Appendix to the invited talk "Reliability and dependence in information fusion" at the BELIEF 2024 conference

Frédéric Pichon

September 4, 2024

Abstract

This document provides the proofs of the main (unpublished) results presented in [1], which can be seen as "normalized" versions of results previously published in [3, 2].

1 Reliability

1.1 General case

Theorem 1.
$${}^{\mathcal{B}}m(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ \frac{\sum_{b} P^{\mathcal{B}}(b) \sum_{B \otimes_{b} C = \emptyset} m_{1}(B)m_{2}(C)}{1 - \sum_{b} P^{\mathcal{B}}(b) \sum_{B \otimes_{b} C = \emptyset} m_{1}(B)m_{2}(C)} & \text{otherwise} \end{cases}$$

Proof. Let $P_{12\mathcal{B}} := P_{12} \times P^{\mathcal{B}}$. For all $A \in 2^{\Theta}$, we have

$$P_{\mathcal{B}}(\{(\omega_1, \omega_2, b) \in \Omega_1 \times \Omega_2 \times \mathcal{B} : \Gamma(\omega_1, \omega_2, b) = A\})$$

$$= P_{12\mathcal{B}}(\{(\omega_1, \omega_2, b) \in \Omega_1 \times \Omega_2 \times \mathcal{B} : \Gamma(\omega_1, \omega_2, b) = A | \Theta_{\mathcal{B}}\})$$

$$= \frac{P_{12\mathcal{B}}(\{(\omega_1, \omega_2, b) \in \Omega_1 \times \Omega_2 \times \mathcal{B} : \Gamma(\omega_1, \omega_2, b) = A\} \cap \Theta_{\mathcal{B}})}{P_{12\mathcal{B}}(\Theta_{\mathcal{B}})}$$

(assuming that $P_{12\mathcal{B}}(\Theta_{\mathcal{B}}) > 0$).

From $\{(\omega_1, \omega_2, b) \in \Omega_1 \times \Omega_2 \times \mathcal{B} : \Gamma(\omega_1, \omega_2, b) = \emptyset\} \cap \Theta_{\mathcal{B}} = \emptyset$, we obtain

$$P_{\mathcal{B}}(\{(\omega_1, \omega_2, b) \in \Omega_1 \times \Omega_2 \times \mathcal{B} : \Gamma(\omega_1, \omega_2, b) = \emptyset\}) = 0.$$
(1)

Now, for $A \neq \emptyset$, we have

$$\{(\omega_1, \omega_2, b) \in \Omega_1 \times \Omega_2 \times \mathcal{B} : \Gamma(\omega_1, \omega_2, b) = A\} \cap \Theta_{\mathcal{B}}$$
$$= \{(\omega_1, \omega_2, b) \in \Omega_1 \times \Omega_2 \times \mathcal{B} : \Gamma(\omega_1, \omega_2, b) = A\}.$$

Hence,

$$\frac{P_{12\mathcal{B}}(\{(\omega_1,\omega_2,b)\in\Omega_1\times\Omega_2\times\mathcal{B}:\Gamma(\omega_1,\omega_2,b)=A\}\cap\Theta_{\mathcal{B}})}{P_{12\mathcal{B}}(\Theta_{\mathcal{B}})} = \frac{P_{12\mathcal{B}}(\{(\omega_1,\omega_2,b)\in\Omega_1\times\Omega_2\times\mathcal{B}:\Gamma(\omega_1,\omega_2,b)=A\})}{1-P_{12\mathcal{B}}(\{(\omega_1,\omega_2,b)\in\Omega_1\times\Omega_2\times\mathcal{B}:\Gamma(\omega_1,\omega_2,b)=\emptyset\})}.$$
(2)

Furthermore, for all $A \in 2^{\Theta}$, we have

$$P_{12\mathcal{B}}(\{(\omega_{1}, \omega_{2}, b) \in \Omega_{1} \times \Omega_{2} \times \mathcal{B} : \Gamma(\omega_{1}, \omega_{2}, b) = A\})$$

$$= \sum_{(\omega_{1}, \omega_{2}, b): \Gamma_{1}(\omega_{1}) \otimes_{b} \Gamma_{2}(s_{2}) = A} P_{12\mathcal{B}}(\omega_{1}, \omega_{2}, b)$$

$$= \sum_{(\omega_{1}, \omega_{2}, b): \Gamma_{1}(\omega_{1}) \otimes_{b} \Gamma_{2}(s_{2}) = A} P_{12}(\omega_{1}, \omega_{2}) P^{\mathcal{B}}(b)$$

$$= \sum_{b} P^{\mathcal{B}}(b) \sum_{(\omega_{1}, \omega_{2}): \Gamma_{1}(\omega_{1}) \otimes_{b} \Gamma_{2}(s_{2}) = A} P_{12}(\omega_{1}, \omega_{2})$$

$$= \sum_{b} P^{\mathcal{B}}(b) \sum_{(\omega_{1}, \omega_{2}): \Gamma_{1}(\omega_{1}) \otimes_{b} \Gamma_{2}(s_{2}) = A} P_{1}(\omega_{1}) P_{2}(s_{2})$$

$$= \sum_{b} P^{\mathcal{B}}(b) \sum_{B \otimes_{b} C = A} m_{1}(B) m_{2}(C). \qquad (3)$$

The theorem follows from (1), and from (2) and (3).

1.2 Particular cases

1.2.1 Dependent reliabilities

Proposition 1. Let $P^{\mathcal{R}}$ such that

$$P^{\mathcal{R}}(rel_1, unrel_2) = \alpha,$$
$$P^{\mathcal{R}}(unrel_1, rel_2) = 1 - \alpha,$$

for some $\alpha \in [0,1]$.

We have

$$\mathcal{R}_m = \alpha m_1 + (1 - \alpha) m_2.$$

Proof. Let b1 be the connective induced by assumption $(rel_1, unrel_2)$ and let b2 be the connective induced by assumption $(unrel_1, rel_2)$.

 \mathcal{R}_m is equivalently induced by the random set $(\Omega_1 \times \Omega_2 \times \mathcal{B}, P_{\mathcal{B}}, \Gamma^{\mathcal{B}})$ with $P_{\mathcal{B}}$ the probability measure such that $P^{\mathcal{B}}(b1) = \alpha$ and $P^{\mathcal{B}}(b2) = 1 - \alpha$.

The proposition follows from Theorem 1 and the fact that for all $(A, B) \in 2^{\Theta} \times 2^{\Theta}$, we have $A \otimes_{b1} B = A$ and $A \otimes_{b2} B = B$.

1.2.2 Independent reliabilities

Proposition 2. Let $P^{\mathcal{R}}$ such that $P^{\mathcal{R}} = P^{\mathcal{R}_1} \times P^{\mathcal{R}_2}$, with $P^{\mathcal{R}_i}(unrel_i) = \alpha_i$ for some $\alpha \in [0, 1]$.

We have

$$\boldsymbol{\mathcal{R}}_{m} = {}^{\alpha_1}m_1 \oplus {}^{\alpha_2}m_2 \tag{4}$$

Proof. Let b3 be the connective induced by assumption (rel_1, rel_2) and let b4 be the connective induced by assumption $(unrel_1, unrel_2)$.

 \mathcal{R}_m is equivalently induced by the random set $(\Omega_1 \times \Omega_2 \times \mathcal{B}, P_{\mathcal{B}}, \Gamma^{\mathcal{B}})$ with $P_{\mathcal{B}}$ the probability measure such that

$$P^{\mathcal{B}}(b3) = (1 - \alpha_1)(1 - \alpha_2),$$

$$P^{\mathcal{B}}(b4) = \alpha_1 \alpha_2,$$

$$P^{\mathcal{B}}(b1) = (1 - \alpha_1)\alpha_2,$$

$$P^{\mathcal{B}}(b2) = \alpha_1(1 - \alpha_2).$$

From Theorem 1 and the fact that for all $(A, B) \in 2^{\Theta} \times 2^{\Theta}$, we have $A \otimes_{b3} B = A \cap B$ and $A \otimes_{b4} B = \Theta$, \mathcal{R}_m is equal to:

$$\mathcal{R}_{m}(A) = \begin{cases} 0 & \text{if } A = \emptyset, \\ \frac{(1-\alpha_{1})(1-\alpha_{2})m_{1}(\Theta)m_{2}(\Theta) + (1-\alpha_{1})\alpha_{2}m_{1}(\Theta) + \alpha_{1}(1-\alpha_{2})m_{2}(\Theta) + \alpha_{1}\alpha_{2}}{1-(1-\alpha_{1})(1-\alpha_{2})\sum_{B\cap C=\emptyset}m_{1}(B)m_{2}(C)} & \text{if } A = \Theta, \\ \frac{(1-\alpha_{1})(1-\alpha_{2})\sum_{B\cap C=A}m_{1}(B)m_{2}(C) + (1-\alpha_{1})\alpha_{2}m_{1}(A) + \alpha_{1}(1-\alpha_{2})m_{2}(A)}{1-(1-\alpha_{1})(1-\alpha_{2})\sum_{B\cap C=\emptyset}m_{1}(B)m_{2}(C)} & \text{otherwise.} \end{cases}$$
(5)

Now, let us consider the mass function m' resulting from the discounting of mass function m_i with discount rate α_i , i = 1, 2, followed by the combination by Dempster's rule of the resulting discounted mass functions, i.e., $m' := {}^{\alpha_1}m_1 \oplus {}^{\alpha_2}m_2$. We have $m'(\emptyset) = 0$ and, for $A \neq \emptyset$,

$$m'(A) = \frac{\sum_{B \cap C = A} \alpha_1 m_1(B) \alpha_2 m_2(C)}{1 - \sum_{B \cap C = \emptyset} \alpha_1 m_1(B) \alpha_2 m_2(C)}.$$
(6)

Now, for $A \neq \Theta$, Eq. (6) can be rewritten

$$\frac{\sum_{\substack{B \neq \Theta, C \neq \Theta \\ B \cap C = A}} \alpha_1 m_1(B) \alpha_2 m_2(C) + \alpha_1 m_1(\Theta) \alpha_2 m_2(A) + \alpha_1 m_1(A) \alpha_2 m_2(\Theta)}{1 - \sum_{B \cap C = \emptyset} \alpha_1 m_1(B) \alpha_2 m_2(C)} \\
= \frac{(1 - \alpha_1)(1 - \alpha_2) \sum_{\substack{B \neq \Theta, C \neq \Theta \\ B \cap C = A}} \alpha_1 m_1(B) \alpha_2 m_2(C)}{1 - \sum_{\substack{B \cap C = \emptyset \\ B \cap C = A}} \alpha_1 m_1(B) \alpha_2 m_2(C)} \\
= \frac{(1 - \alpha_1)(1 - \alpha_2) \sum_{\substack{B \neq \Theta, C \neq \Theta \\ B \cap C = A}} m_1(B) m_2(C) + (1 - \alpha_1)(1 - \alpha_2) m_1(A) m_2(A) + (1 - \alpha_1)(1 - \alpha_2) m_1(A) m_2(\Theta) + (1 - \alpha_1)\alpha_2 m_1(A)}{B \cap C = A}} \\
= \frac{(1 - \alpha_1)(1 - \alpha_2) \sum_{\substack{B \cap C = A \\ B \cap C = A}} m_1(B) m_2(C) + \alpha_1(1 - \alpha_2) m_2(A) + (1 - \alpha_1)\alpha_2 m_1(A)}{1 - \sum_{\substack{B \cap C = \emptyset \\ \alpha_1 m_1(B) \alpha_2 m_2(C)}} \alpha_1 m_1(B) \alpha_2 m_2(C)} \\$$
and, for $A = \Theta$, Eq. (6) reduces to

$$= \frac{\alpha_{1}m_{1}(\Theta) \alpha_{2}m_{2}(\Theta)}{1 - \sum_{B \cap C = \emptyset} \alpha_{1}m_{1}(B) \alpha_{2}m_{2}(C)}$$

$$= \frac{((1 - \alpha_{1})m_{1}(\Theta) + \alpha_{1})((1 - \alpha_{2})m_{2}(\Theta) + \alpha_{2})}{1 - \sum_{B \cap C = \emptyset} \alpha_{1}m_{1}(B) \alpha_{2}m_{2}(C)}$$

$$= \frac{(1 - \alpha_{1})(1 - \alpha_{2})m_{1}(\Theta)m_{2}(\Theta) + (1 - \alpha_{1})\alpha_{2}m_{1}(\Theta) + \alpha_{1}(1 - \alpha_{2})m_{2}(\Theta) + \alpha_{1}\alpha_{2}}{1 - \sum_{B \cap C = \emptyset} \alpha_{1}m_{1}(B) \alpha_{2}m_{2}(C)}$$
(8)

Remark that if $B \cap C = \emptyset$ for some B and C such $^{\alpha_1}m_1(B) > 0$ and $^{\alpha_2}m_2(C) > 0$, it must be the case that $B \neq \Theta$ and $C \neq \Theta$. Therefore, we have

$$\sum_{B \cap C = \emptyset} \alpha_1 m_1(B) \alpha_2 m_2(C) = (1 - \alpha_1)(1 - \alpha_2) \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$
(9)

and thus Eq. (7) is equal to the last case of (5), and Eq. (8) is equal to the second case of (5).

2 Dependence

Theorem 2. Any mass function m on $\Theta = \{\theta_1, \ldots, \theta_K\}$ satisfies

$$m = \oplus_{\boldsymbol{\sigma}}(\overline{\{\theta_1\}}^{d_1}, \dots, \overline{\{\theta_K\}}^{d_K})$$

with d_i , $1 \leq i \leq K$, the means and σ the dependence vector of the K-variate Bernoulli distribution $P_{1...K}$ such that

$$P_{1\dots K}(S_1 = \omega_1, \dots, S_K = \omega_K) := m(A_{\boldsymbol{\omega}})$$

with $A_{\boldsymbol{\omega}}$ the subset of Θ such that $\theta_i \in A_{\boldsymbol{\omega}}$ if $\omega_i = 1$ and $\theta_i \notin A_{\boldsymbol{\omega}}$ if $\omega_i = 0$, for all $\boldsymbol{\omega} = (\omega_1, \ldots, \omega_K) \in \mathbf{\Omega}$.

Proof. Given the definition of \oplus_{σ} , we have that $\oplus_{\sigma}(\overline{\{\theta_1\}}^{d_1}, \ldots, \overline{\{\theta_K\}}^{d_K})$ is the mass function $m_{1\ldots K}$ induced by the random set $(\mathbf{\Omega}, P_{\cap}, \Gamma_{\cap})$ with

- $\mathbf{\Omega} := \times_{i=1}^{K} \Omega_i, \ \Omega_i = \{0, 1\},$
- $\Gamma_{\cap}(\boldsymbol{\omega}) := \bigcap_{i=1}^{K} \Gamma_{i}(\omega_{i})$ for all $\boldsymbol{\omega} = (\omega_{1}, \dots, \omega_{N}) \in \boldsymbol{\Omega}$, with $\Gamma_{i}(0) = \overline{\{\theta_{i}\}}$ and $\Gamma_{i}(1) = \Theta$.
- P_{\cap} the probability distribution $P_{1...K}$ conditioned on Θ_{\cap} , where $P_{1...K}$ is the distribution having P_1, \ldots, P_K , as marginals, with $P_i(1) = d_i$, and specified by vector σ , i.e., it is the *K*-variate Bernoulli distribution with means d_i , $1 \le i \le K$, and dependence vector σ .

Now, since a K-variate Bernoulli distribution is characterized by its means and dependence vector, given the statement of the theorem, we have that this distribution $P_{1...K}$ satisfies $P_{1...K}(S_1 = \omega_1, \ldots, S_K = \omega_K) = m(A_{\omega})$, for all $\omega = (\omega_1, \ldots, \omega_N) \in \Omega$.

Furthermore, similarly as in the proof of [2, Proposition 1], we have, for all $\boldsymbol{\omega} = (\omega_1, \ldots, \omega_N) \in \boldsymbol{\Omega}$:

$$\Gamma_{\cap}(\boldsymbol{\omega}) = \bigcap_{i=1}^{K} \Gamma_{i}(\omega_{i})
= \left(\bigcap_{i:\omega_{i}=0} \Gamma_{i}(0)\right) \bigcap \left(\bigcap_{i:\omega_{i}=1} \Gamma_{i}(1)\right)
= \bigcap_{i:\omega_{i}=0} \Gamma_{i}(0)
= \bigcap_{i:\omega_{i}=0} \Theta \setminus \{\theta_{i}\}
= \Theta \setminus \{\theta_{i}: i, \omega_{i} = 0\}
= \{\theta_{i}: i, \omega_{i} = 1\} = A_{\boldsymbol{\omega}}.$$
(10)

Remark that $\Gamma_{\cap}(\mathbf{0}) = A_{\mathbf{0}} = \emptyset$ and $\Gamma_{\cap}(\boldsymbol{\omega}) \neq \emptyset$ for all $\boldsymbol{\omega} \neq \mathbf{0}$, and that $P_{1...K}(\mathbf{0}) = m(A_{\mathbf{0}}) = m(\emptyset) = 0$, hence we have, for all $\boldsymbol{\omega} \in \mathbf{\Omega}$:

$$P_{\cap}(\boldsymbol{\omega}) = P_{1\dots K}(\boldsymbol{\omega})$$
$$= m(A_{\boldsymbol{\omega}}). \tag{11}$$

From Eqs. (10) and (11), we have $m_{1...K}(A_{\boldsymbol{\omega}}) = P_{\cap}(\{\boldsymbol{\omega} \in \boldsymbol{\Omega} : \Gamma_{\cap}(\boldsymbol{\omega}) = A_{\boldsymbol{\omega}}) = m(A_{\boldsymbol{\omega}})$, for all $\boldsymbol{\omega} \in \boldsymbol{\Omega}$. Hence, the mass function $\bigoplus_{\boldsymbol{\sigma}}(\overline{\{\theta_1\}}^{d_1}, \ldots, \overline{\{\theta_K\}}^{d_K})$ is the mass function m.

References

- F. Pichon. Reliability and dependence in information fusion. Invited talk, 8th International Conference on Belief Functions, 2-4 September 2024, Belfast, United Kingdom.
- F. Pichon. Canonical decomposition of belief functions based on Teugels' representation of the multivariate Bernoulli distribution. *Information Sciences*, 428:76–104, 2018.
- [3] F. Pichon, D. Dubois, and T. Denœux. Relevance and truthfulness in information correction and fusion. *International Journal of Approximate Reasoning*, 53(2):159– 175, 2012.