
Introduction to the theory of belief functions

Frédéric Pichon

Laboratory of Computer Engineering and Automation of Artois (LGI2A)
Université d’Artois, Béthune, France

http://www.lgi2a.univ-artois.fr/~pichon

7th School on Belief Functions and their Applications
Granada, Spain, October 19, 2025



History

The theory originates from the work of Dempster (1967)1 in the
context of statistical inference.
It was formalized by Shafer (1976)2 as a theory of evidence.

→ Also known as Dempster-Shafer theory or Evidence theory.
Smets contributed to its development around the 1990’s through
his Transferable Belief Model (TBM) interpretation of the theory.
Since then, it has found applications in a wide range of areas,
including information fusion, machine learning, reliability, risk
analysis, optimization, and preference modeling, as well as in
various application domains such as medicine, defense, finance,
and climate change.

1A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping.
Annals of Mathematical Statistics, 38:325–339, 1967.

2G. Shafer. A mathematical theory of evidence. Princeton University Press,
Princeton, N.J., 1976.
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Key features

A formal framework for reasoning with uncertain information.
It extends both probabilistic and logical/set-based (such as
interval analysis) reasonings:

▶ It includes extensions of set-theoretic/logical notions (intersection,
union, inclusion, inconsistency) and probabilistic notions
(conditioning, marginalization, entropy)

▶ Any reasoning done with sets or with probabilities alone, is
recovered.

However, its greatest expressive power allows also reasonings
involving both sets and probabilities, which is often the case.
Moreover, it is easily put in practice thanks to breaking down,
using a set of tools, the intricate available evidence into simpler
judgements.

→ General and operational framework for uncertain reasoning.
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Contents of this lecture

1 Representation of evidence: mass, belief and plausibility
functions.

2 Combination of evidence: Dempster’s rule, compatible frames.
3 Comparison of evidence: uncertainty principles, informational

orderings.
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Representation of evidence Mass function
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Representation of evidence Mass function

Mass function

Definition
Let Θ be a finite set called the frame of discernment. A mass function
on Θ is a mapping m : 2Θ → [0,1] such that∑

A⊆Θ

m(A) = 1.

Any A ⊆ Θ such that m(A) > 0 is a focal set of m.

A mass function is used to represent a state of knowledge about an
uncertain variable X taking values in Θ, induced by a body of evidence.
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Representation of evidence Mass function

Example
An attack from the red country will soon be launched on one of
five targets (2 cities, 3 military bases) in the blue country.

The target X ∈ Θ = {c1, c2,b1,b2,b3} is of interest.
A piece of information that X ∈ {b1, c1} has been received via a
communication link with an ally.
However, there is a 0.1 probability that this link is out of order.
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Representation of evidence Mass function

Formalization

Let Ω = {working, broken} be the set of possible states of the link.
▶ If it is working, we know that X ∈ {b1, c1}.
▶ It it is broken, we know nothing, i.e., we just know that X ∈ Θ.

There is a probability P(working) = 0.9 that it is working, hence of
knowing that X ∈ {b1, c1}.
There is a probability P(broken) = 0.1 that it is broken, hence of
knowing that X ∈ Θ.
This state of knowledge can be represented by the mass function
m such that:

m({b1, c1}) = 0.9, m(Θ) = 0.1

m(A): probability of knowing only that X ∈ A.
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Representation of evidence Mass function

Formalization (continued)

b1 b2

c1

working (0.9)

broken (0.1)

Θ(Ω,P)

Γ b3

c2

In addition to the set Ω of states of the link, equipped with the
probability measure P, let Γ : Ω → 2Θ be the mapping from the
states to what is known about X , e.g., Γ(working) = {b1, c1}.
The triple (Ω,P, Γ) represents the piece of evidence, and mass
function m models the state of knowledge it generates about X .
This meaning (semantics) of a mass function is in line with the
random code semantics proposed by Shafer for mass functions.
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Representation of evidence Mass function

Random code semantics
Shafer (1981)3

Suppose we receive a coded message about X .
The actual code used is unknown, but we know :

▶ it was one in a finite set Ω;
▶ the chance P(ω) of each code ω ∈ Ω being selected.

Furthermore, we know that the meaning of the message is
X ∈ Γ(ω), with Γ(ω) a nonempty subset of Θ, if code ω was used.
The probability that the message means X ∈ A is then:

m(A) := P({ω ∈ Ω : Γ(ω) = A}), ∀A ∈ 2Θ.

→ A mass function is obtained by fitting a piece of evidence to such
message (Ω,P, Γ).

3G. Shafer. Constructive probability. Synthese, 48(1):1–60, 1981.
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Representation of evidence Mass function

Example
Laskey (1987)4

A spy is sent to discover whether the enemy intends to attack at
dawn.
She observes a nonempty subset of Θ = {yes,no} (i.e. she may
observe A={yes}, the enemy will attack; A={no}, the enemy will not
attack; or A = Θ, she is unable to determine whether the enemy
will attack).
There are two possible codes ω1 and ω2, with probabilities
P(ω1) = 1/3 and P(ω2) = 2/3, and with coding schemes

ω1({yes}) = APPLE , ω1({no}) = CHERRY , ω1(Θ) = BANANA,

ω2({yes}) = APPLE , ω2({no}) = BANANA, ω2(Θ) = CHERRY .

4K. B. Laskey. Belief in belief functions: an examination of Shafer’s canonical
examples, Proc. of the Third Conference on UAI, pages 39 - 46, 1987.
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Representation of evidence Mass function

Example (continued)

The spy sends the coded message BANANA.
The meaning of this message depends on the code used:

Γ(ω1) = ω−1
1 (BANANA) = Θ,

Γ(ω2) = ω−1
2 (BANANA) = {no}.

Hence, the state of knowledge about the attack is represented by

m(Θ) = 1/3, m({no}) = 2/3.
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Representation of evidence Mass function

Random set
The triple/message (Ω,P, Γ) representing a piece of evidence is a
random set.
A random set (Ω,P, Γ) always induces a mass function
m : 2Θ → [0,1] from

m(A) := P({ω ∈ Ω : Γ(ω) = A}), ∀A ∈ 2Θ.

Conversely, any mass function m : 2Θ → [0,1] can be seen as
generated by the random set (Ω,P, Γ) with

Ω = 2Θ,

P({A}) = m(A), A ⊆ Θ,

and
Γ(A) = A, A ⊆ Θ.

More on random (fuzzy) sets in Lectures 7 & 9 (continuous
variables).
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Representation of evidence Mass function

Special cases

Logical mass function if it has only one focal set A ⊆ Θ, i.e., the
evidence tells us that X ∈ A for sure and nothing more. It is
equivalent to the set A and is denoted m[A] (m[A](A) = 1).

▶ Vacuous mass function if Θ is the only focal set. It represents total
ignorance.

Bayesian mass function if its focal sets are singletons, i.e., each
possible code/state ω of the evidence points to a single value of Θ.
It is equivalent to a probability distribution.
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Representation of evidence Mass function

The case of inconsistent knowledge

In some cases, it may happen that the modeling of the evidence
yields a random set (Ω,P, Γ) such that Γ(ω) = ∅ for some ω and

m(∅) = P({ω ∈ Ω : Γ(ω) = ∅}) > 0,

i.e., there is a nonzero probability that the induced knowledge is
inconsistent.
1 − m(∅) = P({ω ∈ Ω : Γ(ω) ̸= ∅}) is the probability that the
induced knowledge is consistent and, since m models this
knowledge, it is by extension a measure of the consistency of m.
It allows us to assess the validity of the assumptions that lead to
the modeling of the evidence by this random set.
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Representation of evidence Mass function

Unnnormalized mass function

What to do if such a case of unnormalized mass function, i.e.,
m(∅) > 0, occur?
Try and resolve the inconsistency, so that m(∅) = 0, by revising
the modeling assumptions (next two slides, Shafer’s solution in the
context of the random code metaphor)
However, if it is not clear which modeling assumptions should be
revised or because it can sometimes be convenient, an option (as
in Smets’s TBM) is to allow m(∅) > 0 and thus leave m as is.
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Representation of evidence Mass function

Random code semantics extended
Shafer (1990)5 and (1992)6

In the random code metaphor, when the message is decoded
using the different codes, we may sometimes get nonsense.
The codes with which we get nonsense cannot be the one actually
used.
Γ(ω) = ∅ for some ω is used to indicate that ω could not be the
code actually used.
The observation that some codes cannot be the one actually used
is taken into account by revising the chance distribution P for the
codes, so as to eliminate them, i.e., P is conditioned on the event

Θ∗ = {ω ∈ Ω : Γ(ω) ̸= ∅}.

5G. Shafer. Perspectives on the theory and practice of belief functions. Int. J.
Approx. Reason., 4(5-6):323-362, 1990.

6G. Shafer. Rejoinders to comments on “Perspectives on the theory and practice of
belief functions”. Int. J. Approx. Reason., 6(3):445-480, 1992.
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Representation of evidence Mass function

Normalization
In this extended version of the random code metaphor, the
probability that the message (Ω,P, Γ) means X ∈ A is:

m∗(A) := P∗({ω ∈ Ω : Γ(ω) = A}), ∀A ∈ 2Θ,

with P∗ the probability measure resulting from the conditioning of
P on the event Θ∗.
Mass function m∗ is normalized, i.e., m∗(∅) = 0.
It can be obtained directly from the mass function m induced from
the random set (Ω,P, Γ) as:

m∗(A) =
m(A)

1 − m(∅)
, ∀A ∈ 2Θ\{∅}.

This latter operation is called (Dempster’s) normalization.
Remark: a mass function is (totally) consistent if and only if it is
normalized.
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Representation of evidence Belief and plausibility functions
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Representation of evidence Belief and plausibility functions

Belief and plausibility functions

Definition
Given a mass function m on Θ, the corresponding belief and plausibility
functions are mappings bel : 2Θ → [0,1] and pl : 2Θ → [0,1] such that

bel(A) =
∑

B⊆A,B ̸=∅

m(B),

pl(A) =
∑

B∩A̸=∅

m(B).

bel(A) is the probability that the proposition X ∈ A is implied by
the noncontradictory evidence.
pl(A) is the probability that the proposition X ∈ A is consistent
with the evidence.
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Representation of evidence Belief and plausibility functions

Interpretation

Assume the evidence is that X ∈ B for some nonempty B ⊆ Θ.
Consider the proposition X ∈ A for some A ⊆ Θ.
If B ⊆ A, then we know that X ∈ A, i.e., the proposition is implied
by the evidence.
The interpretation of bel(A) follows then from that of m.
The interpretation of pl is obtained similarly by remarking that,
given evidence X ∈ B and proposition X ∈ A, if B ∩A ̸= ∅, then we
cannot exclude that X ∈ A, i.e., the proposition is consistent with
the evidence.
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Representation of evidence Belief and plausibility functions

Attack location example

We had Θ = {c1, c2,b1,b2,b3} and

m({b1, c1}) = 0.9, m(Θ) = 0.1

Degrees of belief and plausibility of some subsets of Θ:

A ∅ {b1} {c1} {b1, c1} {b1, c1, c2} {b1,b2} {b2, c2} Θ

bel(A) 0 0 0 0.9 0.9 0 0 1
pl(A) 0 1 1 1 1 1 0.1 1

F. Pichon Introduction to belief functions BFTA 2025 24



Representation of evidence Belief and plausibility functions

Relations between m, bel and pl
Let m be a mass function, bel and pl the corresponding belief and
plausibility functions.
We have

bel(A) = pl(Θ)− pl(A), A ⊆ Θ,

m(A) =
∑
B⊆A

(−1)|A|−|B|bel(B), A ⊆ Θ,A ̸= ∅,

m(∅) = 1 − bel(Θ),

m(A) =
∑
B⊆A

(−1)|A|−|B|+1pl(B), A ⊆ Θ,A ̸= ∅,

m(∅) = 1 − pl(Θ).

m, bel and pl are thus three equivalent representations of a state
of knowledge.
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Representation of evidence Belief and plausibility functions

Elementary properties

For all A ⊆ Θ, bel(A) ≤ pl(A).
bel(∅) = pl(∅) = 0.
bel(Θ) = pl(Θ) = 1 − m(∅).
In the attack location example, we get, for A = {b1, c1}:

A A Θ

bel 0.9 0 1
pl 1 0.1 1

We observe that

bel(A) + bel(A) ≤ bel(A ∪ A) = bel(Θ),

pl(A) + pl(A) ≥ pl(A ∪ A) = pl(Θ).

bel and pl are nonadditive measures.
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Representation of evidence Belief and plausibility functions

Contour function

Definition
Given a mass function m on Θ, the corresponding contour function is
the mapping c : Θ → [0,1]

c(θ) =
∑
θ∈B

m(B)

= pl({θ}).

In some particular cases with respect to the focal sets of m, it is
possible to recover m from c.
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Representation of evidence Belief and plausibility functions

Particular cases
Relationship with probability theory

When a mass function m is Bayesian, i.e., its focal sets are
singletons, we have, for all A ⊆ Θ,

bel(A) = pl(A) =
∑
θ∈A

m({θ}).

bel = pl is then a probability measure.
If pl is a probability measure, c is its probability distribution, i.e.,

pl(A) =
∑
θ∈A

c(θ).

m is recovered directly from c as they coincide.
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Representation of evidence Belief and plausibility functions

Particular cases
Relationship with possibility theory

When a mass function m is consonant, which means that its focal
sets A1, . . . ,Ar are nested, i.e., A1 ⊆ · · · ⊆ Ar , we have, for all
A,B ⊆ Ω,

pl(A ∪ B) = max(pl(A),pl(B)),

bel(A ∪ B) = min(bel(A),bel(B)).

pl is then a possibility measure and bel is the dual necessity
measure.
If pl is a possibility measure, c is its possibility distribution, i.e.,

pl(A) = max
θ∈A

c(θ).
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Representation of evidence Belief and plausibility functions

Particular cases
Relationship with possibility theory (continued)

m is recovered from c as follows.
Let c1 > . . . > cr be the distinct values taken by c, arranged in
decreasing order, and cr+1 = 0.
Let Ai = {θ|c(θ) ≥ ci}, i = 1, . . . , r .
Then, we have, for any A ⊆ Θ,

m(A) =


ci − ci+1 if A = Ai , i = 1, . . . , r ,
1 − c1 if A = ∅,
0 otherwise.
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Representation of evidence Belief and plausibility functions

Mass function from contour function
Let mc denote the mass function computed from some contour
function c according to the formula on the previous slide.
Approximation : Let m be a mass function, with contour function c
such that c1 = 1.Then, among the mass functions that are
consonant and lower approximations of m (their plausibility
functions are dominated by pl), mc is a reasonable 7 choice.
Elicitation: Let c be a contour function such that c1 = 1. Then,
among the mass functions that have this contour function, mc is a
reasonable8 choice.
(In both cases, “reasonable” means respecting the so-called
maximum uncertainty principle, see later.)
(Approximation of belief functions will be covered in Lecture 10.)

7See D. Dubois, H. Prade. A set-theoretic view of belief functions–logical
operations and approximation by fuzzy sets. Int. J. Gen. Syst., 12:193-226, 1986.

8See T. Denœux. Methods for building belief functions. Fifth BFAS School on Belief
Functions and Their Applications, Sienna, Italy, October 27–31, 2019.
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Representation of evidence Belief and plausibility functions

Consistency of a mass function
Let m be a mass function, with focal sets A1, . . . ,Ar and contour
function c.
The condition c1 = 1, i.e., maxθ∈Θ c(θ) = 1, is equivalent to

∩r
i=1Ai ̸= ∅.

Such a mass function is said to be fully consistent.
Full consistency is a stronger form of consistency than that
exhibited by normalized mass functions (Ai ̸= ∅, i = 1 . . . , r ), since

∩r
i=1Ai ̸= ∅ ⇒ Ai ̸= ∅, i = 1 . . . , r .

The quantity maxθ∈Θ c(θ) has been proposed9 as an alternative
(stronger) measure of consistency for m, to 1 − m(∅).
Remark: c1 = 1 − mc(∅), hence the full consistency of m is
nothing but the consistency of its approximation mc .

9S. Destercke, T. Burger. Toward an axiomatic definition of conflict between belief
functions. IEEE Trans. Cybern., 43(2):585–596, 2013.
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Combination of evidence Dempster’s rule

Outline

1 Representation of evidence
Mass function
Belief and plausibility functions

2 Combination of evidence
Dempster’s rule
Compatible frames

3 Comparison of evidence
Uncertainty principles
Inclusion relation
Uncertainty measures

F. Pichon Introduction to belief functions BFTA 2025 34



Combination of evidence Dempster’s rule

Independent and reliable messages

Let (Ω1,P1, Γ1) and (Ω2,P2, Γ2), with Γi : Ωi → 2Θ\{∅}, i = 1,2, be
two messages representing two pieces of evidence about X and
inducing mass functions m1 and m2, respectively.
Assume that these messages are independent, i.e., the chance
P12(ω1, ω2) that the pair of codes (ω1, ω2) ∈ Ω1 × Ω2 was chosen
is equal to P1(ω1) · P2(ω2).
Assume further that they are reliable: if the actual codes were ω1
and ω2, we know for sure that X ∈ Γ∩(ω1, ω2) := Γ1(ω1) ∩ Γ2(ω2).
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Combination of evidence Dempster’s rule

Conjunctive rule

Under the preceding assumptions of independence and reliability,
our body of evidence is represented by the random set
(Ω1 × Ω2,P12, Γ∩), which induces the state of knowledge about X
modeled by the mass function denoted m1 ∩⃝m2, called the
conjunctive sum of m1 and m2, and defined as

(m1 ∩⃝m2)(A) := P12({(ω1, ω2) ∈ Ω1 × Ω2 : Γ∩(ω1, ω2) = A}).

It is easy to show that

(m1 ∩⃝m2)(A) =
∑

B∩C=A

m1(B)m2(C).

The binary operation ∩⃝ is called the conjunctive rule
(unnormalized Dempster’s rule).
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Combination of evidence Dempster’s rule

Example

Let (Ω1,P1, Γ1) and (Ω2,P2, Γ2) be the following coded messages
sent by two spies about the target X ∈ Θ = {c1, c2,b1,b2,b3}.

b1

b2c1

ω1,1 (0.9)

ω1,2 (0.1) Θ

(Ω1,P1)

Γ1

b3

c2

ω2,1 (0.8)

ω2,2 (0.2)

(Ω2,P2)
Γ2
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Combination of evidence Dempster’s rule

Example (continued)

Message (Ω1,P1, Γ1) induces mass function

m1({b1, c2}) = 0.9, m1(Θ) = 0.1.

Message (Ω2,P2, Γ2) induces mass function

m2({b1, c1}) = 0.8, m2(Θ) = 0.2.

Assuming they are independent and reliable, we obtain

m2 \ m1 {b1, c2} Θ
0.9 0.1

{b1, c1} {b1, c1} ∩ {b1, c2} = {b1} {b1, c1}
0.8 0.8*0.9=0.72 0.08
Θ {b1, c2} Θ

0.2 0.18 0.02

m1 ∩⃝2({b1}) = 0.72

m1 ∩⃝2({b1, c1}) = 0.08

m1 ∩⃝2({b1, c2}) = 0.18

m1 ∩⃝2(Θ) = 0.02
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Combination of evidence Dempster’s rule

Case of conflicting evidence

Suppose (Ω2,P2, Γ2) is rather the following:

b1

b2c1

ω1,1 (0.9)

ω1,2 (0.1) Θ

(Ω1,P1)

Γ1

b3

c2

ω2,1 (0.8)

ω2,2 (0.2)

(Ω2,P2)
Γ2
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Combination of evidence Dempster’s rule

Case of conflicting evidence (continued)

Hence, m2 is now

m2({b2, c1}) = 0.8, m2(Θ) = 0.2.

We obtain

m2 \ m1 {b1, c2} Θ
0.9 0.1

{b2, c1} {b2, c1} ∩ {b1, c2} = ∅ {b2, c1}
0.8 0.8*0.9=0.72 0.08
Θ {b1, c2} Θ

0.2 0.18 0.02

m1 ∩⃝2(∅) = 0.72

m1 ∩⃝2({b2, c1}) = 0.08

m1 ∩⃝2({b1, c2}) = 0.18

m1 ∩⃝2(Θ) = 0.02
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Combination of evidence Dempster’s rule

Analysis
We are in a case where the body of evidence is modeled by a
random set (Ω1 × Ω2,P12, Γ∩) such that Γ∩(ω1, ω2) = ∅ for some
(ω1, ω2) ∈ Ω1 × Ω2 and

m1 ∩⃝2(∅) = P12({(ω1, ω2) ∈ Ω1 × Ω2 : Γ∩(ω1, ω2) = ∅}) > 0

This latter probability is known as the degree of conflict between
m1 and m2. As we have seen, it is a measure of the invalidity of
the modeling assumptions that lead to this random set.
Their most common revision, in order to resolve the inconsistency,
is basically Shafer’s solution for the case of inconsistent
knowledge seen earlier:

▶ if Γ∩(ω1, ω2) = ∅, then it is an observation that (ω1, ω2) could not be
the pair of codes actually used.

→ The distribution P12 must be revised to eliminate such pairs, i.e.,
conditioned on Θ∩ = {(ω1, ω2) ∈ Ω1 × Ω2 : Γ∩(ω1, ω2) ̸= ∅}.
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Combination of evidence Dempster’s rule

Dempster’s rule
Following this reasoning, the probability of knowing that X ∈ A
from two independent and reliable messages (Ω1,P1, Γ1) and
(Ω2,P2, Γ2) inducing mass functions m1 and m2, is

(m1 ⊕ m2)(A) := P∩({(ω1, ω2) ∈ Ω1 × Ω2 : Γ∩(ω1, ω2) = A}),

with P∩ the probability measure resulting from the conditioning of
P12 on the event Θ∩.
m1 ⊕ m2 is called the orthogonal sum of m1 and m2.
The orthogonal sum is well defined if P12(Θ∩) > 0.
It is easy to show that

(m1 ⊕ m2)(A) =
(m1 ∩⃝m2)(A)

1 − (m1 ∩⃝m2)(∅)
, ∀A ∈ 2Θ\{∅}.

The binary operation ⊕ is called Dempster’s rule.
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Combination of evidence Dempster’s rule

Assumptions underlying Dempster’s rule

In general, P∩ ̸= P12, hence the reasoning leading to Dempster’s
rule has induced a revision of the modeling assumptions (in the
sense that the distribution on the codes is no more P12) and,
specifically, some dependence between the messages.
This may seem contradictory with associating Dempster’s rule,
still, with the assumptions that the messages are “independent
and reliable”.
This apparent contradiction is resolved if we consider that the
codes have indeed been drawn according to P12 = P1 × P2. And
then, after this experiment has taken place, we receive an
observation about the pair of codes actually drawn (specifically,
that some pairs could not have been the one drawn) and we must
condition P12 on this observation.
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Combination of evidence Dempster’s rule

Example
Dempster’s rule

We had
m1({b1, c2}) = 0.9, m1(Θ) = 0.1

and
m2({b2, c1}) = 0.8, m2(Θ) = 0.2.

We obtain
m2 \ m1 {b1, c2} Θ

0.9 0.1
{b2, c1} ∅ {b2, c1}

0.8 0.72 0.08
Θ {b1, c2} Θ

0.2 0.18 0.02

m1⊕2(∅) = 0
m1⊕2({b2, c1}) = 0.08/0.28 = 9/14
m1⊕2({b1, c2}) = 0.18/0.28 = 4/14

m1⊕2(Θ) = 0.02/0.28 = 1/14
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Combination of evidence Dempster’s rule

Properties of Dempster’s rule

Commutativity: m1 ⊕ m2 = m2 ⊕ m1

Associativity: (m1 ⊕ m2)⊕ m3 = m1 ⊕ (m2 ⊕ m3)

Insensitivity to vacuous information (vacuous mass function as
neutral element): m ⊕ m[Θ] = m
Generalization of set intersection: if A ∩ B ̸= ∅ then

m[A] ⊕ m[B] = m[A∩B]

Generalization of probabilistic conditioning: if m is a Bayesian
mass function and m[A] is a logical mass function, then

m(·|A) := m ⊕ m[A]

is a Bayesian mass function corresponding to the conditioning of
m by A.
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Combination of evidence Dempster’s rule

Applicability of Dempster’s rule
Zadeh’s example

Let X ∈ Θ = {a,b, c} and two experts providing mass functions
m1 and m2 about X such that

m1({a}) = 0.99,m1({b}) = 0.01,m2({b}) = 0.01,m2({c}) = 0.99

We have m1⊕2({b}) = 1.
As both experts considered b to be very unlikely, some authors
claim this result to be counterintuitive, and use it to question
Dempster’s rule.
However, if you accept the assumptions underlying Dempster’s
rule, then this is the only reasonable conclusion: expert 1 tells that
c is impossible, and expert 2 tells that a is impossible, hence b is
the only remaining possibility.
The question is not whether Dempster’s rule produces sound
results or not, but rather whether its underlying assumptions hold.
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Combination of evidence Dempster’s rule

Applicability of Dempster’s rule
Zadeh’s example (continued) and complexity

As we have seen, the degree of conflict (m1 ∩⃝m2)(∅) is a way to
assess to validity of the assumptions that the pieces of evidence
are reliable and independent.
In Zadeh’s example, we have a conflict of 0.9999, which suggests
that these assumptions may not be valid.

→ Lecture 3 will cover alternative rules, corresponding to other
assumptions.
Another issue with Dempster’s rule is its computational
complexity: in the worst case, exponential with respect to |Θ|.

→ Lecture 3 will show that its complexity can be managed in
practical applications.
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Combination of evidence Compatible frames

Granularity of the frame of discernement

The granularity of the frame of discernement is always, to some
extent, a matter of convention, as any element of the frame can
always be split into several possibilities.
Example:

▶ Assume an analyst, who can determine whether the target is a
military base.

▶ His frame of discernment is

Ξ = {M,¬M},

where M means that the target is a military base.
▶ Recall the frame Θ = {c1, c2,b1,b2,b3}. We have

M → {b1,b2,b3}, ¬M → {c1, c2}.

▶ By splitting the elements of Ξ, we can obtain the elements of Θ.
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Combination of evidence Compatible frames

Refinement and coarsening

b1 b2

c1

Θ

b3

c2

M

¬M

Ξ

ρ

Definition
A frame Θ is a refinement of a frame Ξ, and Ξ a coarsening of Θ, if
there exists a mapping ρ : 2Ξ → 2Θ, called a refining, such that

{ρ({ξ}) | ξ ∈ Ξ} ⊆ 2Θ is a partition of Θ,
and, for all A ⊆ Ξ,

ρ(A) =
⋃
ξ∈A

ρ({ξ}).
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Combination of evidence Compatible frames

Vacuous extension
Expression of knowledge in a finer frame

Assume the analyst provides the following mass function on Ξ:

mΞ({M}) = 0.3, mΞ({¬M}) = 0.6, mΞ(Ξ) = 0.1.

How to express the state of knowledge mΞ in the finer frame Θ?
→ Transfer mΞ(A) to ρ(A), for all A ⊆ Ξ:

mΞ({M}) = 0.3 → ρ({M}) = {b1,b2,b3}
mΞ({¬M}) = 0.6 → ρ({¬M}) = {c1, c2}

mΞ(Ξ) = 0.1 → ρ(Ξ) = Θ

We get the following mass function on Θ:

mΞ↑Θ({c1, c2}) = 0.6,mΞ↑Θ({b1,b2,b3}) = 0.3,mΞ↑Θ(Θ) = 0.1.

mΞ↑Θ is called the vacuous extension of mΞ in Θ.
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Outer reduction
Suppose now that we have the following mass function on Θ:

mΘ({c2}) = 0.4, mΘ({c2,b2}) = 0.3, mΘ({b1,b3}) = 0.3.

How to express mΘ in the coarser frame Ξ?
It is not so obvious as the mapping ρ is not invertible, e.g., there is
no A ⊆ Ξ such that ρ(A) = {c2}.
A solution is to rely on a generalized inverse of ρ, called outer
reduction and defined as, for any B ⊆ Θ,

ρ†(B) = {ξ ∈ Ξ : ρ({ξ}) ∩ B ̸= ∅}.

We have for our example:

ρ†({c2}) = {¬M}, ρ†({c2,b2}) = {M,¬M}, ρ†({b1,b3}) = {M}.
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Combination of evidence Compatible frames

Restriction
Expression of knowledge in a coarser frame

Definition
The restriction of mΘ in Ξ transfers each mass mΘ(B) to the outer
reduction of B: for all A ⊆ Ξ,

mΘ↓Ξ(A) =
∑

ρ†(B)=A

mΘ(B).

In the example, the restriction of mΘ in Ξ is

mΘ↓Ξ({¬M}) = 0.4, mΘ↓Ξ(Ξ) = 0.3, mΘ↓Ξ({M}) = 0.3.

Remark: in general, m(Θ↓Ξ)↑Θ ̸= mΘ, i.e., information is lost when
expressing mΘ in a coarser frame.
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Combination of evidence Compatible frames

Compatible frames

Ξ2 = {Coast, Not Coast}

b1 b2

c1

Θ

b3

c2

M

¬M

C¬C

Ξ1

Ξ2

ρ1

ρ2

Definition
Two frames are compatible if they have a common refinement.
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Combination of evidence Compatible frames

Combination on compatible frames
Definition
Let mΞ1 and mΞ2 be mass functions on compatible frames Ξ1 and Ξ2
with common refinement Θ. Their orthogonal sum in Θ is

mΞ1 ⊕ mΞ2 = mΞ1↑Θ ⊕ mΞ2↑Θ

Example:

mΞ1({M}) = 0.5, mΞ1({¬M}) = 0.3, mΞ1(Ξ1) = 0.2,

mΞ2({C}) = 0.4, mΞ2({¬C}) = 0.5, mΞ2(Ξ2) = 0.1.

Their orthogonal sum in Θ is
mΞ2↑Θ

{c2, b3}, 0.4 {c1, b1, b2}, 0.5 Θ, 0.1
{c1, c2}, 0.3 {c2}, 0.12 {c1}, 0.15 {c1, c2}, 0.03

mΞ1↑Θ {b1, b2, b3}, 0.5 {b3}, 0.20 {b1, b2}, 0.25 {b1, b2, b3}, 0.05
Θ, 0.2 {c2, b3}, 0.08 {c1, b1, b2}, 0.10 Θ, 0.02
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Case of product frames

Assume now that we have two uncertain variables X and Y with
frames ΘX and ΘY .
Example:

▶ X is whether the target is a military base, with ΘX = {M,¬M}
▶ Y is whether the enemy will attack at dawn, with ΘY = {D,¬D}.

Let ΘXY = ΘX ×ΘY be the product space.
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Cylindrical extension and projection
ΘXY is a refinement of ΘX (and ΘY ) with refining ρ : 2ΘX → 2ΘXY

defined as, for all A ⊆ ΘX ,

ρ(A) = A ×ΘY .

ρ(A) is called the cylindrical
extension of A in ΘXY and is
denoted by A ↑ ΘXY .
The outer reduction of a subset B
of ΘXY is

ρ†(B) = {x ∈ ΘX | ρ({x}) ∩ B ̸= ∅}
= {x ∈ ΘX | ∃ y ∈ ΘY , (x , y) ∈ B}.

ρ†(B) is called the projection of B
on ΘX and is denoted by B ↓ ΘX .

ΘX

ΘY A ↑ ΘXY

A

ΘX

ΘY B

B ↓ ΘX
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Vacuous extension and marginalization

The vacuous extension of mΘX in ΘXY transfers each mass
mΘX (B), for any B ⊆ ΘX , to the cylindrical extension of B:

mΘX↑ΘXY (A) =

{
mΘX (B) if A = B ×ΘY ,

0 otherwise.

Conversely, the restriction, called marginalization, of a joint mass
function mΘXY in ΘX transfers each mass mΘXY (B) to the outer
reduction (projection) of B on ΘX : for all A ⊆ ΘX ,

mΘXY ↓ΘX (A) =
∑

B↓ΘX=A

mΘXY (B).

The marginalization operation extends both set projection and
probabilistic marginalization.
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Application to evidential reasoning
Many applied problems can be modeled by defining variables and
relations between them. Given partial information about some of
them, the problem is then to infer the values of variables of
interest.
Such problem can be cast in the belief function framework.
For simplicity, assume that we have only two variables X and Y .
Furthermore, suppose we have

▶ Partial knowledge of Y in the form of a mass function mΘY ;
▶ A joint mass function mΘXY representing an uncertain relation

between X and Y .
What can we say about X?

→ Compute (
mΘY ↑ΘXY ⊕ mΘXY

)↓ΘX .

Remark: such operations are intractable with many variables and
large frames of discernment. However, efficient algorithms exist to
carry them out in frames of minimal dimensions → Lecture 4.
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Combination of evidence Compatible frames

Example

X ∈ ΘX = {M,¬M} is whether the target is a military base and
Y ∈ ΘY = {D,¬D} is whether the enemy will attack at dawn.
Assume mass function mΘY about Y is such that

mΘY ({D}) = 0.3, mΘY ({¬D}) = 0.5, mΘY (ΘY ) = 0.2

Furthermore, we have a rule “If the enemy attacks at dawn, then
the target is a military base” (for short “If D then M”), which is
reliable with 0.7 probability.
This piece of evidence can be modeled by the joint mass function
mΘXY such that

mΘXY ({(D,M), (¬D,M), (¬D,¬M)}) = 0.7, mΘXY (ΘXY ) = 0.3
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Combination of evidence Compatible frames

Example (continued)

Computation of mΘY ↑ΘXY ⊕ mΘXY :
mΘXY

{(D,M), (¬D,M), (¬D,¬M)}, 0.7 ΘXY , 0.3
{D ×ΘX}, 0.3 {(D,M)}, 0.21 {D ×ΘX}, 0.09

mΘY ↑ΘXY {¬D ×ΘX}, 0.5 {(¬D,M), (¬D,¬M)}, 0.35 {¬D ×ΘX}, 0.15
ΘXY , 0.2 {(D,M), (¬D,M), (¬D,¬M)}, 0.14 ΘXY , 0.06

Marginalizing on ΘX , we get((
mΘY ↑ΘXY ⊕ mΘXY

)↓ΘX
)(
{M}

)
= 0.21,((

mΘY ↑ΘXY ⊕ mΘXY
)↓ΘX

)(
ΘX

)
= 0.79.

F. Pichon Introduction to belief functions BFTA 2025 61



Comparison of evidence

Outline

1 Representation of evidence
Mass function
Belief and plausibility functions

2 Combination of evidence
Dempster’s rule
Compatible frames

3 Comparison of evidence
Uncertainty principles
Inclusion relation
Uncertainty measures

F. Pichon Introduction to belief functions BFTA 2025 62



Comparison of evidence Uncertainty principles

Outline

1 Representation of evidence
Mass function
Belief and plausibility functions

2 Combination of evidence
Dempster’s rule
Compatible frames

3 Comparison of evidence
Uncertainty principles
Inclusion relation
Uncertainty measures

F. Pichon Introduction to belief functions BFTA 2025 63



Comparison of evidence Uncertainty principles

Maximum and minimum uncertainty principles

In various problems, we need to substitute a knowledge state by
another one, which has to be selected among a set of candidate
knowledge states.
If the candidate knowledge states are more (less) informative than
the original one, then the substitute should be the least (most)
informative one among them.
This is known as the maximum (minimum) uncertainty, or the
minimum information gain (loss), principle10.
Principle of maximum (minimum) entropy / nonspecificity in
probability / possibility theory, least (most) commitment principle in
belief function theory.

10G. J. Klir. Uncertainty and Information: Foundations of Generalized Information
Theory. John Wiley & Sons, 2005
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Comparison of evidence Uncertainty principles

Example
Maximum uncertainty principle

Suppose only marginal probability distributions PΘX and PΘY for
the preceding variables X and Y are available, and their joint
probability distribution PΘXY is needed.
The marginals amount to constraints for the joint: we only known
that the joint belongs to the set

P = {PΘXY |PΘXY ↓ΘX = PΘX ,PΘXY ↓ΘY = PΘY }.

Going from the initial knowledge state P to any PΘXY ∈ P
represents a gain of information.
We should thus apply the maximum uncertainty principle, i.e.,
select the most uncertain (least informative) distribution in P.
Uncertainty U(PΘ) of a probability distribution PΘ is typically
evaluated using Shannon entropy:
U(PΘ) = −

∑
θ∈Θ PΘ(θ) logPΘ(θ).

The least informative distribution in P is PΘXY = PΘX × PΘY .
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Example
Minimum uncertainty principle

Assume an uncertain variable Z about the number of days before
the attack, with ΘZ = {1, . . . ,30}.
Suppose it is originally know that Z ∈ {3,5,7} and this piece of
information must be approximated by a conservative interval, i.e.,
I = [ℓ,u], with ℓ,u ∈ ΘZ , ℓ ≤ u, such that {3,5,7} ⊆ I.
Going from the initial knowledge state {3,5,7} to any such I
represents a loss of information.
We should thus apply the minimum uncertainty principle, i.e.,
select the least uncertain (most informative) such I.
Uncertainty U(A) of a subset A ⊆ Θ is typically evaluated by its
nonspecificity, which is related to its cardinality: U(A) = f (|A|),
with f a nondecreasing function (f = log2 is the Hartley measure).
The most informative interval that includes {3,5,7} is I = [3,7].
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Comparison of evidence Uncertainty principles

Uncertainty principles in belief function theory

In order to be able to apply the uncertainty principles with mass
functions, we need a way to compare them with respect to their
uncertainty (information content).
This can be approached in two ways:

▶ qualitatively, by establishing inclusion relations (partial orders)
between mass functions;

▶ quantitatively, through the use of uncertainty measures.
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Comparison of evidence Inclusion relation

Specialization
Given two pieces of information X ∈ A and X ∈ B, with A,B ⊆ Θ,
X ∈ A is at least as informative as X ∈ B if A ⊆ B.
An extension of this ordering between sets to mass functions is
the specialization ordering.
Given two mass functions m1 and m2 on Θ, m1 is at least as
informative as m2, noted m1 ⊑ m2, if m1 can be obtained from m2
by distributing each mass m2(B) to subsets of B, i.e.,

m1(A) =
∑

B

S(A,B)m2(B), ∀A,

where S(A,B) = proportion of m2(B) transferred to A ⊆ B.
Properties

▶ Extension of set inclusion: m[A] ⊑ m[B] ⇔ A ⊆ B
▶ Greatest element: vacuous mass function m[Θ]
▶ m1 ⊑ m2 ⇒ pl1 ≤ pl2

Remark: other inclusion relations exist.
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Comparison of evidence Inclusion relation

Application: Ballooning extension
Problem

Suppose only a mass function m(·|B) about a variable X with
frame Θ is available, i.e., we have evidence about X assuming
that some proposition X ∈ B holds, and the mass function m such
that m(·|B) = m ⊕ m[B] is needed.
The conditional m(·|B) amounts to constraints for m: we only
know that m belongs to the set

M = {m|m(·|B) = m ⊕ m[B]}

For a similar reason as in the previous probabilistic example, the
maximum uncertainty principle should be applied, i.e., we should
select the most uncertain (least informative) m in M.
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Application: Ballooning extension
Solution

Proposition
The ⊑-least informative element m′ ∈ M is obtained by transferring
each mass m(A|B) to A ∪ B:

m′(D) =

{
m(A|B) if D = A ∪ B for some A ⊆ B,

0 otherwise.

m′ is known as the ballooning extension11 of m(·|B).
Recall that the vacuous extension allows us to express a state of
knowledge mΞ in the finer frame Θ, where every element of Ξ is
split into several elements of Θ.
The ballooning extension allows us to express a state of
knowledge mΘ in an extended frame Θ′, where Θ′ contains all the
elements of Θ and some new elements (Θ is here to Θ′ what B is
to Θ in the proposition).

11aka deconditioning or conditional embedding.
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Application: Ballooning extension
Example

Suppose a mass function m about X ∈ Θ = {c1, c2,b1,b2,b3}
such that m({c1,b3}) = 0.6 and m({c1, c2}) = 0.4.
We learn that actually there is one more city, called c3, that could
be the target, hence the frame is extended to
Θ′ = {c1, c2, c3,b1,b2,b3}
The ballooning extension of m from Θ to Θ′ is the mass function
m′ such that

m′({c1,b3, c3}) = 0.6, m′({c1, c2, c3}) = 0.4

b1 b2

c1

Θ’

b3

c2

b1 b2

c1

Θ

b3

c2

c3
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Application: Ballooning extension
Case of product frames

Suppose now that we have two uncertain variables X and Y with
frames ΘX and ΘY .
We have a piece of evidence about the value of X assuming that
some proposition Y ∈ B holds, for some B ∈ ΘY .
This piece of evidence is modeled by a mass function on ΘX
denoted by mΘX

B .

The mass function mΘXY such that mΘX
B = (mΘXY ⊕ mΘY ↑ΘXY

[B] )↓ΘX

is needed.
The ⊑-least informative solution is the mass function on ΘXY
denoted (mΘX

B )⇑ΘXY and obtained by transferring mΘX
B (A) to

(A × B) ∪ (ΘX × B).
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Application: Ballooning extension
Case of product frames: Example

X ∈ ΘX = {M,¬M} is whether the target is a military base and
Y ∈ ΘY = {D,¬D} is whether the enemy will attack at dawn.
We have the following piece of evidence: if the enemy attacks at
dawn, then the probability to know that the target is a military base
is 0.7 and the probability to know nothing is 0.3.
This piece of evidence can be modeled by the mass function

mΘX
{D}({M}) = 0.7, mΘX

{D}(ΘX ) = 0.3

.Its ballooning extension on ΘXY is

(mΘX
{D})

⇑ΘXY ({(D,M), (¬D,M), (¬D,¬M)}) = 0.7,

(mΘX
{D})

⇑ΘXY (ΘXY ) = 0.3

Remark: same mass function as in the previous example and
corresponding to the rule “If D then M” reliable with 0.7 probability.
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Comparison of evidence Uncertainty measures

Different categories of measures

Instead of seeking the least (most) informative specialization, a
measure of uncertainty can be maximized (minimized).
As mass functions extend both the probabilistic and logical/set
formalisms, there have been various proposals inspired by the
measurement of uncertainty in these frameworks.
Uncertainty measures for mass functions can be categorized into:

▶ imprecision (or nonspecificity) measures (tied to the extension of
sets);

▶ inconsistency (or conflict) mesures (origins in both the probabilistic
and logical approaches 12 );

▶ total uncertainty measures, capturing both imprecision and
inconsistency.

Measures often defined for normalized mass functions, at least
originally, and satisfying diverse lists of properties → Lecture 2.

12A.-L. Jousselme, F. Pichon, N. Ben Abdallah, S. Destercke. A note about entropy
and inconsistency in evidence theory. Proc. of BELIEF 2021, pages 215-223.
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Imprecision measures
Idea: uncertainty (in the sense of imprecision) is higher when
masses are allocated to larger focal sets

I(m) = f

 ∑
∅≠A⊆Θ

m(A)g(|A|)


with f = g = Id (cardinality), f = Id and g = log2 (nonspecificity),
f = log2 and g = Id (“additive cardinality”)
Interpretation: mean imprecision
Maximum for ignorance m[Θ], minimum for contradiction m[∅].
|A| ≤ |B| ⇔ I(m[A]) ≤ I(m[B]) (only ⇒ for nonspecificity, requires
B ̸= ∅ for ⇔).
Nonspecificity and additive cardinality extend the Hartley measure.
I(m) = f (

∑
θ∈Θ c(θ)) for g = Id .

I(m) is constant (= f (g(1))) for m Bayesian (and it is the minimum
for normalized mass functions), hence the need to measure
another dimension of uncertainty.
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Inconsistency measures (1/2)
Idea: uncertainty (in the sense of inconsistency) is higher when
masses are allocated to more inconsistent focal sets

E(m) = −
∑
A⊆Θ

m(A) log2(g(A))

with g = pl (dissonance), g = bel (confusion), and m normalized.
Interpretation: − log2 g(A) can be interpreted as a degree to which
the evidence is inconsistent with focal set X ∈ A, hence mean
value of the inconsistency among focal sets.
E(m) extends Shannon entropy, in particular dissonance is also
maximized when m is the uniform Bayesian mass function
(m({θ}) = 1/|Θ| for all θ ∈ Θ).
Minimized when, respectively, m is fully consistent (nonempty
intersection of the focal sets) and logical.
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Comparison of evidence Uncertainty measures

Inconsistency measures (2/2)
Alternative measures using the consistency measures seen
earlier and a decreasing function h:

C(m) = h(1 − m0(∅))

with h(x) = 1 − x and m0 = m (conflict) or m0 = mc (strong
conflict), or with h = − log2 and m0 = mc (“additive strong conflict”)
For m0 = m, minimum when m is consistent (i.e., normalized).
For m0 = mc , minimum when m is fully consistent.
Maximum for contradiction m[∅]
Normalized mass functions (only m0 = mc useful): C(m)
maximum for uniform Bayesian mass function and, for h = − log2
and m Bayesian, C(m) = − log2 maxθ∈Θ m({θ}), i.e., is the
min-entropy (MinE) of probability distribution m.
Inconsistency measure ϕ for sets: ϕ(A) = 1 if A = ∅, ϕ(A) = 0 if
A ̸= ∅. We have ϕ(A) ≤ ϕ(B) ⇔ C(m[A]) ≤ C(m[B]).
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Total uncertainty measures (1/2)

Idea: capture both imprecision and inconsistency in a single
uncertainty measure.
Compound measures, which add up a measure of imprecision
and a measure of inconsistency.
Entropy-based measures, which evaluate the uncertainty in a
probability transformation of m.
Total uncertainty of Denœux (2025)13 is an example of both kinds

T (m) = I(m) + C(m) = MinE(pm)

with I and C the additive measures, and pm(θ) =
c(θ)∑

θ′∈Θ c(θ′) .

13T. Denœux. Uncertainty measures in a generalized theory of evidence. Fuzzy
Sets and Systems, 520:109546, 2025.
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Total uncertainty measures (2/2)
Aggregate uncertainty

AU(m) = max
P∈P(m)

S(P)

where P(m) is the set of probability measures that dominate bel
(credal set of m → Lecture 6) and S is the Shannon entropy.
Both T and AU are defined for normalized mass functions.
Properties of AU and T :

▶ Maximum for ignorance and the uniform Bayesian mass function.
▶ Minimum for certain mass functions (i.e., m such that m({θ}) = 1

for some θ ∈ Θ).
▶ Additive: an uncertainty measure U for mass functions is additive if

U(mΘX ⊕ mΘY ) = U(mΘX ) + U(mΘY ).

▶ AU reduces to the Shannon entropy when m is Bayesian and to the
Hartley measure when m is logical.
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Example of application of uncertainty measures
Suppose we are given the degrees of belief of r subsets, i.e.,
bel(Ai) = αi , i = 1, . . . , r , for an unknown mass function m.
For a similar reason as in previous examples, we should then
select the most uncertain m that satisfies these constraints.
Comparing the uncertainty of mass functions using, e.g., the
cardinality measure, we have then the following linear optimization
problem to solve:

max
m

∑
∅̸=A⊆Θ

m(A)|A|

under the constraints:∑
∅≠B⊆Ai

m(B) = αi , i = 1, . . . , r ,

∑
A⊆Θ

m(A) = 1.
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Relation between inclusion, imprecision and
inconsistency (1/3)

For all A,B ⊆ Θ, we have

A ⊆ B ⇒ |A| ≤ |B| and ϕ(A) ≥ ϕ(B)

This monotonicity wrt inclusion property extends to mass
functions: for any mass functions m and m′, and any measures I
and C,

m ⊑ m′ ⇒ I(m) ≤ I(m′) and C(m) ≥ C(m′)

Consequence: Consider a set M of mass functions that are more
specialized than a mass function m′, i.e., for all m ∈ M,m ⊑ m′.
Suppose a mass function has to be chosen from M, as a
substitute to m′, using some uncertainty measure U.
If U = I, then the maximum uncertainty principle is at play: all
m ∈ M are more informative, according to I, than m′, and to
minimize information gain, the least informative, i.e., the least
precise, should be chosen.
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Relation between inclusion, imprecision and
inconsistency (2/3)

Conversely, if U = C, then the minimum uncertainty principle is at
play: all m ∈ M are less informative, according to C, than m′, and
to minimize information loss, the most informative, i.e., the least
inconsistent (conflicting), should be chosen.
To sum up, if U = I, choose argmaxm∈M I(m), and if U = C,
choose argminm∈M C(m).
Special case: M is a chain wrt ⊑

▶ Instead of using a measure U, using ⊑ to chose the substitute of m′

yields a unique solution: the ⊑-greatest element in M
▶ This element is also a solution to the above optimization problems

Remark: if M is a set of less specialized mass functions than m′,
then argmax and argmin are swapped and ⊑-greatest becomes
⊑-least.
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Relation between inclusion, imprecision and
inconsistency (3/3)

If one wants to take into account both imprecision (maximization)
and inconsistency (minimization), then one will typically be facing
a bi-objective optimization problem, for which various approaches
may then be used.
An alternative to account for both dimensions might be to use a
measure of total uncertainty. However, some caution should be
exercised, at least for U = T : if m ⊑ m′, we can have either
T (m) < T (m′) or T (m) > T (m′), hence neither the max nor the
min uncertainty principle seem appropriate.
One could then instead search for the mass function that
preserves the most (in terms of gain or loss) the information
content of m′, i.e., argminm∈M |T (m)− T (m′)|.
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