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Contents of this lecture

@ Dempster’s rule of combination is the cornerstone of Shafer’s
theory of evidence.

@ It allows the combination of independent and reliable pieces of
evidence.

@ However, two issues:

@ Its computational complexity;
@ Pieces of evidence are not always independent and reliable.
@ This lecture:

@ In practice, its complexity is manageable.

@ An extension of Dempster’s rule allowing us to account for various
assumptions with respect to the reliability and dependence of the
pieces of evidence.

© Methods to determine which assumptions to make about the
reliability and dependence of the pieces of evidence.
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0 Computation of Dempster’s rule
@ Expressions
@ Exact
@ Approximate

© Extension of Dempster’s rule
@ Forms of unreliability for a piece of evidence
@ Partially reliable pieces of evidence
@ Dependent pieces of evidence

e Rule selection
@ Uncertainty principle-based
@ Performance-based
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Computation of Dempster’s rule Expressions

Refresher
Unnormalized Dempster’s rule (conjunctive rule)
o Let (Q1 , Py, |_1) and (Qg, P, rg), withT; : Q; — 26\{®}, i=1,2, be
two messages representing two pieces of evidence about X € ©
and inducing mass functions my and my, respectively.

@ If these messages are assumed to be independent and reliable,
then our body of evidence is represented by the random set
(Q1 X Qg, P12, I'm), with
Pia(wy,w2) = Py(w1)Pa(wz),
Fa(wr,w2) = Ty(wr) NT2(w2)

@ This random set induces the state of knowledge about X modeled
by the conjunctive sum my @2 such that

M@2(A) = Y m(B)my(C), VAC®.
BNC=A
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Computation of Dempster’s rule Expressions

Refresher
Dempster’s rule, mass-based expression
@ If one handles the inconsistency (my@2(?)) that may be present in
such a random set a la Shafer, i.e., by conditioning P;»> on
On = {(w1,w2) € Q4 X Qo : (w1, ws) # 0}, then the probability of
knowing that X € A from these messages satisfies, for all A # (),
Mig2(A) = migo(A) (normalized conjunctive sum)
mi@2(A)
1 — (mM@a(0)’
>_Bnc—aM™(B)my(C)
1= Bnc=p M(B)mz(C)

@ The orthogonal sum my; is the mass function generated by the
random set (21 x Qo, Pn, 'n) with P the probability measure
resulting from the conditioning of P> on the event ©n.

o Itis well defined if 1 — my@2(0) = P12(©n) > 0.

@ The binary operation @ is called Dempster’s rule.
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Computation of Dempster’s rule Expressions

Expression using commonalities
@ Commonality function g : 2° — [0, 1]

q(A) =) _ m(B)

BDA
@ Conversely,
m(A) = (-1)Pq(B)
BDA
@ We have
G1@2(A) = q1(A) - g2(A), VA,
and

Gig2(A) = K-qip2(A), VA#D,
Qig2(0) = 1

with K = (ZMBQG(—1)'B'“671@2(13))_1 = (1 - mE200)) "

F. Pichon
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Complexity

@ Orthogonal sum mygo:

» Mass-based approach;
» Commonality-based approach (EEEED).
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Complexity

@ Orthogonal sum mygo:

» Mass-based approach;

» Commonality-based approach (E3EEED).
@ Computing times proportional to, respectively:

> |O[|F(my)[|F(mz)]

» |©]%21°I (using the Fast Mébius Tranform to perform m « q)
@ Which approach to use ?

> if Vmy, | F(m;)| << 219, use the mass-based approach;

> if Im;, | F(m;)| ~ 29, use the commonality-based approach.
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Complexity

@ Orthogonal sum mygo:

» Mass-based approach;
» Commonality-based approach ( ).

@ Computing times proportional to, respectively:

> |O[|F(my)[|F(mz)]

» |©]%21°I (using the Fast Mébius Tranform to perform m « q)
@ Which approach to use ?

» if Ymy, | F(m;)| << 219, use the mass-based approach;

> if Im;, | F(m;)| ~ 29, use the commonality-based approach.

@ In the worst case, exponential complexity with respect to |©|.

@ However, for practical applications (typically involving several
mass functions), this is rarely an issue...
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Computation of Dempster’s rule
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Computation of Dempster’s rule Exact

Particular forms of mass functions

Simple mass functions

@ A mass function is simple if it has two focal sets: © and A for
some A C ©, which means it is of the form

m(A) =1-d, m(©)=d,

for some d € [0, 1]. It is denoted by A“.
» It represents a message that means X € A with probability 1 — d,
and that is useless, i.e., means X € ©, with probability d.
» Prototypical example: a sensor reporting X € A and faulty with
probability d.

@ If each mass function is of the form {#}9 or @d, for some 0 € ©,
the complexity becomes linear.

F. Pichon Combination of belief functions BFTA 2025
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Computation of Dempster’s rule Exact

Particular forms of mass functions

Interval focal sets

o If © is linearly ordered, and the focal sets of the mass functions
are constrained to be intervals, the complexity becomes
polynomial.

@ Example: X is the number of days before the attack

» ©={1,...,30}
» A C Ois an interval if there exist elements a and b of © such that

A={0eBla<f<b}.

Such A is denoted by |[a, b].

For instance, A= {12,13,14,15,16} = [12,16].

v

>
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Computation of Dempster’s rule Exact

Particular forms of mass functions
Lattice interval focal sets
@ More generally, the complexity is polynomial if there is a partial
ordering < of © such that (©, <) is a lattice and the focal sets of
the mass functions are constrained to be intervals of that lattice.
@ Refresher on lattices:

» Partial ordering < on finite set L: a reflexive, antisymmetric and
transitive relation on L.

» (L, <) is a partially ordered set (poset).

» The poset (L, <) is a lattice if for every x, y € L, there is a unique
greatest lower bound (denoted x A y and called meet) and a unique
least upper bound (denoted x v y and called join).

@ Polynomial complexity because the intersection of two intervals
[a, b] and [c, d] of (©, <), required by Dempster’s rule, is an
interval

[ [ave,bAad] ifave<bAd,
la.bjnfe.d] = { 0 otherwise.
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Computation of Dempster’s rule Exact

Particular forms of mass functions

Lattice interval focal sets (continued)

@ This result makes it possible to tackle applications, such as
multi-label classification, ensemble clustering, and preference
aggregation, involving the manipulation of mass functions defined
on very large © and which are thus intractable in the usual case.

@ Indeed, in such applications, mass functions having only (lattice)
interval focal sets are naturally encountered...

F. Pichon Combination of belief functions BFTA 2025
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Computation of Dempster’s rule Exact

Particular forms of mass functions
Examples of lattice intervals: Multi-label classification
@ Instances belong to several classes at the same time.
@ E.g., a song (instance) can generate several emotions (classes).
@ Let=={&,...,&} be the set of classes.
@ Class label X of an instance takes values in © = 2=,
@ Let 64 be the element of © correspondingto A C =
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Computation of Dempster’s rule Exact

Particular forms of mass functions

Examples of lattice intervals: Multi-label classification

Instances belong to several classes at the same time.

E.g., a song (instance) can generate several emotions (classes).
Let = = {&,...., &} be the set of classes.

Class label X of an instance takes values in © = 2=.

Let 64 be the element of © correspondingto A C =

Partial orderingon ©: 04, < 6g< AC B, forall A,B C =.

Interval [04, 0g] of lattice (©, <), for A C B, is an imprecise
specification of X: it surely contains all elements of A and surely
contains no element of B.

Natural way to express expert imprecise knowledge about the
class label of a training instance.

Predicting the class label of a test instance from such training data
amounts, using the E-KNN classifier, to combining mass functions
with interval focal sets.
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Computation of Dempster’s rule Exact

Particular forms of mass functions

Examples of lattice intervals: Ensemble clustering
@ Clustering a set = of n objects = finding a partition of =.
@ Let © be set of all partitions of =.
@ The “true” partition X of the objects takes values in ©.

@ Partial ordering on ©: 6 < ¢’ (0 is finer than ¢’), for all 0,6’ € O, if
the clusters of 6 can be obtained by splitting those of 6.

F. Pichon Combination of belief functions BFTA 2025
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Computation of Dempster’s rule Exact

Particular forms of mass functions

Examples of lattice intervals: Ensemble clustering
o

Clustering a set = of n objects = finding a partition of =.

Let © be set of all partitions of =.

The “true” partition X of the objects takes values in ©.

Partial ordering on ©: 6 < ¢’ (0 is finer than ¢'), for all 6,0’ € ©, if
the clusters of 6 can be obtained by splitting those of 6.

Interval [0, 9] of lattice (©, <), for § < 6, is an imprecise
specification of X: it is coarser than # and finer than 4.

For instance, “the objets of a set A C = belong to the same
cluster” can be represented by the interval [0 4, 6=], where 0 is the
partition where only the objects in B are clustered together.
Natural way to interpret the output of a clustering algorithm.
Predicting the true partition from an ensemble of such clustering
algorithms, while accounting for their validity, amounts to
combining mass functions with interval focal sets.
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Computation of Dempster’s rule Exact

Decision making

@ The goal is often to make decisions.

@ A usual decision rule is to select the singleton {6} of © with the
largest plausibility or, equivalently (since p/({0}) = q({6})), with
the largest commonality.

@ The complexity is linear, thanks to the property

Ga2({0}) = K- a1({6}) - g2({0}), Vo€ ©.

F. Pichon Combination of belief functions BFTA 2025 17



Computation of Dempster’s rule
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Computation of Dempster’s rule Approximate

Approximate computation

@ Approximate computation when the exact computation is not
possible.
@ Stochastic approximation procedures:

» (Approximate) Combined belief for some A C © can be computed
by Monte Carlo algorithms in time linear in |©];

» Not feasible when one is interested in the whole combined belief
function.

@ Deterministic approximation procedures: provide upper and lower
bounds on combined belief

» Mass-based approach;
» Commonality-based approach.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

@ Complexity depends on the number of focal sets — approximate
mass functions by simpler ones with fewer focal sets.

@ Simplest method: Summarization algorithm.

@ Let F,..., F be the focal sets of a mass function m ranked by
decreasing mass, i.e., m(Fy) > m(F;) > ... > m(F;).

@ Let k be the maximum allowed number of focal sets.

@ Ifr > k,the r — k + 1 focal sets Fy, ..., Fr are replaced by their
union, and m is approximated by the mass function ¢*(m) defined

as
pr(m)(F) = m(F), i=1,... k-1,
r r
ot (m) (U F,-> = > m(F)
i=k i=k
@ For short, we say that Fy, ..., F, are “aggregated”.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach
@ We have m C p*(m): it is called an outer approximation of m.

Proposition (Monotonicity of @ with respect to C) J

mCEm = memyC mMemy, Ymg

@ From these properties, we have

mg C m*
with
mg = MQoO...QMn,
mt = o (e (T (T (MEmM2)EMs)® . . . My_1)@My).
@ mT is an outer approximation of the conjunctive combination of

mass functions my, ..., mp.
@ The combinatorial explosion of the combination is avoided.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

@ In the summarization procedure of a mass function m, if we
replace the focal sets Fy, ..., F, by their intersection rather than
their union, we get another approximation ¢~ (m) of m.

@ We have ¢~ (m) C m: it is called an inner approximation of m.
@ Furthermore,
m-C mgC mt
with

m = ¢ (¢ (..o (¢ (MOM)EOM3)® ... My_1)OMp).

@ We have

pl~ < plg < pl*
@ Bounds on belg can also be obtained.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

@ Let my denote the orthogonal sum of mass functions my, ..., my.
@ We have
Pla(A)
I (A) = ——, VACO

@ Inner and outer approximations m~ and m™ of mg allow thus to
obtain lower and upper bounds on pls, (and also on bels):

pl~(A) pl*(A)
< plp(A) < o (0)

pl*(©)
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

@ Let mbe a mass function.

@ The summarization algorithm produces a less informative (in the
sense of C) approximation ¢+ (m) of m (we have m C ¢t (m)).

@ It does so by aggregating “unimportant” focal sets (those with
lowest masses).

@ They are unimportant in the sense that they will not incur too
much information content change.

@ When approximating m, we indeed want to preserve as much as
possible of its information content.

F. Pichon Combination of belief functions BFTA 2025
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach
@ How much information is preserved by ¢*(m)?
@ Cardinality of a mass function m:

ml= ) m(A)A

0#ACO

the greater the cardinality of m, the less informative mis.
@ Recall that we have

my E mp = [my| < [my,

hence, if information content is measured using cardinality, ¢ (m)
constitutes a loss of information.

@ A measure of the information lost if we replace m by ¢*(m) can be

A(p*(m), m) == |*(m)| — m.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

@ Furthermore, we can remark that the summarization algorithm
involves a specific partition P = {/ly, ..., I} of
F(m) ={Fy,..., F} with

i = {F}, i=1,...;k—1,
Ik = {Fk,...,Fr}.

@ The mass function ¢ (m) can then be rewritten simply as

ot (m) <UF) = > m(F), VIeP.

Fel

Fel

F. Pichon Combination of belief functions BFTA 2025
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

@ Other partitions of F(m) of size k exist!
@ Let cp;g(m) be the outer approximation of m obtained for some
partition P of F(m) using the equation on the previous slide.

— Find the best outer approximation . (m) of m by searching a
partition P* minimizing the information loss:

Alh-(m), m) := min A(ob(m), m)

with Py the set of all partitions of F(m) of size k.

@ Remark: this is a case where mis substituted by a mass function
chosen in a set M of less specialized mass functions than m, and
by choosing the cardinality as the uncertainty measure, we have
seen that we should apply the minimum uncertainty principle,
which is what is happening here.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

@ An exhaustive search in Py is in general not possible, as |Px|
rapidly explodes, even for small values of r.

@ We need to resort to heuristic search techniques.

@ A hierarchical clustering algorithm has been proposed for that
purpose: pairs of focal sets are grouped sequentially (at each
step, the two “closest” focal sets are aggregated), until the desired
number k of focal sets has been reached.

@ This algorithm takes time proportional to r3.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

@ The algorithm relies on the “distance” 6*(F;, F;) between any pair
(Fi, Fj) of focal sets of a mass function m defined as

OF(Fi, Fj) := A, (m), m),
with P; ; the partition of F(m) of size |F(m)| — 1 such that

3/673,'71',/ = {FlaFj}u
vIleP, I £1,I = {F},F e F(m),F # F;, F;.

@ 6" (F;, F;) evaluates how much information is lost, with respect to a
given mass function m, if its focal sets F; and F; are aggregated.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

o Let cpg(m) denote the outer approximation of a mass function m
obtained using this hierarchical clustering-based approach (outer
clustering approximation for short)

» There is no guarantee that it yields the same (lowest) information
loss as ¢5. (m).
» It has been shown empirically to yield better results than o™ (m).

@ Much as the summarization procedure can be adapted to obtain
an inner approximation ¢~ (m) of m, this more complex
approximation procedure can be adapted to find an inner
(clustering) approximation ap;(m) of m.

@ Remark: contrarily to the summarization procedure,
approximations go;g(m) and cp;s(m) of mrely in general on different

partitions P of F(m).
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

@ Similarly as for the summarization procedure, we can obtain inner

and outer approximations of the conjunctive combination of n
mass functions:

- +
ms C mg C mg

with
My = o5(@p(---9p(Pa(MOM)EM)E - . . My—1)@Mn),
mE = oL(¢A(- P (P E(MEOM)EMs)E - . . My—1)@Mn).

@ They induce bounds on plg (and on bely):

ol (A) pIE(A)
b < PP = hey

F. Pichon
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Computation of Dempster’s rule Approximate

Approximation for the commonality-based approach

@ Complexity depends on |©| — approximate © by a simpler
(coarser) frame = with fewer elements.
@ Algorithm for the combination of n mass functions my, ..., mp:

@ Search, using a hierarchical clustering procedure, for a partition
(coarsening) = of © of size ¢, minimizing information loss defined as

n
> Am= m)
i=1

with m"="® the outer approximation of m; obtained by carrying m; to
= (restriction mf:) and carrying it back to © (vacuous extension

1 0)
@ Using the commonality-based approach, combine the mass
functions in the coarsened frame, i.e., compute m= := @7 m}:
© Carry the result to ©, i.e., compute 7 := m=1°

@ mis an outer approximation of mg).
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Computation of Dempster’s rule Approximate

Approximation for the commonality-based approach

@ Computing time proportional to max(|©2, nc?2°).
@ Algorithm can be adapted to obtain an inner approximation m of
me.
@ We have thus
mL mgLtm

@ This algorithm thus also yields lower and upper bounds for bels,
and for plg.

F. Pichon Combination of belief functions BFTA 2025

33



Outline

© Extension of Dempster’s rule
@ Forms of unreliability for a piece of evidence
@ Partially reliable pieces of evidence
@ Dependent pieces of evidence
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Extension of Dempster’s rule

Motivation

@ The assumptions leading to Dempster’s rule are that the pieces of
evidence to be combined are independent and reliable.

@ These assumptions clearly do not always hold.

— An extension of Dempster’s rule allowing us to account for various
assumptions with respect to the reliability and dependence of the
pieces of evidence.

@ A prism to understand most of the main alternative combination
schemes to Dempster’s rule.
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Extension of Dempster’s rule

Outline

e Extension of Dempster’s rule
@ Forms of unreliability for a piece of evidence
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Forms of unreliability for a piece of evidence
Reliability

@ The reliability of a piece of evidence is classically understood in
terms of relevance, i.e., it is reliable if it provides useful information
regarding the variable of interest.

@ Examples:

» A broken watch is useless to try and find the time it is since there is
no way to know whether the supplied information is correct or not: it
is not reliable for the time;

» My twelve-year-old son is ignorant about the name of the latest

Nobel Peace Prize laureate: he is not reliable for this question (in
contrast to nobelprize.org).

@ Basic idea : a piece of evidence is valid if it is reliable, whereas it
is useless if it is unreliable.
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Extension of Dempster’s rule Forms of unreliability for a piece of evidence

Formalization

@ Assume a piece of evidence corresponding to a message whose
meaningis X € AC ©.
» If it is unreliable, we replace X € Aby X € ©
» Ifitis reliable, we keep X € A
@ Let R be the variable denoting its reliability, defined on
R = {rel, unrel}.
@ The interpretation of the message according to the reliability may
be modeled by M4 : R — 2° such that

Ma(rel) = A,
Ma(unrel) = ©.
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Extension of Dempster’s rule Forms of unreliability for a piece of evidence

Uncertain reliability

@ Let (2, P,I") be a message representing a piece of evidence
about X and inducing mass function m.

@ Assume this message to be unreliable with probability
PR(unrel) = a.

@ What can then be inferred about X?

@ If the actual code was w € Q2 and

» the message is reliable, we know that X < Mr(.(re/)
» the message is unreliable, we know that X < M. (unrel) = ©

@ Hence, the probability to know X e AC © is

*m(A) = PR(rel)- > Pw)
w:l‘lr(w)(rel):A

= (1—-a) -m(A).
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Extension of Dempster’s rule Forms of unreliability for a piece of evidence

Uncertain reliability (continued)

@ The random set
(QxR,P x PR TR)
with
MR (w, r) =Ny (r)
for all (w, r) € Q x R, represents all the available information and
the knowledge it induces about X is represented by “m.

@ “mis known as the discounting with discount rate o of mass
function m.

@ It is the most basic so-called correction operation for a mass
function.

F. Pichon Combination of belief functions BFTA 2025
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Extension of Dempster’s rule Forms of unreliability for a piece of evidence

Contextual reliability

@ Unreliability can be refined into contextual unreliability, leading to
a more general correction model.

@ State unrel and a given message X € A: one must discard what
the message tells with respect to each 6§ € © (each 8 € © is then
still a possible value for X).

@ Unreliable only for some 6 € ©: one must discard what the
message tells only for these values.

@ Assume unreliability for all the values in some B C © (unrelg for
short): we must then replace X € Aby X € AUB.

@ Let RC = {unrelg}pco-

@ The interpretation of the message according to this refined,
“contextual”, reliability may be modeled by M4 : R¢ — 2° s.t.

N4(unrelg) = AUB.

@ The crude reliability model corresponds to states unrely (=rel) and
unrelg (=unrel).

F. Pichon Combination of belief functions BFTA 2025 41



Extension of Dempster’s rule Forms of unreliability for a piece of evidence

Uncertain contextual reliability

@ Assume uncertainty in the form of a probability distribution PR,
about the contextual reliability of a message (2, P, ') representing
a piece of evidence and inducing mass function m.

@ Our knowledge about X is then represented by the mass function
¢m generated by the random set

(2 x RC, P x PRC, Fc)

where (w, r) := I'Iﬁ(w)(r) for all (w,r) € Q x RC.
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Extension of Dempster’s rule Forms of unreliability for a piece of evidence

Uncertain contextual reliability

Particular case

@ If we have independent probabilities a of being unreliable for
value 6, for all 1 < k < K, then

PR (unrelg) = I e« JT (1 - )
0xeB OzGB

@ “mis then known as the contextual discounting of m with discount
rate vector (aq, ..., ak).
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Forms of unreliability for a piece of evidence
Truthfulness

@ Another refined form of reliability is when reliability includes
another dimension besides the relevance: the truthfulness.

@ Being truthful means actually supplying the information
possessed.

@ Lack of truthfulness can take several forms, and can be intentional
or not.

@ For instance, a sensor that has a systematic bias is a kind of
unintentional lack of truthfulness.

@ We consider here the crudest form, where non truthful means
telling the contrary of what is known.
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Extension of Dempster’s rule Forms of unreliability for a piece of evidence

Formalization
@ Assume a piece of evidence corresponding to a message whose
meaning is X € AC ©.
» If it is not relevant, we replace X € Aby X € ©.
» If it is relevant,
* either it is truthful, in which case we keep X € A.
* or it lies, in which case we replace X € Aby X € A.

@ Relevance R defined on R = {rel, —rel}.

@ Truthfulness T defined on T = {tru, —tru}.

o LetRT =R xT.

@ The interpretation of the message according to the relevance and
truthfulness may be modeled by M7 : R7 — 2° such that

Nh(rel, tru) = A, N} (rel, ~tru) = A,
N7 (—rel, tru) = N} (—rel, ~tru) = ©.
@ Uncertainty can be considered, leading to a generalization of
discounting.
@ Contextual non truthfulness can also be considered.
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Extension of Dempster’s rule

Outline

@ Extension of Dempster’s rule

@ Partially reliable pieces of evidence
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Extension of Dempster’s rule Partially reliable pieces of evidence

Uncertain reliability

@ Let (Qq,Py,T1) and (2, P, ) be two messages representing
two pieces of evidence about X and inducing mass functions m;
and mo, respectively.

@ Assume that these messages are independent, i.e.,

Pia(wy,w2) = Py(wy)Pa(wz), V(wy,w2) € Q4 x Q.

@ Let R, defined on R; = {rel;, unrel;} denote the reliability of
message /, i =1,2,and let R := R X Ro.
@ Assume uncertainty PR on their reliabilities.

@ Our knowledge about X may then be defined as the mass function
R m induced by the random set

(Q1 X Qg X R, P12 X PR, I—R)
where, forallr = (r1, ) € R,

FR(w1,w2, r) = FF(W'] R r1) N F?(wg, I’2).

F. Pichon Combination of belief functions BFTA 2025 47



Extension of Dempster’s rule Partially reliable pieces of evidence

Uncertain reliability
Normalization

@ ltis possible that ®m(()) > 0, reflecting some inconsistency in the
body of evidence.

@ It can be resolved by extending Shafer’'s reasoning leading to
Dempster’s rule: if the decoding, according to some pair of codes
(w1,w2), of the messages, leads to a contradiction under some
reliability state r, then we know that this pair of codes together
with this reliability state could not be the actual ones.

—  Pyp x PR conditioned on
Or = {(w1,w2,r) EQ XL XR: FR(W1,WQ,|') #* @}

@ Let P denote the probability measure resulting from this
conditioning. Our knowledge about X may then be defined as the
mass function generated by the random set

(Q1 X Qg X 'R,, PR, FR)

@ This mass function is nothing but ®m*, i.e., ®m normalized.
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Extension of Dempster’s rule Partially reliable pieces of evidence

Uncertain reliability

Particular cases

R m* reduces to
e my © my if PR(rely, rel) = 1, i.e., the messages are reliable
— Dempster’s rule
@ “my @ “2my if PR = PR x PRz with PRi(unrel;) = «;, i.e., the
messages have independent probabilities a4 and o, of being
unreliable

— “Discount and combine” scheme
@ amy + (1 —a)my it PR(rely, unreb) = o, PR (unrely, reb) =1 — a,
i.e., the messages have dependent reliabilities such that R = —R;4
— Weighted average
A Ingeneral, am; + (1 —a)mp # “my & '~my

F. Pichon Combination of belief functions BFTA 2025 49



Extension of Dempster’s rule Partially reliable pieces of evidence

Imprecise reliability

@ Assume the reliability is known in the form of R C R.

@ Then we obtain (following Shafer’s resolution of inconsistency) the
mass function Rm* about X induced by the random set

(Q4 x Q2, Pr,TR)

where
> TR(wi,wz) = Urer M (w1, wa,T)
» Pg: Py, conditioned on ©g = {(w1,w2) € Q1 x Qo : Tr(wy,wz) # 0}
@ Remark: Both imprecision and uncertainty about the reliability can
be taken into account by considering a mass function on R,
leading to a general model subsuming the previous ones.
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Extension of Dempster’s rule Partially reliable pieces of evidence

Imprecise reliability

Particular cases
Rm* reduces to

@ mi©@©m. (same definition as @, except that N is replaced by U) for
R = {(rel, rek), (rely, unrek), (unrely, rek)}, i.e., at least one of
the two messages is reliable.

— Disjunctive rule, which satisfies similar properties as Dempster’s
rule, in particular commutativity, associativity and expression
based on pointwise product of belief functions (if my and m, are
normalized).

@ in the case where we receive N > 2 messages,
R =“N — Q out of the N messages are reliable”.

— Q-relaxation rule, which is commutative, extends Dempster’s rule
(Q = 0) and the disjunctive rule (Q = N — 1), and generalizes the
g-relaxation technique from interval analysis, which is designed to
implement some form of robustness to outliers.
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Extension of Dempster’s rule Partially reliable pieces of evidence

Relevance and truthfulness

@ Assume two pieces of evidence corresponding to two messages
X € Ay and X € Ao, respectively.

@ Let R, defined on R,T = R; x T; denote the relevance and
truthfulness of message i and let R7 := R] x RJ.

@ For any assumption r = (ry, ) € R7, we deduce

X e n(r):=nN} (rn) NN (r2)
and, for an imprecise assumption R C R7, we know
X € N(R) = Urerl(r)
@ Example: R = {(rely, truy, rel, ~truo), (rely, —truy, reb, truo) }
M(R) = N(reh, truy, rel, =trus) U N(rel, —truy, rek, trus)
= (A1 N Az) U (A1 N Ag)
= A{A Ao (exclusive or)
— All connectives of Boolean logic can be reinterpreted in terms of

assumptions wrt the relevance and truthfulness
BFTA 2025
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Extension of Dempster’s rule Partially reliable pieces of evidence

General case
@ Consider a mass function m®” representing uncertain and
imprecise knowledge about the relevance and truthfulness of two
independent messages (21, P,1) and (g, P2, T2).
@ Let B be the set of binary Boolean connectives.
@ Any focal set R of mR" yields a connective b € B.
@ A connective b € B may be retrieved for different R C R .

-~ mR7 actually induces a probability distribution PZ over the
connectives to be used to combine the messages.
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Extension of Dempster’s rule Partially reliable pieces of evidence

General case
@ Consider a mass function mR’ representing uncertain and
imprecise knowledge about the relevance and truthfulness of two
independent messages (21, P,1) and (g, P2, T2).
@ Let B be the set of binary Boolean connectives.
@ Any focal set R of mR" yields a connective b € B.
@ A connective b € B may be retrieved for different R C R .

-~ mR7 actually induces a probability distribution PZ over the
connectives to be used to combine the messages.

@ Our knowledge about X given mR” may then be defined as the
mass function Zm* induced by the random set

(Q x Q2 x B, P, TF)

where '5(wq,ws, b) := IN'(wq) ®p MN'a2(w2) With @, the set-theoretic
connective associated to b, and Pz is P> x PP conditioned on
Op = {(wi, w2, b) € Q1 x Qo x B: MB(wy,ws, b) # 0}.
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Extension of Dempster’s rule Partially reliable pieces of evidence

General case (continued)

Theorem

2P (b)25®bc_Am1(B)m2(C)

B
M (A) = T, PF B ey 00 mEMR(C)”

for all A € 2°\{0}.

— Generalization of Dempster’s rule to all Boolean connectives,
interpretable in terms of reliability assumptions
Theorem

Bm* is the marginal on © of a graphical belief function model
representing the messages and the assumptions on their reliabilities.
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Extension of Dempster’s rule Partially reliable pieces of evidence

Dubois and Prade’s rule

@ Dempster’s rule is obtained by considering ' (w1, w2, N) = () as an
observation that (w1, w2) cannot be the pair of codes actually used
(and keeping the assumption “N”, i.e., the messages are reliable).

@ An alternative is to view such contradiction as an indication that N
cannot be the actual reliability of the messages.

@ In particular, if such a contradiction happens, we can instead
safely assume that at least one of the messages is reliable, i.e.,
assumption “U”.

@ This is represented by, for all (wy,w2) € 21 x Qy,

PB(U| (w1, wz)) = 1if [(wq,ws,N) = 0 and PB(N| (w1, ws)) = 1

otherwise.
@ This yields the following probability distribution Ppp on
Q4 x Qo x B:
Ppp(wi,w2,N) = Pia(wr,wa), V(wi,ws), MN(wy,w2,N) # 0,
Ppp(wi,w2,U) = Pra(wi,wp), Y(wi,ws2),(wr,we,N)=0.
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Extension of Dempster’s rule Partially reliable pieces of evidence

Dubois and Prade’s rule (continued)
@ The evidence is then represented by the random set

(Q x Q2 x B, Ppp, )

@ The mass function ?Pm that it generates about X admits the
following expression

PmA)= Y mBm(C)+ Y m(B)my(C), YA+
BNC=A BNC=0,BUC=A
and PPm(() = 0.
@ This combination is known as Dubois and Prade’s rule.
@ Properties:
> If m@2(0) =0, then Pm=m; g
> If m@2(0) =1, then Pm = my g2
» Commutativity, insensitivity to vacuous information, not associative.
@ Remark: the codes and the reliability are not independent, but
neither are they in the extension of Dempster’s rule (due to the
normalization step).
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Applications

@ Alternatives to Dempster’s rule offer some flexibility for combining
pieces of evidence that can be useful in practice.

@ Examples from the literature:

» Discount and combine: evidential k-nearest neighbor (EKNN)
[Denceux, 1995] and evidential neural network (ENN) classifiers
[Denceux, 2000]

» Weighted average: tree ensembles [Zhang et al., 2023]

» Contextual discounting: fusion of deep neural networks [Huang et
al., 2025]

» Q-relaxation rule: robustness to outliers [Pellicano et al., 2018]
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Extension of Dempster’s rule

Outline

@ Extension of Dempster’s rule
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Beyond independence

@ The preceding combinations rely on my and m, being induced by
independent messages (21, Py,1) and (Q2, P>, T2), i.e.,
P12 = P1 X P2.

@ In principle, any dependence structure, and thus any P;» having
P; and P> as marginals, can be selected.

@ Example [Shafer, 1986]: Q; = {wj, ~w;}

>

>
>
>
>

|_1(ﬁUJ1) = A, M (w1) =0© and P1 (w1) =0.2

rg(—\w2) = Z, rg(an) =0 and Pg(wg) =0.01

Dependence specified by Py2(w1|wz) = 0.9.

We have P;» ;é Py x Po.

Remark: such messages are called elementary, they induce simple

mass functions (A%2 and A", respectively).

@ All preceding combinations can be extended to a known
dependence between the messages by replacing Py x P> by
some P, representing this dependence.
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Extension of Dempster’s rule Dependent pieces of evidence

Example: reliable and dependent messages

@ Let (Qq,Py,T1) and (22, P, I2) be two messages representing
two pieces of evidence about X € © and inducing mass functions
m; and m,, respectively.

@ Assume the messages are reliable and have some dependence
structure described by the joint probability distribution P;y» on
Q1 X Qg.

@ This body of evidence is represented by the random set
(4 x Q2, P12,T), which induces knowledge about X modeled by
the following mass function

m1m2(A) = P12({(w1,w2) S Q1 X Qg : Fm(w1,w2) = A}), VA.

@ An eventual inconsistency manifested in my~> may be resolved, as
in the previous combinations, by normalization.
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Extension of Dempster’s rule Dependent pieces of evidence

Example: reliable and dependent messages (cont'd)

@ Let By, ..., B denote the focal sets of my, Cy, ..., Cs the focal
sets of my, p; = my(B;), g = mx(C;) and

Pj = Pi2({(w1,w2) € Q1 x Q2 : T1(w1) = By, N2(w2) = Gj}).

@ The following expression can be obtained for myn»:

m1ﬁ2(A Z Pijs VA.
BinCi=A

— The induced knowledge my» about X, given some dependence
between the messages encoded in Py, is determined by pj,
Y(i,)), which is the probability that 1st message means X € B; and
the 2nd message means X € C;.

@ When P> = Py x P> (independence assumption, unnormalized
Dempster’s rule), we have (i, j), pj = p;g;-

@ When the dependence P;; is unknown, the p;'s are unknown.
How to find them? — solutions in next section!
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Typology of approaches

@ This general combination scheme allows us to account for a wide
range of assumptions about the reliability and dependence of
pieces of evidence about a variable X.

@ It does not however indicate which assumptions to make.

— Means to determine them.
@ Two possible situations:
» The only available information are the pieces of evidence received.
— Uncertainty principle-based selection.

» Similar pieces of evidence were received previously and the actual
value of X was observed, allowing us to assess the effectiveness of
assumptions.

—  Performance-based selection.

@ Both approaches will be illustrated on two cases:

P1 Independence assumed, (partially’) unknown reliability;
P2 Reliability assumed, (totally) unknown dependence.

"Typically, a set of candidate assumptions about the reliability is considered.
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Outline

e Rule selection
@ Uncertainty principle-based

F. Pichon Combination of belief functions



Approach

@ Refresher: if a mass function m has to be replaced by another
chosen in a set M of mass functions that are more specialized
than m, using some uncertainty measure U, thenif U =/
(imprecision), choose argmax,,c r¢ I(m), and if U = C (conflict),
choose argmin . 1, C(m). Moreover, in the particular case where
M is a chain, its C-greatest element is a solution to these two
optimization problems.

@ The solutions to problems P1 and P2 presented in the following

are essentially instantiations of this general principled procedure.

@ They were originally proposed in [Pichon et al., 2015] and
[Destercke et al., 2007], respectively.
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Unknown reliability

(independence assumed)

@ When several messages representing independent pieces of
evidence and inducing by mass functions my, ..., m, are received
they are classically first combined using the assumption that they
are all reliable.

@ This assumption induces no transformation/altering of each of the
pieces of evidence, i.e., they are accepted as they are. ltis a
natural default assumption.

o Let m(7)z be the mass function on the messages’ reliabilities
representing this assumption and let ® my = @/_, m; denote the
initial state of knowledge it induces about X.

@ The validity of this assumption may be assessed through C(®my)
for some conflict measure C.
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Rule selection Uncertainty principle-based

Tolerable inconsistency

@ Specifically, assume some threshold § of tolerable inconsistency
in a piece of evidence modeled by a mass function m

» below this threshold, the assumptions leading to m may be deemed
valid (and Dempster’'s normalization may safely be used to resolve
the inconsistency)

» above this threshold, such assumptions cannot be considered valid
(and normalization becomes too hazardous a solution to be used to
resolve the inconsistency)

@ Hence, if C(®my) < ¢, then the assumption of reliability may be
deemed valid and our state of knowledge about X may be
represented by *mj = &/_, m;.

@ However, if C(®mg) > 6, then the assumption of reliability is not
tenable. In such a case, weaker assumptions, inducing less
inconsistent knowledge states, are typically considered..
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Rule selection Uncertainty principle-based

Weaker valid assumptions

@ More precisely, we typically consider a set of assumptions
MR ={mR, ... mF} onthe messages’ reliabilities, such that

R R
m; & mj4

with ®m; the result of combining my, ..., m, according to
assumption m®,i=0,...,s.

@ Given the property, mC m’' = C(m) > C(m’), we know that such
a set of assumptions allows to decrease inconsistency.

@ Given the threshold ¢, we may reduce this set to that of
assumptions deemed valid, i.e.,

with k = min{i € {1,...,s}|C("*m;) < §}.
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Rule selection Uncertainty principle-based

Assumption selection

M is our set of candidate reliability assumptions, in which to
seek a better assumption than m(¢.
To choose among the assumptions in M%;, we can remark that
choosing one assumption means that the initial (default)
knowledge ™ my about X will be replaced by a mass function in
the set

Mg& = {Rm,-,i: k,...7S},

such that ®mg C Rm;foralli=k,...,s, and ®*m; = R"m; 4 for
ali=k,...,s—1.

We recognize a situation discussed previously: M« is a chain of
less specialized mass functions than ®my, hence we should
select the C-least informative element in M5, which is ®my, and
thus the assumption mf.

The final state of knowledge about X, given my, ..., m,, and using
this reasoning, is then ®mj.

F. Pichon Combination of belief functions BFTA 2025

69



Rule selection Uncertainty principle-based

Examples

@ This general approach subsumes sequential discounting, which is
a classical approach (used in several fusion schemes) for the
combination of potentially conflicting mass functions.

@ Sequential discounting amounts to considering a set M™ such

that mR is the assumption that message j, j = 1,...,r, has
independent probability aj’- of being unreliable, hence

Rm; = @) afmj, and such that aj’f < aj’f“, i=1,....s.
@ It can be instantiated with other sets of sensible reliability
assumptions, such as the set of assumptions corresponding to the

Q-relaxation rule, for 1 < Q < r — 1 (Rm; is then the assumption
that r — i of the messages are reliable).
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Rule selection Uncertainty principle-based

Application to nuclear reactor safety

%

Project BEMUSE of the Nuclear Energy Agency.

r =10 sources (CEA, IRSN,...) providing uncertain estimates of
parameter values of a nuclear power plant.

Costly data and complex phenomena involved — no reliable
means to know the source reliabilities.

Chose M™ with ®m; the assumption that r — i of the sources are
reliable.

Used strong conflict for measure C (C(m) = 1 — maxgpee ¢(0)).
PCT2 parameter with domain © = {6, ...,6s}

» C(®my) = 0.81 (all sources reliable)

» C(®my) =0.19 (9 out of 10 reliable)

» C(®my) = 0 (8 out of 10 reliable)

» Values 64 and 65 are definitely more plausible.
Results that are consistent, informative and readable by the
end-user.
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Rule selection Uncertainty principle-based

Unknown independence
(reliability assumed)

@ Let (4, Py,I1) and (22, P2, I2) be two messages representing
two pieces of evidence about X € © and inducing mass functions
my and mo, respectively.

@ Refresher: if the messages are assumed reliable and to have
some dependence structure described by the joint probability
distribution P2 on Q4 x €5, then the induced knowledge mynq»
about X satisfies

mn2(A) = Y pj YA
BNCj=A

with
pij = Pi2({(w1,w2) € Q1 x Qo : T1(w1) = B, T2(w2) = Gj}).

@ When the dependence P;; is unknown, the p;’s are unknown.
How to find them?
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Rule selection Uncertainty principle-based

First solution
Entropy maximization
@ Refresher: given two marginal probability distributions P?‘ and
sz, applying the maximum uncertainty principle to find the joint
distribution P19212 yields, using Shannon entropy as an uncertainty
measure, P19212 = P1Q‘ X sz and thus

pj = piq;, V(i)
with p; = my(B;) and q; = my(C;) for mass functions my and mo
with focal sets By,..., B and Cy, ..., Cs, respectively.

@ In other words, we recover the independence assumption and
thus Dempster’s rule (when normalization is used subsequently to
specifying the dependence).

@ It can be seen as a reassuring argument in favor of using
Dempster’s rule when the dependence is unknown. Yet it is not
totally satisfying as it does not take into account the structure of
the focal sets, in particular their precision and/or their consistency.
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Rule selection Uncertainty principle-based

Second solution
Conjunctive revision
@ A more satisfying solution is obtained by remarking that whatever
the dependence, my 2 is a specialization of both my and ms.
@ Formally, let

Minz = {Minz2| Min2(A Z pij, VA; Zp,, =1;
BNC=A

Zpij:p/alz17"'7r;zpij:qj,]:1,...,8}.
j i

We have myq> C m;, i = 1,2, for all myn2 € Mno.
@ This means, in particular, that for any myn» € M2, there exists a
specialization matrix S such that mino =S - m;y.

— The combination setting considered produces a conjunctive
revision [Smets, 2002] of some (initial) knowledge state m; into a
new knowledge state myn2 € M2, given some received
evidence m,.
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Rule selection Uncertainty principle-based

Second solution
Imprecision maximization

@ We recognize a situation discussed previously: Mo is a set of
more specialized mass functions than mj.

@ Using an imprecision measure / such as the cardinality to select a
mass function in this set leads to the following linear optimization
problem

n})'jx Z p,'/"B,' N C/|
(i.)1BNC;#0
under the constraints }_; ; pj = 1 and

dpio = pi i=1,..r,

]
e o= g, j=1,...,s

]

@ The mass function found by solving this problem can be
normalized.

F. Pichon Combination of belief functions BFTA 2025

75



Rule selection Uncertainty principle-based

Second solution

Remarks

@ This solution was first studied in [Destercke et al., 2007].

@ Alternatively, using a conflict measure C to select a mass function
in M2, it would be justified to look for the least conflicting mass
function myq»o in Mqq2.

@ Taking into account both the inconsistency (minimization) and
imprecision (maximization) objectives may be done in several
ways.

@ For instance, [Cattaneo, 2003] proposes to combine them in a
single function f(m) = (1 — C(m))/(m) — C(m)|©| to be
maximized, with C the conflict and / the nonspecificity measures.
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Approach

@ Consider a system which outputs for a given object o, an estimate
of the actual value x* of some feature X € © of o.

@ To produce this output, the system uses internally a combination
of some pieces of evidence. This combination involves some
reliability and dependence assumptions. Assume such
assumptions can be characterized by some parameters A.

@ The output for object o may thus be noted f(o; A\).

@ Assume a set of £ objects for the which the true value of X is
known, i.e., {x;}{_, is available.

@ Assume outputs {f(0;; A)}¢_; may be obtained for any A € A.

@ The A to be used to produce the output for a new object may then
be chosen as the one in A minimizing the average loss

JA) = ZL‘ (0;; A

for some loss function £(f(o; )\), ).
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Rule selection Performance-based

Evidential classification

@ An evidential classification system fits this general approach.

@ Itis a system that, given a feature vector z of an instance,
produces a mass function m; wrt its unknown class X € ©.

@ Two main kinds of evidential classification systems can be
distinguished:

@ classifier fusion-based;
@ evidence-theoretic classifiers;

@ In the first kind, the combination is at play to combine the outputs
of some classifiers, see, e.g., [Huang et al., 2025] and [Quost et
al., 2011] for works addressing problems P1 (unknown reliability)
and P2 (unknown dependence), respectively, by following this
general approach.

@ Among evidence-theoretic classifiers, some, such as the
Evidential Neural Network (ENN) classifier, are based on an
explicit combination of pieces of evidence.

— Two recent examples of evidential classifiers where addressing P1
and P2 are involved (Serigne Diene ongoing PhD work)
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Rule selection Performance-based

Unknown reliability
Contextual Discounting ENN classifier [Diene et al., 2025]

@ The learning set is summarized

by ¢ prototypes.

@ Each prototype p() has ® o0 A
probability ug of belonging to : N
class 6. ® A° di

@ Each prototype p() is a piece of ¢ :z A®
evidence about the class of z; its o .
reliability s3 for class 64 Ao,
decreases with the distance d(’) .

between z and p() (the decrease
is more or less rapid depending
on the class).
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Computation of the output of the CD-ENN classifier

@ Prototype p() induces mass function ¢m(") about the class of z,
which is the contextual discounting with discount rate vector

(1-— ssi), T s(c’)) of the (Bayesian) mass function
m({64}) = ul) where

Sg) = ol exp (—’yg)d,?).

@ The output mass function m, of CD-ENN is then:

mz - @ff:_l Cm(i)
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Rule selection Performance-based

Learning of the parameters

@ The reliability parameters are

> The prototypes p(), i=1,...¢
> The o() and decay rates 1\, i=1,....6,g=1,...,c
@ Additional parameters: probabilities uf,i), i=1,....6,g=1,...,c.

@ Estimating these parameters using the cross-entropy of the
normalized contour function Pm_; of the output mass function m,;,
i.e., minimizing

n
- Z |n(pmz[,] (y[I]))a
i=1

where yll is the true class of z!], is linear in the number of classes.
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Rule selection

Example and comparison with ENN (singletons and ©)

m({63})
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Rule selection

Additional masses generated by CD-ENN

7

m({62,63})
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Rule selection Performance-based

Experiments
GNLL? for ENN and CD-ENN

Datasets ENN() CD-ENN()
Pima 3.06 +0.47 0.593 +0.13
Wine red 1.04 +£0.03 1.005+0.02
Wine white 1.14+0.01 1.12 £+ 0.01
Dry Bean 0.64 £0.03 0.63+0.02
Ecoli 0.57+0.08 0.66 +0.06
Glass 1.41+017 1.27+0.06
Heart 1.01+£0.32 0.66 +0.04
lonosphere 3.1 £0.52 2.97 +£0.99
Vertebral 0.68 +0.06 0.73+0.07
Sonar 1.06 £0.38 0.85+0.07

2Instance z with true class y, GNLL is: —(1/2) In bek({y}) — (1/2) In pL({y}).
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Rule selection Performance-based

Unknown dependence

r-sum of two simple mass functions

Let (24, P1,I1) and (Q2, P2, 2) be two messages representing
reliable and elementary pieces of evidence about X, inducing
simple mass functions my = A" and m, = A%, respectively.
Given d; and db, the joint distribution Pys> on Q¢ x 5, and thus
their dependence, can be completely characterized by a
correlation r € [—1, 1] (r = 0 corresponds to independence).
Assume some r € [—1, 1] specifying the dependence between the
messages.

Then, knowledge about X given such messages is represented by
the mass function induced by the random set (24 x Qo, P5, ),
with P/, the result of conditioning P;> on ©n, denoted Aﬁ’1 Dr ASQ
and called the r-sum of Af“ and Ag2.

Binary operation @, is a generalization of Dempster’s rule for the
combination of two simple mass functions (& recovered for r = 0).
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Rule selection Performance-based

Dependence-aware evidential radial basis function
network (r-ERBFN) classifier [Pichon et al., 2024]

Binary classification case © = {61, 6-}

@ Similarly as for CD-ENN, ¢

prototypes. ®e &

@ Each prototype p() has a ° & A
parameter v() € R. o e dﬁ

@ Each prototype p') is a piece of ° :z A®
evidence about the class of z: it ° @
supports class 6y if v() > 0, 6, A :
otherwise, such support ¢ °

decreasing with distance d/ and
increasing with |v()|
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Rule selection Performance-based

Computation of the output of the r-ERBFN classifier
@ Prototype p{) induces mass function m() about the class of z,
such that _
m() — {gU)yexe(~w)
with 6() = 6y if v() > 0 and () = 6 otherwise, and where
w() = s |v()| with s) = exp (—y()d?).
@ The evidence supporting 61 over all prototypes is
_ {91 }exp(fw+)

with w =37 020 w(),

o Similarly, the overall evidence supporting 6 is m~ = {f,}=*(~"")
with w= = 3" i) W

@ The output mass function m; of r-ERBFN is then:

my=m" o, m
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mz({01}) (top) and m,(©) (bottom) vs (w*, w™)
r=0 . r=20.9
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Rule selection Performance-based

Learning of the parameters

@ The dependence parameter is the correlation r (one correlation
per class if multiclass).
@ Other (RBFN’) parameters:
» The prototypes pt), i=1,...,¢
» The parameters 4) and v(), i=1,... ¢
@ If these other parameters are identified to that of a trained RBFN
with a logistic output unit, then the normalized contour function
Pm, of the output mass function m; is nothing but the probabilistic
output of this trained network.

@ The dependence parameter can then be learnt by minimizing the
GNLL.
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Rule selection

Experiments
Binary classification
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Rule selection

Experiments
Multi-class classification
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Summary

@ Dempster’s rule is a well-justified combination rule, satisfying
important properties, appearing in numerous approaches to
various problems and whose complexity can be managed.

@ It is adapted when the pieces of evidence are reliable and
independent.

@ There exist alternative and sound combination rules,
corresponding to other assumptions.

@ If unknown, the reliability and dependence of the pieces of
evidence can be determined using several means, depending on
the available information.

@ Partially reliable and dependent pieces of evidence about
continuous variables in [Denceux, 2024].
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Software libraries

Software libraries for belief function combination
@ Matlab:
» FMT (Smets, extended versions from Denoeux, Martin (DST))
» Approximation (Denoeux)
o R:
» iBelief (Zhou & Martin)
» Belief Package (Destercke)
» dst (Boivin)
» EvCombR (Karlsson)
@ Python:
» pyds (Reineking)
@ C++:
» 2CoBel (Pellicano & Le Hégarat-Mascle & Aldea)
» bft (Kurdej)
» eVidenZ (Burrus & Lesage)
@ Java:

» Java Dempster Shafer Library (Reineking)
» evidence4j (based on eVidenZ)
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Demo Matlab FMT

Dempster’s rule followed by outer clustering approximation

@ Goal: computation of @%(m @ my) for k = 2 with my and m»
defined on © = {p, ¢, h, 0} such that

m = {p70}0'1»
my = {c, h}%2

@ We proceed in four steps:
@ input my and m, using the “focal set format”;
@ compute m;@m. using the commonality-based approach;
© compute my ® m, by normalizing m; @ my;
© compute <p7+5(m1 ® my) for k = 2.
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Software libraries

Focal set format
@ Let mbe a mass function defined on © = {61,...,0,}, with r focal
sets: F(m) = {Fq,...,F}.

@ m can be represented by a pair (mass, F), where mass is the
r-dimensional column vector of masses

m(F1)

m(:F,)

and F is a r x p binary matrix such that
F._ 1 if v € Fi,
Y71 0 otherwise.

@ This format is convenient to input a mass function.
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Software libraries

Step 1: input my and mo

@ Let® ={p,c, h,o}.
e my ={p,c}® ie, m({p,c})=0.9,m(O)=0.1.

massl=[0.9;0.171;
Fl=[1 1 0 0 % {p,c}
1 111]; % {p,c,h,o}

e mp = {c, h}%2 i.e., my({c, h}) = 0.8, mx(©) = 0.2.

mass2=[0.8;0.21;
F2=[0 1 1 O {c,h}

1111]; % {p,c,h,0}
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Step 2: compute my@m. using the commonality-based

approach

@ A commonality function g is specified with the 2/®l numbers

q(A),AC ©.

@ It can be represented by a 2!°/-dimensional column vector q
whose element j stores g(A;) with A; the subset of © such that
0; € A; if the j-th bit in the binary representation of j — 1 equals 1.

@ Example for © = {64, 0>,03}

Position 65 65 64 q
1 000 q(0)
2 001 q({61})
3 010 q({62})
4 011 q({01,02})
5 100 q(6s)
6 101 q({61,63})
7 110 qg({62,03})
8 111 q({01,02,03})
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Software libraries

Step 2: compute my@m. using the commonality-based
approach

@ This “vector format” can also be used to represent mass, belief
and plausibility functions.

@ For instance, my is the 2/°/-dimensional column vector whose
element j stores my(A)).

@ It is the format expected by the Matlab functions of the FMT
toolbox that perform the transformations from one function (e.g.
the mass function) to another (e.g. the commonality function).

@ To be able to compute g; and g, we thus need first to convert m
and m. from the focal set format to the vector format. This is done
with the function 'mtobbm’:

ml = mtobbm(massl,F1l);
m2 mtobbm (mass2,F2);
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Software libraries

Step 2: compute myem. using the commonality-based
approach

@ The transformation from the mass function to the commonality
function is done with the function 'mtoq’

gl=mtog(ml) ;
g2=mtoqg(m2) ;

@ Computation of g1@2
gl2=gl.*qg2;

@ Computation of my @2, using the function ‘qtom’ which tranforms
any commonality function into its associated mass function

ml2=qgtom(gl2) ;
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Software libraries

Step 3: compute my & my by normalizing myemo

@ Computation of myg32, using the function ‘'mtonm’ which, given a
mass function m, returns the mass function m’ such that
(normalization):

m(A) i
mA) =] Tmoy TAZD,
0 otherwise.

M12 = mtonm(ml2);
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Step 4: compute gp;;(m1 @ my) fork =2

@ The function ’apphier’ performs the outer clustering approximation
5 (m) of a mass function m.

@ It expects m to be provided in the focal set format.

@ The conversion from the vector format of m to its focal set format
is done with the function 'bbmtom’.

[Massl2, F1l2]= bbmtom (M12);

[Massl2out,Fl2out,C,N]=apphier (Massl2,F12,2, "out
'Y; % C(1) 1s the cluster id of focal set 1 (
in the original mass function) in the
partition, N is the cardinality of the
approximation
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Step 4: compute apg(m1 @ m,) for k =2

@ We obtain

Massl2out =

0.7200
0.2800

Fl2out
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Software libraries

Full program

mass1=[0.9;0.1];

Fi1=[1 1 0 0 % {p,c}

111 1]; % {p,c,h,o0}

mass2=[0.8;0.2];

F2=[0 1 1 0 % {c,h}

111 1]; % {p,c,h,o0}

m1 mtobbm (mass1,F1); % Focal set format to vector format
m2 = mtobbm (mass2,F2) ;

gl=mtog(m1) ;

g2=mtoq(m2) ;

qi12=q1.+q2;

mi12=qtom(q12); % conjunctive combination of mi1 and m2
M12 = mtonm(mi2); % Dempster's combination of m1 and m2

[Mass12, F12]= bbmtom(M12) ;
[Mass12out,F120ut,C,N]=apphier (Mass12,F12,2, 'out ') ; % Outer
clustering approximation
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