
David Mercier, Frédéric Pichon, Éric Lefèvre
Univ. Artois, EA 3926, Laboratoire de Génie Informatique et d’Automatique de l’Artois (LG12A), Béthune, F-62400, France

Abstract
Proposition 4 and Theorem 1 of the article “Belief Functions Contextual Discounting and Canonical Decompositions” [International Journal of Approximate Reasoning 53 (2012) 146–158] provide an erroneous result. We give here the true result with a correct proof.

Keywords: Belief functions, Contextual Discounting.

We hereby correct Proposition 4 and Theorem 1 in [2], which contained erroneous results.

Let us first recall the problem. A source S of information provides to agent Ag a piece of information represented by a mass function m^S_Ω (with $\Omega = \{\omega_1, \ldots, \omega_K\}$), simply denoted by m in this corrigendum. Let A be a non empty set of subsets of Ω called contexts. Agent Ag owns a meta-knowledge regarding the reliability of S conditionally on each set $A \in A$. Formally, for all $A \in A$, we suppose that

$$
\begin{align*}
 m_{\text{Rel}}^{Ag}(A)(\{R\}) &= 1 - \alpha_A = \beta_A \\
 m_{\text{Rel}}^{Ag}(A)(\mathcal{R}) &= \alpha_A,
\end{align*}
$$

(1)

where $\alpha_A \in [0,1]$ and $\mathcal{R} = \{R, NR\}$ (R meaning the source is reliable, NR otherwise), and the notation $m[\cdot]$ denotes conditioning.

With the same reasoning as in [1] (where A was supposed to form a partition of Ω), the knowledge m^Ω_{Ag} held by agent Ag on Ω, based on the in-
formation \(m \) provided by \(S \) and his metaknowledge regarding \(S \) represented by (1) for all \(A \in \mathcal{A} \), can be obtained by the following computation,

\[
\left(m^{\Omega \times \mathcal{R}} \bigodot_{A \in \mathcal{A}} m^{\mathcal{R}}[A]^{\Omega \times \mathcal{R}} \right)^{\downarrow \Omega},
\]

where symbol \(\uparrow \) and \(\downarrow \) denote, respectively, the deconditioning and projection operations, and \(m^{\Omega \{\{R\}\}} = m \).

It is stated in [2] that, for \(A = 2^\Omega \) (Proposition 4) and more generally for any set \(\mathcal{A} \) of contexts (Theorem 1), Equation (2) is equivalent to

\[
m \bigodot (\bigodot_{A \in \mathcal{A}} A_{\beta_A}).
\]

This statement is incorrect. In the general case, for any non empty \(\mathcal{A} \), Equation (2) is equivalent to

\[
m \bigodot (\bigodot_{A \in \mathcal{A}} \overline{A^\mathcal{R}}),
\]

as shown by the following proof, which corrects Theorem 1 from [2]. The fact that, in general, (4) is not equivalent to (3) (and particularly when \(\mathcal{A} = 2^\Omega \)), and therefore (2) is not equivalent in general to (3), is shown below by Example 1.

Proof 1. Let us denote by \(A_i, i \in I = \{1, \ldots, n\} \), the contexts present in \(\mathcal{A} \), and let us write \(\beta_{A_i} \) simply by \(\beta_i \), for all \(i \in I \). For all \(A_i \in \mathcal{A} \), the deconditioning of \(m^{\mathcal{R}}[A_i] \) over \(\Omega \times \mathcal{R} \) is given by

\[
m^{\mathcal{R}}[A_i]^{\uparrow \Omega \times \mathcal{R}}(A_i \times \{R\} \cup \overline{A_i} \times \mathcal{R}) = \beta_i, \quad (5a)
\]

\[
m^{\mathcal{R}}[A_i]^{\uparrow \Omega \times \mathcal{R}}(\Omega \times \mathcal{R}) = \alpha_i. \quad (5b)
\]

Moreover, for all \((A_i, A_j) \in \mathcal{A}^2 \), such that \(j \neq i \),

\[
(A_i \times \{R\} \cup \overline{A_i} \times \mathcal{R}) \cap (A_j \times \{R\} \cup \overline{A_j} \times \mathcal{R})
\]

\[
= (A_i \cap A_j) \times \{R\} \cup (A_i \cap \overline{A_j}) \times \{R\} \cup (\overline{A_i} \cap A_j) \times \{R\} \cup (\overline{A_i} \cup \overline{A_j}) \times \mathcal{R}
\]

\[
= (A_i \cup A_j) \times \{R\} \cup (A_i \cup A_j) \times \mathcal{R}.
\]

With \(\mathcal{A} \) composed of two elements denoted by \(A_i \) and \(A_j \), we then have

\[
\left\{ \begin{array}{ll}
(m^{\mathcal{R}}[A_i]^{\uparrow \Omega \times \mathcal{R}} \bigodot m^{\mathcal{R}}[A_j]^{\uparrow \Omega \times \mathcal{R}})((A_i \cup A_j) \times \{R\} \cup (A_i \cup \overline{A_j}) \times \mathcal{R}) = \beta_i \beta_j \\
(m^{\mathcal{R}}[A_i]^{\uparrow \Omega \times \mathcal{R}} \bigodot m^{\mathcal{R}}[A_j]^{\uparrow \Omega \times \mathcal{R}})(A_i \times \{R\} \cup \overline{A_i} \times \mathcal{R}) = \beta_i \alpha_j \\
(m^{\mathcal{R}}[A_i]^{\uparrow \Omega \times \mathcal{R}} \bigodot m^{\mathcal{R}}[A_j]^{\uparrow \Omega \times \mathcal{R}})((A_j \times \{R\} \cup \overline{A_j} \times \mathcal{R}) = \alpha_i \beta_j \\
(m^{\mathcal{R}}[A_i]^{\uparrow \Omega \times \mathcal{R}} \bigodot m^{\mathcal{R}}[A_j]^{\uparrow \Omega \times \mathcal{R}})(\Omega \times \mathcal{R}) = \alpha_i \alpha_j
\end{array} \right. .
\]
In other words, all the focal elements of \(\otimes_{A \in \mathcal{A}} m^R[A]^{\oplus \Omega \times \mathcal{R}} \) are the elements \(C \times \{R\} \cup \overline{C} \times \mathcal{R} \) with \(C \) composed of a union of elements \(A_i \) in \(\mathcal{A} \), \(I' \) being the set of indices of the \(A_i \)'s, which means with \(C = \bigcup_{i \in I' \subseteq I} A_i \). Moreover, each focal element has a mass equal to \(\prod_{i \in I'} \beta_i \prod_{j \in I' \setminus I} \alpha_j \). Let us note that this latter result is also true if \(\mathcal{A} \) is composed of one element \(A \subseteq \Omega \) (directly from Equations (5)).

By induction, we can show that this property remains true with \(\mathcal{A} \) composed of \(n \) contexts \(A_i \), \(i \in I = \{1, \ldots, n\} \). Indeed, let us suppose the property true with \(\mathcal{A} \) composed of \(n-1 \) contexts \(A_i \), \(i \in I = \{1, \ldots, n-1\} \), we then have for all focal elements \(C \times \{R\} \cup \overline{C} \times \mathcal{R} \) of \(\otimes_{i \in I} m^R[A_i]^{\oplus \Omega \times \mathcal{R}} \), with \(C = \bigcup_{i \in I' \subseteq I} A_i \),

\[
(\otimes_{i \in I} m^R[A_i]^{\oplus \Omega \times \mathcal{R}} \otimes m^R[A_n]^{\oplus \Omega \times \mathcal{R}})(C \times \{R\} \cup \overline{C} \times \mathcal{R})
= \beta_n \prod_{i \in I'} \beta_i \prod_{j \in I' \setminus I} \alpha_j = \prod_{i \in I'} \beta_i \prod_{j \in (I' \setminus I) \setminus \{n\}} \alpha_j ,
\]

and

\[
(\otimes_{i \in I} m^R[A_i]^{\oplus \Omega \times \mathcal{R}} \otimes m^R[A_n]^{\oplus \Omega \times \mathcal{R}})(C \times \{R\} \cup \overline{C} \times \mathcal{R})
= \alpha_n \prod_{i \in I'} \beta_i \prod_{j \in I' \setminus I} \alpha_j = \prod_{i \in I'} \beta_i \prod_{j \in (I' \setminus I) \setminus \{n\}} \alpha_j ,
\]

which means that focal elements of \(\otimes_{i \in \{1, \ldots, n-1\}} m^R[A_i]^{\oplus \Omega \times \mathcal{R}} \otimes m^R[A_n]^{\oplus \Omega \times \mathcal{R}} \) are also of the form \(C \times \{R\} \cup \overline{C} \times \mathcal{R} \), with \(C = \bigcup_{i \in I' \subseteq I} A_i \), \(I = \{1, \ldots, n\} \), \(A_i \in \mathcal{A} \), and have for mass: \(\prod_{i \in I'} \beta_i \prod_{j \in I' \setminus I} \alpha_j \).

Besides, for all \(B \subseteq \Omega \),

\[
m^\Omega(\{R\})^{\oplus \Omega \times \mathcal{R}}(B \times \{R\} \cup \Omega \times \{NR\}) = m(B) ,
\]

and, for all \(B \subseteq \Omega \), for all \(C = \bigcup_{i \in I' \subseteq I} A_i \),

\[
(C \times \{R\} \cup \overline{C} \times \mathcal{R}) \cap (B \times \{R\} \cup \Omega \times \{NR\}) = B \times \{R\} \cup \overline{C} \times \{NR\} .
\]

Therefore, after the projection on \(\Omega \), \((m^\Omega[\{R\}]^{\oplus \Omega \times \mathcal{R}} \otimes_{A \in \mathcal{A}} m^R[A]^{\oplus \Omega \times \mathcal{R}})^i_{\Omega} \) consists in transferring a part \(\prod_{i \in I'} \beta_i \prod_{j \in I' \setminus I} \alpha_j \) of each mass \(m(B) \), \(B \subseteq \Omega \), from \(B \) to \(B \cup \overline{C} \), for all \(C = \bigcup_{i \in I' \subseteq I} A_i \).

On the other hand, \(m^\Omega \left(\left(\otimes_{A \in \mathcal{A}} A_i^{\alpha_i} \right) \right) \) can be written as

\[
m^\Omega \left(\left(\otimes_{i \in I} A_i^{\alpha_i} \right) \right) = m^\Omega \left(\otimes_{i \in I} \left\{ \begin{array}{c} \Omega \\ A_i \end{array} \rightarrow \alpha_i \rightarrow \beta_i \right\} \right) .
\]
As for all \((i, j) \in I^2\) s.t. \(i \neq j\), \(\overline{A_i} \cap \overline{A_j} = \overline{A_i \cup A_j}\), it can be shown (with an induction for example) that the focal elements of \(\bigcap_{i \in I} \overline{A_i}\) are the elements \(\overline{C}\) with \(C = \bigcup_{i \in I' \subseteq I} A_i\) and have a mass equal to \(\prod_{i \in I'} \beta_i \prod_{j \in I \setminus I'} \alpha_j\).

Consequently, operation \(m \circ (\bigcap_{i \in I} \overline{A_i})\) also consists in transferring a part \(\prod_{i \in I} \beta_i \prod_{j \in I \setminus I'} \alpha_j\) of each mass \(m(B)\), \(B \subseteq \Omega\), from \(B\) to \(B \cup \overline{C}\), for all \(C = \bigcup_{i \in I' \subseteq I} A_i\). We can then conclude that Equations (2) and (4) are equivalent for any non empty set of contexts \(A\).

\[\square\]

Example 1. Let us consider \(\Omega = \{\omega_1, \omega_2\}\) and \(A = 2^\Omega\), and let us denote \(\alpha_{\{\omega_1\}}\) by \(\alpha_1\), \(\alpha_{\{\omega_2\}}\) by \(\alpha_2\), and \(\alpha_\Omega\) by \(\alpha_{12}\). Equation (4) gives

\[
m \circ \left(\bigcap_{A \in A} \overline{A^A} \right) = m \circ \left(\emptyset \circ \{\omega_1\} \cup \{\omega_2\} \cup \overline{\Omega^{12}} \right) = m \circ \left(\{\omega_2\} \cap \alpha_1 \cap \{\omega_1\} \cap \beta_1 \cap \alpha_2 \cap \Omega \cap \alpha_\Omega \cap \alpha_{12} \right) \mapsto \emptyset \mapsto \beta_1 \beta_2 \alpha_{12} + \beta_1 \alpha_2 \mapsto \{\omega_1\} \mapsto \alpha_1 \alpha_2 \alpha_{12} \mapsto \Omega \mapsto \alpha_1 \alpha_2 \alpha_{12}.
\]

In contrast, Equation (3) leads to

\[
m \circ \left(\bigcap_{A \in A} A^A_{\beta_{12}} \right) = m \circ \emptyset \circ \{\omega_1\} \circ \{\omega_2\} \circ \Omega_{\beta_{12}} = m \circ \left(\{\omega_1\} \cup \{\omega_2\} \cup \alpha_{12} \right) \mapsto \emptyset \mapsto \beta_1 \cap \alpha_1 \cap \{\omega_1\} \cap \{\omega_2\} \mapsto \beta_2 \cap \alpha_2 \cap \{\omega_1\} \cap \{\omega_2\} \mapsto \emptyset \mapsto \beta_1 \beta_2 \alpha_2 \mapsto \{\omega_1\} \mapsto \alpha_1 \beta_2 \alpha_{12} \mapsto \{\omega_2\} \mapsto \beta_1 \alpha_2 \alpha_{12} \mapsto \Omega \mapsto \alpha_1 \alpha_2 \beta_{12} \alpha_{12}.
\]

To summarize, in [1], the equivalence was shown between (2) and (3) when \(A\) forms a partition of \(\Omega\). This corrigendum shows that this equivalence does not hold for any \(A\), and that (2) is actually equivalent to (4) for any (non empty) \(A\).
References
