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Contents of this lecture

Pieces of evidence, represented by belief functions bel1, . . . ,beln
à la Shafer, about the actual (unknown) value of a variable X
defined on a domain Ω.
Information fusion

bel = f (bel1, . . . ,beln)

▶ Original proposal for f is Dempster’s rule of combination.
▶ Since then, a jungle of combination rules.

This lecture
1 Review of Dempster’s rule
2 Guided tour of the jungle
3 How to choose f?
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Preliminaries

Mass, belief and plausibility functions
A piece of evidence about a variable X taking values in a finite set
Ω (frame of discernement) may be represented by a mass function
m : 2Ω → [0,1] such that ∑

A⊆Ω

m(A) = 1

and m(∅) = 0.
Every A ⊆ Ω such that m(A) > 0 is a focal set of m.
F(m): set of focal sets of m.
A piece of evidence may equivalently be represented by the belief
function bel : 2Ω → [0,1] or plausibility function pl : 2Ω → [0,1]

bel(A) =
∑
B⊆A

m(B),

pl(A) =
∑

B∩A̸=∅

m(B),

F. Pichon (LGI2A) Information Fusion in the Theory of Evidence BFTA 2023 5



Preliminaries

Example
My Apple MacBook has broken down.
The cause X of the issue is either a power problem, a CPU
malfunction, an hard drive failure or a corrupted OS, i.e.,
Ω = {p, c,h,o}.
A technician conducts an investigation and finds that X ∈ {p, c}.

▶ If the investigation was conducted properly, we know that
X ∈ {p, c}.

▶ If the investigation was not conducted properly, we just know that
X ∈ Ω (we know nothing).

There is a chance 0.1 that the investigation was not conducted
properly:

▶ The probability of knowing that X ∈ {p, c} is 0.9
▶ The probability of knowing nothing is 0.1

This piece of evidence about X can be represented by

m({p, c}) = 0.9,m(Ω) = 0.1
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Preliminaries

Semantics
Suppose we receive a coded message containing reliable
information about X defined on Ω.
The actual code used is unknown, but we know that it was one of
c1, . . . , cn, and that each code had a chance pi of being selected.
Furthermore, we know that the meaning of the message is
X ∈ Ai ⊆ Ω if code ci was used.
What do we know about X?
For all A ⊆ Ω, the probability that the message

▶ means X ∈ A is:
m(A) =

∑
i:Ai=A

pi

▶ implies X ∈ A is: bel(A) =
∑

B⊆A m(B)
▶ is consistent with X ∈ A is:

pl(A) =
∑

B∩A̸=∅

m(B)
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Preliminaries

Special cases
Logical mass function mA such that mA(A) = 1 (only one focal
set), represents the evidence whose meaning is precisely and
surely A (∼ set).
Total ignorance is represented by the logical mass function mΩ,
called vacuous mass function.
If all focal sets are singletons, then the mass function is Bayesian
(∼ probability distribution).
A mass function is simple if it has two focal sets: Ω and A for some
A ⊂ Ω. It has the following form

m(A) = 1 − w(A),
m(Ω) = w(A)

It is denoted by Aw(A). For instance, {p, c}0.1 in the faulty
MacBook example.
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Preliminaries

Informational comparison
Given two pieces of information X ∈ A and X ∈ B, X ∈ A is at
least as informative as X ∈ B if A ⊆ B.
An extension of this ordering between sets to mass functions is
the specialization ordering.
Given two mass functions m1 and m2, m1 is at least as informative
as m2, noted m1 ⊑s m2, if m1 can be obtained from m2 by
distributing each mass m2(B) to subsets of B, i.e.,

m1(A) =
∑

B

S(A,B)m2(B), ∀A,

where S(A,B) = proportion of m2(B) transferred to A ⊆ B.
Properties

▶ Extension of set inclusion: mA ⊑s mB ⇔ A ⊆ B
▶ Greatest element: vacuous mass function mΩ

▶ m1 ⊑s m2 ⇒ pl1 ≤ pl2
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Dempster’s rule Justifications

Reliable and independent messages
Derivation of Dempster’s rule

Let m1 and m2 be two mass functions induced by two randomly
coded messages (also called sources), with:

▶ c1, . . . , cn, p1, . . . ,pn and A1, . . . ,An, the codes, their chances and
their message meanings in the case of the first message,

▶ c′
1, . . . , c

′
m, p′

1, . . . ,p
′
m and B1, . . . ,Bm, the codes, their chances and

their message meanings in the case of the second message.

Assume the messages are independent, i.e., the two random
choices of codes are independent: there is a chance pip′

j that the
pair (ci , c′

j ) of codes was chosen.

Assume the messages are reliable, i.e., if the actual codes were ci
and c′

j , we can conclude that X ∈ Ai ∩ Bj for sure.

▶ If Ai ∩ Bj = ∅, then we know that (ci , c′
j ) could not be the pair of

codes actually used.
→ We must condition the chance distribution on the event

{(ci , c′
j )|1 ≤ i ≤ n,1 ≤ j ≤ m,Ai ∩ Bj ̸= ∅}
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Dempster’s rule Justifications

Reliable and independent messages
Derivation of Dempster’s rule (continued)

The probability of the overall message being X ∈ C, C ̸= ∅ is

m(C) = K
∑

i,j:Ai∩Bj=C

pip′
j

= K
∑

A∩B=C

m1(A)m2(B) (1)

with K = (1 − κ)−1 where κ is the degree of conflict defined as

κ =
∑

i,j:Ai∩Bj=∅

pip′
j =

∑
A∩B=∅

m1(A)m2(B)

If κ < 1, the result of the combination of m1 and m2 by Dempster’s
rule ⊕ is the mass function m1⊕2 = m1 ⊕ m2 called orthogonal
sum and defined as m1⊕2(C) = m(C) given by (1).
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Dempster’s rule Justifications

Faulty MacBook example continued

The technician’s analysis is represented by the (simple) mass
function m1 = {p, c}0.1

Now, assume that a friend (Apple enthusiast) returns the mass
function m2 = {c,h}0.2

Assuming the pieces of evidence to be independent and reliable,
we obtain:

m2 \ m1 {p, c} Ω
0.9 0.1

{c,h} {c,h} ∩ {p, c} = {c} {c,h}
0.8 0.8*0.9=0.72 0.08
Ω {p, c} Ω

0.2 0.18 0.02

m1⊕2({c}) = 0.72
m1⊕2({c,h}) = 0.08
m1⊕2({p, c}) = 0.18

m1⊕2(Ω) = 0.02
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Dempster’s rule Justifications

Justification in the Transferable Belief Model (TBM)
The TBM allows m(∅) > 0 (open-world assumption).
Let ⊙ be a combination rule for two mass functions.
Assume ⊙ must satisfy the following requirements:

1 m1 ⊙ m2 is more informative than (a specialization of) m1 and m2
2 m1 ⊙ m2 = m2 ⊙ m1 (commutativity)
3 (m1 ⊙ m2)⊙ m3 = m1 ⊙ (m2 ⊙ m3) (associativity)
4 m ⊙ mA is the least informative among the more informative mass

functions m′ than m such that pl ′(A) = 0.

Then m1 ⊙ m2 = m1 ⊕∗ m2, with ⊕∗ the unnormalized Dempster’s
rule (conjunctive rule)

m1⊕∗2(C) =
∑

A∩B=C

m1(A)m2(B), ∀C ⊆ Ω,

m1⊕2(C) =
m1⊕∗2(C)

1 − κ
=

m1⊕∗2(C)

1 − m1⊕∗2(∅)
, ∀C ̸= ∅.
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Dempster’s rule Properties

Properties of Dempster’s rule

Commutativity: m1 ⊕ m2 = m2 ⊕ m1

Associativity: (m1 ⊕ m2)⊕ m3 = m1 ⊕ (m2 ⊕ m3)

Insensitivity to vacuous information (vacuous mass function as
neutral element): m ⊕ mΩ = m
Generalization of set intersection: if A ∩ B ̸= ∅ then

mA ⊕ mB = mA∩B

Generalization of probabilistic conditioning: if m is a Bayesian
mass function and mA is a logical mass function, then

m ⊕ mA

is a Bayesian mass function corresponding to the conditioning of
m by A.
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Dempster’s rule Properties

Expression using commonalities
Commonality function q : 2Ω → [0,1]

q(A) =
∑
B⊇A

m(B)

Conversely,
m(A) =

∑
B⊇A

(−1)|B\A|q(B)

We have
q1⊕∗2(A) = q1(A) · q2(A), ∀A,

and

q1⊕2(A) = K · q1⊕∗2(A), ∀A ̸= ∅,
q1⊕2(∅) = 1

with K =
(∑

∅≠B⊆Ω(−1)|B|+1q1⊕∗2(B)
)−1

.
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Dempster’s rule Properties

Simple and separable mass functions

Let Aw1(A) and Aw2(A) be two simple mass functions.
We have

Aw1(A) ⊕ Aw2(A) = Aw1(A)·w2(A)

A mass function is separable if it can be written as the ⊕
combination of simple mass functions

m =
⊕

∅≠A⊂Ω

Aw(A)

with 0 ≤ w(A) ≤ 1 for all A ⊂ Ω,A ̸= ∅.
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Dempster’s rule Properties

Canonical decomposition

Let m be a non dogmatic mass function (m(Ω) > 0).
Weight function w : 2Ω\{∅,Ω} → (0,+∞)

w(A) =
∏
B⊇A

q(B)(−1)|B|−|A|+1

m can be recovered from w by

m =
⊕

∅≠A⊂Ω

Aw(A)

(Some Aw(A) in this decomposition may not be proper mass
functions, since w(A) > 1.)
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Dempster’s rule Properties

Expression using weights

Let m1 and m2 be two non dogmatic mass functions.
We have

m1 ⊕ m2 =
⊕

∅≠A⊂Ω

Aw1(A)·w2(A)

The ⊕-decomposition is at play in various approaches (GBT,
E-KNN, DS analysis of GLR classifiers, contextual corrections,...)
and is the foundation to solutions to important problems (fusion of
non independent sources, distributed fusion).
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Dempster’s rule Computation

Exact computation

Orthogonal sum m1⊕2:
▶ Mass-based approach;
▶ Commonality-based approach ( program ).

Computing times proportional to, respectively:
▶ |Ω||F(m1)||F(m2)|
▶ |Ω|22|Ω| (using the Fast Möbius Tranform to perform m ↔ q)

Which approach to use ?
▶ if ∀mi , |F(mi)| << 2|Ω|, use the mass-based approach;
▶ if ∃mi , |F(mi)| ∼ 2|Ω|, use the commonality-based approach.

In the worst case, exponential complexity with respect to |Ω|.
However, for practical applications (typically involving several
mass functions), this is rarely an issue...
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Dempster’s rule Computation

Exact computation
Particular forms of mass functions

If each mass function is of the form {ω}w({ω}) or {ω}w({ω})
, for

some ω ∈ Ω, the complexity becomes linear.

If Ω is linearly ordered, and the focal sets of the mass functions are
constrained to be intervals, the complexity becomes polynomial.

▶ Example: duration (in days) of the repair of the faulty MacBook
▶ Ω = {1, . . . ,30}
▶ A ⊆ Ω is an interval if there exist elements a and b of Ω such that

A = {ω ∈ Ω|a ≤ ω ≤ b}.
▶ Such A is denoted by [a,b].
▶ For instance, A = {12,13,14,15,16} = [12,16].
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Dempster’s rule Computation

Exact computation
Particular forms of mass functions (continued)

More generally, the complexity is polynomial if there is a partial
ordering ≤ of Ω such that (Ω,≤) is a lattice and the focal sets of
the mass functions are constrained to be intervals of that lattice.
Refresher on lattices:

▶ Partial ordering ≤ on finite set L: a reflexive, antisymmetric and
transitive relation on L.

▶ (L,≤) is a partially ordered set (poset).
▶ The poset (L,≤) is a lattice if for every x , y ∈ L, there is a unique

greatest lower bound (denoted x ∧ y and called meet) and a unique
least upper bound (denoted x ∨ y and called join).

Remark: The intersection of two intervals [a,b] and [c,d ] of
(Ω,≤), required by Dempster’s rule, is an interval

[a,b] ∩ [c,d ] =
{

[a ∨ c,b ∧ d ] if a ∨ c ≤ b ∧ d ,
∅ otherwise.
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Dempster’s rule Computation

Exact computation
Particular forms of mass functions (continued)

This result makes it possible to tackle applications, such as
multi-label classification, ensemble clustering, and preference
aggregation, involving the manipulation of mass functions defined
on very large Ω and which are thus intractable in the usual case.
Indeed, in such applications, mass functions having only (lattice)
interval focal sets are naturally encountered...

F. Pichon (LGI2A) Information Fusion in the Theory of Evidence BFTA 2023 26



Dempster’s rule Computation

Exact computation
Examples of lattice intervals: Multi-label classification

Instances belong to several classes at the same time.
E.g., a song (instance) can generate several emotions (classes).
Let Θ = {θ1, . . . , θc} be the set of classes.
Class label X of an instance takes values in Ω = 2Θ.
Let ωA be the element of Ω corresponding to A ⊆ Θ

Partial ordering on Ω: ωA ≤ ωB ⇔ A ⊆ B, for all A,B ⊆ Θ.
Interval [ωA, ωB] of lattice (Ω,≤), for A ⊆ B, is an imprecise
specification of X : it surely contains all elements of A and surely
contains no element of B.
Natural way to express expert imprecise knowledge about the
class label of a training instance.
Predicting the class label of a test instance from such training data
amounts, using the E-KNN classifier, to combining mass functions
with interval focal sets.
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Dempster’s rule Computation

Exact computation
Examples of lattice intervals: Ensemble clustering

Clustering a set Θ of n objects = finding a partition of Θ.
Let Ω be set of all partitions of Θ.
The “true” partition X of the objects takes values in Ω.
Partial ordering on Ω: ω ≤ ω′ (ω is finer than ω′), for all ω, ω′ ∈ Ω, if
the clusters of ω can be obtained by splitting those of ω′.

Interval [ω, ω] of lattice (Ω,≤), for ω ≤ ω, is an imprecise
specification of X : it is coarser than ω and finer than ω.
For instance, “the objets of a set A ⊆ Θ belong to the same
cluster” can be represented by the interval [ωA, ωΘ], where ωB is
the partition where only the objects in B are clustered together.
Natural way to interpret the output of a clustering algorithm.
Predicting the true partition from an ensemble of such clustering
algorithms, while accounting for their validity, amounts to
combining mass functions with interval focal sets.
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Dempster’s rule Computation

Exact computation
Decision making

The goal is often to make decisions.
A usual decision rule is to select the singleton {ω} of Ω with the
largest plausibility or, equivalently (since pl({ω}) = q({ω})), with
the largest commonality.
The complexity is linear, thanks to the property

q1⊕2({ω}) = K · q1({ω}) · q2({ω}), ∀ω ∈ Ω.
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Dempster’s rule Computation

Approximate computation

Approximate computation when the exact computation is not
possible.
Stochastic approximation procedures:

▶ (Approximate) Combined belief for some A ⊂ Ω can be computed
by Monte Carlo algorithms in time linear in |Ω|;

▶ Not feasible when one is interested in the whole combined belief
function.

Deterministic approximation procedures: provide upper and lower
bounds on combined belief

▶ Mass-based approach;
▶ Commonality-based approach.
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Dempster’s rule Computation

Approximation for the mass-based approach
Complexity depends on the number of focal sets → approximate
mass functions by simpler ones with fewer focal sets.
Simplest method: Summarization algorithm.
Let F1, . . . ,Fr be the focal sets of a mass function m ranked by
decreasing mass, i.e., m(F1) ≥ m(F2) ≥ . . . ≥ m(Fr ).
Let k be the maximum allowed number of focal sets.
If r > k , the r − k + 1 focal sets Fk , . . . ,Fr are replaced by their
union, and m is approximated by the mass function φ+(m) defined
as

φ+(m) (Fi) = m(Fi), i = 1, . . . , k − 1,

φ+(m)

(
r⋃

i=k

Fi

)
=

r∑
i=k

m(Fi).

For short, we say that Fk , . . . ,Fr are “aggregated”.
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Dempster’s rule Computation

Approximation for the mass-based approach
We have m ⊑s φ+(m): it is called an outer approximation of m.

Proposition (Monotonicity of ⊕∗ with respect to ⊑s)

m ⊑s m′ ⇒ m ⊕∗ m0 ⊑s m′ ⊕∗ m0, ∀m0

From these properties, we have

m⊕∗ ⊑s m+

with

m⊕∗ := m1 ⊕∗ . . .⊕∗ mn,

m+ := φ+(φ+(. . . φ+(φ+(m1 ⊕∗ m2)⊕∗ m3)⊕∗ . . .mn−1)⊕∗ mn).

m+ is an outer approximation of the conjunctive combination of
mass functions m1, . . . ,mn.
The combinatorial explosion of the combination is avoided.
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Dempster’s rule Computation

Approximation for the mass-based approach

In the summarization procedure of a mass function m, if we
replace the focal sets Fk , . . . ,Fr by their intersection rather than
their union, we get another approximation φ−(m) of m.
We have φ−(m) ⊑s m: it is called an inner approximation of m.
Furthermore,

m− ⊑s m⊕∗ ⊑s m+

with

m− := φ−(φ−(. . . φ−(φ−(m1 ⊕∗ m2)⊕∗ m3)⊕∗ . . .mn−1)⊕∗ mn).

We have
pl− ≤ pl⊕∗ ≤ pl+

Bounds on bel⊕∗ can also be obtained.
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Dempster’s rule Computation

Approximation for the mass-based approach

Let m⊕ denote the orthogonal sum of mass functions m1, . . . ,mn.
We have

pl⊕(A) =
pl⊕∗(A)
pl⊕∗(Ω)

, ∀A ⊆ Ω

Inner and outer approximations m− and m+ of m⊕∗ allow thus to
obtain lower and upper bounds on pl⊕ (and also on bel⊕):

pl−(A)
pl+(Ω)

≤ pl⊕(A) ≤
pl+(A)
pl−(Ω)
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Dempster’s rule Computation

Approximation for the mass-based approach

Let m be a mass function.
The summarization algorithm produces a less informative
approximation φ+(m) of m (we have m ⊑s φ+(m)).
It does so by aggregating “unimportant” focal sets (those with
lowest masses).
They are unimportant in the sense that they will not incur too
much information loss.
When approximating m, we indeed want to lose as less as
possible of its informative content.
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Dempster’s rule Computation

Approximation for the mass-based approach

How much information is lost by φ+(m)?
(Generalized) Cardinality of a mass function m:

|m| :=
∑

A

m(A)|A|,

the greater the cardinality of m, the less informative m is.
We have

m1 ⊑s m2 ⇒ |m1| ≤ |m2|.

Hence, a measure of the information lost if we replace m by
φ+(m) can be

∆(φ+(m),m) := |φ+(m)| − |m|.
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Dempster’s rule Computation

Approximation for the mass-based approach

Furthermore, we can remark that the summarization algorithm
involves a specific partition P = {I1, . . . , Ik} of
F(m) = {F1, . . . ,Fr} with

Ii = {Fi}, i = 1, . . . , k − 1,
Ik = {Fk , . . . ,Fr}.

The mass function φ+(m) can then be rewritten simply as

φ+(m)

(⋃
F∈I

F

)
=

∑
F∈I

m(F ), ∀I ∈ P.
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Dempster’s rule Computation

Approximation for the mass-based approach

Other partitions of F(m) of size k exist!
Let φ+

P(m) be the outer approximation of m obtained for some
partition P of F(m) using the equation on the previous slide.

→ Find the best outer approximation φ+
P∗(m) of m by searching a

partition P∗ minimizing the information loss:

∆(φ+
P∗(m),m) := min

P∈Pk
∆(φ+

P(m),m),

with Pk the set of all partitions of F(m) of size k .
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Dempster’s rule Computation

Approximation for the mass-based approach

An exhaustive search in Pk is in general not possible, as |Pk |
rapidly explodes, even for small values of r .
We need to resort to heuristic search techniques.
A hierarchical clustering algorithm has been proposed for that
purpose: pairs of focal sets are grouped sequentially (at each
step, the two “closest” focal sets are aggregated), until the desired
number k of focal sets has been reached.
Time proportional to r3.
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Dempster’s rule Computation

Approximation for the mass-based approach

The algorithm relies on the “distance” δ+(Fi ,Fj) between any pair
(Fi ,Fj) of focal sets of a mass function m defined as

δ+(Fi ,Fj) := ∆(φ+
Pi,j

(m),m),

with Pi,j the partition of F(m) of size |F(m)| − 1 such that

∃I ∈ Pi,j , I = {Fi ,Fj},
∀I′ ∈ P, I′ ̸= I, I′ = {F},F ∈ F(m),F ̸= Fi ,Fj .

δ+(Fi ,Fj) evaluates how much information is lost, with respect to a
given mass function m, if its focal sets Fi and Fj are aggregated.
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Dempster’s rule Computation

Approximation for the mass-based approach

Let φ+
P̂(m) denote the outer approximation of a mass function m

obtained using this hierarchical clustering-based approach (outer
clustering approximation for short)

▶ There is no guarantee that it yields the same (lowest) information
loss as φ+

P∗(m).
▶ It has been shown empirically to yield better results than φ+(m).

Much as the summarization procedure can be adapted to obtain
an inner approximation φ−(m) of m, this more complex
approximation procedure can be adapted to find an inner
(clustering) approximation φ−

P̂(m) of m.
Remark: contrarily to the summarization procedure,
approximations φ+

P̂(m) and φ−
P̂(m) of m rely in general on different

partitions P̂ of F(m).

F. Pichon (LGI2A) Information Fusion in the Theory of Evidence BFTA 2023 41



Dempster’s rule Computation

Approximation for the mass-based approach

Similarly as for the summarization procedure, we can obtain inner
and outer approximations of the conjunctive combination of n
mass functions:

m−
P̂ ⊑s m⊕∗ ⊑s m+

P̂

with

m−
P̂ := φ−

P̂(φ
−
P̂(. . . φ

−
P̂(φ

−
P̂(m1 ⊕∗ m2)⊕∗ m3)⊕∗ . . .mn−1)⊕∗ mn),

m+
P̂ := φ+

P̂(φ
+
P̂(. . . φ

+
P̂(φ

+
P̂(m1 ⊕∗ m2)⊕∗ m3)⊕∗ . . .mn−1)⊕∗ mn).

They induce bounds on pl⊕ (and on bel⊕):

pl−P̂ (A)

pl+P̂ (Ω)
≤ pl⊕(A) ≤

pl+P̂ (A)

pl−P̂ (Ω)
.
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Dempster’s rule Computation

Approximation for the commonality-based approach

Complexity depends on |Ω| → approximate Ω by a simpler
(coarser) frame Θ with fewer elements.
Algorithm for the combination of n mass functions m1, . . . ,mn:

1 Search, using a hierarchical clustering procedure, for a partition
(coarsening) Θ of Ω of size c, minimizing information loss defined
as

n∑
i=1

∆(ρ(mΘ
i ),mi)

with ρ(mΘ
i ) the outer approximation of mi obtained by carrying mi to

Θ (restriction mΘ
i ) and carrying it back to Ω (vacuous extension ρ(·))

2 Using the commonality-based approach, combine the mass
functions in the coarsened frame, i.e., compute mΘ := ⊕∗n

i=1mΘ
i

3 Carry the result to Ω, i.e., compute m := ρ(mΘ)

m is an outer approximation of m⊕∗ .
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Dempster’s rule Computation

Approximation for the commonality-based approach

Computing time proportional to max(|Ω|3,nc22c).
Algorithm can be adapted to obtain an inner approximation m of
m⊕∗ .
We have thus

m ⊑ m⊕∗ ⊑ m

This algorithm thus also yields lower and upper bounds for bel⊕
and for pl⊕.
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Dempster’s rule Conflict
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Dempster’s rule Conflict

Zadeh’s example
Let X ∈ Ω = {a,b, c} and two experts providing mass functions
m1 and m2 about X :

m1({a}) = 0.99,m1({b}) = 0.01,m1({c}) = 0

m2({a}) = 0,m2({b}) = 0.01,m2({c}) = 0.99

We have m1⊕2({b}) = 1.
As both experts considered b to be very unlikely, some authors
claim this result to be counterintuitive, and use it to question
Dempster’s rule.
However, if you accept the assumptions underlying Dempster’s
rule, then this is the only reasonable conclusion: expert 1 tells that
c is impossible, and expert 2 tells that a is impossible, hence b is
the only remaining possibility.
The question is not whether Dempster’s rule produces sound
results or not, but rather whether its underlying assumptions hold.

→ We need a way to assess their validity.
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Dempster’s rule Conflict

Degree of conflict

κ =
∑

A∩B=∅ m1(A)m2(B) has been shown to satisfy a set of
desirable properties for a conflict measure, i.e., a measure of the
inconsistency resulting from making the assumptions that the
received messages are reliable and independent.
In Zadeh’s example, we have κ = 0.9999, which suggests that
these assumptions may not be valid.

→ We need alternative rules, corresponding to other assumptions.
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Alternative rules

Beyond Dempster’s rule

Let m1 and m2 be two mass functions induced by two randomly
coded messages.
The assumptions leading to Dempster’s rule are that the

▶ Messages are independent: the probability that the messages
mean A and B, respectively, is m1(A)m2(B) (at least before making
an assumption about their reliability)

▶ Messages are reliable: if the messages mean A and B,
respectively, then the overall message is C = A ∩ B.

Rules corresponding to other assumptions about
1 the reliability (still assuming independence)
2 the dependence
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Alternative rules Reliability
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Alternative rules Reliability

Disjunctive rule

Let us now suppose only that at least one of the two messages
inducing m1 and m2 is reliable, i.e., if the actual codes were ci and
c′

j , we can only conclude that X ∈ Ai ∪ Bj for sure.
We obtain the disjunctive rule:

m1 ∪⃝2(C) =
∑

A∪B=C

m1(A)m2(B), ∀C ⊆ Ω,

It satisfies similar properties as Dempster’s rule, in particular
commutativity, associativity and expression based on pointwise
product of belief functions.
∪ can be replaced by any other binary Boolean connective ⊗ (may
require normalization using κ⊗ =

∑
A⊗B=∅ m1(A)m2(B)) and an

interpretation provided (see lecture at BFTA’2019).
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Alternative rules Reliability

Discount and combine (DC)
Independent reliabilities

Suppose a given message inducing a mass function m is reliable
with probability α (and unreliable with probability 1 − α).
Then the probability that the message means

▶ X ∈ A is αm(A) = αm(A), for A ⊂ Ω,
▶ nothing is αm(Ω) = αm(Ω) + 1 − α.

αm is the mass function resulting from the discounting of m with
discount rate 1 − α.

Suppose the two messages inducing m1 and m2 have
independent probabilities α1 and α2 of being reliable, then what
we know about X is represented by the mass function mDC such
that

mDC = α1m1 ⊕ α2m2

Combination method often used in practice and that can be
extended to refined form of knowledge about the behaviour of
each source (using, e.g., contextual corrections).
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Alternative rules Reliability

Weighted average (WA)
Dependent reliabilities

A close, yet different, assumption that can be made about the
reliability of the two messages is:

▶ the first message is reliable and the second is not reliable with
probability α1,

▶ the first message is not reliable and the second is reliable with
probability α2 = 1 − α1.

In this case, our knowledge about X is represented by the mass
function mWA such that

mWA = α1m1 + α2m2

" In general, α1m1 + α2m2 ̸= α1m1 ⊕ α2m2

Neither commutative nor associative combination methods.
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Alternative rules Reliability

Dubois and Prade’s rule

Dubois and Prade’s rule ⋆⃝:

m1 ⋆⃝2(C) =
∑

A∩B=C

m1(A)m2(B)+
∑

A∩B=∅,A∪B=C

m1(A)m2(B), ∀C ̸= ∅,

and m1 ⋆⃝2(∅) = 0.
Properties:

▶ If κ = 0, then m1 ⋆⃝2 = m1
⊕

2
▶ If κ = 1, then m1 ⋆⃝2 = m1 ∪⃝2
▶ Commutativity, insensitivity to vacuous information, as well as 6

other basic fusion properties
▶ Not associative
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Alternative rules Dependence

Handling dependence
Let m1 and m2 be two mass functions induced by two randomly
coded messages.
Dependence between the messages induces a joint probability
m12(A,B) that they mean A and B, respectively.
m12(·, ·) is a joint mass function s.t. its marginals are m1 and m2:

m1(A) =
∑

B

m12(A,B), ∀A,

and likewise for m2.
Independence: m12(A,B) = m1(A)m2(B), for all A and B.
All preceding combination rules can be extended to a known
dependence between the messages by replacing m1(A)m2(B) in
their definitions by m12(A,B).

However, in practice, describing the nature of the dependence is
generally difficult.

→ We thus need a different approach to handle non independent
pieces of evidence.
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Alternative rules Dependence

Least commitment principle

Least commitment principle (LCP)
When several belief functions are compatible with a set of constraints,
the least informative according to some informational ordering should
be selected (if it exists).

To become operational, the LCP needs a means (informational
ordering) to compare the informative content of belief functions.
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Alternative rules Dependence

Informational orderings

We have already seen an informational ordering: ⊑s.
Other proposals exist to establish whether a mass function m1 is
more informative than another mass function m2 (noted m1 ⊑x m2
for some informational ordering x):
w (weight) ordering: m1 ⊑w m2 if m1 = m2 ⊕ m for some
separable mass function m, which is equivalent to

w1(A) ≤ w2(A), ∀A.
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Alternative rules Dependence

Cautious merging
Two reliable but non independent sources providing mass
functions m1 and m2.
The result m of their combination should be more informative than
each one of them

m ∈ Sx(m1) ∩ Sx(m2),

with Sx(m) the set of mass functions m′ such that m′ ⊑x m.
The LCP dictates that the x-least informative element in
Sx(m1) ∩ Sx(m2) should be selected, if it exists

▶ Neither existence nor uniqueness can be guaranteed with the
s-ordering.

▶ Existence and uniqueness can be guaranteed with the w-ordering
(if m1 and m2 are nondogmatic): it is defined by

m1 ∧⃝2 = m1 ∧⃝m2 =
⊕

∅≠A⊂Ω

Amin(w1(A),w2(A)).

Rule ∧⃝ is called the cautious rule.
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Alternative rules Dependence

Properties of the cautious rule

Commutativity
Associativity
Monotonicity with respect to ⊑w :

m1 ⊑w m2 ⇒ m1 ∧⃝m3 ⊑w m2 ∧⃝m3

Idempotence: m ∧⃝m = m
Distributivity of ⊕ with respect to ∧⃝:

(m1 ⊕ m2) ∧⃝(m1 ⊕ m3) = m1 ⊕ (m2 ∧⃝m3)

Sensitivity to vacuous information
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Alternative rules Dependence

Bold rule

A disjunctive counterpart of ∧⃝, called the bold rule and noted ∨⃝,
can also be obtained.
It corresponds to non independent pieces of evidence, at least
one of which is reliable.
It amounts to taking the minimum of disjunctive weights, which are
a disjunctive counterpart to the weights we have seen so far.
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Alternative rules Dependence

Infinite families of conjunctive and disjunctive rules
Infinite families of conjunctive and disjunctive combination rules, of
which ⊕, ∧⃝, ∪⃝ and ∨⃝ belong, can be defined by replacing the
product/minimum in their definitions by uninorms/triangular norms
defined on (0,+∞].
Example : t-norm based conjunctive rules (t-rules)

m1 ∧⃝T m2 =
⊕

∅≠A⊂Ω

AT (w1(A),w2(A))

with T a triangular norm on (0,+∞] ( ∧⃝ recovered for T = min)
These conjunctive rules are commutative, associative, monotonic
with respect to ⊑w . The uninorm-based ones are in addition
insensitive to vacuous information.
Parameterized versions of these rules can be obtained, which can
be useful to adapt the combination to the degree of dependence
between the sources.
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Alternative rules n-ary extensions

Fusion of n mass functions

We receive mass functions m1, . . . ,mn

m = f (m1, . . . ,mn)

All the preceding combination rules can be extended to n mass
functions.
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Alternative rules n-ary extensions

Associative rules

The n-ary extension ⊙(m1, . . . ,mn) of the binary combination rule
⊙ ∈ {⊕, ∪⃝, ∧⃝, ∨⃝} satisfies

⊙(m1, . . . ,mn) = ((...((m1 ⊙ m2)⊙ m3)⊙ ...mn−1)⊙ mn)

Associated assumptions for the n-ary extension of
▶ ⊕: the pieces of evidence are independent and reliable.
▶ ∪⃝: the pieces of evidence are independent and at least one of them

is reliable (it is not known which one)
▶ ∧⃝: the pieces of evidence are non independent (their actual

dependence is unknown) and reliable
▶ ∨⃝: the pieces of evidence are non independent and at least one of

them is reliable
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Alternative rules n-ary extensions

Non-associative rules

Dubois and Prade’s rule:

⋆⃝(m1, . . . ,mn)(B) =
∑

B=h(A1,...,An)

m1(A1) · . . . · mn(An)

with
h(A1, . . . ,An) = ∪M∈MCS(A1,...,An) ∩Ai∈M Ai

where MCS(A1, . . . ,An) is the set of maximal consistent subsets
of {A1, . . . ,An}.
Discount and combine: mDC =

⊕n
i=1

αi mi , with αi ∈ [0,1]
Weighted average: mWA =

∑n
i=1 αimi , with αi ∈ [0,1] and∑n

i=1 αi = 1.
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Alternative rules n-ary extensions

q-relaxation rule

The q-relaxation rule ⊗r has the same definition as rule ⋆⃝ except
that MCS(A1, . . . ,An) is replaced by Relaxr (A1, . . . ,An), which is
the set of subsets of {A1, . . . ,An} of sizes r .
Associated assumption: r out of the n pieces of evidence are
reliable.
Normalization (using κr =

∑
f (A1,...,An)=∅ m1(A)m2(B)) may be

required.
Properties:

▶ Generalization of the (unnormalized) Dempster (r = n) and
disjunctive (r = 1) rules.

▶ Generalization of the q-relaxation technique from interval analysis
(r = n − q), which is designed to implement some form of
robustness to outliers.

▶ Commutativity.
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Rule selection

Which f to use?

m = f (m1, . . . ,mn)

Ideal situation: reliability and independence of the mi are clear →
use ⊕.
What if the reliability is unknown or the independence cannot be
assumed?

▶ No labelled data to assess the effectiveness (performance) of a
particular f :

⋆ Use a robust (and principled) rule;
⋆ Select a rule according to a consistency-informativeness trade-off.

▶ Labelled data available: learn the “best” rule.

F. Pichon (LGI2A) Information Fusion in the Theory of Evidence BFTA 2023 69



Rule selection

Which f to use?

m = f (m1, . . . ,mn)

Ideal situation: reliability and independence of the mi are clear →
use ⊕.

What if the reliability is unknown or the independence cannot be
assumed?

▶ No labelled data to assess the effectiveness (performance) of a
particular f :

⋆ Use a robust (and principled) rule;
⋆ Select a rule according to a consistency-informativeness trade-off.

▶ Labelled data available: learn the “best” rule.

F. Pichon (LGI2A) Information Fusion in the Theory of Evidence BFTA 2023 69



Rule selection

Which f to use?

m = f (m1, . . . ,mn)

Ideal situation: reliability and independence of the mi are clear →
use ⊕.
What if the reliability is unknown or the independence cannot be
assumed?

▶ No labelled data to assess the effectiveness (performance) of a
particular f :

⋆ Use a robust (and principled) rule;
⋆ Select a rule according to a consistency-informativeness trade-off.

▶ Labelled data available: learn the “best” rule.

F. Pichon (LGI2A) Information Fusion in the Theory of Evidence BFTA 2023 69



Rule selection Principled

Outline
1 Preliminaries

2 Dempster’s rule
Justifications
Properties
Computation
Conflict

3 Alternative rules
Reliability
Dependence
n-ary extensions

4 Rule selection
Principled
Performance-oriented

F. Pichon (LGI2A) Information Fusion in the Theory of Evidence BFTA 2023 70



Rule selection Principled

Robust rules

Independent but unknown reliability: ⋆⃝ or, if n large,
RANSAC-based rule ◦⃝:

1 Estimate which mi should be considered reliable (i ∈ R):
1. Iν : set of N random subsets I ⊂ {1, . . . , n} of size ν
2. ∀I ∈ Iν , Iτ := {i|1 ≤ i ≤ n, κ(mi ,mI) ≤ τ} with mI = ⊕i∈Imi

3. R = argmax{Iτ | I∈Iν} |Iτ |
2 Return ⊕-combination of the reliable ones:

◦⃝(m1, . . . ,mn) = ⊕i∈Rmi

Not independent but reliable: ∧⃝

Not independent and unknown reliability: ∨⃝

rel ¬rel
ind ⊕ ⋆⃝, ◦⃝
¬ind ∧⃝ ∨⃝
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Rule selection Principled

Consistency-informativeness trade-off (CIT)
Basic idea

3 sources about X ∈ Ω = {a,b, c} supplying A1,A2 and A3 s.t.

A1 = {a},A2 = {a,b},A3 = {b, c}

Assumption r1 = “all sources are reliable” yields

X ∈ C1 = A1 ∩ A2 ∩ A3 = ∅

i.e. an inconsistent result, and thus cannot hold.
In contrast, the assumption r3 = “at least one of the sources is
reliable” yields

X ∈ C3 = A1 ∪ A2 ∪ A3 = X

and is thus plausible (it does not yield a contradiction). However, it
is useless as it is not informative at all.
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Rule selection Principled

Consistency-informativeness trade-off (CIT)
Basic idea (continued)

The intermediate assumption r2 = “at least two of the sources are
reliable” yields

X ∈ C2 = (A1 ∩ A2) ∪ (A1 ∩ A3) ∪ (A2 ∩ A3) = {a,b}
r2 is plausible (the result is consistent) and informative (or, at
least, more informative than r3).

r2 is preferable, but for other (A1,A2,A3), it could be r1 or r3 due to

C1 ⊆ C2 ⊆ C3, ∀A1,A2,A3.

rj+1 will always yield a result that is on the one hand at least as
consistent as that of rj , but also on the other hand at most as
specific as that of rj .

→ Consistency and informativeness are antagonist goals
Sensible strategy for a given (A1,A2,A3): test iteratively each rj
and select the first one which yields a consistent result (it will then
be the most informative and consistent possible result).
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Rule selection Principled

Extension to rule selection

Strategy
1 Consider a set of rules F = {f 1, ..., f J} such that:

▶ mj ⊑ mj+1

▶ ϕ(mj) ≤ ϕ(mj+1)
with mj = f j(m1, . . . ,mn), ϕ(m) a measure of the consistency of m
and ⊑ an informational ordering between mass functions;

2 Test iteratively each f j until ϕ(mj) ≥ δ.

Approach originally studied in the context of the TBM (m(∅) ≥ 0
allowed), with ⊑s and ϕπ(m) = maxω∈Ω pl({ω}).

Proposition

m ⊑s m′ ⇒ ϕπ(m) ≤ ϕπ(m′),∀m,m′

→ Consistency and informativeness are at odds !
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Rule selection Principled

Choosing F

A similar proposition holds for:
▶ ⊑w∗ : informational ordering based on the “TBM” weight function

w∗, which assigns a weight
∏

|B|̸∈2N q(B)∏
|B|∈2N q(B) to ∅ and such that

w∗(A) = w(A) for all A ⊂ Ω;
▶ ⊑v : informational ordering based on the disjunctive weight function

v .

Thanks to these propositions, it suffices to choose F such that
mj ⊑x mj+1, with x ∈ {s,w∗, v}, in order to have
ϕπ(mj) ≤ ϕπ(mj+1) (required in Step 1 of the strategy).
There exist in particular such F suited to the different unknown
reliability/dependence situations.
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Rule selection Principled

CIT for selecting reliability or dependence

Independent but unknown reliability: use CIT approach with
▶ f j = ⊗∗

rj
with rj = n − j + 1 and ⊗∗

r the TBM (unnormalized)
q-relaxation rule

▶ f j(m1, . . . ,mn) = ⊕∗n
i=1

αj
i mi , with αj

i ≥ αj+1
i (independent reliabilities)

Not independent but reliable: use f j = ∧⃝∗
Tj

with Tj ≤ Tj+1 and ∧⃝∗
T

the TBM conjunctive t-rule (relying on w∗ rather than w) for some
t-norm T .
Not independent and unknown reliability: use f j = ∨⃝Tj

with
Tj ≥ Tj+1 and ∨⃝T the disjunctive t-rule for some t-norm T .
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Rule selection Principled

CIT application, independent but unknown reliability
Nuclear reactor safety

Project BEMUSE of the Nuclear Energy Agency.
n = 10 sources (CEA, IRSN,...) providing uncertain estimates of
parameter values of a nuclear power plant.
Costly data and complex phenomena involved → no reliable
means to know the source reliabilities.
Chose F with fj = ⊗∗

rj
(n − j + 1 out of n reliable).

PCT2 parameter with domain Ω = {x1, . . . , x6}
▶ ϕπ(m1) = 0.19 (all sources reliable)
▶ ϕπ(m2) = 0.81 (9 out of 10 reliable)
▶ ϕπ(m3) = 1 (8 out of 10 reliable)
▶ Values x4 and x5 are definitely more plausible.

→ Results that are consistent, informative and readable by the
end-user.
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Rule selection Principled

Summary: principled rule selection

rel ¬rel
ind ⊕ ⋆⃝, ◦⃝

CIT (⊗r),CIT (DC)

¬ind ∧⃝ ∨⃝
CIT ( ∧⃝T ) CIT ( ∨⃝T )
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Rule selection Performance-oriented
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Rule selection Performance-oriented

Learning data: typical setting

ℓ objects o1 . . . ,oℓ for which we have observed the true values
x̂1, . . . , x̂ℓ of some X .
For each object oi , mass functions m1,i , . . . ,mn,i about the true
value of X .
A loss function L(m, x̂) evaluating the error of knowing m about X
for a given object whose true value for X is x̂ .
From a set F of possible rules, choose

f ∗ = argmin
f∈F

1
ℓ

ℓ∑
i=1

L(f (m1,i , . . . ,mn,i), x̂i)

Remark: more or less complex optimisation problem to solve
depending on chosen F and L.

F. Pichon (LGI2A) Information Fusion in the Theory of Evidence BFTA 2023 80



Rule selection Performance-oriented

F and L

Typically, L(m, x̂) corresponds to transforming m into a probability
measure P, and using the squared error (SE) or cross-entropy
(CE) loss:

LSE(m, x̂) =
∑
x∈Ω

(1x̂(x)− p(x))2

LCE(m, x̂) = −
∑
x∈Ω

1x̂(x) log p(x)

F corresponds to a parameterized family of rules:
▶ Independent but unknown reliability: ⊗r with parameter r, or DC

with parameters αi .
▶ Not independent but reliable: ∧⃝Ts

for some family of t-norms Ts
determined by parameter s.

▶ Not independent and unknown reliability: ∨⃝Ts
.
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Rule selection Performance-oriented

Application, not independent but reliable
Classifier fusion [Quost et al. 2011]

Binary classification problem, with 10 features.
One classifier learnt per feature, hence 10 classifiers.
Conditionally on each class, correlation σ between any two of the
first 9 features, last feature independent from all the others.

→ Experimental framework intended to ressemble a situation where
there are 9 dependent classifiers, and a tenth classifier
independent from the others.
For each object, the i-th classifier produces a mass function mi .
The 10 obtained mass functions are combined using a
parameterized t-rule ∧⃝Ts , with s ∈ (0,1] and such that ∧⃝Ts = ∧⃝ for
s → 0 and ∧⃝Ts = ⊕ for s = 1.
Error criterion (loss function): pignistic probability transformation
with SE.
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Rule selection Performance-oriented

Results for σ = 0.1
[Quost et al. 2011]
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Rule selection Performance-oriented

Results for σ = 0.9
[Quost et al. 2011]
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Rule selection Performance-oriented

Results for σ = 0.5
[Quost et al. 2011]
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Rule selection Performance-oriented

Summary: rule selection

rel ¬rel
ind ⊕ ⋆⃝, ◦⃝

CIT/L(⊗r),CIT/L(DC)

¬ind ∧⃝ ∨⃝
CIT/L( ∧⃝T ) CIT/L( ∨⃝T )
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Conclusion

Summary

Dempster’s rule is a well-justified combination rule, satisfying
important properties, appearing in numerous approaches to
various problems and whose complexity can be managed.
There exist alternative, well-justified, combination rules,
corresponding to other assumptions/requirements.
In practice, Dempster’s rule is often effective and its underlying
assumptions met (at least approximatively).
However, if there is some uncertainty about the validity of these
assumptions, there exist several (principled/performance-oriented)
means to select an alternative rule addressing this uncertainty.
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Software libraries

Software libraries for belief function combination
Matlab:

▶ FMT (Smets, extended versions from Denoeux, Martin (DST))
▶ Approximation (Denoeux)

R:
▶ iBelief (Zhou & Martin)
▶ Belief Package (Destercke)
▶ dst (Boivin)
▶ EvCombR (Karlsson)

Python:
▶ pyds (Reineking)

C++:
▶ 2CoBel (Pellicanò & Le Hégarat-Mascle & Aldea)
▶ bft (Kurdej)
▶ eVidenZ (Burrus & Lesage)

Java:
▶ Java Dempster Shafer Library (Reineking)
▶ evidence4j (based on eVidenZ)
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Demo Matlab FMT
Dempster’s rule followed by outer clustering approximation

Goal: computation of φ+
P̂(m1 ⊕ m2) for k = 2 with m1 and m2 from

the faulty MacBook example, i.e.,

m1 = {p, c}0.1,

m2 = {c,h}0.2.

We proceed in four steps:
1 input m1 and m2 using the “focal set format”;
2 compute m1 ⊕∗ m2 using the commonality-based approach;
3 compute m1 ⊕ m2 by normalizing m1 ⊕∗ m2;
4 compute φ+

P̂(m1 ⊕ m2) for k = 2.
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Focal set format

Let m be a mass function defined on Ω = {ω1, . . . , ωp}, with r focal
sets: F(m) = {F1, . . . ,Fr}.
m can be represented by a pair (mass,F), where mass is the
r -dimensional column vector of massesm(F1)

...
m(Fr )


and F is a r × p binary matrix such that

Fij =

{
1 if ωj ∈ Fi ,
0 otherwise.

This format is convenient to input a mass function.
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Step 1: input m1 and m2

Let Ω = {p, c,h,o}.
m1 = {p, c}0.1, i.e., m1({p, c}) = 0.9,m1(Ω) = 0.1.

mass1=[0.9;0.1];
F1=[1 1 0 0 % {p,c}
1 1 1 1]; % {p,c,h,o}

m2 = {c,h}0.2, i.e., m2({c,h}) = 0.8,m2(Ω) = 0.2.

mass2=[0.8;0.2];
F2=[0 1 1 0 % {c,h}
1 1 1 1]; % {p,c,h,o}
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Step 2: compute m1 ⊕∗ m2 using the
commonality-based approach

A commonality function q is specified with the 2|Ω| numbers
q(A),A ⊆ Ω.
It can be represented by a 2|Ω|-dimensional column vector q
whose element j stores q(Aj) with Aj the subset of Ω such that
ωi ∈ Aj if the i-th bit in the binary representation of j − 1 equals 1.
Example for Ω = {ω1, ω2, ω3}

Position ω3 ω2 ω1 q
1 0 0 0 q(∅)
2 0 0 1 q({ω1})
3 0 1 0 q({ω2})
4 0 1 1 q({ω1, ω2})
5 1 0 0 q(ω3)
6 1 0 1 q({ω1, ω3})
7 1 1 0 q({ω2, ω3})
8 1 1 1 q({ω1, ω2, ω3})
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Step 2: compute m1 ⊕∗ m2 using the
commonality-based approach

This “vector format” can also be used to represent mass, belief
and plausibility functions.
For instance, m1 is the 2|Ω|-dimensional column vector whose
element j stores m1(Aj).
It is the format expected by the Matlab functions of the FMT
toolbox that perform the transformations from one function (e.g.
the mass function) to another (e.g. the commonality function).
To be able to compute q1 and q2, we thus need first to convert m1
and m2 from the focal set format to the vector format. This is done
with the function ’mtobbm’:

m1 = mtobbm(mass1,F1);
m2 = mtobbm(mass2,F2);
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Step 2: compute m1 ⊕∗ m2 using the
commonality-based approach

The transformation from the mass function to the commonality
function is done with the function ’mtoq’

q1=mtoq(m1);
q2=mtoq(m2);

Computation of q1⊕∗2

q12=q1.*q2;

Computation of m1⊕∗2, using the function ’qtom’ which tranforms
any commonality function into its associated mass function

m12=qtom(q12);
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Step 3: compute m1 ⊕ m2 by normalizing m1 ⊕∗ m2

Computation of m1⊕2, using the function ’mtonm’ which, given a
mass function m, returns the mass function m′ such that
(normalization):

m′(A) =

{
m(A)

1−m(∅) if A ̸= ∅,
0 otherwise.

M12 = mtonm(m12);
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Step 4: compute φ+
P̂(m1 ⊕ m2) for k = 2

The function ’apphier’ performs the outer clustering approximation
φ+
P̂(m) of a mass function m.

It expects m to be provided in the focal set format.
The conversion from the vector format of m to its focal set format
is done with the function ’bbmtom’.

[Mass12, F12]= bbmtom(M12);
[Mass12out,F12out,C,N]=apphier(Mass12,F12,2,'out

'); % C(i) is the cluster id of focal set i (
in the original mass function) in the
partition, N is the cardinality of the
approximation
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Step 4: compute φ+
P̂(m1 ⊕ m2) for k = 2

We obtain

Mass12out =

0.7200
0.2800

F12out =

0 1 0 0
1 1 1 1
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Full program

mass1 = [ 0 . 9 ; 0 . 1 ] ;
F1=[1 1 0 0 % { p , c }
1 1 1 1 ] ; % { p , c , h , o }
mass2 = [ 0 . 8 ; 0 . 2 ] ;
F2=[0 1 1 0 % { c , h }
1 1 1 1 ] ; % { p , c , h , o }
m1 = mtobbm( mass1 , F1 ) ; % Focal se t format to vec to r format
m2 = mtobbm( mass2 , F2 ) ;

q1=mtoq (m1) ;
q2=mtoq (m2) ;
q12=q1 . * q2 ;
m12=qtom ( q12 ) ; % con junc t i ve combinat ion o f m1 and m2
M12 = mtonm(m12) ; % Dempster ' s combinat ion o f m1 and m2

[ Mass12 , F12 ]= bbmtom(M12) ;
[ Mass12out , F12out ,C,N]= apphier ( Mass12 , F12 ,2 , ' out ' ) ; % Outer

c l u s t e r i n g approx imat ion
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