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a  b  s  t  r  a  c  t

Cancer  behaves  as  a  complex,  dynamic,  adaptive  and  self-organizing  system,  and  agent-based  models
are capable  of describing  such  a system  as a collection  of  autonomous  decision-making  entities  called
agents.

This review  provides  an  overview  of how  an  agent-based  approach  can  be  established,  and  is  being
used  to model  a  variety  of  cancer-related  processes  including  tumor  genesis,  tumor  growth,  apoptosis,
angiogenesis,  vascularization  and  anti-cancer  therapy  and  discuss  both  challenges  and  future directions
for  agent-based  modeling  in  the  field  of  cancer  research.  We  provide  rationales  for  using  holonic  agent-
based  modeling  toward  the  goal  of creating  realistic  simulations  of  cancer  in  future  research  directions.
Holonical  systems  guarantee  to  provide  a  recursive  and  hierarchical  modeling  for  complex  systems  with
dynamic and  runtime  reorganization.  They  are adopted  for  cancer  modeling  since  living organisms  have
a hierarchical  structure  and can  be decomposed  into  individual  cooperating  entities.

©  2014  Published  by  Elsevier  Ltd.

1. Introduction

Global cancer incidence is estimated 14.1 million cases in 2014
and cancer cases worldwide are forecast to rise by 75% and reach
close to 25 million over the next two decades. These new figures and
projections send a strong signal that immediate action is needed to
confront this human disaster [1].

Computational models have been suggested as a method for
gaining a more fundamental understanding of cancer. In general
terms, computational modeling in cancer research can be classified
in three categories: continuum, discrete and hybrids approaches,
which combine continuum and discrete techniques in one form or
another. Due to the inherent complexity of the cancer environment,
arguably neither a true continuum nor a mere discrete model can
describe all processes sufficiently [2]. So hybrid models like agent-
based modeling (ABM) are becoming more and more popular due to
their ability to allow for multiscale cancer modeling [3–6]. ABM is a
computational technique that is being used in a variety of research
areas such as in social sciences, economics and biomedicine as an
interdisciplinary tool to study the dynamics of complex systems.
This review focuses on recent advances in agent-based modeling
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technique that is being used to study the mechanisms involved in
cancer formation and progression.

The organization of this paper is as follows. In the first sec-
tion, an overview to ABM and the key features of an agent will be
presented. The second part deals with presenting representative
agent-based works in cancer progression, invasion, angiogenesis
and metastasis. Comparing ABM technique over other commonly
used computational techniques is also provided. Finally, this review
is ended by recommending the use of holonic agent-based model-
ing in cancer research by describing Holon concept and merits of
holonic agent-based modeling. A holonic agent-based modeling has
not been used in cancer research so far. With regards to the capa-
bilities of agents and Holon systems in complex environments, it
seems to be important to create a holonic agent-based model for
cancer in future investigations.

2. Agent-based modeling

Agent-based computing [7,8], is a large and widely spread sci-
entific domain. An agent can range from a “software agent” or
“service/daemon”, which might not behave very intelligently to
an intelligent agent, which is based on models of artificially intel-
ligent behavior [9,10]. An agent-based model is a computational
model that represents individual agents and their collective behav-
ior. Agent-based modeling is being used in a variety of research
areas such as in social sciences [11], economics [12], healthcare
operations management [13], stock market [14], supply chains [15],
the spread of epidemics [16], the threat of bio-warfare [17], the
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growth and decline of ancient civilizations [18] and the deregula-
tion of electric power markets [19], just to name a few.

2.1. Agent definition

From a practical modeling standpoint, we consider agents to
have certain characteristics [20]:

• An agent is identifiable, a discrete individual with a set of charac-
teristics and rules governing its behaviors and decision-making
capability. Agents are self-contained. The discreteness require-
ment implies that an agent has a boundary and one can easily
determine whether something is part of an agent, is not part of
an agent, or is a shared characteristic.

• An agent is autonomous and self-directed. An agent can func-
tion independently in its environment and in its dealings with
other agents, at least over a limited range of situations that are of
interest.

• An agent is situated, living in an environment with which it inter-
acts with other agents. Agents have protocols for interaction with
other agents, such as for communication, and the capability to
respond to the environment. Agents have the ability to recognize
and distinguish the traits of other agents.

• An agent may  be goal-directed, having goals to achieve (not nec-
essarily objectives to maximize) with respect to its behaviors.
This allows an agent to compare the outcome of its behavior
relative to its goals.

• An agent is flexible, having the ability to learn and adapt its behav-
iors based on experience. This requires some form of memory. An
agent may  have rules that modify its rules of behavior.

3. Approaches in cancer modeling

Cancer models encompass many different spatial and tempo-
ral scales, ranging from nanometers to meters and nanoseconds to
days. Fig. 1 presents scaling issues in modeling cancer and indicates
which approaches are particularly well-suited to dealing with each
area. The techniques that are being developed to permit both tem-
poral and spatio-temporal modeling over this wide range of scales,
including: (1) ordinary differential equations (ODEs), partial dif-
ferential equations (PDEs) and related techniques, (2) Petri nets,
(3) cellular automata (CA), dynamic cellular automata (DCA) and
agent-based models (ABMs) and (4) hybrid approaches.

A fundamental challenge to computational systems biology is to
develop models that can deal with this wide range of granularity, so
agent-based models (ABMs) are becoming more and more popular
due to their ability to allow for multiscale cancer modeling [3–6].

4. Agent-based approach in cancer research

Several useful agent-based models of the origin, growth and
spread of cancers have been developed in an effort to better under-
stand the disease and potential therapeutic approaches. In this
section representative agent-based works in cancer research are
presented. Though it is impossible in a few lines to review the
already vast literature of ABM in cancer research, in what follows a
brief sketch is provided. Cancer is a complex specialized multi-scale
process that can be studied from the intracellular, cellular or tis-
sue perspectives. Therefore, agent-based modeling is a promising
paradigm to model cancer development [21]. Zhang et al. developed
an agent-based modeling of a brain tumor named Glioblastoma
Multiforme (GBM) [2,22–24]. The different modeling approaches
are used in this model: ordinary differential equations (ODE) at
the intracellular level, discrete rules typically found in ABM at the
cellular level and partial differential equations (PDE) at the tissue

level (Fig. 2). Moreover, this model also relies on a multi-resolution
approach: heterogeneous clusters, i.e. composed of migrating and
proliferating cells are simulated at a high resolution while homoge-
nous clusters of dead cells are simulated at a lower resolution.
More computational resource is allocated to heterogenous regions
of the cancer and less to homogenous regions [23]. This model
incorporates a graphics processing unit (GPU)-based parallel com-
puting algorithm [25], to speed up the previous agent-based models
[22,24].

Lepagnot and Hutzler, developed an agent-based system for
modeling the growth of avascular tumors to study the impact of
PAI-1 molecules on metastasis [26]. To deal with the problem of
complexity (a tumor may  be composed of millions of cells) two
levels are introduced: the cell and the tumor’s core levels. Indeed,
such cancers are generally structured as a kernel of necrosed or
quiescent cells surrounded by living tumor cells. As necrosed and
quiescent cells are mostly inactive, tumor’s core is reified as a sin-
gle upper-level agent, interacting with cells and PAI-1 molecules at
its boundary. A more comprehensive analysis of this model can be
found in [27].

Athale et al. developed a multiscale agent-based model in
combination with a gene-protein interaction network for the
description of the growth of glioblastoma [28]. In this model, the
ABM describes the tumor on the cellular. On the molecular scale,
for each cell a system of ordinary differential equations repre-
sents a gene–protein interaction network that defines the action
rules for the agents. This model integrates sub-cellular network
model of EGFR signaling with the prior tumor ABM [29]. It is able
to model proliferation versus migration decision based solely on
intracellular gene network. Coupling model with experiments will
allow hypothesis generation and testing. They also developed an
agent-based model [30], Expanded multi-scale ABM from [28]. This
model simulates different expression levels of EGFR. It examines
the influence of experimentally measured EGFR expression val-
ues on protein expression, cell interactions and emergent whole
tumor dynamics. The Model suggests that both proliferative and
migratory phenotypes are necessary for rapid tumor expansion,
and underscores the importance of post-translational regulation
of protein expression.

The multiscale 3D agent-based non-small cell lung cancer model
[31], encompasses both molecular (signaling pathway) and micro-
scopic (multicellular) scales. At the molecular level, two  stimuli,
epidermal growth factor (EGF) and transforming growth factor !
(TGF!), trigger downstream signaling through different routes but
converge at the activation of the Raf signal. The model found that
increasing EGF results in a more invasive phenotype, while increas-
ing EGF concentration together with TGF! concentration further
increased the agents’ sensitivity to changes in the environment that
could trigger invasiveness.

Mansury et al. added the evolutionary game theory to a previ-
ously developed brain tumor ABM [29], to examine feedback effects
between tumors and environment. Highly malignant phenotypes
can exist without detectable structure changes. Based on this tumor
heterogeneity, the authors recommend multiple biopsies to char-
acterize a tumor’s true state.

Zhang et al. developed a three-dimensional agent-based tumor
model [22]. This model utilized basic gene-protein interactions and
multi-cellular patterns specific to brain cancer. This model repre-
sented internal cellular processes via differential equations, and the
location of cells spatially. Each tumor cell is equipped with an EGFR
gene-protein interaction network module that also connects to a
simplified cell cycle description.

Mansury and Deisboeck, proposed a two-dimensional agent-
based model in which the spatio-temporal expansion of malignant
brain tumor cells is guided by environment heterogeneities in
mechanical confinement, toxic metabolites and nutrient sources to
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Fig. 1. Issues of modeling cancer. From whole organism to tumor tissue to individual cells to the molecules of replication and metabolism, modeling tumors spans about
nine  orders of spatio-temporal magnitude. Shown above are some of the modeling issues which need to be addressed at each level of simulation. Each text box includes
the  relevant spatio-temporal scale and modeling issues encountered at that level. Appropriate modeling approaches to address each issue are shown in brackets. Building
hierarchical systems of inter-related models is still a primary challenge to modern researchers. ODE – ordinary differential equation system, PDE – partial differential equation
system, DCA – dynamic cellular automaton, PN – Petri net system, ABM – agent based model [71].

Fig. 2. Agent-based approach in brain tumor modeling [2,22–24].
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Fig. 3. The conceptual model of the multi-scale environment. There are three layers in the model: the diffusible, the cells and the intracellular phenomena (such as the cell
cycles  and apoptosis) [35].

gain more insight into the systemic effect of such cellular chemo-
tactic search precision modulations [32]. Moreover, by calibrating
the expression of Tenascin C and PCNA using experimental brain
tumor data for the migratory phenotype while generating the gene
expression for proliferating cells as the output, numerical result
from the model [33], confirmed that among the migratory pheno-
type the expression of Tenascin C is indeed consistently higher,
while they reveal the reverse for the proliferating tumor cells,
which exhibit consistently higher expression of the proliferating
cell nuclear antigen (PCNA) gene.

Brown et al. developed an innovative multi-agent approach in
which healthy cells and cancerous cells are modeled as opposing
teams of agents using a decentralized markov decision process [34].
This model consists of an environment and two teams of agents.
The environment is a 3-D lattice structure which represents a dis-
cretized section of tissue. Each location within the lattice has a
nutrient level which remains static over time. This level combines
the availability of various nutrients that cells need to be prosper-
ous (oxygen, glucose, etc.) into a single integer value. Represented
as an agent, each cell has an age, a team affiliation, and a location
within the environment. The age of a cell indicates the number of
time steps a cell has existed in the simulation. The team affiliation
of a cell indicates whether a cell is a member of the team of healthy
cells or the team of cancerous cells and what policy to execute.
The hypothesis of this model is that by modeling healthy cells and
cancerous cells as opposing teams, and having policies generated
automatically rather than generated by hand, the model may  gain
a more fundamental understanding of cell behavior.

Figueredo et al. developed an open-source, extensible, agent-
based environment for simulation of the dynamics of cell
populations and their responses to nutrient shortage [35]. Dif-
ferent elements from distinct time and length scales are coupled
together in this model. The model features include competition
between cell-cycle-based cells (for example, cancer and normal
cells, which can divide) and lifespan-based cells (e.g. macrophages,
which can only die after a certain lifespan), cellular random walks
and coupling to diffusible substances such as nutrients (e.g. via con-
sumption and/or production by cells). Cell-cycle models and cell
death (apoptosis) can be dependent on the diffusible substances
(e.g. nutrients such as oxygen). The general structure of the model
was therefore divided into three layers, corresponding to the dif-
fusible nutrients, the cellular and the intracellular phenomena, as
shown in the conceptual model of Fig. 3. This model was imple-
mented using a multi-method approach comprising (i) two- and
three-dimensional lattices containing the cells and molecules from
the system; (ii) agents, representing the biological cells that lie in
the lattice; (iii) diffusion rules for the agents’ motility; (iv) ODEs

for subcellular networks that regulate the cell cycle; and (v) PDEs
for the transport, release and uptake of nutrients. This environ-
ment was developed within Chaste [36], as part of the VPH Toolkit.
This tool can be used to test potential new treatments for various
pathologies, such as early-stage cancer.

Sun et al. developed a novel multi-scale agent-based brain
tumor model [6]. The model incorporates four relevant biological
scales: the molecular scale, the cellular scale, the microenviron-
ment scale and the tissue scale. At the molecular scale, a system of
ordinary differential equations simulates the dynamics of the EGFR
signaling pathway and the cell cycle to determine the cells’ phe-
notypic switch at the cellular scale. The model employed a set of
partial differential equations to simulate the concentration changes
of five extracellular chemical cues (glucose, oxygen, TGF", VEGF
and fibronectin) in the tumor micro environmental scale. Angio-
genesis were coupled into tumor growth through VEGF secreted
by the tumor cells and through the glucose and oxygen perme-
ated from the neo-vasculature at the tissue scale. Moreover, in this
model, TKI treatment is integrated into an EGFR signaling pathway
to block the activation of EGFR. The simulations demonstrate that
the entire tumor growth profile is a collective behavior of its cells
regulated by the EGFR signaling pathway and the cell cycle.

The Ductal Epithelium Agent-Based Model (DEABM) is com-
posed of computational agents that behave according to rules
established from published cellular and molecular mechanisms
concerning breast duct epithelial dynamics and oncogenesis [37].
The DEABM implements DNA damage and repair, cell division,
genetic inheritance and simulates the local tissue environment
with hormone excretion and receptor signaling.

The DEABM was  developed such that the baseline dynamic state
of the model, representing “health” could give rise to aberrant
conditions (i.e. cancer) by introducing recognized functional abnor-
malities into the cellular agent rule sets (e.g. a mutation inactivating
a tumor suppressor). The DEABM was implemented using NetLogo
5.0, [38]. The complete code of the DEABM can be downloaded from
http://bionetgen.org/SCAI-wiki/index.php/Main Page.

Wang et al. [3], developed a 3D multi-scale agent-based model
to investigate the role of the tumor angiogenesis interactions in
melanoma tumor progression by extending well-developed 2D
agent-based tumor growth models [2,22,24]. The model inte-
grates the angiogenesis into tumor growth to study the response
of melanoma cancer under combined drug treatment. As a rule
based model, this study developed a set of rules to determine the
melanoma cell’s phenotypic switch. These rules not only under-
line the migration of endothelial cells and the branching of vessel
sprouts, but can also be more easily integrated into the agent-based
tumor growth model than previous Hybrid Discrete-Continuum
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(HDC) rules [39]. This model is implemented in the VC++ program-
ming environment.

Schuetz et al. developed an agent-based model of malignant
brain tumor growth [4]. The growth of glioblastoma is investigated
on the intra-cellular and inter-cellular scale. Go or Grow principle of
tumor cells states that tumor cells either migrate or proliferate [4].
For glioblastoma, microRNA-451 has been shown to be an energy
dependent key regulator of the LKB1 (liver kinase B1) and AMPK
(AMP-activated protein kinase) pathway that influences the sig-
naling for migration or cell division. These biological processes are
reproduced in this model. The intracellular molecular interaction
network is represented by a system of nine ordinary differential
equations. Each cell is equipped with this interaction network and
additional rules to determine its new phenotype as either migrat-
ing, proliferating or quiescent. The model is implemented in C++.

Olsen et al. developed a three-dimensional multiscale agent-
based model of tumor growth with angiogenesis [5]. The model is
designed to easily adapt to various cancer types, although it focuses
on breast cancer. It includes cellular (genetic control), tissue (cells,
blood vessels, angiogenesis), and molecular (VEGF, diffusion) lev-
els of representation. Both normally functioning tissue cells and
tumor cells are included in the model. Tumors grow following the
expected spheroid cluster pattern, with growth limited by avail-
able oxygen. Agent-based models allow each cell to be modeled
separately, following some series of rules on its behavior. The def-
inition of the functioning of a cancer cell is based on the hallmarks
of cancer [40].

5. Comparison of ABMs with other models in cancer
research

It has been evidenced that agent-based models present advan-
tages with respect to other models, like differential equation [41],
cellular automata [42], network analysis [43], and Boolean net-
works [44]. In this section, ABMs are compared with other models
very briefly.

5.1. Comparison of ABMs with network analysis and Boolean
network models

Network analysis seeks to understand the relationships within
biological networks such as metabolic, protein-protein interaction
and cancer related networks [45]. Network analysis of cellular
subsystems such as the networks of metabolites and enzymes
are applied to both analyze and visualize the complex connec-
tions of these cellular processes in the field of cancer research.
Although biological networks can be constructed from a single
type of molecule or entity (such as genes), network biology often
attempts to integrate many different data types, such as proteins,
small molecules, gene expression data, and others, which are all
connected physically and/or functionally [46]. Network analysis
is very easy to implement. Some limitations are imposed by its
static nature that prevents one from obtaining insights into the
causes of a given structure, and from making predictions about
its future behavior. Moreover, it cannot take into account com-
plex or multiple relationships or node attributes. Thus, though it
is a valid method of research in biology and medicine, which is
receiving further interest in the field of cancer research [47–50], it
appears severely limited when compared with ABMs. In respect to
ABMs, however, network analysis main appeal resides in the ease
of use. The approach based on (random or probabilistic) Boolean
networks overcomes the problem of being static [51]. In respect of
network analysis the gain in making the process dynamic is traded
against the complexity of the system description. In this respect,

ABMs have, at least in principle, no limitation in dealing with the
complexity of the components (agents) and their interactions [52].

5.2. Comparison between ABMs and system dynamic models in
cancer research

Basically system dynamic models can be grouped into the
ordinary differential equation-based (ODE) models and partial dif-
ferential equation-based (PDE) models [53]. In mathematics, a PDE
is a differential equation that contains unknown multivariable
functions and their partial derivatives. PDEs are used to formulate
problems involving functions of several variables, and are either
solved by hand, or used to create a relevant computer model. An
ODE is an equation containing a function of one independent vari-
able and its derivatives. The term “ordinary” is used in contrast
with the term partial differential equation which may be with
respect to more than one independent variable. One of the major
reasons for using ABMs is that they allow for tracking of individ-
ual cells and cell properties. This is tedious or impossible to do
with PDE models. Another benefit of ABM is that some ABM mod-
eling packages require less coding experience than PDE models,
and code can be much more intuitive for a non-modeler to under-
stand. Even with the simplest types of descriptive code, however,
all agents and subroutines must be thoroughly tested to ensure that
emergent properties do not result from coding artifacts. The hetero-
geneous properties of tissue are also more easily represented in an
ABM. In both ABMs and PDE models, a large number of simulations
are required for adequate exploration of the parameter space. In
PDE models, there are well-developed mathematical methods for
this exploration, while these techniques are just beginning to be
applied to ABMs. The speed of execution of ABMs may  be more
dependent on the skill of the programmer than for PDE models.
That said, larger ABMs can monopolize computational resources,
and few ABM suites allow for parallel processing to reduce the
computational time. Finally, ABMs require the assumption that all
properties can be modeled discretely, while PDE models require a
continuum approximation. The reality for cancer modeling may lie
somewhere in the middle of these approaches-some cell variables
may be continuous, while others may  have discrete states.

For cancer modelings, ABM can provide more information about
the mechanisms of a process than other modeling techniques.
Abbott et al. [54] built an ABM, CancerSim, of the interaction of cells
exhibiting previously published ‘hallmarks of cancer’ [40] to inves-
tigate the mechanisms behind tumorgenesis and compared it to
a previously published ordinary differential equation model of the
same cell behaviors [55]. The ABM and ODE models both identified a
similar combination of phenotypes that would present the shortest
path to cancer, but the ABM provided improved cell spreading reso-
lution, was  able to follow the fates of single cells, and could examine
the interactions between cells within a heterogeneous population
[54].

New approaches are being developed to bridge ABM and PDE
modeling techniques [38], in order to capitalize on beneficial
attributes of these approaches and to compensate for their respec-
tive drawbacks. Nova [56], is a new Java-based modeling platform
that naturally supports the creation of models in the system
dynamics, spatial and agent-based modeling paradigms.

5.3. Comparison of ABMs with cellular automata

A cellular automata is a discrete dynamic system, and the behav-
ior of CA is specified in terms of local relations. The space in a
CA system is divided into a lattice or grid of regularly-space cells
of the same size and shape, usually square [56]. Each cell has a
value either 0 or 1 or on a scale from 0 to 1. The state of a cell
and its behavior is determined by the state of other cells in close
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proximity at a previous time step, by a set of local rules and by the
cell itself.

An important feature of a CA is that the automata’s location does
not move; they can only change their state. The position of the
cells and their neighborhood relations remain fixed over time. In
contrast, agents can be either fixed in location or free to ‘roam’
around their environment. Unlike agents, CAs cannot have more
than one attribute.

Both CA and agent-based models, model the complexity of social
systems with similar individual level representations. However,
they differ in their emphasis; CA model social dynamics with a focus
on the emergence of properties from local interactions while agent-
based models simulate more complex situations where agents
control their own actions based on their knowledge of the envi-
ronment [57].

6. Limitations of agent-based modeling

The computational efficiency of ABMs declines as the number of
agents (cells) increases and as the length of the rule set increases,
making large and complex ABMs time consuming to compute.
Because stochastic rules are often incorporated, simulations must
be run repeatedly to obtain statistical significance, thereby increas-
ing the run-time needed to complete an analysis.

There are some of the limitations in using agent-based model-
ing. For example, these methods require a lot of interaction among
each agent and it need frequent communication so that the decision
and activities was made at the right position. This method might
not be selected because it involves large amount to be spend for
communication. Beside that this method requires the modeler to
be more careful about implementing it in a big systems as it may
require a high skill computation and consume a lot of time because
large system usually consist of many types of units [58].

The parallel implementations of the agent-based models on
GPUs have been a recent trend with significant performance
improvement reported from the serial counterpart for extra-large
scale simulations. For example, in the work [59], an optimization to
the GPGPU implementation of the agent-based model is proposed.
This model accelerate simulation of agent-based models on hetero-
geneous architectures that the generality of the methodology can
be used for accelerating agent-based cancer modeling applications
in further researches.

7. Holon-based modeling

Cells can be described as open systems which contain collec-
tions of autonomous computational agents interacting with each
other. These open systems exhibit parallel distributed processing
in that different parts of the cell do different things and the adaptive
capabilities of the system are reflected in its data driven capacities,
considerable degree of fault tolerance, lack of global control, high
degree of communication and the ability of multiple parts to carry
out partial computations, But none of the existing mathematical
models pay attention to autonomous characteristics of cells or can
distinguish any local specification of reactions. Hence it is impos-
sible to model the specific interactions of a molecule or the other
above mentioned characteristics of cells. Since the structure of a
biological system is really compatible with holonic systems struc-
ture, we believe that using holonic multi agent systems can help us
reach this aim.

In a multi-scale agent-based cancer modeling, there are many
agents interacting with each other and hence it is a complex sys-
tem. An approach to reduce the complexity of such systems is
using holonic multi-agent system (HMAS). The holons are hier-
archically arranged in multi levels. A holonic organization is a

Fig. 4. A holarchy composed of four holarchical levels [72].

hybrid, recursive and hierarchical structure which is able to gen-
erate dynamic linkages to control the structure. The modeling of
cancer can be divided into sub-problems each assigned to a Holon
in order to improve the efficiency.

It has been proved that HMAS is an effective solution for several
problems associated with hierarchical and self-organizing struc-
tures [60]. It has been successfully applied in a wide range of
complex systems. For instance, we  can mention the works done
in transportation [61], distributed sensor management [62], adap-
tive mesh problem [63], supply chain management [64], health
organizations [65], biological network simulation [66] and complex
software systems [67].

7.1. Holon principles

The Holon which was  first proposed by Koestler [68], is a kind
of agent with extra ability. It is a self-similar building block that is
stable, coherent and has recursive structure. Koestler observed that
in living organisms there is no non-interactive entity and each unit
comprises several basic units. For instance, a human being consists
of organs which consist of cells that can further be decomposed
to nucleus and plasma and so on. According to Koestler, a Holon
that can be natural or artificial, is a fractal structure which is stable,
coherent and which consists of several Holons as sub-structures.
Each Holon lives in a hierarchical structure named Holarchy. In
other words, Holon has a recursive structure that cannot be under-
stood completely without its sub-components or without the super
component that it is part of. Fig. 4 shows a holonic system arranged
in four holarchical levels.

Holons and agents share some traits such as action, autonomy,
belief, communication and goal-directed behavior, but they differ
in some ways. Generally some salient characteristics of Holons and
Holarchy, proposed in deferent references, are as follows [66]:

- Each Holon is an autonomous actor which has its own principles
and goals but, simultaneously, is able to accept the principles and
goals of a super-Holon. Thus the goals and strategies of each Holon
are restricted by its super-Holon.

- Sometimes a super-Holon can fulfill its goals from the common
goals of its sub-Holons. Notice that it is not necessarily required
for sub-Holons to have the same goal as their super-Holon but
these two  must not contradict each other.

- Communication must obey the Holarchy. Each Holon can only
communicate with its super-Holon, sub-Holons and the Holons
on its own  level. The messages are detailed when they are sent
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Fig. 5. Two types of interactions between holons in a holarchy [69].

from top to bottom and are synthesized when they are transmit-
ted from bottom to top.

- The communications from the outside of the system (interface)
go through the base Holons in the first or lowest level.

- An atomic Holon can autonomously divide into several sub-
Holons.

- A sub-Holon can autonomously leave its super-Holon and join the
other one.

-  A sub-Holon can be the member of several Holons or participate
in multiple hierarchies at the same time.

- The complex activity and behavior are situated at the top of the
Holarchy, the simple and reactive acts take place at the base of the
Holarchy. In other words, upper level Holons are more pro-active
and lower levels are more reactive. Hence the upper level is the
decision center and the lower level is the interface of the system.

7.2. Interaction between holons

Holonic organization includes a set of holons arranged in dif-
ferent levels. Distributed holons try to achieve a common goal
through cooperation and coordination. Two types of interactions
can be seen in a holonic organization as shown in Fig. 5. Intra-level
interaction has been investigated in multi-agent system research.
A holonic or any other intelligent agent-based framework which is
entirely based on intra-level negotiation or interaction is likely to
be inadequate [69]. In practice, in addition to the intra-level inter-
action among the agents, there are vital interactions that take place
between agents in different levels. For example, in any multi-level
hierarchical multi-agent system, inter-level interactions play an
important role.

7.3. Criteria for a holonic approach

The strength of the holonic paradigm is its recursive defini-
tion of holons. Thus it is well adapted for large complex systems
where different granularities are required. Using holons as mod-
eling approach for a small close system may  not always be
recommended. If the system does not require multiple levels of
granularity, holons will probably introduce an unnecessary over-
head. Cancer modeling meets the characteristics of a holonic
approach [70]. The suitability of the holonic scheme for cancer
modeling can be assessed in the following way.

7.3.1. Operator abstraction
Holonic systems are well suited for cancer modeling because of

actions of different granularity. Macro-level actions of the model
are carried out by the Holon’s head and decomposed onto the sub-
holons. This could be realized in a traditional multi agent system
also; however, the relationship between the individual agents and

the group would have to be represented additionally; a holonic sys-
tem provides all the relevant features a priori. Holonic systems are
well suited for analyzing and modeling of large systems where mul-
tiple levels of abstraction exist. Another type of systems are those
that can be decomposed recursively into smaller sub-components
[69].

7.3.2. Hierarchical structure
Cancer modeling exhibits a hierarchical structure so, it is an

excellent candidate for a holonic system, since hierarchies of
sub-holons can be modeled canonically. The structure of the can-
cer modeling induces abstraction levels, which can be modeled
naturally in a holonic system. Schematic illustration of the biolog-
ical scales of significant relevance for cancer modeling including
atomic, molecular, microscopic (tissue/multicellular), and macro-
scopic (organ) scales are shown in Fig. 6.

7.3.3. Decomposability
One of the main pre-requisites for a traditional agent-based sys-

tem is a decentralized or decomposable problem setting, where
each agent is assigned to one of the sub-problems. Pro-activeness
and autonomy of the agents are the main features.

However, often, problems are neither completely decomposable
nor completely non-decomposable; in many hybrid cases, some
aspects of the problem can be decomposed, while others cannot.
Holonic agents are structured hierarchically, they can easily realize
actions of different granularity, they are autonomous to a certain
degree and they are pro-active; hence holonic agent systems can
naturally deal with problems of that type.

7.3.4. Communication
The cancer modeling problem can be decomposed into sub-

problems that are not partitioning of the original one, but there
is some overlap in the sense that logical interdependencies occur,
communication among the problem solvers is needed. Sub-agents
of a Holon are communicative and hence, holonic agents are useful
in domains of this type. Furthermore, a domain often induces an
asymmetric communication behavior between problem solvers in
the sense that each unit does not communicate to all other units
equally often, i.e. patterns in the communication behavior can be
observed. These patterns indicate possible structures for holonic
agents: holons provide facilities for efficient intra-holonic com-
munication, supporting higher frequent communication inside the
Holon than among different holons (inter-holonic).

Nearly everything in the biological world, at all scales of magni-
fication, is inter-action: be it the interactions between proteins at
a molecular level, inter-cell communications at a cellular level, the
web of interactions between organism

7.3.5. Social elements
If there is no cooperation among agents in the domain, the use

of holonic agents is not very reasonable. If there are cooperative
elements in the domain, holonic agents can be used to model the
cooperative sub-domain.

7.3.6. Conclusion
The most important requirements for a holonic agent are struc-

ture and cooperation: cancer modeling problems have a holonic
structure, i.e. it is recursively decomposable. This structure can
map  canonically onto the holonic system. Furthermore, there are
sufficient cooperative elements between the distinguished prob-
lem solvers. One important difference to a traditional multi-agent
domain is the possibility to model centralistic aspects of a domain
as well.
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Fig. 6. Schematic illustration of the biological scales of significant relevance for cancer modeling [73].

8. Outline

Cancer is a complex, multiscale process, in which genetic
mutations occurring at a subcellular level manifest themselves as
functional changes at the cellular and tissue scale. The multiscale
nature of cancer requires mathematical modeling approaches that
can handle multiple intra- and extracellular factors acting on dif-
ferent time and space scales.

In this review, an overview to ABM and the key features of
an agent is presented. Then ABM technique is compared over
other commonly used computational techniques. Holon concept
and merits of holonic agent-based modeling are also described.
This review is focused on recent advances in agent-based modeling
technique that is being used to study the mechanisms involved in
cancer formation and progression.

Cancer modeling meets the characteristics of a holonic
approach. The suitability of the holonic scheme for cancer modeling
is discussed. Since the structure of a cancer system is really com-
patible with holonic systems structure, it seems to be important
to create a holonic agent-based model for cancer in future investi-
gations. It can be concluded that holonic agent-based modeling is
an approach that will enable cancer modeling research to meet the
challenges.
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