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Abstract. In uncertainty theories, a common problem is to define how12

we can extend relations between sets (e.g., inclusion, ranking, consis-13

tency, . . . ) to corresponding notions between uncertainty representations.14

Such definitions can then be used to perform the same operations as those15

that are done for sets: comparing information content, ordering alterna-16

tives or checking consistency, to name a few. In this paper, we propose a17

general way to extend set relations to belief functions, using constrained18

stochastic matrices to identify those belief functions in relation. We then19

study some properties of our proposal, as well as its connections with20

existing works focusing on specific relations.21

Keywords: set relations, belief functions, specificity, ranking, consis-22

tency.23

1 Introduction24

One can define many relations between two (or more) subsets A,B of some25

finite set X, i.e. between elements of some boolean algebra
(
2X ,∩,∪, .C

)
. Such26

relations can check whether the sets are consistent (A ∩ B 6= ∅); whether one27

set is more informative than another, or implies it (A ⊆ B); when the space28

on which they are defined is ordered, whether one set is “higher” than another29

(A ≺ B ); etc. These relations can then be related to practical problems such as30

restoring consistency or ranking alternatives.31

To address the same questions in those uncertainty theories that formally32

generalise set theory (based, e.g., on possibility distributions, belief functions or33

sets of probabilities [12]), it is desirable to carry over relations between sets to34

uncertainty representations. Given the higher expressiveness of such theories, the35

problem is ill-posed in the sense that there is not a unique way to do so. We can36

cite as a typical example the notion of inclusion between belief functions, that37

has many definitions [15]. Yet, the works that deal with such issues usually focus38
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on extending one particular relation (e.g., inclusion, non-empty intersection) in39

meaningful ways.40

In this paper, we propose a simple way to extend any set relation to an equiv-41

alent relation between belief functions, in the sense that the relation is exactly42

recovered when considering categorical belief functions (i.e., belief functions hav-43

ing a single focal element), that are equivalent to sets. Basically, for a pair of44

belief functions to be in relation, we require that there must exist at least one45

(left) stochastic matrix such that one of these belief functions is obtained as46

the dot product of the matrix with the other belief function. Additionally, the47

matrix is constrained to have null entries on pairs of focal sets not satisfying the48

relation to extend.49

To our knowledge, no systematic ways of extending set relations has been50

proposed in the literature before, and while there may be other ways to perform51

such an extension, the presented solution has the advantage to be a formal ex-52

tension (as the relation is exactly recovered for the case of sets), and to connect53

with other more specific proposals of the literature. The proposal is presented in54

Section 2, along with the necessary reminders. To which extent it can preserve55

properties of the initial relation, including its compatibility with (multivariate)56

functions, is studied in Sections 3 (properties on initial spaces) and 5 (compat-57

ibility property). To make the approach more concrete, Section 4 relates it to58

existing works on specific relations, while Section 6 illustrates the results by ap-59

plying them to simple examples, sometimes inspired from applications (system60

reliability and multi-criteria decision making). Finally, Section 7 discusses a mean61

to make the relation no longer binary but gradual, building first connections to62

fuzzy relations.63

2 Main proposal64

This section recalls the basic tools that are necessary to understand this paper,65

and present our main proposal. The next sections will then focus on studying66

its properties and connection with other works.67

2.1 Relations and their properties68

Given some (here finite) space X, a relation R between subsets of X (i.e., on69

the power set 2X) is just a subset R ⊆ 2X × 2X that specifies which pair of70

subsets are related to each others. For convenience, we will write ARB whenever71

(A,B) ∈ R, and ¬ARB whenever (A,B) 6∈ R.72

Example 1. As an illustration, let us consider the binary space X = {a, b}, and
the strict inclusion relation R =⊂. Then we have

R = {(∅, {a}), (∅, {b}), (∅, {a, b}), ({a}, {a, b}), ({b}, {a, b})}

and the fact that ({a}, {a, b}) ∈ R can be denoted {a}R{a, b}. The fact that73

({a}, {b}) 6∈ R is denoted ¬{a}R{b}.74
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Such relations can have many different properties, the main ones that can be75

found in the literature being the following:76

1. Symmetry: R is symmetric iff ARB =⇒ BRA for all A,B ⊆ X77

2. Antisymmetry: R is antisymmetric iff ARB ∧ BRA =⇒ A = B for all78

A,B ⊆ X79

3. Asymmetry: R is asymmetric iff ARB =⇒ ¬(BRA) for all A,B ⊆ X80

4. Reflexivity: R is reflexive iff ARA for all A ⊆ X81

5. Irreflexivity: R is irreflexive iff ¬(ARA) for all A ⊆ X82

6. Transitivity: R is transitive iff ARB ∧BRC =⇒ ARC for all A,B,C ⊆ X83

7. Completeness: R is complete, or total, iff ARB ∨BRA for all A,B ⊆ X84

In addition to those properties, more complex relations have been defined as85

combination of those properties, that play an important role in many problems.86

These are, for instance, equivalence relations as well as order relations of different87

types. They are summarised in Table 1, together with the properties they satisfy.88

Name 1 2 3 4 5 6 7

Tolerance X X
Partial equivalence X X

Equivalence X X X
Preorder X X

Total Preorder X X X
Partial order X X X
Total order X X X X

Table 1. Complex relations

2.2 Belief functions89

Belief functions or their equivalent representations as mathematical tools can be90

traced back at least to Choquet [4], but their use as uncertainty representation91

was popularised first by Dempster [6] and Shafer [27], before being used by92

Smets [29] in his Transferable Belief Model.93

Their mathematical properties makes them interesting uncertainty models,94

as they generalise a number of uncertainty representations [9] (possibility mea-95

sures, sets of cumulative distributions, probabilities), while remaining of limited96

complexity when compared to more complex models such as lower previsions or97

desirable gambles [7].98

Formally, a belief function on a finite space X = {x1, . . . , xK} is in one-99

to-one correspondence with a mass function m : 2X → [0, 1] that satisfies100 ∑
A⊆X m(A) = 1. From such a mass function, the belief and plausibility of101

an event A ⊆ X respectively read102

Bel(A) =
∑
∅6=E⊆A

m(E) and Pl(A) =
∑

E∩A6=∅

m(E). (1)
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If m(∅) = 0, they can be interpreted as bounds of the probability P (A) of A,103

inducing the probability set104

P = {P : Bel(A) ≤ P (A) ≤ Pl(A),∀A ⊆ X}. (2)

Within this latter interpretation and in contrast with the works set within the so-105

called Dempster-Shafer theory, the mass function is not a central tool, but merely106

a possible transformation of the lower envelope of P given by the belief function.107

As the mass function m plays a fundamental role in our proposal, the current108

work is more in-line with the Dempster-Shafer interpretation of belief functions,109

however it does not prevent it to have links with an imprecise probabilistic110

interpretation.111

We denote by BX the set of all belief functions on X. A particularly interest-112

ing subclass of belief functions for this study are categorical ones. A categorical113

mass function, denoted mB , is such that mB(B) = 1.114

2.3 Extending set relations to belief functions115

Let R be a relation on 2X (equivalently a subset of 2X × 2X). We then propose116

the following simple definition to extend this relation to belief functions, i.e. into117

a relation on BX :118

Definition 1. Given two mass functions m1,m2 and a subset relation R, we
say that m1R̃m2 iff there is a (left)1 stochastic matrix S such that ∀A,B ⊆ X

m1(A) =
∑
B⊆X

S(A,B)m2(B) (3)

with S(A,B) > 0 ∧ m2 (B) > 0 =⇒ ARB. (4)

Definition 1 states that m1R̃m2 iff m1 can be obtained from m2 by transfer-
ring each mass m2(B) to a subset A such that ARB. It is easily checked that R̃
is a generalisation of R in the sense that

mAR̃mB ⇔ ARB, ∀A,B ⊆ X. (5)

Indeed, if ARB, we can choose S (E,F ) = mA (E) for all F ⊆ X, and this119

matrix matches the conditions of Definition 1, hence mAR̃mB . Conversely, if120

mAR̃mB , then (3) implies S (A,B) = 1 and (4) then gives ARB.121

Also, there is only one relation R̃ on belief functions spanned by Definition122

1 from a given set relation R. To see this, suppose two such belief function123

relations exist. If a matrix matching the conditions of Definition 1 was found for124

the first one then the same matrix also works for the other and the relations are125

equivalent. Likewise, two relations R and R′ defined on sets cannot lead, through126

Definition 1, to the same relation R̃ on belief functions. This is an immediate127

consequence of (5). Consequently and by a small abuse of notation, we will use128

1 We use left-stochasticity only throughout the paper.
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the same notation for a relation R on the subset or belief function side in the129

remainder of the paper, as it introduces no ambiguity. However, in general, the130

stochastic matrix S involved in Definition 1 is not unique when m1R̃m2 holds.131

Definition 1 is inspired from previous works on specificity of belief func-132

tions [15, 16, 30], as well as on recent proposals dealing with set ordering [24].133

In particular, Definition 1 can be endowed with an interpretation similar to the134

one given in [15], as S(A,B) can be seen as the ratio of m(B) that flows from135

B to A, with the flow being possibly non-null only when ARB.136

Remark 1. Readers that are familiar with the belief function literature may won-137

der why the condition m2 (B) > 0 is necessary in (4), as this condition does not138

appear in related works. This condition is necessary to generalise any relation139

on sets that is not inverse serial, i.e. a relation such that there is a B∗ with140

¬(ARB∗),∀A ⊆ X. For such sets B∗, left stochasticity is incompatible with141

the implication S(A,B∗) > 0 =⇒ ARB∗, and without checking m2 (B) > 0142

in Definition 1 the relation on belief functions of a not inverse serial R would143

always be empty. By checking m2 (B) > 0 in Definition 1, we can induce a non144

empty relation on belief functions. When B∗ is a focal element of m2, we have145

¬(m1Rm2), which makes perfect sense. When m(B∗) = 0, then a null mass can146

be distributed to any set A without harm.147

As the above mentioned related works dealt with directional, or rather asym-148

metric relations, Definition 1 is naturally asymmetric. However, Proposition 1149

shows that it has a somehow symmetric counterpart.150

Proposition 1. Consider two mass functions m1,m2 and a belief function re-151

lation R. Then the two following conditions are equivalent:152

1. there is a stochastic matrix S(A,B) such that

m1(A) =
∑
B⊆X

S(A,B)m2(B),

with S(A,B) > 0 ∧ m2 (B) > 0 =⇒ ARB.

2. there is a joint mass function m12(A,B) on 2X × 2X such that

m12(A,B) > 0 =⇒ ARB, (6)

m1(A) =
∑
B

m12(A,B), (7)

m2(B) =
∑
A

m12(A,B). (8)

Proof. 1. =⇒ 2. First, consider the matrix S(A,B), that we know exists if
m1Rm2. Let us now simply define the joint m12 as

m12(A,B) = m2(B)S(A,B) for any A,B.
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We clearly have m12(A,B) > 0 only if ARB, since S(A,B) > 0 means that
either ARB or m2(B) = 0 (in the other cases it is null), and moreover∑

B

m12(A,B) =
∑
B

m2(B)S(A,B) = m1(A),

∑
A

m12(A,B) =
∑
A

m2(B)S(A,B) = m2(B)
∑
A

S(A,B) = m2(B)

with the last equality following from S being stochastic.153

2. =⇒ 1. Again, consider the joint m12(A,B) satisfying constraints (6)-(8),
that we know exists by assumption. If we assume that this implies the existence
of matrix S, we get

m1(A) =
∑
B

m12(A,B) =
∑
B

m2(B)S(A,B).

For any B s.t. m2 (B) > 0, we thus define154

S(A,B) =
m12(A,B)

m2(B)
. (9)

The other entries of S are set to arbitrary values provided that these latter are
compliant with left stochasticity. For those entries which are set according to
(9), i.e. when m2 (B) > 0, we can now check that S(A,B) satisfies the required
properties, as ∑

A

S(A,B) =

∑
Am12(A,B)

m2(B)
=
m2(B)

m2(B)
= 1,

S(A,B) > 0⇔ m12(A,B)

m2(B)
> 0⇒ ARB

ut

This proposition shows, in particular, that any stochastic matrix S can be
associated to a unique joint mass function m12, and vice-versa. Also note that,
using a transformation similar to the one of the second part of the proof, we can
alternatively build a stochastic matrix S′ such that

S′(B,A) =

{
m12(A,B)
m1(A) if m1 (A) > 0

λ
(A)
B if m1 (A) = 0

,

with
∑
B λ

(A)
B = 1. S′ is such that

m2(B) =
∑
A⊆X

S′(B,A)m1(A).

Moreover, S′(A,B) > 0 and m1 (A) > 0 imply BRA but gives no guarantee on155

ARB.156
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Remark 2. Proposition 1 shows that we can view our definition of relations in157

two different ways: as a ”transfer” matrix S allowing to go from m2 to m1158

without violating the relation on sets, or as the existence of a joint structure159

consistent with m1,m2 and the relation R. Although we consider that the joint160

structure is more intuitive and easier to explain, both views have been adopted161

in the past and are in our opinion useful, as:162

– there are settings where one mathematical tool is more natural then the163

other. For instance, Smets’ matrix computations [28] make a heavy use of the164

first view, while recent works about consistency adopt the second view [11];165

– mathematically, it may also be more convenient to use one or the other, for166

instance in proofs. For example, most of our negative proofs and examples167

use joint matrices and the second view, but Propositions 7 and 10 are simpler168

to prove using the first view.169

Finally, let us note that the relation R on belief functions can be interpreted170

in exactly the same way as the relation on sets it extends, this interpretation171

varying according to the application and pursued goal. For instance, the relation172

ARB iff A∩B 6= ∅ will often be used when A,B concern the same object of inter-173

ests but are issued from different sources, and when one wants to check whether174

they are consistent. In contrast, ranking relations between A,B will often be175

used when A,B concern different objects or alternatives evaluated on the same176

scale (e.g., movies given a finite number of stars). Generally speaking, mass func-177

tions are random set distributions [26] and relation R is one way to propagate178

a relation (and its interpretation) on sets to their random counterparts.179

3 Property preservation180

3.1 Preservation of simple properties181

We may now wonder how many of the initial relation R properties between sets182

are preserved when extended to belief functions according to Definition 1. We will183

now provide a series of results for common properties, either by providing proofs184

or counter-examples. We will keep the proposition/proof format, to provide a185

uniform presentation.186

Proposition 2 (Preserved symmetry). If R is symmetric on sets, it is so
on belief functions:

m1Rm2 =⇒ m2Rm1,∀m1,m2.

Proof. Let us assume that S(A,B) is a stochastic matrix satisfying Definition 1
for m1Rm2, and m12 is its associated joint mass. Then we can see that

S′(A,B) > 0 and m1 (A) > 0 =⇒ BRA⇔ ARB,

since R is symmetric. Matrix S′ satisfies the conditions of Definition 1, hence
m2Rm1. ut
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Proposition 3 (Unpreserved antisymmetry). If R is antisymmetric on
sets, it is not necessarily so on belief functions, as

m1Rm2 ∧m2Rm1 6⇒ m2 = m1

Proof. Consider two mass functions that are positive only on subsets A,B,C
and such that

m1(A) = 0.3, m1(B) = 0.5, m1(C) = 0.2,

m2(A) = 0.4, m2(B) = 0.3, m2(C) = 0.3,

as well as the antisymmetric relation R on those subsets summarised by the
matrix

A B C[ ]
A ARA ARB
B BRB BRC
C CRA CRC

.

We can then consider the joint mass function

m12(A,A) = 0.3, m12(B,B) = 0.3,

m12(B,C) = 0.2,m12(C,A) = 0.1, m12(C,C) = 0.1,

that shows that we have m1Rm2, while the joint mass function

m12(A,A) = 0.2, m12(B,B) = 0.3,

m12(A,C) = 0.1,m12(B,A) = 0.2, m12(C,C) = 0.2,

shows that m2Rm1, hence we can have both without m1 = m2. ut

Proposition 4 (Unpreserved asymmetry). If R is asymmetric on sets, it
is not necessarily so on belief functions, as

m1Rm2 6⇒ ¬(m2Rm1)

Proof. Simply consider two mass functions m1,m2 that are positive only on
subsets A,B,C,D,E and such that

m1(A) = 0.2, m1(B) = 0.3, m1(C) = 0.2, m1(D) = 0.1, m1(E) = 0.2,

m2(A) = 0.2, m2(B) = 0.1, m2(C) = 0.3, m2(D) = 0.3, m2(E) = 0.1

as well as the asymmetric relation R on those subsets summarised by the matrix

A B C D E


A ARC ARD
B BRA BRE
C CRB CRD
D DRB DRE
E ERA ERC
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We can then consider the joint mass function

m12(A,C) = 0.1, m12(A,D) = 0.1, m12(B,A) = 0.2

m12(B,E) = 0.1,m12(C,D) = 0.2, m12(D,B) = 0.1, m12(E,C) = 0.2

that shows that we have m1Rm2, while the joint mass function

m12(A,B) = 0.1, m12(A,E) = 0.1, m12(B,C) = 0.2

m12(B,D) = 0.1,m12(C,A) = 0.2, m12(D,C) = 0.1, m12(E,D) = 0.2

shows that m2Rm1, hence we can have both. ut

Proposition 5 (Preserved reflexivity). If R is reflexive on sets, it is so on
belief functions:

∀m, we have mRm

Proof. Simply observe that, if R is reflexive (ARA for any subset) and if m1 =
m2 = m, we can always define the joint mass function such that for any A we
have m12(A,A) = m(A), that satisfies Equations (6)-(8). ut

Proposition 6 (Unpreserved irreflexivity). If R is irreflexive on sets, it is187

not necessarily so on belief functions, as we may have mRm for some m ∈ BX .188

Proof. Consider the following mass function

m(A) = 0.5,m(B) = 0.5

and the relation R summarised in the following matrix

A B[ ]
A ARB
B BRA

which is irreflexive. However, the joint m(A,B) = m(B,A) = 0.5 shows that we
have mRm, hence R may not be irreflexive for belief functions. ut

Proposition 7 (Preserved transitivity). If R is transitive on sets, it is so
on belief functions:

m1Rm2 ∧m2Rm3 =⇒ m1Rm3

Proof. If we have m1Rm2∧m2Rm3, this means that there are two matrices S12

and S23 satisfying Definition 1 and such that

m1(A) =
∑
B

S12(A,B)m2(B),

m2(B) =
∑
C

S23(B,C)m3(C).
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We therefore have

m1(A) =
∑
B

S12(A,B)
∑
C

S23(B,C)m3(C)

=
∑
B

∑
C

S12(A,B)S23(B,C)m3(C)

=
∑
C

m3(C)
∑
B

S12(A,B)S23(B,C)

Now, let us define the matrix S13 elements as

S13(A,C) =
∑
B

S12(A,B)S23(B,C),

meaning that S13 = S12 · S23 is the result of a matrix product. One can then189

show that S13 satisfies Definition 1 and that m1Rm3 as190

– S13 is stochastic, being the product of stochastic matrices ;191

– we have that

S13(A,C) > 0⇔ ∃(A,B) and (B,C) s.t. S12(A,B)S23(B,C) > 0

⇒ ARB ∧BRC

⇒ ARC.

ut

Proposition 8 (Unpreserved completeness). If R is complete (or total) on192

sets, it is not necessarily so on belief functions: for any two m1,m2 we may have193

neither m1Rm2 nor m2Rm1.194

Proof. Consider the relation R =“having a lower cardinality than” on the space
X = {a, b, c}, meaning that ARB ⇔ |A| ≤ |B|, which is a complete relation on
sets. Consider now the two mass functions

m1({a}) = 0.6, m1({a, b}) = 0.4,

m2({a}) = 0.8, m2(X) = 0.2.

Then, we have neither m1Rm2, nor m2Rm1, as indeed all stochastic matrices195

such that m1 = S ·m2 or m2 = S ·m1 must contain non-null value on pairs of196

subsets A,B with ¬(ARB). Consider for instance the case197

m1 :
{a}
{a, b}
X

0.6
0.4
0

 =

 3/4 0 0
1/4 0 1
0 0 0

 ·
0.8

0
0.2

 : m2.

We only display the submatrix of S corresponding to focal elements of the mass198

functions. Entries in green can be set to either 0 or some positive number. Entries199

in red cannot be assigned a positive number. It is clear that at least some non-200

null value must be given to S({a, b}, {a}), hence ¬m1Rm2. A similar observation201

can be made for the reverse case.202

ut
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The expected cardinality [17] of a belief function, defined as

C(m) =
∑
A⊆X

m(A)|A|,

yields a complete relation between belief functions that is a generalisation of the203

relation R defined in the above proof. This is therefore also an illustration that204

not all binary relations on belief functions can be retrieved via the mechanism205

under study.206

Table 2 summarises our obtained results so far, and in particular which prop-207

erties existing on subsets is guaranteed to be preserved when considering them208

on the richer language of belief functions. It should be noted that even if a prop-209

erty is not guaranteed to be preserved in general, it may be preserved in specific210

cases: for instance, the inclusion relation is antisymmetric, and its generalisation211

to belief functions, called specialisation [15], is too. The same remark is true for212

strict inclusion, that is asymmetric. We will see later on that all partial orders213

(among which inclusion) are in fact preserved by Definition 1.214

R on 2X is =⇒ R on BX is

Symmetric Yes
Antisymmetric No

Asymmetric No
Reflexive Yes
Irreflexive No
Transitive Yes
Complete No

Table 2. Summary of properties preservation

Finally, we can also consider two different binary relations R and R′ and215

check whether a property for this pair of relations is preserved. There is mainly216

one such property which is implication.217

Proposition 9 (Preserved implication). If R and R′ are such that ARB ⇒218

AR′B for any subsets A and B, it is so on belief functions.219

Proof. Let m1 and m2 denote two mass functions and S is a stochastic matrix220

compliant with definition 1 for relation R. Obviously, S is also compliant with221

definition 1 for relation R′ because when m2 (B) > 0, then S (A,B) > 0 ⇒222

ARB ⇒ AR′B.223

3.2 Preservation of classical relations224

In this section, we study whether some classical relations composed of multi-225

ple properties are preserved by our definition. We will limit ourselves to the226
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relations recalled in Table 1, as those are the most common, but clearly others227

could be studied, such as specific order relations (semi-orders, interval orders,228

tournaments, . . . ) [19].229

A very first remark is that, if the relation is defined by a set of properties230

that are all preserved by our definition, then it is immediate that it is preserved231

when considering it on belief functions. Among other things, this means that232

– Tolerance relations233

– (Partial) Equivalence relations234

– Preorder relations235

are preserved when extended to belief functions. However, total preorders are236

usually not preserved when extended to belief functions. A simple example is237

given in the proof of Proposition 8. In this proof we examine the relation “having238

a lower cardinality than” which is a total preorder on sets while the induced239

relation on belief functions fails to be complete.240

Moreover, it is easy to see that total orders are not preserved either, as any241

refinement of the relation “having a lower cardinality than” into a total order242

would constrain even more the element on which the stochastic matrix has to243

be positive. Another very common class of binary relations on sets are partial244

orders, for which we can show that they are preserved:245

Proposition 10 (Preserved partial order). If R is a partial order on sets,246

it is so on belief functions.247

See Appendix A for a proof of the above proposition.248

4 Related works249

4.1 Inclusion and consistency250

In the case where the relations are either inclusion or consistency, then we re-251

trieve well-known results of the literature:252

– in the case of inclusion we have ARB iff A ⊆ B, and Definition 1 is then es-253

sentially equivalent to that of specialisation [15]. The only difference amounts254

to checking if m2 (B) > 0 in condition (4), that we need to handle generic255

relations, but that is not needed in the specific case of specialisation (as in256

this case, for any B there is always a subset A such that ARB). Beyond257

this difference, the notion of specialisation and the extension of inclusion to258

belief functions proposed in this paper are actually formally equivalent in259

the sense that for any mass functions m1 and m2, m1 is a specialisation of260

m2 if and only if m1Rm2.261

– in the case of consistency, we have ARB iff A ∩ B 6= ∅, and one can see262

that m1Rm2 iff there is a joint mass assigning positive mass to pairs of sets263

having a non-empty intersection. This is equivalent to require P1 ∩ P2 6= ∅,264

with Pi the probability set induced by mi [3].265
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4.2 Rankings266

When the space X = {x1, . . . , xn} is ordered (with xi ≤ xi+1) and possibly267

infinite, it makes sense to consider relations of the kind “higher than” in order268

to compare sets. There are many ways to rank two sets A,B, such as:269

– Single-bound dominance, that can be declined itself into four notions:270

• loose dominance: AR≤LD
B if minA ≤ maxB271

• lower bound: AR≤LB
B if minA ≤ minB272

• upper bound: AR≤UP
B if maxA ≤ maxB273

• strict dominance: AR≤SD
B if maxA ≤ minB274

– Pairwise-bound or lattice dominance:AR≤PD
B if minA ≤ minB and maxA ≤275

maxB, whose extension to belief functions studied in [24] correspond to our276

proposal.277

Extensions of this kind of relations to belief functions have already been in-278

vestigated in [24], and are connected to the extensions of stochastic dominance279

explored in [8] for belief functions, and in [25] for the general case of sets of cumu-280

lative distributions. In fact, let us first define the following stochastic dominance281

notions:282

– stochastic loose dominance:

m1 ≺StLD m2 iff Pl1([x1, . . . , xi]) ≥ Bel2([x1, . . . , xi]),∀xi ∈ X

– stochastic lower bound:

m1 ≺StLB m2 iff Pl1([x1, . . . , xi]) ≥ Pl2([x1, . . . , xi]),∀xi ∈ X

– stochastic upper bound:

m1 ≺StUB m2 iff Bel1([x1, . . . , xi]) ≥ Bel2([x1, . . . , xi]),∀xi ∈ X

– stochastic strict dominance:

m1 ≺StSD m2 iff Bel1([x1, . . . , xi]) ≥ Pl2([x1, . . . , xi]),∀xi ∈ X

– stochastic lattice dominance:

m1 ≺StPD m2 iff (m1 ≺StLB m2) ∧ (m1 ≺StUB m2)

We then have the following strong relationships between the extensions of283

ranking to belief functions and the stochastic dominance relations:284

Proposition 11. For y ∈ {LD,LB,UB, SD}, we have that

m1R≤ym2 ⇔ m1 �Sty m2
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Proof. We will only demonstrate the relation for one of the y, that is SD (the285

strongest relation), as proofs for the other cases are analogous.286

⇐ First, let us remind that if m1 ≺StSD m2, it means that the cumulative287

distribution induced by the minimal values of the focal elements of m2 stochas-288

tically dominates the one induced by the maximal values of m1. Let us denote289

A1, . . . , An and B1, . . . , Bm the focal sets of m1,m2, and assume without loss of290

generality that they are ordered according to their maximal values for m1, and291

their minimal values for m2, that is maxAi ≤ maxAi+1 for any i = 1, . . . , n− 1292

and minBi ≤ minBi+1 for any i = 1, . . . ,m− 1.293

Let us denote by αi =
∑i
j=1m1(Aj) and βi =

∑i
j=1m2(Bj) the cumulated

weights of the first i elements of m1 and m2, assuming all αi, βi are all distinct
for easiness. We denote by

γ1, . . . , γn+m−1 = {α1, . . . , αn} ∪ {β1, . . . , βm}

the union of all distinct possible cumulative values of masses, assuming that
they are also ordered, i.e., γi ≤ γi+1 (we have m+ n− 1 distinct values because
αn = βm = 1). Let us now define the following joint mass function m12 such
that, for any i = 1, . . . ,m+ n− 1,

m12(Aγi , Bγi) = γi − γi−1

with γ0 = 0, and the following definitions for the focal sets:

Aγi = {Ai : (

i∑
j=1

m1(Aj) ≥ γi) ∧ (

i−1∑
j=1

m1(Aj) < γi)},

Bγi = {Bi : (

i∑
j=1

m2(Bj) ≥ γi) ∧ (

i−1∑
j=1

m2(Bj) < γi)},

that by construction satisfy Equations (7)-(8). The construction is illustrated in294

Figure 1 for the case of n = 3 and m = 2. This comes down to construct the295

joint mass in a level-wise manner, and since we also have that m1 ≺StSD m2, we296

have that for any i, maxAγi ≤ minBγi , hence AγiR≤SD
Bγi297

⇒ if m1R≤SD
m2, this means that there is a joint m12(A,B) that is positive

only if maxA ≤ minB. Let us now show that this implies, for any xi ∈ X,

Bel1([x1, . . . , xi]) ≥ Pl2([x1, . . . , xi]),

which is equivalent to∑
A:maxA≤xi

m1(A) ≥
∑

B:minB≤xi

m2(B).

Using the relation between m12,m1 and m2, we get∑
A:maxA≤xi

∑
B

m12(A,B) ≥
∑

B:minB≤xi

∑
A

m12(A,B)
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but since m12(A,B) > 0 only if maxA ≤ minB, we can write

∑
A:maxA≤xi

∑
B

m12(A,B) ≥
∑

B:minB≤xi

∑
A:maxA≤xi

m12(A,B)

as all the elements on the right-hand side summation are also in the left-hand
side, this latter can only be bigger. ut

γ

X

A1

A2

A3

B1

B2

γ1

γ2

γ3

γ4

m(A1, B1)

m(A2, B1)

m(A2, B2)

m(A3, B2)

Fig. 1. Illustration of proof of Proposition 11 (construction of joint mass).

The above proposition shows a clear relation between ranking relations (when298

extended according to Definition 1) and the corresponding stochastic dominance299

relation. While this confirms the interest of our proposal and its links with300

existing, more specific works, this also provides an efficient computational way to301

check whether m1,m2 are in a ranking relation, as checking stochastic dominance302

is easier than checking whether a relation holds (which can be done by solving303

a linear programming problem, as suggested in Section 7).304

The next example however shows that the property is not true for pairwise305

bounds, essentially because focal elements are usually not totally ordered with306

respect to pairwise bounds.307

Example 2. Let us consider the space X = {x1, . . . , x12} and the two following
mass functions

m1({x1, ., x7} = A1) = 1/3, m2({x2, ., x12} = B1) = 1/3,

m1({x3, ., x9} = A2) = 1/3, m2({x4, ., x8} = B2) = 1/3,

m1({x5, ., x11} = A3) = 1/3, m2({x6, ., x10} = B3) = 1/3.
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The pairs of sets satisfying the relation R≤PD
is summarised in the matrix

B1 B2 B3[ ]
A1 R≤PD

R≤PD
R≤PD

A2 R≤PD

A3

which shows that there are nom12 for which m1R≤PD
m2, since at least a positive308

number must be put on the third row. However, we do have m1 ≺StPD m2 , as the309

bounds of each focal elements, once increasingly re-ordered separately, satisfy310

the pairwise dominance notion.311

However, that the converse holds (if m1R≤PD
m2, then m1 ≺StPD m2) has312

been shown in [24]. Finally, from Proposition 9 and the existing implications313

between the different rankings, we can easily conclude that:314

m1R≤SD
m2 ⇒ m1R≤PD

m2 ⇒
{
m1R≤UB

m2

m1R≤LB
m2

}
⇒ m1R≤LD

m2 (10)

5 Preservation through functional mapping315

5.1 Univariate functions316

This section investigates whether a function that is compatible (in the sense317

of Definition 2 below) with set relations given respectively on its domain and318

codomain, is also compatible with the extensions of these relations to belief func-319

tions. We consider first the case of univariate functions; multivariate functions320

are handled in Section 5.2.321

Let f be some function with domain X and codomain Y , i.e., f : X → Y .322

We recall that the image f(A) of some subset A ⊆ X under f is the subset323

f(A) = {f(x) : x ∈ A} ⊆ Y . More generally, the image f(m) of some mass324

function m ∈ BX under f is the mass function f(m) ∈ BY defined, for all325

B ⊆ Y , as326

f(m)(B) =
∑

f(A)=B

m(A). (11)

Definition 2. Let f : X → Y . Let RX and RY be relations on 2X and 2Y ,
respectively. The function f is said to be (RX ; RY )-compatible if

ARXB ⇒ f(A)RY f(B),∀A,B ⊆ X.

Example 3. Let RX
⊆ be the relation corresponding to inclusion on X, i.e., ARX

⊆B327

iff A ⊆ B, A,B ⊆ X. Similarly, let RX
⊂ and RX

∩ denote the relations correspond-328

ing, respectively, to strict inclusion and consistency on X, and let RY
⊆ denote329

inclusion on Y .330
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Since for any function f and any A,B ⊆ X such that A ⊆ B it holds that331

f(A) ⊆ f(B), any function f is (RX
⊆ ; RY

⊆)-compatible. Similarly, any function f332

is (RX
⊂ ; RY

⊆)-compatible.333

However, not all functions f are (RX
∩ ; RY

⊆)-compatible. For instance, if f is334

a constant function, i.e. f(x) = y for some y ∈ Y and all x ∈ X, then f is335

(RX
∩ ; RY

⊆)-compatible (in this case we have f(A) ⊆ f(B) for all A,B ⊆ X such336

that A∩B 6= ∅ since f(A) = f(B) = {y}). However, if f is the identity function,337

i.e. X = Y and f(x) = x for all x ∈ X, then f is not (RX
∩ ; RY

⊆)-compatible338

(in this case f(A) = A for all A ⊆ X and in general A ∩ B 6= ∅ 6⇒ A ⊆ B,339

A,B ⊆ X).340

Similarly, let X and Y be two ordered spaces and let RX
≤PD

and RY
≤PD

be the341

relations corresponding to pairwise-bound dominance on X and on Y , respec-342

tively. Then, not all functions f are (RX
≤PD

; RY
≤PD

)-compatible. For instance, if343

f is decreasing, i.e. f(x) ≤ f(x′) for all x ∈ X and x′ ∈ X such that x ≥ x′,344

then we have f(A) ≥PD f(B) for all A,B ⊆ X such that A ≤PD B, and345

thus f is not (RX
≤PD

; RY
≤PD

)-compatible since in general we have in this case346

A ≤PD B 6⇒ f(A) ≤PD f(B). However, if f is monotonically non-decreasing,347

then it is (RX
≤PD

; RY
≤PD

)-compatible since if f(x) ≤ f(x′) for all x ∈ X and348

x′ ∈ X such that x ≤ x′ then we have A ≤PD B ⇒ f(A) ≤PD f(B).349

Proposition 12 (Preserved compatibility). If f is (RX ; RY )-compatible, it350

is so on belief functions:351

m1R
Xm2 ⇒ f(m1)RY f(m2). (12)

Proof. Since m1R
Xm2, there exists a joint mass function m12 on X2 satisfy-352

ing (6)-(8) for RX . Consider the joint mass function m on Y 2 defined as353

m(A′, B′) =
∑

f(A)=A′,f(B)=B′

m12(A,B), ∀A′, B′ ⊆ Y. (13)

Since m12(A,B) > 0⇒ ARXB and ARXB ⇒ f(A)RY f(B), then m(A′, B′) >354

0⇒ A′RYB′. Besides,355

∑
B′

m(A′, B′) =
∑
B′

∑
{m12(A,B)|f(A) = A′, f(B) = B′}

=
∑

f(A)=A′

∑
B′

∑
f(B)=B′

m12(A,B)

=
∑

f(A)=A′

∑
B

m12(A,B)

=
∑

f(A)=A′

m1(A)

= (f(m1))(A′)

Similarly,
∑
A′ m(A′, B′) = (f(m2))(B′).356
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In sum, when m1R
Xm2 and f is (RX ; RY )-compatible, there exists a joint

mass function m on Y 2 such that m(A′, B′) > 0⇒ A′RYB′, for all A′, B′ ⊆ Y ,
and whose marginals are f(m1) and f(m2), hence f(m1)RY f(m2). ut

Corollary 1. For any function f , m1R
X
⊆m2 ⇒ f(m1)RY

⊆f(m2), which follows357

from the (RX
⊆ ; RY

⊆)-compatibility of any f .358

Corollary 1 was already known [16, Proposition 2]. Proposition 12 is a generali-359

sation of this latter result.360

5.2 Multivariate functions361

These results can be extended to functions having more than one argument:362

Definition 3. Let f : X1 × X2 → Y . Let RX1 , RX2 and RY be relations on363

2X1 , 2X2 and 2Y , respectively. The function f is said to be (RX1 ,RX2 ; RY )-364

compatible if, for all A1, B1 ⊆ X1 and all A2, B2 ⊆ X2365

A1R
X1B1 ∧A2R

X2B2 ⇒ f(A1, A2)RY f(B1, B2). (14)

Example 4. Since for any function f and any A1, B1 ⊆ X1 and A2, B2 ⊆ X2,366

such that A1 ⊆ B1 and A2 ⊆ B2 it holds that f(A1, A2) ⊆ f(B1, B2), any367

function is (RX1

⊆ ,RX2

⊆ ; RY
⊆)-compatible.368

Let X1, X2 and Y be ordered spaces. If f is non-decreasing in both its
arguments (for short, non-decreasing), i.e., for all (x1, x2), (x′1, x

′
2) ∈ X1 ×X2,

x1 ≤ x′1 ∧ x2 ≤ x′2 ⇒ f(x1, x2) ≤ f(x′1, x
′
2),

then for y ∈ {LD,LB,UB, SD,PD} we have f(A1, A2) ≤y f(B1, B2) for all369

A1, B1 ⊆ X1 and A2, B2 ⊆ X2 such that A1 ≤y B1 and A2 ≤y B2, i.e. f is370

(RX1

≤y
,RX2

≤y
; RY
≤y

)-compatible. This can easily be shown as follows (we provide371

only the proof for the case y = LD, the other cases being similar). Since f is non-372

decreasing, we have min f(A1, A2) = f(minA1,minA2) and max f(B1, B2) =373

f(maxB1,maxB2). Besides, since minA1 ≤ maxB1 and minA2 ≤ maxB2 and374

f is non-decreasing, we obtain min f(A1, A2) ≤ max f(B1, B2).375

We remind that the image f(m12) of some joint mass function m12 ∈ BX1×X2

under f is the mass function f(m12) ∈ BY defined, for all B ⊆ Y , as [16]:

(f(m12))(B) =
∑

f(A1,A2)=B

m12(A1, A2).

Let us also recall that if m12 satisfies m12(A1, A2) = m1(A1)m2(A2) with mi376

the marginal of m12 on Xi, i = 1, 2, then m1 and m2 are said to be independent.377

This independence notion is the main one used in evidence theory, but can also be378

interpreted and used as an outer approximation within imprecise probability [18,379

5].380
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Proposition 13 (Preserved compatibility, several arguments). Let m12381

(resp. m′12) denote the joint mass function on X1 ×X2 obtained from indepen-382

dent mass functions m1 and m2 (resp. m′1 and m′2) defined on X1 and X2,383

respectively.384

If f is (RX1 ,RX2 ; RY )-compatible, it is so on belief functions:

m1R
X1m′1 ∧m2R

X2m′2 ⇒ f(m12)RY f(m′12).

Proof. Since miR
X
i m

′
i, i = 1, 2, there exist joint mass functions m11′ and m22′385

satisfying386

m11′(A1, B1) > 0 =⇒ A1R
X
1 B1,

m22′(A2, B2) > 0 =⇒ A2R
X
2 B2.

Furthermore, let m11′22′ denote the joint mass function on X1 × X1 × X2 ×387

X2 obtained from independent marginals m11′ and m22′ . Mass function m11′22′388

satisfies389

m11′22′(A1, B1, A2, B2) > 0⇒ A1R
X
1 B1 ∧A2R

X
2 B2. (15)

Moreover, we have390

∑
B1,B2

m11′22′(A1, B1, A2, B2) =
∑
B1,B2

m11′(A1, B1)m22′(A2, B2)

=
∑
B1

m11′(A1, B1) ·
∑
B2

m22′(A2, B2)

=
∑
B1

m11′(A1, B1) ·m2(A2)

= m1(A1) ·m2(A2)

= m12(A1, A2)

and similarly391

∑
A1,A2

m11′22′(A1, B1, A2, B2) = m′12(B1, B2).

In other words, m11′22′ has m12 and m′12 as marginals.392

Consider the joint mass function m on Y 2 defined as, for any A′, B′ ⊆ Y ,

m(A′, B′) =
∑

f(A1,A2)=A′,f(B1,B2)=B′

m11′22′(A1, B1, A2, B2).
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Since Eqs. (15) and (14) hold, then m(A′, B′) > 0⇒ A′RYB′. Besides,393 ∑
B′

m(A′, B′) =
∑
B′

∑
{m11′22′(A1, B1, A2, B2)|f(A1, A2) = A′, f(B1, B2) = B′}

=
∑

f(A1,A2)=A′

∑
B′

∑
f(B1,B2)=B′

m11′22′(A1, B1, A2, B2)

=
∑

f(A1,A2)=A′

∑
B1,B2

m11′22′(A1, B1, A2, B2)

=
∑

f(A1,A2)=A′

m12(A1, A2)

= (f(m12))(A′)

Similarly,
∑
A′ m(A′, B′) = (f(m′12))(B′). ut

Corollary 2. For any function f , m1R
X1

⊆ m′1∧m2R
X2

⊆ m′2 ⇒ f(m12)RY
⊆f(m′12),394

which follows from any f being (RX1

⊆ ,RX2

⊆ ; RY
⊆)-compatible.395

Corollary 3. For X1, X2 and Y ordered spaces and f any monotonically non396

decreasing function, m1R
X1

≤y
m′1 ∧ m2R

X2

≤y
m′2 ⇒ f(m12)RY

≤y
f(m′12), for y ∈397

{LD,LB,UB, SD,PD}, which follows from the (RX1

≤y
,RX2

≤y
; RY
≤y

)-compatibility398

of any such functions for y ∈ {LD,LB,UB, SD,PD}.399

Corollary 2 was already known [16, Proposition 3], and Corollary 3 generalises400

a result in [24, proof of Proposition 5], where f is the addition of integers and401

y = PD. Proposition 13, which can be readily extended to the case of functions402

having more than two arguments, is thus a generalisation of these results of [16,403

24].404

We note that the setting of Corollary 3, i.e., monotonic non-decreasing func-405

tions on ordered spaces, is commonly encountered in multi-criteria decision mak-406

ing [23, 10], reliability analysis [13], and optimisation problems [21] hence this407

corollary may be useful for such problems when function arguments are tainted408

with uncertainty. Next section provides such examples.409

6 Illustrative applications410

6.1 System reliability411

In multi-state system reliability assessment, one main issue is to assess the avail-412

ability, or the performance of a whole system, given the performances of its413

components. Usually, the system is assumed to have n components xi that take414

values on a finite, ordered scale Xi, that we will denote here by natural num-415

bers. The performance of the system then depends on the state of each of its416

component, and is usually modelled by structure function f(x1, . . . , xn) that is417

non-decreasing, as the system performance can only increase or stay the same if418

a component performance increases.419
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Let us consider a simple communication system made of one source and one
receiver, with a channel in between made of n repeaters xi, where each of them
can be in different states Xi = {1, 2, . . . ,K} which is the maximal number of
messages this repeater can store and send. Given this, we may be interested in
the global capacity of a channel, which is

f(x1, . . . , xn) = min(x1, . . . , xn),

as this is a series system. Now, assume we want to compare the capacity of two420

different channels in order to choose the best one, with repeaters whose state is421

uncertain due to the fact that they have degraded over time. If this uncertainty is422

modelled by belief functions and that mj
i models the state of the ith repeater of423

the jth channel, then if we have m1
iR≤ym

2
i for any y ∈ {LD,LB,UB, SD,PD},424

then we know from Corollary 3 that channel 1 achieves at most the same level425

of performance than channel 2, without even computing the propagated mass426

function through f . Note that this would be true, whatever the function f is (as427

long as it is non-decreasing).428

Example 5. Assume we have four identical repeaters x1, x2, x3 and x4 working
independently with Xi = {1, 2, 3}, and are considering two different, partially
known technologies at our disposal to build the system. Then, if our knowledge
of these two technologies is such that, ∀i

m1
i ({2}) = 0.5 m2

i ({3}) = 0.5

m1
i ({1, 2}) = 0.3 m2

i ({2, 3}) = 0.3

m1
i ({1, 2, 3}) = 0.2 m2

i ({1, 2, 3}) = 0.2

we can easily conclude that f1R≤PD
f2 and this without performing any com-429

putation, as m1
iR≤PD

m2
i .430

6.2 Multi-criteria decision making431

In multi-criteria decision making, it is quite common to consider as variables xi432

the utilities of the criteria. For instance, these could be scores obtained by stu-433

dents over different courses, or the evaluation of students regarding the quality of434

courses (e.g., with respect to interest, teaching quality and study time required).435

It could be that, for some reasons, those assessments are uncertain (e.g., because436

students are allowed to provide imprecise assessments in case of hesitation).437

One common function to aggregate utilities is the weighted average, that is438

to have439

f(x1, . . . , xn) =

n∑
i=1

wixi (16)

or one of its extension such as the Choquet integral. Again, if we want to compare440

two courses, and we have m1
iR≤PD

m2
i for all xi, then we know from Corollary 3,441

without any computation, that the second course is considered better by the442
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students. Besides, if there is a third course such that m2
iR≤PD

m3
i for all xi,443

then, without any computation, we know from Corollary 3 that this course is444

preferred over the second one but also over the first one as the set relation R≤PD
445

is transitive, a property that we know is preserved thanks to Proposition 7.446

Example 6. Assume three courses evaluated by students against two criteria x1
and x2 with Xi = {0, . . . , 10}. Let mj

i be the mass function representing the
uncertain evaluation of course j according to criterion i. Suppose we have for
criterion x1

m1
1({2, 3, 4}) = 1, m2

1({2, 3, 4}) = 0.6, m3
1({6, 7, 8}) = 1,

m2
1({3, 4}) = 0.4,

and for criterion x2

m1
2({4}) = 0.13, m2

2({5, 6}) = 0.65, m3
2({5, 6, 7}) = 0.3,

m1
2({7}) = 0.07, m2

2({7}) = 0.35, m3
2({7, 8}) = 0.2,

m1
2({5, 6}) = 0.8, m3

2({8}) = 0.5.

If the weighted average (16) is used to aggregate these evaluations, then whatever
the weights wi, we can easily conclude that the overall uncertain score f1 of the
first course will be such that f1R≤PD

f2, with f2 the uncertain score of the
second course, since m1

iR≤PD
m2
i for all xi. Indeed, for the first criterion the

only joint mass function obtainable from m1
1 and m2

1 is

m12
1 ({2, 3, 4}, {2, 3, 4}) = 0.6, m12

1 ({2, 3, 4}, {3, 4}) = 0.4

and we can easily see that {2, 3, 4}R≤PD
{2, 3, 4} and {2, 3, 4}R≤PD

{3, 4}. For
the second criterion, we can consider the joint mass function

m12
2 ({5, 6}, {5, 6}) = 0.65, m12

2 ({5, 6}, {7}) = 0.15,

m12
2 ({7}, {7}) = 0.07, m12

2 ({4}, {7}) = 0.13.

where every pair of sets satisfy the relation R≤PD
. From those two facts and447

Corollary 3, we can conclude that f1R≤PD
f2 for any increasing function of the448

two criteria. Similarly, we obtain f2R≤PD
f3 and f1R≤PD

f3. Since R≤PD
is449

transitive, the latter comparison could have been deduced from f1R≤PD
f2 and450

f2R≤PD
f3.451

As an illustration, let us confirm that for the first two courses and the simple
weighted average with w1 = 0.5 and w2 = 0.5, we do have f1R≤PD

f2: denoting

by mj
f the propagated evaluation of course j, we get

m1
f ({3, 3.5, 4} = A1) = 0.13, m2

f ({3.5, 4, 4.5, 5} = B1) = 0.39

m1
f ({4.5, 5, 5.5} = A2) = 0.07, m2

f ({4.5, 5, 5.5} = B2) = 0.21

m1
f ({3.5, 4, 4.5, 5} = A3) = 0.8, m2

f ({4, 4.5, 5} = B3) = 0.26

m2
f ({5, 5.5} = B4) = 0.14
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With the following matrix summarising the pairs of sets where the relation R≤PD

holds
B1 B2 B3 B4[ ]A1 R≤PD

R≤PD
R≤PD

R≤PD

A2 R≤PD
R≤PD

A3 R≤PD
R≤PD

R≤PD
R≤PD

.

This means that any joint mass function where m(A2, B1) and m(A2, B3) are452

null satisfy our definition, and it is easy to see that such a mass function exists,453

for example by taking m(A2, B2) = 0.07.454

6.3 Equivalence relations in taxonomies455

Let us now assume that the elements of space X are concepts linked together by456

a taxonomy, modelled as a rooted tree. Then, one possible question about two457

uncertain observations of such a taxonomy is whether they belong to the same458

general sub-concept of interest, or in other words whether they belong to the459

same branch of the tree. In practice, this comes down to define a corresponding460

partition C1, . . . , CK of X, and to say that ARB iff A ∪B ⊆ Ci for some i.461

Example 7. Assume we have the spaceX = {(M)otorcycle, (T )ruck, (C)at, (D)og}
together with the taxonomy provided by Figure 2. The partition defined by the
concepts of the first level (Vehicle and Animal) is C1 = {M,T} and C2 = {C,D}.
We could then wonder whether two uncertain objects belong to the same cate-
gory, given this granularity. For instance, consider the three mass functions

m1({C}) = 0.6, m2({T,C}) = 0.2, m3({D}) = 0.4,

m1({D,C}) = 0.4, m2(X) = 0.8, m3({D,C}) = 0.6.

We do have m1Rm3, as {C}R{D}R{D,C}, but not m1Rm2 nor m3Rm2, con-
cluding that while the first and third objects belong to the same category, m2

does not. To see that m1Rm3, one can consider the joint mass function

m13({D,C}, {D}) = 0.4, m13({C}, {D,C}) = 0.6,

and to see that ¬m1Rm2 and ¬m3Rm2, it is sufficient to observe that ¬XRA462

for any A, and that the mass m2(X) is strictly positive, hence that some joint463

mass must be given to it. Since we know that R is an equivalence relation,464

that is preserved when considering belief functions, we could have deduced from465

¬m1Rm2 that ¬m3Rm2.466

Such notions could be used for example in formal concept analysis [22], where467

we may want to know the most specific common concept to which two uncertain468

objects belong. Another possibility includes for instance hierarchical classifica-469

tion [1], in which a usually very large number of classes are structured according470

to a taxonomy that is used to find the right class (leaf) of an object. Being471

able to tell whether two classifiers agree that a particular instance belong to a472

common sub-tree may then be a helpful item of information.473
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Entities

Vehicle

Motorcycle Truck

Animal

Cat Dog

Fig. 2. Taxonomy of Example 7

7 From binary to gradual relations474

So far, we have been concerned with the problem of assessing whether or not475

two mass functions m1,m2 were in relation, viewing this as a binary value that476

could only takes values 0 (¬m1Rm2) or 1 (m1Rm2). It can be interesting to477

relax this assumption by allowing the relation to be gradual, that is to take any478

value between 0 and 1.479

An easy way to do that is to follow an optimistic principle and to say that
for any two mass functions m1,m2, the degree αR to which m1 is in relation R
with m2 is the solution of the optimisation problem

1− αR = min
∑

A,B:¬(ARB)

m12(A,B)

m1(A) =
∑
B

m12(A,B),

m2(B) =
∑
A

m12(A,B).

This generalises the approach taken so far, as we will have m1Rm2 iff αR = 1,480

that is if the degree to which they are in relation is maximal. Conversely, αR = 0481

iff there is no pair of subsets A,B having positive mass such that ARB.482

For instance, if we consider again the “having a lower cardinality than”483

example from the proof of Proposition 8, we would have that m1αRm2 with484

αR = 1 − 0.2 = 0.8, a quite high value. Such gradual relations have been pro-485

posed in the past, for example the conflict measure κ2m proposed in [11] is nothing486

else but the solution of the optimisation problem applied to the relation ARB487

iff A ∩B 6= ∅.488

Studying the properties and implications of using such gradual relations in489

detail goes out of the scope of the current paper, yet a clear first step would be490

to relate such a gradual view to the large literature concerning fuzzy relations.491

Indeed, fuzzy relations are also [0, 1]-valued, and researchers of this field have492

come with various proposals of how classical properties can be extended to this493

case, e.g., to deal with fuzzy preferences [20, 14] or fuzzy equivalence relations [2].494
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8 Conclusions495

In this paper, a universal way to generalise a binary relation from sets to belief496

functions is introduced. Several results are provided showing which properties of497

the relation are preserved through this mechanism, including its compatibility498

with functions. Our proposal is also connected to more specific generalisation of499

binary relations such as the notion of specialisation. Consequently, our results500

are also a generalisation of pre-existing ones for specific relations.501

There are however several questions that remain to address. A first one is to502

consider not relations on the same space, but more general relations on different503

spaces, including compositions of such relations.504

Finally, we have also proposed a way to transform the initial binary relation505

on sets into a gradual relation on belief functions. This also opens up a whole506

avenue of research, as this directly connect our proposal to the various notions of507

fuzzy relations, that consist in providing a number in the unit interval reflecting508

how much a relation holds. Performing such a study goes beyond the actual509

scope of the present paper.510
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A Proof of Proposition 10517

In this appendix, we give a proof that if R is a partial order on sets then the518

mechanism described in Definition 1 yields a partial order on belief functions. We519

already know that the induced relation on belief functions inherits the reflexivity520

and transitivity properties (c.f. Propositions 5 and 7). So we only need to prove521

that antisymmetry holds.522

Suppose there exist two mass functions m1 and m2 such that m1Rm2 and
m2Rm1. This means that there are two matrices S1 and S2 compliant with
Definition 1 and such that m1 = S1 ·m2 and m2 = S2 ·m1 (mass functions are
seen as vectors here). By plugging these two equations together, we obtain

m2 = S2 · S1 ·m2.

To complete the proof, we will be needing the following intermediate result:523

Lemma 1. If R is a partial order on sets, then there is an indexation of sub-524

sets of X such that for any pair of mass functions (m1;m2) with m1Rm2, the525

stochastic matrix S satisfying Definition 1 is upper triangular.526
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Proof. Define a refinement R∗ of R such that R∗ is a total order (subsets that
cannot be ordered using R can be ordered in an arbitrary way). Let N denote

the cardinality of 2X . Let (Ai)
N
i=1 denote all subsets of X indexed using R∗ so

that
AiR∗Aj ⇔ i ≤ j.

Now suppose S∗ is a stochastic matrix compliant with Definition 1 for relation527

R∗ for some pair of mass functions m1 and m2. If m2 (Aj) > 0, we need to have528

S∗ (Ai, Aj) = 0 whenever ¬(AiR∗Aj)⇔ i > j.529

Suppose S is a stochastic matrix compliant with Definition 1 for relation
R for the same pair of mass functions m1 and m2. If m2 (Aj) = 0, we can re-
assign entries of the jth column of S as we want while remaining compliant with
Definition 1. For instance, we can set

S (Ai, Aj) =

{
1 if i = j,

0 otherwise.

Provided that the above reassignment is completed, the matrix S is upper tri-
angular because when m2 (Aj) > 0,

i > j ⇔ ¬(AiR∗Aj)⇒ ¬(AiRAj)⇒ S (Ai, Aj) = 0.

ut

Based on the above lemma, we can require that S1 and S2 are upper triangu-530

lar and consequently S21 = S2 ·S1 as well. Since left stochasticity is preserved by531

matrix product, we know that S21 is also left stochastic. Consequently, we have532

that S21 coincides with the identity matrix I on every column corresponding to533

a focal element of m2. In other words, if m2 (Aj) > 0, then534

S21 (Ai, Aj) =

{
1 if i = j

0 otherwise
, (17)

where (Ai)
N
i=1 are all subsets of X ordered in the way arising from the definitions

of matrices S1 and S2 and their upper triangularities. To prove this, observe that

m2 (Ai) =

N∑
j=1

S21 (Ai, Aj)m2 (Aj) , (18)

=

N∑
j=i

S21 (Ai, Aj)m2 (Aj) (19)

Let Ak1 denote the focal element of m2 with maximal index, i.e. Ai is not a focal
element of m2 if i > k1. We necessarily have that

m2 (Ak1) = S21 (Ak1 , Ak1)m2 (Ak1) .
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This obviously implies that S21 (Ak1 , Ak1) = 1 and that all other entries of the535

column corresponding to Ak1 are null because S21 is left stochastic. Now, let Ak2536

to be the focal element of m2 with the second maximal index, i.e. if i > k2, then537

Ai is either Ak1 or not a focal element of m2. We have now538

m2 (Ak2) = S21 (Ak2 , Ak2)m2 (Ak2) + S21 (Ak2 , Ak1)m2 (Ak1) .

S21 (Ak2 , Ak1) is in the kth1 column of S21 therefore we deduce that S21 (Ak2 , Ak2) =539

1 and that all other entries of the corresponding column are null. We can continue540

to iterate on the focal elements of m2 to obtain (17).541

Furthermore, the upper triangularities of S1 and S2 give that S21 (Ai, Ai) =
S2 (Ai, Ai) × S1 (Ai, Ai) ,∀i. When m2 (Ai) > 0, we know that S21 (Ai, Ai) =
1 and we deduce that S1 (Ai, Ai) > 0 and S2 (Ai, Ai) > 0. From the upper
triangularity of the matrices, we also have

S21 (Ai−1, Ai) = S2 (Ai−1, Ai−1)S1 (Ai−1, Ai) + S2 (Ai−1, Ai)S1 (Ai, Ai) .

When m2 (Ai) > 0, we know that S21 (Ai−1, Ai) = 0 and we deduce that542

S1 (Ai−1, Ai) = 0. We can iterate and show that S1 (Ai−k, Ai) = 0 for any543

k ∈ {1; . . . ; i− 1} which in turn implies that S1 (Ai, Ai) = 1 because S1 is544

stochastic. Since m1 = S1 ·m2, we see that, for any focal element A of m2, we545

have m1 (A) ≥ m2 (A). Finally, we necessarily have that m1 = m2 because the546

masses of m1 need to sum to one.547
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