den÷ux [13] has also a conjunctive behaviour, and it canbe applied when sources are not distinct.3.2 Disjunctive rule of combinationWhen one source is not reliable, and we do not know which one and an ad-justment is not possible, the conjunctive combination cannot be used directly.Several combinations were then proposed like the disjunctive rule of combina-tion [14] de�ned by:

m ∪©(A) =
∑

B∪C=A

m1(B)m2(C) ∀A ⊆ Ω. (9)This rule represents the dual rule of the conjunctive combination. It is dis-cussed within the framework of the Generalized Bayes Theorem by Smets [35].The universe Ω is the absorbing element of this rule. In the same spirit as thecautious rule, Denoeux [13] has proposed the bold disjunctive rule of combina-tion, when belief functions to combine are provided by sources which are neitherdistinct nor reliable.Other combination rules having intermediate behaviour between the con-junctive and the disjunctive combination have been proposed. For instance, thefollowing rules may be mentionned: the combination of Dubois and Prade [15],the one of Delmotte et al. [11], Martin et al.'s mixed rules [26] or more recentlythe robust rule of combination of Florea et al. [20]. For other combination rules,it is a question of distributing the partial con�ict [19, 26]. Objectives of all theserules is to distribute the con�ict which arises during the fusion. This redistribu-tion may be seen as a loss of information about a possible dysfunction.4 Combination with adapted con�ict (CWAC)In this paper, sources are assumed to be distinct and reliable. In this context,the con�ict m(∅) obtained during a conjunctive combination allows the decisionmaker to turn his attention to a possible problem related to a bad modelling, anunreliable source, etc.However, when applying the conjunctive combination on a large number ofbelief functions, the con�ict can take important proportions without re�ectinga problem. This phenomenon is due to the absorbing e�ect of the empty set.On the other hand, most of the combination propositions found in the literature(see Section 3) try to redistribute this con�ict and not to use it as an indicator.Based on this analysis, we wish to develop a method which allows us totransform the value of the con�ict and to adapt it in order to be a real indicatorof problems, even if the number of sources to combine is important. This ruleis called Combination With Adapted Con�ict (CWAC). Considering that there



is a serious problem when sources produce strongly di�erent belief functions,the con�ict should be kept during the fusion. On the contrary, in the case ofthe combination of information sources for which the bbas are equivalent, thecon�ict does not have to exist. To de�ne the CWAC, a measure allowing one todistinguish similarities between bbas is necessary.4.1 With two belief functionsFirst, the case of only two bbasm1 andm2 is studied. The notion of dissimilarityis obtained through a distance measure. This distance can be obtained by oneof both measures presented in Section 2.4 and is noted d(m1,m2)
3. The bordersof d are:� d(m1,m2) = 0: m1 and m2 are similar (and are thus in agreement) and theircombination should not generate a con�ict. In this case, the con�ict will beredistributed in the same way as Dempster's rule of combination.� d(m1,m2) = 1:m1 andm2 are antinomic (i.e.m1({ωj}) = 1 andm2({ωi}) =

1 with ωi 6= ωj). Their combination will produce a con�ictual mass express-ing this opposition. The con�ict will be kept in the same manner as theconjunctive rule.The CWAC is de�ned by an adaptive weighting between the conjunctive andDempster's rules, making the rule acting like a conjunctive rule when the belieffunctions are antinomic and like Dempster's rule when belief functions are sim-ilar. Between these two extremes, a gradual evolution can be considered. Thefollowing combination rule noted ↔© is then proposed, it is de�ned by:
m↔©(A) = γ1m ∩©(A) + γ2m⊕(A) ∀A ⊆ Ω (10)with:

m⊕(A) = (m1 ⊕m2)(A) ∀A ⊆ Ω (11)
m ∩©(A) = (m1 ∩©m2)(A) ∀A ⊆ Ω (12)and with γ1 and γ2 are functions of the distance d(m1,m2). These functionsshould satisfy the following constraints:

γ1 = f1(d(m1,m2)) with f1(0) = 0 and f1(1) = 1 (13)
γ2 = f2(d(m1,m2)) with f2(0) = 1 and f2(1) = 0 (14)with γ1 + γ2 = 1. Although other functions are possible, we can take, at �rst,linear functions such that:

γ1 = d(m1,m2) (15)
γ2 = 1− d(m1,m2). (16)3 However, other measures of dissimilarity could be used [7, 9]. Details on distancemeasure can be found in [22]. The aim of this article is not to compare these measuresbut to quantify the opposition between belief functions.



Hence, the combination can be written ∀A ⊆ Ω and m ∩©(∅) 6= 1:
m↔©(A) = m1 ↔©m2(A) = d(m1,m2)m ∩©(A) + (1− d(m1,m2))m⊕(A). (17)When m ∩©(∅) = 1, then we get m↔©(∅) = 1.4.2 General caseThe question of the generalization of this approach is natural when we havemore than two information sources to fuse. Indeed, the problem settles be-cause the distance measure used here, is de�ned between only two bbas. Let

m1, . . . ,mi . . . ,mN be N bbas which have to be combined. The measure of dis-similarity between these functions, which is necessary for our proposed combina-tion rule, may be a synthesis of the distances between these bbas. The objectiveis to identify if at least one of the sources is in disagreement with the others.This synthesis can be obtained by taking, for example, the maximal value of allthe distances. So, the value of D can be de�ned as D = max
i,j

[d(mi,mj)] with
i ∈ [1, N ] and j ∈ [1, N ]. The combination rule becomes then ∀A ⊆ Ω and
m ∩©(∅) 6= 1:

m↔©(A) =

(

↔©
i

mi

)

(A) = Dm ∩©(A) + (1 −D)m⊕(A) (18)and
m↔©(∅) = 1 when m ∩©(∅) = 1 (19)with:

m ∩©(A) =

(

∩©
i

mi

)

(A) and m⊕(A) =

(

+©
i

mi

)

(A) ∀i ∈ [1, N ]. (20)4.3 Properties� Commutativity: The combination of two mass functions m1 and m2 usingthe CWAC is commutative. Since the two basic rules composing the CWAC(the conjunctive rule and Dempster's rule) are commutative and since theCWAC is a weighted sum of these rules based on distance which is alsocommutative, the CWAC is commutative.� Associativity:The CWAC operator is not associative. It is however possibleto �nd operators that produce associative rules or quasi-associative.� Neutral element: The neutral element of the CWAC is Ω. When com-bining a piece of evidence m1 with m(Ω) = 1, we have m1 ⊕ m = m1 and
m1 ∩©m = m1. The CWAC can be written: m↔©(A) = d(m1,m)m1(A)+ (1−
d(m1,m))m1(A) = m1(A). Thus, the CWAC preserves the neutral impactof the m(Ω) = 1.� Absorbing element: From equation (19), the absorbing element of theCWAC is ∅.� Idempotent: As both Dempster's rule and the conjunctive rule of combi-nation, the CWAC operator is not idempotent.



5 ResultsIn this Section, the CWAC operator is compared on synthetic data with theconjunctive rule. The CWAC operator is used with two dissimilarity measures:Tessem's distance and Jousselme et al.'s distance presented in Section 2.4.5.1 Example 1In this �rst example, two sources are considered as being in agreement: theyhave a similar distribution of masses. These distributions and the combinationsresults by the operators ⊕, ∩© and ↔© are given in Table 1. Bba mJ

↔© is obtainedby the CWAC operator with Jousselme et al.'s distance and mT

↔© is obtainedby the CWAC operator with Tessem's distance. The con�ict induced by theconjunctive combination is relatively important which is not the case for theproposed combination (0.363 against 0.004). Now these two bbas are consideredTable 1. Results of the fusion betweentwo sources in agreement.
m1 m2 m⊕ m ∩© m

J

↔© m
T

↔©

{ω1} 0.60 0.59 0.742 0.473 0.74 0.74
{ω2} 0.30 0.31 0.242 0.154 0.24 0.24
Ω 0.10 0.10 0.016 0.01 0.016 0.016
∅ 0 0 0 0.363 0.004 0.004

Table 2. Results of the fusion betweentwo sources in disagreement.
m1 m2 m⊕ m ∩© m

J

↔© m
T

↔©

{ω1} 0.60 0.31 0.501 0.277 0.436 0.436
{ω2} 0.30 0.59 0.481 0.266 0.419 0.419
Ω 0.1 0.1 0.018 0.01 0.015 0.015
∅ 0 0 0 0.447 0.13 0.13in disagreement (Table 2). If we compare these results to those obtained in theprevious test, we observe that there is only 23 % of increase of the con�ictfor the conjunctive combination (while the distribution of masses are radicallydi�erent). Regarding our rule, the increase of the con�ict is of the order of 3150%which re�ects well the di�erence between the �rst test and the second one.5.2 Example 2In this second example, a number N of sources is considered with N varyingfrom 2 to 25. All the bbas are �rstly chosen in agreement and are de�ned, with

Ω = {ω1, ω2, ω3}, as follows with ε a random value between [−0.1; 0.1]:
m({ω1}) = 0.6+ε m({ω1, ω2}) = 0.15−ε m({ω3}) = 0.15 m(Ω) = 0.1.Con�ict evolution for operators ∩© and ↔© according to the number of sources
N to combine is presented in Figure 1. The absorbing e�ect of the empty set canbe observed: even if the bbas are in agreement the value of the con�ict increaseswith the number of combinations. In a second time, one bba is now chosen asbeing in contradiction with the others. It is de�ned in the following way:
m({ω1}) = 0.15+ε m({ω1, ω2}) = 0.15−ε m({ω3}) = 0.6 m(Ω) = 0.1
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Fig. 1. Con�ict evolution of the combination of N not contradictory bbas.Figure 2 illustrates the evolution of the con�ict in this con�guration, thelatter being compared with the previous in Figure 3.
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Fig. 2. Con�ict evolution of the combination of N − 1 not contradictory bbas and onein con�ict.
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Fig. 3. Comparison between the combination of N similar functions and the combina-tion of N − 1 similar functions and of a contradictory function.In this last �gure 3, it can be observed that after more that 20 belief func-tions to combine, the value of the con�ict obtained by the conjunctive combi-nation does not allow any more the identi�cation of a possible contradictionbetween bbas while it is not the case for the CWAC operator. The behaviourof the CWAC operator is equivalent with both dissimilarity measures. However,Tessem's distance allows one to have a di�erence between the two simulationsmore important. So, Tessem's distance is a better measure than Jousselme etal.'s distance for judging how contradict the two beliefs are [24].6 Conclusion and future workIn this paper, we have proposed a combination rule with adapted con�ict havingthe objective to better handle the con�ict induced from the fusion of several bbas.Our proposed CWAC rule makes an adaptive weighting between conjunctiveand Dempster's rules using Tessem's and Jousseleme et al.'s distances in orderto reduce the absorbing power of the con�ict and to more strengthen its initialrole of alarm signal. As future work, more attention will be given to obtain thesimilarity measure between all belief functions involved in the combination. Foreach similarity measure, di�erent properties of CWAC will be de�ned. Moreover,it will be interesting to study the behaviour of this operator when Jousselme etal.'s distance (or others) is approximately equal to 0.5.
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