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Abstract 
 
This paper addresses the road travel time estimation on an urban axis by classification method based on 
evidence theory. The travel time (TT) indicator can be used either for traffic management or for drivers’ 
information. The information used to estimate the travel time (induction loop sensor, cameras, probe 
vehicle,...) is  complementary and redundant. It is then necessary to implement strategies of multi-sensors 
data fusion. The selected framework is the evidence theory. This theory takes more into account the 
imprecision and uncertainty of multisource information. Two strategies were implemented. The first one is 
classifier fusion where each information source, was considered as a classifier. The second approach is a 
distance-based classification for belief functions modelling. Results of these approaches, on data collected 
on an urban axis in the South of France, show the outperformance of fusion strategies within this 
application. 
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1. Introduction 
 
 

Considering the huge development of automobile traffic, and more specifically, individual mobility, 
much research has been carried out in road traffic engineering to improve the operation of different road 
networks (urban and interurban) and the level of service provided. In the urban environment in particular, 
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where congestion problems are frequent, road network operators are required to regulate and control 
traffic in order to improve the safety and comfort of users.  

In this perspective, and with the appearance of new information technologies, current research is 
turning toward setting up dynamic information and guidance systems for road users. An example of this is 
the installation on highways and urban expressways of variable message signs (VMS) informing users 
about traffic conditions (fluid, bottlenecks, etc.) or the time needed to travel along the road they have 
taken. According to a large number of surveys, users appreciate the diffusion of this type of information. 
There is now a desire to equip major urban roads with similar information systems. 

This raises the question of estimating travel time with acceptable accuracy, a very difficult task in the 
urban environment where a large number of theoretical, technical and methodological difficulties must be 
dealt with. In this respect, traditional detectors have proven to be inefficient in certain circumstances as a 
means of obtaining information on traffic conditions on urban thoroughfares. With the arrival of new 
measurement instruments (cameras, localization aided by GPS and cellular telephones, etc.), it is possible 
to rely increasingly on other sources of data. This data is intended to complete the information provided 
by traditional measurement devices with the result of improving the quality of travel time estimations. The 
problem of estimating travel time therefore becomes a typical data fusion problem. 
 
Classically, the travel time estimation problem has been treated to two approaches: 

• either the experimented travel times (ETT) by a certain number of vehicles (probe vehicles) are 
recorded, and the travel time for the itinerary is estimated on the basis of these measurements (e.g., 
by calculating a mean) ; 

• or by using flow measurements from conventional traffic loop detectors (measuring flow and 
occupancy rate), which, by using a suitable method, are used to estimate an itinerary travel time 
(ITT).  

These two techniques lead to very different types of result in terms of precision and 
representativeness. The first provides accurate estimation of the travel time of an itinerary, but this 
estimation suffers from poor statistical representativeness. Furthermore, the low availability of the RTT 
type data reduces the reliability of the estimation. Hence, the travel time information provided by this 
approach is precise but its representativeness varies according to the number of probes available, the 
measurement frequency and the distribution of travel times on the itinerary under consideration.  

However, the second technique provides information on the entire flow on the itinerary continuously 
through time. These data are therefore considered as exhaustive and thus ensure that the measurements are 
representative. Nonetheless, an estimation of travel time on the basis of these data is less accurate than 
with those obtained by the former technique, for reasons specific to this approach (defective data, 
inaccurate travel time conversion methods, etc.). Whatever the case, it still remains the method used most 
due to its low cost.  

In the framework of this work, we make use of both data from individual travel times and data 
characteristic of the flow. Therefore, we wish to improve the overall performance of travel time 
estimations resulting from the two approaches by combining them, i.e. by merging the estimations 
obtained from each of them. We also use travel time data collected by license plate matching which we 
consider as reference data and use as the basis for evaluating the performance of the fusion process. 
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Among the techniques of fusion of multi-sensors data known in the literature, we selected the evidence 
theory framework. Indeed, it seems that this theory allows taking into account in a more natural way 
inaccuracies as well as uncertainties associated to the information.  
 
In this article, we present two different approaches for fusion process. First of all, an approach of fusion of 
classifiers in which each source of information is considered as classifiers. The second approach is based 
on a distance-based strategy for deriving mass functions associated to the evidence theory. 
 
 
This article is decomposed as follows. We present in the section 2, the mathematical background of the 
evidence theory. Both methods of classification fusion used on the estimation of the travel time are 
presented in the section 3. Finally, in the section 4, results of these approaches on data collected on the site 
located in the south of France show the outperformance of the fusion process within the framework of this 
application. 
 

2. Introduction 
 
In this section, we recall briefly some basic concepts of the evidence theory. The point of view of the 
model of the transferable belief [16] is adopted in this article. This one distinguishes two levels of data 
processing: the credal level where the belief functions are modelled and revised and the pignistic level in 
which belief functions are transformed into probability functions for the decision-making step. 
 

2.1. Credal level 
 
 
Let Ω  be a finite set, generally called frame of discernment. A belief function Bel  is a non additive fuzzy 

measure mapping 2Ω  into [ ]0,1  defined as follows: 

 

 
where m , called generally mass function, mapping 2Ω  into [ ]0,1  satisfying the following constraint: 

 

 
 
Every subset ⊆ΩA  such as 0>m( A )  is called focal element of m . So, the mass function 
m( A ) represents the degree of belief attributed to the proposition A and which was not able, considering 
the state of the knowledge, to be allocated to a more specific subset than A. 
 
A set of mass m  such as 0∅ =m( )  is called normal. This condition was initially imposed by Shafer [11] 
but can be relaxed if we accept the opened world assumption which postulates for the non-exhaustiveness 
of the frame of discernment Ω.  
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From the seminal work of Shafer [11], the belief functions are nowadays recognized for the modelling of 
the uncertain information (from the total ignorance to the complete knowledge). So, a situation of 
complete ignorance corresponds to the belief function defined by m (Ω) = 1. The perfect knowledge will 
be represented by a sure belief function that is a function where the totality of the mass is assigned to a the 
only singleton of Ω. Another particular case can be met when the focal elements of m are singletons. In 
that case, the belief function is equivalent to probability measure and will be called Bayesian belief.  
 
At the credal level thus intervenes belief functions modelling. Several methods were developed to define 
these functions. They can be grouped together into two approaches. Approaches of the first group are 
based on likelihood functions [1, 13, 19] while approaches of the second group are distance-based [3, 4, 
10]. A comparison of these two families is realized in [17]. The findings of this study show that the 
performances of these two families, applied to classic problems, are relatively similar and that the choice 
thus remains a delicate subject. Moreover, it seems that information modelling belief function is 
application-dependant. 
 
The second step at the credal level corresponds to the belief revision. Among tools defined in the initial 
works of Shafer, a rule of the combination of two belief functions was proposed. Given two mass 
functions m1 and m2, the conjunctive combination of these two functions (or sources) is given by: 
 

 
 

This rule, called non-normalized Dempster’s rule, allows combining uncertain information extracted in the 
form of belief functions. If needed, the condition 0∅ =m( )  can be obtained by dividing every mass by a 
normalization coefficient. The resulted rule, called orthogonal rule of Dempster, is defined as follows: 

 
Where the quantity m( )∅  represents a degree of conflict between the functions m1 and m2 and can be 
calculated by using the following equation: 
 

 
 

 
The use of Dempster’s rule is possible if and only if m1 and m2 are not in total conflict, that is to say if 
there are two focal elements B and C of m1 and m2 which satisfy B∩C =∅. This rule possesses however 
interesting properties as the associativity, the commutativity and - idempotence but was very controversial 
[23, 22, 12]. That is why other schemes were developed [21, 7, 13, 5, 6]. A description of the conflict 
within management within the framework of evidence theory is addressed in [14]. 
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2.2. Pignistic level 
 

The aggregation step previously defined allows to obtain an exhaustive summary of the piece of 
information in the form of a belief function m used for the decision-making. Based on rationality concept 
developed in this transferable belief model (TBM), Smets [16] suggested transforming m into a 
probability function BetP defined on Ω (called pignistic probability function). For kω ∈Ω  

 

 
Where A  represents the cardinal of A. In this transformation, the mass of belief m(A) is uniformly 

distributed among the elements of In. A justification of this transformation can be found in [15]. The 
derived distribution of probability allows classical tools of probability and statistical theory. 

 
 

3. Implementation for Travel time estimation 
 
To achieve the travel time estimation via the theory of evidence, we have implemented two different 
approaches. For the first approach, we define a space in 2 dimensions where every constituent corresponds 
to the estimation of a sensor (probe vehicle or traffic loop detector). 
 
In this case, we calculate dissimilarities between a new couple of measurements and measurements in 
learning sample. These dissimilarities allow us to build belief functions and so to attribute a class of travel 
time to the new couple of measures. 
 
The second approach corresponds to an approach of fusion of classifiers. In that case, the measures 
obtained by the available sensors are considered as classes. Output of each sensor can be interpreted as a 
classifier and the fusion problem is equivalent to the one of classifiers fusion. 
 
In the following sections, we describe these both approaches in more detail with an emphasis on belief 
function building. 
 
 

3.1. Approach based on distance method 
 
Several work was completed on the modeling of the belief functions by dissimilarity measures [2,8,9,18]. 
In this section, we presented only the original work introduced by Denoeux [3,24]. This method can be 
described in the following way.  
 
Let us consider the case where some pattern x  has to be classified in one of the K  classes 

Kn ωωω ,,,,1 ……  using the training set χ  of I  pattern with known classification. Each training vector 
ix  sufficiently close to x  according to some distance measure id  can be regarded as a piece of evidence 

that influences our belief concerning the class of x . This item of evidence can be represented by a basic 

belief assignment (BBA) im  over the frame of discernment }{ .,,1 Kωω …=Ω  If ix  belongs to class nω , 
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then the unit mass should be distributed among two subsets of Ω : the singleton { }nω  and Ω  itself. If we 

consider as a reasonable assumption that the portion of belief committed to nω  should be a decreasing 

function of the distance id  between x  and ix , the im  can be written in the following form: 

 
 
where 10 << iα  is a constant and iφ  is a monotonically decreasing function verifying 1)0( =iφ  et 

0)(lim =
∞→

did
φ . An exponential form for this function was postulated for iφ : 

 
iγ  being a positive constant associated to class nω . A method for optimizing parameters iα  and iγ  has 

been described in [24]. This method is based on the minimization of error quadratic between the pignistic 

probability and the membership vector. The above discussion concerned an arbitrary training pattern ix . 
However, it is unlikely that all training patterns will be helpful in classifying x , so that we can focus our 
attention on the k  nearest neighbors or on the prototype of each classes. This last solution was adopted in 
this paper. 
 

3.2. Approach based on fusion of classifiers 
 
In the last section, we presented a classifiers based on evidence theory. If several classifiers are available, 
the combination of these classifiers makes it possible to improve the results of classification.  
 
Three types of classifiers are indexed: 
 
- the combination is made based on the output information of the abstract level: a classifier only outputs 

a unique class) 
- the combination is made based on the output information of the rank level: a classifier ranks all the 

labels in a queue with the label at the top being the first choice. 
- the combination is made based on the output information of the measurement level: a classifiers 

attributes each label a measurement value to address the degree that nω  has the label. 

 
In the studied application, the outputs of the sensors (to similar at the classifier) are at the abstract level. 
The solution that we proposed rests on the errors of the classifiers taken individually. The error structure 

of each classifiers j  (i.e. jC ) is usually described by a confusion matrix: 
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where N  corresponds to the number of class in the problem. In this matrix, each row i  corresponds to 

class iω  and each column j  corresponds to the class decided by the classifier jC . With the knowledge 

of its confusion matrix jM , an uncertainty on output of the classifier, could be described by the 

recognition rate j
recε  and the confusion rate j

conε . These rates can be defined by the following equation: 

 

 
 
We supposed that we have the confusion matrix for each classifier. We present in the next section three 
methods to obtain the belief function with the confusion matrix. 
 

1. METHOD N°1  
 
The first approach, originally proposed by XU [20], is based on the evidence theory to combine classifiers. 
Within this approach, referred to as XU’s method, the belief functions are defined as follows: 
 

 
in this equation the classifier jC choices the class nω . The following method rises from this construction 

of belief functions. 
 

2. METHOD N°2 
 
The belief functions obtained previously are independent of the choice of the classifiers. The belief 
functions are similar whatever the class selected. In this approach, we defined a recognition rate for each 
class by classifier.  
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The associated belief functions are defined as follows: 
 

 
when the classifier selected jC  the class nω . 

 

3. METHOD N°3 
 
Contrary to the preceding method, with this approach we place masses on the singleton, its opposite and 
on the frame of discernmentΩ . The beliefs are distributed as follow: 
 

 
when the classifier selected jC  the class kω . The belief function m′  is not normalized. We must pass by 

the step of following normalization: 

 

4. Results 

4.1. Data 
 
The data used in this study were collected during an experimentation carried out on an urban road axis in 
Toulouse (South of France). The urban axis on which was made the experiment is cut in 4 sections. Data 
collected consist in 3 different sources: 
 

a. Data from conventional road sensors (magnetic loop detectors) every 6 minutes. This source 
delivers macroscopic traffic characteristics like flow, local density.  

b. Probe vehicle data, mainly, travel time experienced by those vehicle.  
c. And travel time derived from license-plate matching technique on the same urban axis. 
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The information delivered by the first 2 sources will be processed to achieve an estimation of the travel 
time while information from the last source, considered as reference travel time, will be used for 
evaluation purpose only. 

 
As conventional road sensors (source 1) do not deliver travel time directly, it is necessary to convert the 
information supplied by magnetic loop detectors with a suitable estimation algorithm. For that purpose, 
we used the following conversion algorithm originally proposed by Bonvalet and Robin-Prévallée [7]. 
 

 
where  iTP  is the travel time of section i,  iTO  is the local density (or occupation) of the section, 

Qi is the flow, TPLi is the travel time prevailing at free flowing condition and Nmax is a 
maximum number of vehicle within the section. 
 

 
Within this application, we have considered: 
 

 
 
Where di is the length (in meter) of section i. We so consider that an average length of vehicle is 
5m and speed at free flowing condition is of 50 km/h. 
 
This pre-processing step, allowed obtaining 230 valid observations from traffic data source whilst 
probe vehicles supplied only 156 observations. However, by cross-checking these two sources, it 
seems that only 143 observations are common. In addition, to apply the theory of evidence, travel 
time was discretized to form 6 non overlapping intervals.  
 
 
 In order to evaluate the performances of the various strategies of fusion implemented in this 
article, we present in the table 2 results of classification without fusion i.e. classification rate 
achieved individual sources.   
 

Traffic source Probe source  
Classification 

rate (%) 26.57 27.27 

 
TAB.1 classification rate for individual sources 
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4.2.  Behaviour of distance-based modeling 
 
In this section, we evaluate the behaviour of the distance-based methods for designing belief 
functions according to their parameters:  number of prototypes for the ProDS method and the 
number of neighbours for the Knn-ds method. 
 
  
For this test, we used the cross-validation strategy: leave-one-out [13]. The ProDS method 
depends on the position of the prototypes we carried out 100 runs for a given number of 
prototypes.  Thus, on the figures representing the evolution of the percentage of classification 
according to the number of prototypes, we indicated the minimal, maximum value as well as the 
average of the percentage of good classification. The various results obtained, in terms of 
percentage of good classification, are presented on the figure FIG. 1.   
 

 

 
FIG.1 classification rate as a function of length of learning sample vs. number of prototype for 

KNN-DS ProDS 
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On this figure, one can observe that the ProDS method is much less sensitive to the variation of 
the number of prototypes contrary to the Knn-ds method of which the percentage of classification 
strongly evolves according to the number of neighbours. The percentage of good classification 
obtained by the ProDS method is around 3%.  The percentage of classification obtained with the 
method of Knn-ds is definitely worse than those obtained by the ProDS method. 

 
These results can be compared with those carried out by the classifiers fusion approach presented 
in section 3.2. By using the same strategy of training (leave-one-out), this approach gives results 
presented in the table 3. One can note that the results obtained by ProDS method are quite similar 
to those obtained by the 3rd strategy of fusion of classifiers. 
 

Xu’s method Method n°2 Method n°3  
Classification 

rate (%) 
27.97 27.27 32.87 

 
TAB.2 Classification rate for the proposed methods and comparison with Xu’s method. 

  
 

4.3. Impact of training set on performance 
 
To check the effect of training set, we varied the number of observations in the base of training from 5 to 
95% of the initial population. This consists in taking part of the initial observations which are employed in 
the base of training and the remainder of the observations constituting the base of test then. 300 runs were 
carried out for a given proportion. Thus on the various curves, we represented the average, the minimal 
and maximum value as well as the standard deviation of the percentage of good classification. The figure 
FIG. 2 shows the evolution of the percentage of good classification obtained by the method of fusion of 
classifiers proposed by XU [ 29], according to the percentage of points in the training set. 
 

 
FIG.2 classification rate as a function of learning sample length for Xu’s method. 
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The figure FIG. 3 shows the evolution of the percentage of classification rate according to the length of 
the training sample by using the improvement, suggested in [1], of the method of Xu and method n° 3. 
 

 
 

 
FIG.3 Classification rate according to the length of the training sample 
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One can note on these figures that the performances obtained by the method of Xu are less sensitive to the 
constituent numbers of observations which are in the training sample. However, these performances 
remain overall worse than those obtained by the methods n°2 and n°3 when 20% of the initial 
observations form the training set. In addition, the methods n°3 gives the best results, in terms of 
percentage of classification rate, once that the training set contains more than 20% of the initial 
observations.  
 
The performance of Knn-DS method is lower than 20% no matter the length of training set. The ProDS 
method gives similar results to those obtained by the method n°3 of fusion of classifiers. 
 
 

5. Conclusion 
 
 
The objective of the work carried out in this article is to propose a methodological framework as 
well as solutions with the problem of estimate of travel time in the presence of data resulting 
from heterogeneous sources.  Two sources were considered here:  traditional sensors of traffic 
made up of an electromagnetic loop, which make it possible to measure the flow and the 
occupancy rate and to deduce an estimate of travel time, and a reduced sample of probe vehicles, 
which collect their experienced travel time.   
 
In this article, we tackle the problem of the estimate of the travel time like a typical problem of 
fusion of classifiers by using the theory of evidence for its flexibility for modelling of knowledge. 
Within the framework of this theory, we presented two approaches as solutions to the estimation 
problem. The first technique uses the concept of classifiers fusion. In this case, each source of 
information is regarded as a classifier. For each one of these classifiers, we define a matrix of 
confusion which reflects capacity of discrimination of the sources. This matrix enables us 
thereafter to build the functions of belief. The second approach employs a traditional technique of 
classification based on the calculation of distance to build the functions of belief. The use of these 
two approaches within the framework of our real application proved to be effective compared to 
approaches mono-sensor. That is illustrated by one of our original techniques proposed here 
(method n°3)  
 
It is obvious that one cannot generalize these results because they were obtained for a specific 
application.  However, this first work enables us to think that the use of technique of fusion of 
data based on the theory of evidence will tend to improve the estimate of travel time.   
 
The perspectives related to this work relate to the adaptive and dynamic fusion. For this prospect, 
it will be interesting to build up a fusion scheme which enables to account with temporal 
dimension of data sources.  
 
Another direction relates to the use of the recent extensions of Evidence theory to take into 
account the continuous aspects of travel time. Those extensions would make it possible to 
estimate travel times either in a discrete way as that is currently the case (classes being intervals 
time) or in a way continuous way allowing a more precise estimate. 
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