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Contents of this lecture

Dempster’s rule of combination is the cornerstone of Shafer’s
theory of evidence.
It allows the combination of independent and reliable pieces of
evidence.
However, two issues:

1 Its computational complexity;
2 Pieces of evidence are not always independent and reliable.

This lecture:
1 In practice, its complexity is manageable.
2 An extension of Dempster’s rule allowing us to account for various

assumptions with respect to the reliability and dependence of the
pieces of evidence.

3 Methods to determine which assumptions to make about the
reliability and dependence of the pieces of evidence.
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Computation of Dempster’s rule Expressions

Refresher
Unnormalized Dempster’s rule (conjunctive rule)

Let (Ω1,P1, Γ1) and (Ω2,P2, Γ2), with Γi : Ωi → 2Θ\{∅}, i = 1,2, be
two messages representing two pieces of evidence about X ∈ Θ
and inducing mass functions m1 and m2, respectively.
If these messages are assumed to be independent and reliable,
then our body of evidence is represented by the random set
(Ω1 × Ω2,P12, Γ∩), with

P12(ω1, ω2) = P1(ω1)P2(ω2),

Γ∩(ω1, ω2) = Γ1(ω1) ∩ Γ2(ω2)

This random set induces the state of knowledge about X modeled
by the conjunctive sum m1 ∩⃝2 such that

m1 ∩⃝2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Θ.
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Computation of Dempster’s rule Expressions

Refresher
Dempster’s rule, mass-based expression

If one handles the inconsistency (m1 ∩⃝2(∅)) that may be present in
such a random set à la Shafer , i.e., by conditioning P12 on
Θ∩ = {(ω1, ω2) ∈ Ω1 × Ω2 : Γ∩(ω1, ω2) ̸= ∅}, then the probability of
knowing that X ∈ A from these messages satisfies, for all A ̸= ∅,

m1⊕2(A) = m∗
1 ∩⃝2(A) (normalized conjunctive sum)

=
m1 ∩⃝2(A)

1 − (m1 ∩⃝2(∅)
,

=

∑
B∩C=A m1(B)m2(C)

1 −
∑

B∩C=∅ m1(B)m2(C)

The orthogonal sum m1⊕2 is the mass function generated by the
random set (Ω1 × Ω2,P∩, Γ∩) with P∩ the probability measure
resulting from the conditioning of P12 on the event Θ∩.
It is well defined if 1 − m1 ∩⃝2(∅) = P12(Θ∩) > 0.
The binary operation ⊕ is called Dempster’s rule.
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Computation of Dempster’s rule Expressions

Expression using commonalities
Commonality function q : 2Θ → [0,1]

q(A) =
∑
B⊇A

m(B)

Conversely,
m(A) =

∑
B⊇A

(−1)|B\A|q(B)

We have
q1 ∩⃝2(A) = q1(A) · q2(A), ∀A,

and

q1⊕2(A) = K · q1 ∩⃝2(A), ∀A ̸= ∅,
q1⊕2(∅) = 1

with K =
(∑

∅≠B⊆Θ(−1)|B|+1q1 ∩⃝2(B)
)−1

=
(
1 − m1 ∩⃝2(∅)

)−1
.
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Computation of Dempster’s rule Expressions

Complexity

Orthogonal sum m1⊕2:
▶ Mass-based approach;
▶ Commonality-based approach ( program ).

Computing times proportional to, respectively:
▶ |Θ||F(m1)||F(m2)|
▶ |Θ|22|Θ| (using the Fast Möbius Tranform to perform m ↔ q)

Which approach to use ?
▶ if ∀mi , |F(mi)| << 2|Ω|, use the mass-based approach;
▶ if ∃mi , |F(mi)| ∼ 2|Ω|, use the commonality-based approach.

In the worst case, exponential complexity with respect to |Θ|.
However, for practical applications (typically involving several
mass functions), this is rarely an issue...
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Computation of Dempster’s rule Exact
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Computation of Dempster’s rule Exact

Particular forms of mass functions
Simple mass functions

A mass function is simple if it has two focal sets: Θ and A for
some A ⊂ Θ, which means it is of the form

m(A) = 1 − d , m(Θ) = d ,

for some d ∈ [0,1]. It is denoted by Ad .
▶ It represents a message that means X ∈ A with probability 1 − d ,

and that is useless, i.e., means X ∈ Θ, with probability d .
▶ Prototypical example: a sensor reporting X ∈ A and faulty with

probability d .

If each mass function is of the form {θ}d or {θ}d
, for some θ ∈ Θ,

the complexity becomes linear.
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Computation of Dempster’s rule Exact

Particular forms of mass functions
Interval focal sets

If Θ is linearly ordered, and the focal sets of the mass functions
are constrained to be intervals, the complexity becomes
polynomial.
Example: X is the number of days before the attack

▶ Θ = {1, . . . ,30}
▶ A ⊆ Θ is an interval if there exist elements a and b of Θ such that

A = {θ ∈ Θ|a ≤ θ ≤ b}.
▶ Such A is denoted by [a,b].
▶ For instance, A = {12,13,14,15,16} = [12,16].
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Computation of Dempster’s rule Exact

Particular forms of mass functions
Lattice interval focal sets

More generally, the complexity is polynomial if there is a partial
ordering ≤ of Θ such that (Θ,≤) is a lattice and the focal sets of
the mass functions are constrained to be intervals of that lattice.
Refresher on lattices:

▶ Partial ordering ≤ on finite set L: a reflexive, antisymmetric and
transitive relation on L.

▶ (L,≤) is a partially ordered set (poset).
▶ The poset (L,≤) is a lattice if for every x , y ∈ L, there is a unique

greatest lower bound (denoted x ∧ y and called meet) and a unique
least upper bound (denoted x ∨ y and called join).

Polynomial complexity because the intersection of two intervals
[a,b] and [c,d ] of (Θ,≤), required by Dempster’s rule, is an
interval

[a,b] ∩ [c,d ] =
{

[a ∨ c,b ∧ d ] if a ∨ c ≤ b ∧ d ,
∅ otherwise.
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Computation of Dempster’s rule Exact

Particular forms of mass functions
Lattice interval focal sets (continued)

This result makes it possible to tackle applications, such as
multi-label classification, ensemble clustering, and preference
aggregation, involving the manipulation of mass functions defined
on very large Θ and which are thus intractable in the usual case.
Indeed, in such applications, mass functions having only (lattice)
interval focal sets are naturally encountered...

F. Pichon Combination of belief functions BFTA 2025 14



Computation of Dempster’s rule Exact

Particular forms of mass functions
Examples of lattice intervals: Multi-label classification

Instances belong to several classes at the same time.
E.g., a song (instance) can generate several emotions (classes).
Let Ξ = {ξ1, . . . , ξc} be the set of classes.
Class label X of an instance takes values in Θ = 2Ξ.
Let θA be the element of Θ corresponding to A ⊆ Ξ

Partial ordering on Θ: θA ≤ θB ⇔ A ⊆ B, for all A,B ⊆ Ξ.
Interval [θA, θB] of lattice (Θ,≤), for A ⊆ B, is an imprecise
specification of X : it surely contains all elements of A and surely
contains no element of B.
Natural way to express expert imprecise knowledge about the
class label of a training instance.
Predicting the class label of a test instance from such training data
amounts, using the E-KNN classifier, to combining mass functions
with interval focal sets.
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Computation of Dempster’s rule Exact

Particular forms of mass functions
Examples of lattice intervals: Ensemble clustering

Clustering a set Ξ of n objects = finding a partition of Ξ.
Let Θ be set of all partitions of Ξ.
The “true” partition X of the objects takes values in Θ.
Partial ordering on Θ: θ ≤ θ′ (θ is finer than θ′), for all θ, θ′ ∈ Θ, if
the clusters of θ can be obtained by splitting those of θ′.

Interval [θ, θ] of lattice (Θ,≤), for θ ≤ θ, is an imprecise
specification of X : it is coarser than θ and finer than θ.
For instance, “the objets of a set A ⊆ Ξ belong to the same
cluster” can be represented by the interval [θA, θΞ], where θB is the
partition where only the objects in B are clustered together.
Natural way to interpret the output of a clustering algorithm.
Predicting the true partition from an ensemble of such clustering
algorithms, while accounting for their validity, amounts to
combining mass functions with interval focal sets.
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Computation of Dempster’s rule Exact

Decision making

The goal is often to make decisions.
A usual decision rule is to select the singleton {θ} of Θ with the
largest plausibility or, equivalently (since pl({θ}) = q({θ})), with
the largest commonality.
The complexity is linear, thanks to the property

q1⊕2({θ}) = K · q1({θ}) · q2({θ}), ∀θ ∈ Θ.
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Outline

1 Computation of Dempster’s rule
Expressions
Exact
Approximate

2 Extension of Dempster’s rule
Forms of unreliability for a piece of evidence
Partially reliable pieces of evidence
Dependent pieces of evidence

3 Rule selection
Uncertainty principle-based
Performance-based

F. Pichon Combination of belief functions BFTA 2025 18



Computation of Dempster’s rule Approximate

Approximate computation

Approximate computation when the exact computation is not
possible.
Stochastic approximation procedures:

▶ (Approximate) Combined belief for some A ⊂ Θ can be computed
by Monte Carlo algorithms in time linear in |Θ|;

▶ Not feasible when one is interested in the whole combined belief
function.

Deterministic approximation procedures: provide upper and lower
bounds on combined belief

▶ Mass-based approach;
▶ Commonality-based approach.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach
Complexity depends on the number of focal sets → approximate
mass functions by simpler ones with fewer focal sets.
Simplest method: Summarization algorithm.
Let F1, . . . ,Fr be the focal sets of a mass function m ranked by
decreasing mass, i.e., m(F1) ≥ m(F2) ≥ . . . ≥ m(Fr ).
Let k be the maximum allowed number of focal sets.
If r > k , the r − k + 1 focal sets Fk , . . . ,Fr are replaced by their
union, and m is approximated by the mass function φ+(m) defined
as

φ+(m) (Fi) = m(Fi), i = 1, . . . , k − 1,

φ+(m)

(
r⋃

i=k

Fi

)
=

r∑
i=k

m(Fi).

For short, we say that Fk , . . . ,Fr are “aggregated”.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach
We have m ⊑ φ+(m): it is called an outer approximation of m.

Proposition (Monotonicity of ∩⃝ with respect to ⊑)

m ⊑ m′ ⇒ m ∩⃝m0 ⊑ m′
∩⃝m0, ∀m0

From these properties, we have

m ∩⃝ ⊑ m+

with

m ∩⃝ := m1 ∩⃝ . . . ∩⃝mn,

m+ := φ+(φ+(. . . φ+(φ+(m1 ∩⃝m2) ∩⃝m3) ∩⃝ . . .mn−1) ∩⃝mn).

m+ is an outer approximation of the conjunctive combination of
mass functions m1, . . . ,mn.
The combinatorial explosion of the combination is avoided.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

In the summarization procedure of a mass function m, if we
replace the focal sets Fk , . . . ,Fr by their intersection rather than
their union, we get another approximation φ−(m) of m.
We have φ−(m) ⊑ m: it is called an inner approximation of m.
Furthermore,

m− ⊑ m ∩⃝ ⊑ m+

with

m− := φ−(φ−(. . . φ−(φ−(m1 ∩⃝m2) ∩⃝m3) ∩⃝ . . .mn−1) ∩⃝mn).

We have
pl− ≤ pl ∩⃝ ≤ pl+

Bounds on bel ∩⃝ can also be obtained.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

Let m⊕ denote the orthogonal sum of mass functions m1, . . . ,mn.
We have

pl⊕(A) =
pl ∩⃝(A)
pl ∩⃝(Θ)

, ∀A ⊆ Θ

Inner and outer approximations m− and m+ of m ∩⃝ allow thus to
obtain lower and upper bounds on pl⊕ (and also on bel⊕):

pl−(A)
pl+(Θ)

≤ pl⊕(A) ≤
pl+(A)
pl−(Θ)
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

Let m be a mass function.
The summarization algorithm produces a less informative (in the
sense of ⊑) approximation φ+(m) of m (we have m ⊑ φ+(m)).
It does so by aggregating “unimportant” focal sets (those with
lowest masses).
They are unimportant in the sense that they will not incur too
much information content change.
When approximating m, we indeed want to preserve as much as
possible of its information content.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach
How much information is preserved by φ+(m)?
Cardinality of a mass function m:

|m| :=
∑

∅≠A⊆Θ

m(A)|A|,

the greater the cardinality of m, the less informative m is.
Recall that we have

m1 ⊑ m2 ⇒ |m1| ≤ |m2|,

hence, if information content is measured using cardinality, φ+(m)
constitutes a loss of information.
A measure of the information lost if we replace m by φ+(m) can be

∆(φ+(m),m) := |φ+(m)| − |m|.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

Furthermore, we can remark that the summarization algorithm
involves a specific partition P = {I1, . . . , Ik} of
F(m) = {F1, . . . ,Fr} with

Ii = {Fi}, i = 1, . . . , k − 1,
Ik = {Fk , . . . ,Fr}.

The mass function φ+(m) can then be rewritten simply as

φ+(m)

(⋃
F∈I

F

)
=

∑
F∈I

m(F ), ∀I ∈ P.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

Other partitions of F(m) of size k exist!
Let φ+

P(m) be the outer approximation of m obtained for some
partition P of F(m) using the equation on the previous slide.

→ Find the best outer approximation φ+
P∗(m) of m by searching a

partition P∗ minimizing the information loss:

∆(φ+
P∗(m),m) := min

P∈Pk
∆(φ+

P(m),m),

with Pk the set of all partitions of F(m) of size k .
Remark: this is a case where m is substituted by a mass function
chosen in a set M of less specialized mass functions than m, and
by choosing the cardinality as the uncertainty measure, we have
seen that we should apply the minimum uncertainty principle,
which is what is happening here.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

An exhaustive search in Pk is in general not possible, as |Pk |
rapidly explodes, even for small values of r .
We need to resort to heuristic search techniques.
A hierarchical clustering algorithm has been proposed for that
purpose: pairs of focal sets are grouped sequentially (at each
step, the two “closest” focal sets are aggregated), until the desired
number k of focal sets has been reached.
This algorithm takes time proportional to r3.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

The algorithm relies on the “distance” δ+(Fi ,Fj) between any pair
(Fi ,Fj) of focal sets of a mass function m defined as

δ+(Fi ,Fj) := ∆(φ+
Pi,j

(m),m),

with Pi,j the partition of F(m) of size |F(m)| − 1 such that

∃I ∈ Pi,j , I = {Fi ,Fj},
∀I′ ∈ P, I′ ̸= I, I′ = {F},F ∈ F(m),F ̸= Fi ,Fj .

δ+(Fi ,Fj) evaluates how much information is lost, with respect to a
given mass function m, if its focal sets Fi and Fj are aggregated.
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

Let φ+
P̂(m) denote the outer approximation of a mass function m

obtained using this hierarchical clustering-based approach (outer
clustering approximation for short)

▶ There is no guarantee that it yields the same (lowest) information
loss as φ+

P∗(m).
▶ It has been shown empirically to yield better results than φ+(m).

Much as the summarization procedure can be adapted to obtain
an inner approximation φ−(m) of m, this more complex
approximation procedure can be adapted to find an inner
(clustering) approximation φ−

P̂(m) of m.
Remark: contrarily to the summarization procedure,
approximations φ+

P̂(m) and φ−
P̂(m) of m rely in general on different

partitions P̂ of F(m).
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Computation of Dempster’s rule Approximate

Approximation for the mass-based approach

Similarly as for the summarization procedure, we can obtain inner
and outer approximations of the conjunctive combination of n
mass functions:

m−
P̂ ⊑ m ∩⃝ ⊑ m+

P̂

with

m−
P̂ := φ−

P̂(φ
−
P̂(. . . φ

−
P̂(φ

−
P̂(m1 ∩⃝m2) ∩⃝m3) ∩⃝ . . .mn−1) ∩⃝mn),

m+
P̂ := φ+

P̂(φ
+
P̂(. . . φ

+
P̂(φ

+
P̂(m1 ∩⃝m2) ∩⃝m3) ∩⃝ . . .mn−1) ∩⃝mn).

They induce bounds on pl⊕ (and on bel⊕):

pl−P̂ (A)

pl+P̂ (Θ)
≤ pl⊕(A) ≤

pl+P̂ (A)

pl−P̂ (Θ)
.
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Computation of Dempster’s rule Approximate

Approximation for the commonality-based approach
Complexity depends on |Θ| → approximate Θ by a simpler
(coarser) frame Ξ with fewer elements.
Algorithm for the combination of n mass functions m1, . . . ,mn:

1 Search, using a hierarchical clustering procedure, for a partition
(coarsening) Ξ of Θ of size c, minimizing information loss defined as

n∑
i=1

∆(m↓Ξ↑Θ
i ,mi)

with m↓Ξ↑Θ
i the outer approximation of mi obtained by carrying mi to

Ξ (restriction m↓Ξ
i ) and carrying it back to Θ (vacuous extension

↑ Θ)
2 Using the commonality-based approach, combine the mass

functions in the coarsened frame, i.e., compute mΞ := ∩⃝n
i=1m↓Ξ

i
3 Carry the result to Θ, i.e., compute m := mΞ↑Θ

m is an outer approximation of m ∩⃝.
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Computation of Dempster’s rule Approximate

Approximation for the commonality-based approach

Computing time proportional to max(|Θ|3,nc22c).
Algorithm can be adapted to obtain an inner approximation m of
m ∩⃝.
We have thus

m ⊑ m ∩⃝ ⊑ m

This algorithm thus also yields lower and upper bounds for bel⊕
and for pl⊕.
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Extension of Dempster’s rule

Motivation

The assumptions leading to Dempster’s rule are that the pieces of
evidence to be combined are independent and reliable.
These assumptions clearly do not always hold.

→ An extension of Dempster’s rule allowing us to account for various
assumptions with respect to the reliability and dependence of the
pieces of evidence.
A prism to understand most of the main alternative combination
schemes to Dempster’s rule.
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Extension of Dempster’s rule Forms of unreliability for a piece of evidence

Reliability

The reliability of a piece of evidence is classically understood in
terms of relevance, i.e., it is reliable if it provides useful information
regarding the variable of interest.
Examples:

▶ A broken watch is useless to try and find the time it is since there is
no way to know whether the supplied information is correct or not: it
is not reliable for the time;

▶ My twelve-year-old son is ignorant about the name of the latest
Nobel Peace Prize laureate: he is not reliable for this question (in
contrast to nobelprize.org).

Basic idea : a piece of evidence is valid if it is reliable, whereas it
is useless if it is unreliable.
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Formalization

Assume a piece of evidence corresponding to a message whose
meaning is X ∈ A ⊆ Θ.

▶ If it is unreliable, we replace X ∈ A by X ∈ Θ
▶ If it is reliable, we keep X ∈ A

Let R be the variable denoting its reliability, defined on
R = {rel ,unrel}.
The interpretation of the message according to the reliability may
be modeled by ΠA : R → 2Θ such that

ΠA(rel) = A,
ΠA(unrel) = Θ.
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Uncertain reliability

Let (Ω,P, Γ) be a message representing a piece of evidence
about X and inducing mass function m.
Assume this message to be unreliable with probability
PR(unrel) = α.
What can then be inferred about X?
If the actual code was ω ∈ Ω and

▶ the message is reliable, we know that X ∈ ΠΓ(ω)(rel)
▶ the message is unreliable, we know that X ∈ ΠΓ(ω)(unrel) = Θ

Hence, the probability to know X ∈ A ⊂ Θ is

αm(A) := PR(rel) ·
∑

ω:ΠΓ(ω)(rel)=A

P(ω)

= (1 − α) · m(A).
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Uncertain reliability (continued)

The random set
(Ω×R,P × PR, ΓR)

with
ΓR(ω, r) := ΠΓ(ω)(r)

for all (ω, r) ∈ Ω×R, represents all the available information and
the knowledge it induces about X is represented by αm.
αm is known as the discounting with discount rate α of mass
function m.
It is the most basic so-called correction operation for a mass
function.
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Contextual reliability
Unreliability can be refined into contextual unreliability, leading to
a more general correction model.
State unrel and a given message X ∈ A: one must discard what
the message tells with respect to each θ ∈ Θ (each θ ∈ Θ is then
still a possible value for X ).
Unreliable only for some θ ∈ Θ: one must discard what the
message tells only for these values.
Assume unreliability for all the values in some B ⊆ Θ (unrelB for
short): we must then replace X ∈ A by X ∈ A ∪ B.
Let RC = {unrelB}B⊆Θ.
The interpretation of the message according to this refined,
“contextual”, reliability may be modeled by ΠC

A : RC → 2Θ s.t.

ΠC
A(unrelB) = A ∪ B.

The crude reliability model corresponds to states unrel∅ (=rel) and
unrelΘ (=unrel).
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Uncertain contextual reliability

Assume uncertainty in the form of a probability distribution PRC
,

about the contextual reliability of a message (Ω,P, Γ) representing
a piece of evidence and inducing mass function m.
Our knowledge about X is then represented by the mass function
Cm generated by the random set

(Ω×RC ,P × PRC
, ΓC)

where ΓC(ω, r) := ΠC
Γ(ω)(r) for all (ω, r) ∈ Ω×RC .
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Uncertain contextual reliability
Particular case

If we have independent probabilities αk of being unreliable for
value θk , for all 1 ≤ k ≤ K , then

PRC
(unrelB) =

∏
θk∈B

αk
∏
θℓ∈B

(1 − αℓ)

Cm is then known as the contextual discounting of m with discount
rate vector (α1, . . . , αK ).
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Truthfulness

Another refined form of reliability is when reliability includes
another dimension besides the relevance: the truthfulness.
Being truthful means actually supplying the information
possessed.
Lack of truthfulness can take several forms, and can be intentional
or not.
For instance, a sensor that has a systematic bias is a kind of
unintentional lack of truthfulness.
We consider here the crudest form, where non truthful means
telling the contrary of what is known.
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Formalization
Assume a piece of evidence corresponding to a message whose
meaning is X ∈ A ⊆ Θ.

▶ If it is not relevant, we replace X ∈ A by X ∈ Θ.
▶ If it is relevant,

⋆ either it is truthful, in which case we keep X ∈ A.
⋆ or it lies, in which case we replace X ∈ A by X ∈ A.

Relevance R defined on R = {rel ,¬rel}.
Truthfulness T defined on T = {tru,¬tru}.
Let RT := R× T .
The interpretation of the message according to the relevance and
truthfulness may be modeled by ΠT

A : RT → 2Θ such that

ΠT
A (rel , tru) = A, ΠT

A (rel ,¬tru) = A,

ΠT
A (¬rel , tru) = ΠT

A (¬rel ,¬tru) = Θ.

Uncertainty can be considered, leading to a generalization of
discounting.
Contextual non truthfulness can also be considered.

F. Pichon Combination of belief functions BFTA 2025 45



Extension of Dempster’s rule Partially reliable pieces of evidence

Outline

1 Computation of Dempster’s rule
Expressions
Exact
Approximate

2 Extension of Dempster’s rule
Forms of unreliability for a piece of evidence
Partially reliable pieces of evidence
Dependent pieces of evidence

3 Rule selection
Uncertainty principle-based
Performance-based

F. Pichon Combination of belief functions BFTA 2025 46



Extension of Dempster’s rule Partially reliable pieces of evidence

Uncertain reliability
Let (Ω1,P1, Γ1) and (Ω2,P2, Γ2) be two messages representing
two pieces of evidence about X and inducing mass functions m1
and m2, respectively.
Assume that these messages are independent, i.e.,

P12(ω1, ω2) = P1(ω1)P2(ω2), ∀(ω1, ω2) ∈ Ω1 × Ω2.

Let Ri defined on Ri = {reli ,unreli} denote the reliability of
message i , i = 1,2, and let R := R1 ×R2.
Assume uncertainty PR on their reliabilities.
Our knowledge about X may then be defined as the mass function
Rm induced by the random set

(Ω1 × Ω2 ×R,P12 × PR, ΓR)

where, for all r = (r1, r2) ∈ R,

ΓR(ω1, ω2, r) := ΓR1 (ω1, r1) ∩ ΓR2 (ω2, r2).
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Uncertain reliability
Normalization

It is possible that Rm(∅) > 0, reflecting some inconsistency in the
body of evidence.
It can be resolved by extending Shafer’s reasoning leading to
Dempster’s rule: if the decoding, according to some pair of codes
(ω1, ω2), of the messages, leads to a contradiction under some
reliability state r, then we know that this pair of codes together
with this reliability state could not be the actual ones.

→ P12 × PR conditioned on
ΘR = {(ω1, ω2, r) ∈ Ω1 × Ω2 ×R : ΓR(ω1, ω2, r) ̸= ∅}
Let PR denote the probability measure resulting from this
conditioning. Our knowledge about X may then be defined as the
mass function generated by the random set

(Ω1 × Ω2 ×R,PR, ΓR).

This mass function is nothing but Rm∗, i.e., Rm normalized.
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Uncertain reliability
Particular cases

Rm∗ reduces to
m1 ⊕ m2 if PR(rel1, rel2) = 1, i.e., the messages are reliable

→ Dempster’s rule
α1m1 ⊕ α2m2 if PR = PR1 × PR2 , with PRi (unreli) = αi , i.e., the
messages have independent probabilities α1 and α2 of being
unreliable

→ “Discount and combine” scheme
αm1 + (1 − α)m2 if PR(rel1,unrel2) = α,PR(unrel1, rel2) = 1 − α,
i.e., the messages have dependent reliabilities such that R2 = ¬R1

→ Weighted average
" In general, αm1 + (1 − α)m2 ̸= αm1 ⊕ 1−αm2
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Imprecise reliability

Assume the reliability is known in the form of R ⊆ R.
Then we obtain (following Shafer’s resolution of inconsistency) the
mass function Rm∗ about X induced by the random set

(Ω1 × Ω2,PR, ΓR)

where
▶ ΓR(ω1, ω2) := ∪r∈R ΓR(ω1, ω2, r)
▶ PR : P12 conditioned on ΘR = {(ω1, ω2) ∈ Ω1 × Ω2 : ΓR(ω1, ω2) ̸= ∅}

Remark: Both imprecision and uncertainty about the reliability can
be taken into account by considering a mass function on R,
leading to a general model subsuming the previous ones.
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Imprecise reliability
Particular cases
Rm∗ reduces to

m1 ∪⃝m2 (same definition as ∩⃝, except that ∩ is replaced by ∪) for
R = {(rel1, rel2), (rel1,unrel2), (unrel1, rel2)}, i.e., at least one of
the two messages is reliable.

→ Disjunctive rule, which satisfies similar properties as Dempster’s
rule, in particular commutativity, associativity and expression
based on pointwise product of belief functions (if m1 and m2 are
normalized).
in the case where we receive N ≥ 2 messages,
R = “N − Q out of the N messages are reliable”.

→ Q-relaxation rule, which is commutative, extends Dempster’s rule
(Q = 0) and the disjunctive rule (Q = N − 1), and generalizes the
q-relaxation technique from interval analysis, which is designed to
implement some form of robustness to outliers.
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Relevance and truthfulness
Assume two pieces of evidence corresponding to two messages
X ∈ A1 and X ∈ A2, respectively.
Let Ri defined on RT

i := Ri × Ti denote the relevance and
truthfulness of message i and let RT := RT

1 ×RT
2 .

For any assumption r = (r1, r2) ∈ RT , we deduce

X ∈ Π(r) := ΠT
A1
(r1) ∩ ΠT

A2
(r2)

and, for an imprecise assumption R ⊆ RT , we know

X ∈ Π(R) = ∪r∈RΠ(r)

Example: R = {(rel1, tru1, rel2,¬tru2), (rel1,¬tru1, rel2, tru2)}
Π(R) = Π(rel1, tru1, rel2,¬tru2) ∪ Π(rel1,¬tru1, rel2, tru2)

= (A1 ∩ A2) ∪ (A1 ∩ A2)

= A1∆A2 (exclusive or)
→ All connectives of Boolean logic can be reinterpreted in terms of

assumptions wrt the relevance and truthfulness
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General case
Consider a mass function mRT

representing uncertain and
imprecise knowledge about the relevance and truthfulness of two
independent messages (Ω1,P1, Γ1) and (Ω2,P2, Γ2).
Let B be the set of binary Boolean connectives.
Any focal set R of mRT

yields a connective b ∈ B.
A connective b ∈ B may be retrieved for different R ⊆ RT .

→ mRT
actually induces a probability distribution PB over the

connectives to be used to combine the messages.

Our knowledge about X given mRT
may then be defined as the

mass function Bm∗ induced by the random set

(Ω1 × Ω2 × B,PB, Γ
B)

where ΓB(ω1, ω2,b) := Γ1(ω1)⊗b Γ2(ω2) with ⊗b the set-theoretic
connective associated to b, and PB is P12 × PB conditioned on
ΘB = {(ω1, ω2,b) ∈ Ω1 × Ω2 × B : ΓB(ω1, ω2,b) ̸= ∅}.

F. Pichon Combination of belief functions BFTA 2025 53



Extension of Dempster’s rule Partially reliable pieces of evidence

General case
Consider a mass function mRT

representing uncertain and
imprecise knowledge about the relevance and truthfulness of two
independent messages (Ω1,P1, Γ1) and (Ω2,P2, Γ2).
Let B be the set of binary Boolean connectives.
Any focal set R of mRT

yields a connective b ∈ B.
A connective b ∈ B may be retrieved for different R ⊆ RT .

→ mRT
actually induces a probability distribution PB over the

connectives to be used to combine the messages.
Our knowledge about X given mRT

may then be defined as the
mass function Bm∗ induced by the random set

(Ω1 × Ω2 × B,PB, Γ
B)

where ΓB(ω1, ω2,b) := Γ1(ω1)⊗b Γ2(ω2) with ⊗b the set-theoretic
connective associated to b, and PB is P12 × PB conditioned on
ΘB = {(ω1, ω2,b) ∈ Ω1 × Ω2 × B : ΓB(ω1, ω2,b) ̸= ∅}.
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General case (continued)

Theorem

Bm∗(A) =
∑

b PB(b)
∑

B⊗bC=A m1(B)m2(C)

1−
∑

b PB(b)
∑

B⊗bC=∅ m1(B)m2(C)
, for all A ∈ 2Θ\{∅}.

→ Generalization of Dempster’s rule to all Boolean connectives,
interpretable in terms of reliability assumptions

Theorem
Bm∗ is the marginal on Θ of a graphical belief function model
representing the messages and the assumptions on their reliabilities.

F. Pichon Combination of belief functions BFTA 2025 54



Extension of Dempster’s rule Partially reliable pieces of evidence

Dubois and Prade’s rule
Dempster’s rule is obtained by considering Γ(ω1, ω2,∩) = ∅ as an
observation that (ω1, ω2) cannot be the pair of codes actually used
(and keeping the assumption “∩”, i.e., the messages are reliable).
An alternative is to view such contradiction as an indication that ∩
cannot be the actual reliability of the messages.
In particular, if such a contradiction happens, we can instead
safely assume that at least one of the messages is reliable, i.e.,
assumption “∪”.
This is represented by, for all (ω1, ω2) ∈ Ω1 × Ω2,
PB(∪| (ω1, ω2)) = 1 if Γ(ω1, ω2,∩) = ∅ and PB(∩| (ω1, ω2)) = 1
otherwise.
This yields the following probability distribution PDP on
Ω1 × Ω2 × B:

PDP(ω1, ω2,∩) = P12(ω1, ω2), ∀(ω1, ω2), Γ(ω1, ω2,∩) ̸= ∅,
PDP(ω1, ω2,∪) = P12(ω1, ω2), ∀(ω1, ω2), Γ(ω1, ω2,∩) = ∅.
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Dubois and Prade’s rule (continued)
The evidence is then represented by the random set

(Ω1 × Ω2 × B,PDP , Γ
B)

The mass function DPm that it generates about X admits the
following expression
DPm(A) =

∑
B∩C=A

m1(B)m2(C) +
∑

B∩C=∅,B∪C=A

m1(B)m2(C), ∀A ̸= ∅

and DPm(∅) = 0.
This combination is known as Dubois and Prade’s rule.
Properties:

▶ If m1 ∩⃝2(∅) = 0, then DPm = m1
⊕

2
▶ If m1 ∩⃝2(∅) = 1, then DPm = m1 ∪⃝2
▶ Commutativity, insensitivity to vacuous information, not associative.

Remark: the codes and the reliability are not independent, but
neither are they in the extension of Dempster’s rule (due to the
normalization step).
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Applications

Alternatives to Dempster’s rule offer some flexibility for combining
pieces of evidence that can be useful in practice.
Examples from the literature:

▶ Discount and combine: evidential k -nearest neighbor (EkNN)
[Denœux, 1995] and evidential neural network (ENN) classifiers
[Denœux, 2000]

▶ Weighted average: tree ensembles [Zhang et al., 2023]
▶ Contextual discounting: fusion of deep neural networks [Huang et

al., 2025]
▶ Q-relaxation rule: robustness to outliers [Pellicanò et al., 2018]
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Beyond independence
The preceding combinations rely on m1 and m2 being induced by
independent messages (Ω1,P1, Γ1) and (Ω2,P2, Γ2), i.e.,
P12 = P1 × P2.
In principle, any dependence structure, and thus any P12 having
P1 and P2 as marginals, can be selected.
Example [Shafer, 1986]: Ωi = {ωi ,¬ωi}

▶ Γ1(¬ω1) = A, Γ1(ω1) = Θ and P1(ω1) = 0.2
▶ Γ2(¬ω2) = A, Γ2(ω2) = Θ and P2(ω2) = 0.01
▶ Dependence specified by P12(ω1|ω2) = 0.9.
▶ We have P12 ̸= P1 × P2.
▶ Remark: such messages are called elementary, they induce simple

mass functions (A0.2 and A
0.01

, respectively).

All preceding combinations can be extended to a known
dependence between the messages by replacing P1 × P2 by
some P12 representing this dependence.
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Example: reliable and dependent messages

Let (Ω1,P1, Γ1) and (Ω2,P2, Γ2) be two messages representing
two pieces of evidence about X ∈ Θ and inducing mass functions
m1 and m2, respectively.
Assume the messages are reliable and have some dependence
structure described by the joint probability distribution P12 on
Ω1 × Ω2.
This body of evidence is represented by the random set
(Ω1 × Ω2,P12, Γ∩), which induces knowledge about X modeled by
the following mass function

m1∩ 2(A) = P12({(ω1, ω2) ∈ Ω1 × Ω2 : Γ∩(ω1, ω2) = A}), ∀A.

An eventual inconsistency manifested in m1∩2 may be resolved, as
in the previous combinations, by normalization.
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Example: reliable and dependent messages (cont’d)
Let B1, . . . ,Br denote the focal sets of m1, C1, . . . ,Cs the focal
sets of m2, pi = m1(Bi), qj = m2(Cj) and

pij = P12({(ω1, ω2) ∈ Ω1 × Ω2 : Γ1(ω1) = Bi , Γ2(ω2) = Cj}).

The following expression can be obtained for m1∩ 2:

m1∩ 2(A) =
∑

Bi∩Cj=A

pij , ∀A.

→ The induced knowledge m1∩ 2 about X , given some dependence
between the messages encoded in P12, is determined by pij ,
∀(i , j), which is the probability that 1st message means X ∈ Bi and
the 2nd message means X ∈ Cj .
When P12 = P1 × P2 (independence assumption, unnormalized
Dempster’s rule), we have ∀(i , j),pij = piqj .
When the dependence P12 is unknown, the pij ’s are unknown.
How to find them? → solutions in next section!
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Typology of approaches
This general combination scheme allows us to account for a wide
range of assumptions about the reliability and dependence of
pieces of evidence about a variable X .
It does not however indicate which assumptions to make.

→ Means to determine them.
Two possible situations:

▶ The only available information are the pieces of evidence received.
→ Uncertainty principle-based selection.

▶ Similar pieces of evidence were received previously and the actual
value of X was observed, allowing us to assess the effectiveness of
assumptions.

→ Performance-based selection.
Both approaches will be illustrated on two cases:
P1 Independence assumed, (partially1) unknown reliability;
P2 Reliability assumed, (totally) unknown dependence.

1Typically, a set of candidate assumptions about the reliability is considered.
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Approach

Refresher: if a mass function m has to be replaced by another
chosen in a set M of mass functions that are more specialized
than m, using some uncertainty measure U, then if U = I
(imprecision), choose argmaxm∈M I(m), and if U = C (conflict),
choose argminm∈M C(m). Moreover, in the particular case where
M is a chain, its ⊑-greatest element is a solution to these two
optimization problems.
The solutions to problems P1 and P2 presented in the following
are essentially instantiations of this general principled procedure.
They were originally proposed in [Pichon et al., 2015] and
[Destercke et al., 2007], respectively.

F. Pichon Combination of belief functions BFTA 2025 65



Rule selection Uncertainty principle-based

Unknown reliability
(independence assumed)

When several messages representing independent pieces of
evidence and inducing by mass functions m1, . . . ,mr are received,
they are classically first combined using the assumption that they
are all reliable.
This assumption induces no transformation/altering of each of the
pieces of evidence, i.e., they are accepted as they are. It is a
natural default assumption.
Let mR

0 be the mass function on the messages’ reliabilities
representing this assumption and let Rm0 = ∩⃝r

i=1mi denote the
initial state of knowledge it induces about X .
The validity of this assumption may be assessed through C(Rm0)
for some conflict measure C.
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Tolerable inconsistency

Specifically, assume some threshold δ of tolerable inconsistency
in a piece of evidence modeled by a mass function m

▶ below this threshold, the assumptions leading to m may be deemed
valid (and Dempster’s normalization may safely be used to resolve
the inconsistency)

▶ above this threshold, such assumptions cannot be considered valid
(and normalization becomes too hazardous a solution to be used to
resolve the inconsistency)

Hence, if C(Rm0) ≤ δ, then the assumption of reliability may be
deemed valid and our state of knowledge about X may be
represented by Rm∗

0 = ⊕r
i=1mi .

However, if C(Rm0) > δ, then the assumption of reliability is not
tenable. In such a case, weaker assumptions, inducing less
inconsistent knowledge states, are typically considered..
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Weaker valid assumptions

More precisely, we typically consider a set of assumptions
MR = {mR

1 , . . . ,mR
s } on the messages’ reliabilities, such that

Rmi ⊑ Rmi+1

with Rmi the result of combining m1, . . . ,mr according to
assumption mR

i , i = 0, . . . , s.
Given the property, m ⊑ m′ ⇒ C(m) ≥ C(m′), we know that such
a set of assumptions allows to decrease inconsistency.
Given the threshold δ, we may reduce this set to that of
assumptions deemed valid, i.e.,

MR
≤δ = {mR

i , i = k , . . . , s},

with k = min{i ∈ {1, . . . , s}|C(Rmi) ≤ δ}.
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Assumption selection
MR

≤δ is our set of candidate reliability assumptions, in which to
seek a better assumption than mR

0 .
To choose among the assumptions in MR

≤δ, we can remark that
choosing one assumption means that the initial (default)
knowledge Rm0 about X will be replaced by a mass function in
the set

M≤δ = {Rmi , i = k , . . . , s},

such that Rm0 ⊑ Rmi for all i = k , . . . , s, and Rmi ⊑ Rmi+1 for
all i = k , . . . , s − 1.
We recognize a situation discussed previously: M≤δ is a chain of
less specialized mass functions than Rm0, hence we should
select the ⊑-least informative element in M≤δ, which is Rmk , and
thus the assumption mR

k .
The final state of knowledge about X , given m1, . . . ,mr , and using
this reasoning, is then Rm∗

k .
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Examples

This general approach subsumes sequential discounting, which is
a classical approach (used in several fusion schemes) for the
combination of potentially conflicting mass functions.
Sequential discounting amounts to considering a set MR such
that mR

i is the assumption that message j , j = 1, . . . , r , has
independent probability αi

j of being unreliable, hence
Rmi = ∩⃝r

j=1
αi

j mj , and such that αi
j ≤ αi+1

j , i = 1, . . . , s.
It can be instantiated with other sets of sensible reliability
assumptions, such as the set of assumptions corresponding to the
Q-relaxation rule, for 1 ≤ Q ≤ r − 1 (Rmi is then the assumption
that r − i of the messages are reliable).
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Application to nuclear reactor safety
Project BEMUSE of the Nuclear Energy Agency.
r = 10 sources (CEA, IRSN,...) providing uncertain estimates of
parameter values of a nuclear power plant.
Costly data and complex phenomena involved → no reliable
means to know the source reliabilities.
Chose MR with Rmi the assumption that r − i of the sources are
reliable.
Used strong conflict for measure C (C(m) = 1 −maxθ∈Θ c(θ)).
PCT2 parameter with domain Θ = {θ1, . . . , θ6}

▶ C(Rm0) = 0.81 (all sources reliable)
▶ C(Rm1) = 0.19 (9 out of 10 reliable)
▶ C(Rm2) = 0 (8 out of 10 reliable)
▶ Values θ4 and θ5 are definitely more plausible.

→ Results that are consistent, informative and readable by the
end-user.
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Unknown independence
(reliability assumed)

Let (Ω1,P1, Γ1) and (Ω2,P2, Γ2) be two messages representing
two pieces of evidence about X ∈ Θ and inducing mass functions
m1 and m2, respectively.
Refresher: if the messages are assumed reliable and to have
some dependence structure described by the joint probability
distribution P12 on Ω1 × Ω2, then the induced knowledge m1∩ 2
about X satisfies

m1∩ 2(A) =
∑

Bi∩Cj=A

pij , ∀A,

with

pij = P12({(ω1, ω2) ∈ Ω1 × Ω2 : Γ1(ω1) = Bi , Γ2(ω2) = Cj}).

When the dependence P12 is unknown, the pij ’s are unknown.
How to find them?

F. Pichon Combination of belief functions BFTA 2025 72



Rule selection Uncertainty principle-based

First solution
Entropy maximization

Refresher: given two marginal probability distributions PΩ1
1 and

PΩ2
2 , applying the maximum uncertainty principle to find the joint

distribution PΩ12
12 yields, using Shannon entropy as an uncertainty

measure, PΩ12
12 = PΩ1

1 × PΩ2
2 and thus

pij = piqj , ∀(i , j)

with pi = m1(Bi) and qj = m2(Cj) for mass functions m1 and m2
with focal sets B1, . . . ,Br and C1, . . . ,Cs, respectively.
In other words, we recover the independence assumption and
thus Dempster’s rule (when normalization is used subsequently to
specifying the dependence).
It can be seen as a reassuring argument in favor of using
Dempster’s rule when the dependence is unknown. Yet it is not
totally satisfying as it does not take into account the structure of
the focal sets, in particular their precision and/or their consistency.
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Second solution
Conjunctive revision

A more satisfying solution is obtained by remarking that whatever
the dependence, m1∩ 2 is a specialization of both m1 and m2.
Formally, let

M1∩2 = {m1∩ 2| m1∩ 2(A) =
∑

Bi∩Cj=A

pij ,∀A;
∑
i,j

pij = 1;

∑
j

pij = pi , i = 1, . . . , r ;
∑

i

pij = qj , j = 1, . . . , s}.

We have m1∩ 2 ⊑ mi , i = 1,2, for all m1∩ 2 ∈ M1∩2.
This means, in particular, that for any m1∩ 2 ∈ M1∩2, there exists a
specialization matrix S such that m1∩ 2 = S · m1.

→ The combination setting considered produces a conjunctive
revision [Smets, 2002] of some (initial) knowledge state m1 into a
new knowledge state m1∩ 2 ∈ M1∩2, given some received
evidence m2.
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Second solution
Imprecision maximization

We recognize a situation discussed previously: M1∩2 is a set of
more specialized mass functions than m1.
Using an imprecision measure I such as the cardinality to select a
mass function in this set leads to the following linear optimization
problem

max
pij

∑
(i,j)|Bi∩Cj ̸=∅

pij |Bi ∩ Cj |

under the constraints
∑

i,j pij = 1 and∑
j

pij = pi , i = 1, . . . , r ,

∑
i

pij = qj , j = 1, . . . , s.

The mass function found by solving this problem can be
normalized.
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Second solution
Remarks

This solution was first studied in [Destercke et al., 2007].
Alternatively, using a conflict measure C to select a mass function
in M1∩2, it would be justified to look for the least conflicting mass
function m1∩ 2 in M1∩2.
Taking into account both the inconsistency (minimization) and
imprecision (maximization) objectives may be done in several
ways.
For instance, [Cattaneo, 2003] proposes to combine them in a
single function f (m) = (1 − C(m))I(m)− C(m)|Θ| to be
maximized, with C the conflict and I the nonspecificity measures.
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Outline

1 Computation of Dempster’s rule
Expressions
Exact
Approximate

2 Extension of Dempster’s rule
Forms of unreliability for a piece of evidence
Partially reliable pieces of evidence
Dependent pieces of evidence

3 Rule selection
Uncertainty principle-based
Performance-based
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Approach
Consider a system which outputs for a given object o, an estimate
of the actual value x∗ of some feature X ∈ Θ of o.
To produce this output, the system uses internally a combination
of some pieces of evidence. This combination involves some
reliability and dependence assumptions. Assume such
assumptions can be characterized by some parameters λ.
The output for object o may thus be noted f (o;λ).
Assume a set of ℓ objects for the which the true value of X is
known, i.e., {x∗

i }ℓi=1 is available.
Assume outputs {f (oi ;λ)}ℓi=1 may be obtained for any λ ∈ Λ.
The λ̂ to be used to produce the output for a new object may then
be chosen as the one in Λ minimizing the average loss

J(λ) =
1
n

ℓ∑
i=1

L(f (oi ;λ), x∗
i )

for some loss function L(f (o;λ), x∗).
F. Pichon Combination of belief functions BFTA 2025 78



Rule selection Performance-based

Evidential classification
An evidential classification system fits this general approach.
It is a system that, given a feature vector z of an instance,
produces a mass function mz wrt its unknown class X ∈ Θ.
Two main kinds of evidential classification systems can be
distinguished:

1 classifier fusion-based;
2 evidence-theoretic classifiers;

In the first kind, the combination is at play to combine the outputs
of some classifiers, see, e.g., [Huang et al., 2025] and [Quost et
al., 2011] for works addressing problems P1 (unknown reliability)
and P2 (unknown dependence), respectively, by following this
general approach.
Among evidence-theoretic classifiers, some, such as the
Evidential Neural Network (ENN) classifier, are based on an
explicit combination of pieces of evidence.

→ Two recent examples of evidential classifiers where addressing P1
and P2 are involved (Serigne Diène ongoing PhD work)
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Unknown reliability
Contextual Discounting ENN classifier [Diène et al., 2025]

The learning set is summarized
by ℓ prototypes.
Each prototype p(i) has
probability u(i)

q of belonging to
class θq.
Each prototype p(i) is a piece of
evidence about the class of z; its
reliability s(i)

q for class θq

decreases with the distance d (i)

between z and p(i) (the decrease
is more or less rapid depending
on the class).

z

p(i)

d(i)
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Computation of the output of the CD-ENN classifier

Prototype p(i) induces mass function Cm(i) about the class of z,
which is the contextual discounting with discount rate vector
(1 − s(i)

1 , . . . ,1 − s(i)
c ) of the (Bayesian) mass function

m(i)({θq}) = u(i)
q where

s(i)
q = α(i) exp (−γ

(i)
q d2

i ).

The output mass function mz of CD-ENN is then:

mz = ⊕ℓ
i=1

Cm(i)
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Learning of the parameters

The reliability parameters are
▶ The prototypes p(i), i = 1, . . . , ℓ
▶ The α(i) and decay rates γ

(i)
q , i = 1, . . . , ℓ, q = 1, . . . , c

Additional parameters: probabilities u(i)
q , i = 1, . . . , ℓ, q = 1, . . . , c.

Estimating these parameters using the cross-entropy of the
normalized contour function pm

z[i]
of the output mass function mz[i] ,

i.e., minimizing

−
n∑

i=1

ln(pm
z[i]
(y [i])),

where y [i] is the true class of z[i], is linear in the number of classes.
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Example and comparison with ENN (singletons and Θ)

ENN

m({θ1}) m({θ2})

m({θ3}) m(Θ)

CD-ENN

m({θ1}) m({θ2})

m({θ3}) m(Θ)
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Additional masses generated by CD-ENN

m({θ1, θ2}) m({θ1, θ3})

m({θ2, θ3})
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Experiments
GNLL2 for ENN and CD-ENN

Datasets ENN(↓) CD-ENN(↓)
Pima 3.06 ± 0.47 0.593 ± 0.13
Wine red 1.04 ± 0.03 1.005 ± 0.02
Wine white 1.14 ± 0.01 1.12 ± 0.01
Dry Bean 0.64 ± 0.03 0.63 ± 0.02
Ecoli 0.57 ± 0.08 0.66 ± 0.06
Glass 1.41 ± 0.17 1.27 ± 0.06
Heart 1.01 ± 0.32 0.66 ± 0.04
Ionosphere 3.1 ± 0.52 2.97 ± 0.99
Vertebral 0.68 ± 0.06 0.73 ± 0.07
Sonar 1.06 ± 0.38 0.85 ± 0.07

2Instance z with true class y , GNLL is: −(1/2) ln belz({y})− (1/2) ln plz({y}).
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Unknown dependence
r -sum of two simple mass functions

Let (Ω1,P1, Γ1) and (Ω2,P2, Γ2) be two messages representing
reliable and elementary pieces of evidence about X , inducing
simple mass functions m1 = Ad1

1 and m2 = Ad2
2 , respectively.

Given d1 and d2, the joint distribution P12 on Ω1 × Ω2, and thus
their dependence, can be completely characterized by a
correlation r ∈ [−1,1] (r = 0 corresponds to independence).
Assume some r ∈ [−1,1] specifying the dependence between the
messages.
Then, knowledge about X given such messages is represented by
the mass function induced by the random set (Ω1 × Ω2,Pr

∩, Γ∩),
with Pr

∩ the result of conditioning P12 on Θ∩, denoted Ad1
1 ⊕r Ad2

2
and called the r -sum of Ad1

1 and Ad2
2 .

Binary operation ⊕r is a generalization of Dempster’s rule for the
combination of two simple mass functions (⊕ recovered for r = 0).
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Dependence-aware evidential radial basis function
network (r -ERBFN) classifier [Pichon et al., 2024]
Binary classification case Θ = {θ1, θ2}

Similarly as for CD-ENN, ℓ
prototypes.
Each prototype p(i) has a
parameter v (i) ∈ R.
Each prototype p(i) is a piece of
evidence about the class of z: it
supports class θ1 if v (i) ≥ 0, θ2
otherwise, such support
decreasing with distance d (i) and
increasing with |v (i)|

z

p(i)

d(i)
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Computation of the output of the r -ERBFN classifier
Prototype p(i) induces mass function m(i) about the class of z,
such that

m(i) = {θ(i)}exp(−w (i))

with θ(i) = θ1 if v (i) ≥ 0 and θ(i) = θ2 otherwise, and where
w (i) = s(i)|v (i)| with s(i) = exp (−γ(i)d2

i ).

The evidence supporting θ1 over all prototypes is

m+ = ⊕i:v (i)≥0m(i)

= {θ1}exp(−w+)

with w+ =
∑

i:v (i)≥0 w (i).

Similarly, the overall evidence supporting θ2 is m− = {θ2}exp(−w−)

with w− =
∑

i:v (i)<0 w (i)

The output mass function mz of r -ERBFN is then:

mz = m+ ⊕r m−
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mz({θ1}) (top) and mz(Θ) (bottom) vs (w+,w−)
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Learning of the parameters

The dependence parameter is the correlation r (one correlation
per class if multiclass).
Other (’RBFN’) parameters:

▶ The prototypes p(i), i = 1, . . . , ℓ
▶ The parameters γ(i) and v (i), i = 1, . . . , ℓ

If these other parameters are identified to that of a trained RBFN
with a logistic output unit, then the normalized contour function
pmz of the output mass function mz is nothing but the probabilistic
output of this trained network.
The dependence parameter can then be learnt by minimizing the
GNLL.
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Experiments
Binary classification

original optimized
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Experiments
Multi-class classification
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Summary

Summary

Dempster’s rule is a well-justified combination rule, satisfying
important properties, appearing in numerous approaches to
various problems and whose complexity can be managed.
It is adapted when the pieces of evidence are reliable and
independent.
There exist alternative and sound combination rules,
corresponding to other assumptions.
If unknown, the reliability and dependence of the pieces of
evidence can be determined using several means, depending on
the available information.
Partially reliable and dependent pieces of evidence about
continuous variables in [Denœux, 2024].
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Software libraries

Software libraries for belief function combination
Matlab:

▶ FMT (Smets, extended versions from Denoeux, Martin (DST))
▶ Approximation (Denoeux)

R:
▶ iBelief (Zhou & Martin)
▶ Belief Package (Destercke)
▶ dst (Boivin)
▶ EvCombR (Karlsson)

Python:
▶ pyds (Reineking)

C++:
▶ 2CoBel (Pellicanò & Le Hégarat-Mascle & Aldea)
▶ bft (Kurdej)
▶ eVidenZ (Burrus & Lesage)

Java:
▶ Java Dempster Shafer Library (Reineking)
▶ evidence4j (based on eVidenZ)
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Demo Matlab FMT
Dempster’s rule followed by outer clustering approximation

Goal: computation of φ+
P̂(m1 ⊕ m2) for k = 2 with m1 and m2

defined on Θ = {p, c,h,o} such that

m1 = {p, c}0.1,

m2 = {c,h}0.2.

We proceed in four steps:
1 input m1 and m2 using the “focal set format”;
2 compute m1 ∩⃝m2 using the commonality-based approach;
3 compute m1 ⊕ m2 by normalizing m1 ∩⃝m2;
4 compute φ+

P̂(m1 ⊕ m2) for k = 2.
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Focal set format

Let m be a mass function defined on Θ = {θ1, . . . , θp}, with r focal
sets: F(m) = {F1, . . . ,Fr}.
m can be represented by a pair (mass,F), where mass is the
r -dimensional column vector of massesm(F1)

...
m(Fr )


and F is a r × p binary matrix such that

Fij =

{
1 if θj ∈ Fi ,
0 otherwise.

This format is convenient to input a mass function.
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Step 1: input m1 and m2

Let Θ = {p, c,h,o}.
m1 = {p, c}0.1, i.e., m1({p, c}) = 0.9,m1(Θ) = 0.1.

mass1=[0.9;0.1];
F1=[1 1 0 0 % {p,c}
1 1 1 1]; % {p,c,h,o}

m2 = {c,h}0.2, i.e., m2({c,h}) = 0.8,m2(Θ) = 0.2.

mass2=[0.8;0.2];
F2=[0 1 1 0 % {c,h}
1 1 1 1]; % {p,c,h,o}
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Step 2: compute m1 ∩⃝m2 using the commonality-based
approach

A commonality function q is specified with the 2|Θ| numbers
q(A),A ⊆ Θ.
It can be represented by a 2|Θ|-dimensional column vector q
whose element j stores q(Aj) with Aj the subset of Θ such that
θi ∈ Aj if the i-th bit in the binary representation of j − 1 equals 1.
Example for Θ = {θ1, θ2, θ3}

Position θ3 θ2 θ1 q
1 0 0 0 q(∅)
2 0 0 1 q({θ1})
3 0 1 0 q({θ2})
4 0 1 1 q({θ1, θ2})
5 1 0 0 q(θ3)
6 1 0 1 q({θ1, θ3})
7 1 1 0 q({θ2, θ3})
8 1 1 1 q({θ1, θ2, θ3})
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Step 2: compute m1 ∩⃝m2 using the commonality-based
approach

This “vector format” can also be used to represent mass, belief
and plausibility functions.
For instance, m1 is the 2|Θ|-dimensional column vector whose
element j stores m1(Aj).
It is the format expected by the Matlab functions of the FMT
toolbox that perform the transformations from one function (e.g.
the mass function) to another (e.g. the commonality function).
To be able to compute q1 and q2, we thus need first to convert m1
and m2 from the focal set format to the vector format. This is done
with the function ’mtobbm’:

m1 = mtobbm(mass1,F1);
m2 = mtobbm(mass2,F2);
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Step 2: compute m1 ∩⃝m2 using the commonality-based
approach

The transformation from the mass function to the commonality
function is done with the function ’mtoq’

q1=mtoq(m1);
q2=mtoq(m2);

Computation of q1 ∩⃝2

q12=q1.*q2;

Computation of m1 ∩⃝2, using the function ’qtom’ which tranforms
any commonality function into its associated mass function

m12=qtom(q12);
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Step 3: compute m1 ⊕ m2 by normalizing m1 ∩⃝m2

Computation of m1⊕2, using the function ’mtonm’ which, given a
mass function m, returns the mass function m′ such that
(normalization):

m′(A) =

{
m(A)

1−m(∅) if A ̸= ∅,
0 otherwise.

M12 = mtonm(m12);
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Step 4: compute φ+
P̂(m1 ⊕ m2) for k = 2

The function ’apphier’ performs the outer clustering approximation
φ+
P̂(m) of a mass function m.

It expects m to be provided in the focal set format.
The conversion from the vector format of m to its focal set format
is done with the function ’bbmtom’.

[Mass12, F12]= bbmtom(M12);
[Mass12out,F12out,C,N]=apphier(Mass12,F12,2,'out

'); % C(i) is the cluster id of focal set i (
in the original mass function) in the
partition, N is the cardinality of the
approximation
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Step 4: compute φ+
P̂(m1 ⊕ m2) for k = 2

We obtain

Mass12out =

0.7200
0.2800

F12out =

0 1 0 0
1 1 1 1

F. Pichon Combination of belief functions BFTA 2025 112



Software libraries

Full program

mass1 = [ 0 . 9 ; 0 . 1 ] ;
F1=[1 1 0 0 % { p , c }
1 1 1 1 ] ; % { p , c , h , o }
mass2 = [ 0 . 8 ; 0 . 2 ] ;
F2=[0 1 1 0 % { c , h }
1 1 1 1 ] ; % { p , c , h , o }
m1 = mtobbm( mass1 , F1 ) ; % Focal se t format to vec to r format
m2 = mtobbm( mass2 , F2 ) ;

q1=mtoq (m1) ;
q2=mtoq (m2) ;
q12=q1 . * q2 ;
m12=qtom ( q12 ) ; % con junc t i ve combinat ion o f m1 and m2
M12 = mtonm(m12) ; % Dempster ' s combinat ion o f m1 and m2

[ Mass12 , F12 ]= bbmtom(M12) ;
[ Mass12out , F12out ,C,N]= apphier ( Mass12 , F12 ,2 , ' out ' ) ; % Outer

c l u s t e r i n g approx imat ion
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