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Abstract

This document provides the proofs of the main (unpublished) results presented

in [1], which can be seen as “normalized” versions of results previously published

in [3, 2].

1 Reliability

1.1 General case

Theorem 1. Bm(A) =

 0 if A = ∅∑
b P

B(b)
∑

B⊗bC=A m1(B)m2(C)

1−
∑

b P
B(b)

∑
B⊗bC=∅ m1(B)m2(C)

otherwise.

Proof. Let P12B := P12 × PB. For all A ∈ 2Θ, we have

PB({(ω1, ω2, b) ∈ Ω1 × Ω2 × B : Γ(ω1, ω2, b) = A})

= P12B({(ω1, ω2, b) ∈ Ω1 × Ω2 × B : Γ(ω1, ω2, b) = A| ΘB})

=
P12B({(ω1, ω2, b) ∈ Ω1 × Ω2 × B : Γ(ω1, ω2, b) = A} ∩ ΘB)

P12B(ΘB)

(assuming that P12B(ΘB) > 0).

From {(ω1, ω2, b) ∈ Ω1 × Ω2 × B : Γ(ω1, ω2, b) = ∅} ∩ ΘB = ∅, we obtain

PB({(ω1, ω2, b) ∈ Ω1 × Ω2 × B : Γ(ω1, ω2, b) = ∅}) = 0. (1)

Now, for A ̸= ∅, we have

{(ω1, ω2, b) ∈ Ω1 × Ω2 × B : Γ(ω1, ω2, b) = A} ∩ ΘB

= {(ω1, ω2, b) ∈ Ω1 × Ω2 × B : Γ(ω1, ω2, b) = A}.
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Hence,

P12B({(ω1, ω2, b) ∈ Ω1 × Ω2 × B : Γ(ω1, ω2, b) = A} ∩ ΘB)

P12B(ΘB)

=
P12B({(ω1, ω2, b) ∈ Ω1 × Ω2 × B : Γ(ω1, ω2, b) = A})

1− P12B({(ω1, ω2, b) ∈ Ω1 × Ω2 × B : Γ(ω1, ω2, b) = ∅})
. (2)

Furthermore, for all A ∈ 2Θ, we have

P12B({(ω1, ω2, b) ∈ Ω1 × Ω2 × B : Γ(ω1, ω2, b) = A})

=
∑

(ω1,ω2,b):Γ1(ω1)⊗bΓ2(s2)=A

P12B(ω1, ω2, b)

=
∑

(ω1,ω2,b):Γ1(ω1)⊗bΓ2(s2)=A

P12(ω1, ω2)P
B(b)

=
∑
b

PB(b)
∑

(ω1,ω2):Γ1(ω1)⊗bΓ2(s2)=A

P12(ω1, ω2)

=
∑
b

PB(b)
∑

(ω1,ω2):Γ1(ω1)⊗bΓ2(s2)=A

P1(ω1)P2(s2)

=
∑
b

PB(b)
∑

B⊗bC=A

m1(B)m2(C). (3)

The theorem follows from (1), and from (2) and (3).

1.2 Particular cases

1.2.1 Dependent reliabilities

Proposition 1. Let PR such that

PR(rel1, unrel2) = α,

PR(unrel1, rel2) = 1− α,

for some α ∈ [0, 1].

We have

Rm = αm1 + (1− α)m2.

Proof. Let b1 be the connective induced by assumption (rel1, unrel2) and let b2 be the

connective induced by assumption (unrel1, rel2).

Rm is equivalently induced by the random set (Ω1 × Ω2 × B, PB,Γ
B) with PB the

probability measure such that PB(b1) = α and PB(b2) = 1− α.

The proposition follows from Theorem 1 and the fact that for all (A,B) ∈ 2Θ × 2Θ,

we have A⊗b1 B = A and A⊗b2 B = B.
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1.2.2 Independent reliabilities

Proposition 2. Let PR such that PR = PR1 × PR2, with PRi(unreli) = αi for some

α ∈ [0, 1].

We have

Rm = α1m1 ⊕ α2m2 (4)

Proof. Let b3 be the connective induced by assumption (rel1, rel2) and let b4 be the

connective induced by assumption (unrel1, unrel2).

Rm is equivalently induced by the random set (Ω1 × Ω2 × B, PB,Γ
B) with PB the

probability measure such that

PB(b3) = (1− α1)(1− α2),

PB(b4) = α1α2,

PB(b1) = (1− α1)α2,

PB(b2) = α1(1− α2).

From Theorem 1 and the fact that for all (A,B) ∈ 2Θ×2Θ, we have A⊗b3B = A∩B

and A⊗b4 B = Θ, Rm is equal to:

Rm(A) =


0 if A = ∅,
(1−α1)(1−α2)m1(Θ)m2(Θ)+(1−α1)α2m1(Θ)+α1(1−α2)m2(Θ)+α1α2

1−(1−α1)(1−α2)
∑

B∩C=∅ m1(B)m2(C) if A = Θ,

(1−α1)(1−α2)
∑

B∩C=A m1(B)m2(C)+(1−α1)α2m1(A)+α1(1−α2)m2(A)
1−(1−α1)(1−α2)

∑
B∩C=∅ m1(B)m2(C) otherwise.

(5)

Now, let us consider the mass function m′ resulting from the discounting of mass

function mi with discount rate αi, i = 1, 2, followed by the combination by Dempster’s

rule of the resulting discounted mass functions, i.e., m′ := α1m1 ⊕ α2m2. We have

m′(∅) = 0 and, for A ̸= ∅,

m′(A) =

∑
B∩C=A

α1m1(B) α2m2(C)

1−
∑

B∩C=∅
α1m1(B) α2m2(C)

. (6)
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Now, for A ̸= Θ, Eq. (6) can be rewritten∑
B ̸=Θ,C ̸=Θ
B∩C=A

α1m1(B) α2m2(C) + α1m1(Θ) α2m2(A) +
α1m1(A)

α2m2(Θ)

1−
∑

B∩C=∅
α1m1(B) α2m2(C)

=

(1−α1)(1−α2)
∑

B ̸=Θ,C ̸=Θ
B∩C=A

m1(B)m2(C)+((1−α1)m1(Θ)+α1)(1−α2)m2(A)+(1−α1)m1(A)((1−α2)m2(Θ)+α2)

1−
∑

B∩C=∅
α1m1(B) α2m2(C)

=

(1−α1)(1−α2)
∑
B ̸=Θ,C ̸=Θ
B∩C=A

m1(B)m2(C)+(1−α1)(1−α2)m1(Θ)m2(A)+α1(1−α2)m2(A)+(1−α1)(1−α2)m1(A)m2(Θ)+(1−α1)α2m1(A)

1−
∑

B∩C=∅
α1m1(B) α2m2(C)

=
(1− α1)(1− α2)

∑
B∩C=Am1(B)m2(C) + α1(1− α2)m2(A) + (1− α1)α2m1(A)

1−
∑

B∩C=∅
α1m1(B) α2m2(C)

(7)

and, for A = Θ, Eq. (6) reduces to

α1m1(Θ) α2m2(Θ)

1−
∑

B∩C=∅
α1m1(B) α2m2(C)

=
((1− α1)m1(Θ) + α1)((1− α2)m2(Θ) + α2)

1−
∑

B∩C=∅
α1m1(B) α2m2(C)

=
(1− α1)(1− α2)m1(Θ)m2(Θ) + (1− α1)α2m1(Θ) + α1(1− α2)m2(Θ) + α1α2

1−
∑

B∩C=∅
α1m1(B) α2m2(C)

(8)

Remark that if B ∩ C = ∅ for some B and C such α1m1(B) > 0 and α2m2(C) > 0,

it must be the case that B ̸= Θ and C ̸= Θ. Therefore, we have∑
B∩C=∅

α1m1(B) α2m2(C) = (1− α1)(1− α2)
∑

B∩C=∅

m1(B)m2(C) (9)

and thus Eq. (7) is equal to the last case of (5), and Eq. (8) is equal to the second case

of (5).

2 Dependence

Theorem 2. Any mass function m on Θ = {θ1, . . . , θK} satisfies

m = ⊕σ({θ1}
d1
, . . . , {θK}dK )

with di, 1 ≤ i ≤ K, the means and σ the dependence vector of the K-variate Bernoulli

distribution P1...K such that

P1...K(S1 = ω1, . . . , SK = ωK) := m(Aω)

with Aω the subset of Θ such that θi ∈ Aω if ωi = 1 and θi ̸∈ Aω if ωi = 0, for all

ω = (ω1, . . . , ωK) ∈ Ω.
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Proof. Given the definition of ⊕σ, we have that ⊕σ({θ1}
d1
, . . . , {θK}dK ) is the mass

function m1...K induced by the random set (Ω, P∩,Γ∩) with

• Ω := ×K
i=1Ωi, Ωi = {0, 1},

• Γ∩(ω) :=
⋂K

i=1 Γi(ωi) for all ω = (ω1, . . . , ωN ) ∈ Ω, with Γi(0) = {θi} and Γi(1) =

Θ.

• P∩ the probability distribution P1...K conditioned on Θ∩, where P1...K is the dis-

tribution having P1, . . . , PK , as marginals, with Pi(1) = di, and specified by vector

σ, i.e., it is the K-variate Bernoulli distribution with means di, 1 ≤ i ≤ K, and

dependence vector σ.

Now, since a K-variate Bernoulli distribution is characterized by its means and depen-

dence vector, given the statement of the theorem, we have that this distribution P1...K

satisfies P1...K(S1 = ω1, . . . , SK = ωK) = m(Aω), for all ω = (ω1, . . . , ωN ) ∈ Ω.

Furthermore, similarly as in the proof of [2, Proposition 1], we have, for all ω =

(ω1, . . . , ωN ) ∈ Ω:

Γ∩(ω) =
K⋂
i=1

Γi(ωi)

=

( ⋂
i:ωi=0

Γi(0)

)⋂( ⋂
i:ωi=1

Γi(1)

)
=

⋂
i:ωi=0

Γi(0)

=
⋂

i:ωi=0

Θ\{θi}

= Θ\{θi : i, ωi = 0}

= {θi : i, ωi = 1} = Aω. (10)

Remark that Γ∩(0) = A0 = ∅ and Γ∩(ω) ̸= ∅ for all ω ̸= 0, and that P1...K(0) =

m(A0) = m(∅) = 0, hence we have, for all ω ∈ Ω:

P∩(ω) = P1...K(ω)

= m(Aω). (11)

From Eqs. (10) and (11), we have m1...K(Aω) = P∩({ω ∈ Ω : Γ∩(ω) = Aω) =

m(Aω), for all ω ∈ Ω. Hence, the mass function ⊕σ({θ1}
d1
, . . . , {θK}dK ) is the mass

function m.
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