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Abstract

Given past observations of an ordinal variable, we want to predict a future observation.
This paper provides the solution, according to the likelihood-based evidential method for
statistical inference and prediction, of this problem, in an algebraic form. This result is
obtained after establishing that the prediction of an ordinal variable can be computed, under
some conditions on the possibility distribution representing the estimation uncertainty in
this method, by integrating the marginals of this distribution.
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1 Introduction
Consider observed counts of K ordered categories and that we wish to predict a future observation, as
illustrated by Example 1.

Example 1. The data in Table 1 are January precipitations, in inches, recorded during the period 1895-
2004 in Arizona and categorized, as in [5, Example 7], into K = 6 ordered categories. The problem is to
predict the precipitation category of the following January (2005).

Table 1: Categorized Arizona January precipitation data, with observed count for each category.

precipitation category count
[0, 0.75) ‘1’ 48

[0.75, 1.25) ‘2’ 17
[1.25, 1.75) ‘3’ 19
[1.75, 2.25) ‘4’ 11
[2.25, 2.75) ‘5’ 6

≥ 2.75 ‘6’ 9

One of the main results of this paper is that we provide the solution, according to the method for
statistical inference and prediction proposed in [12, 13], of this basic, yet important, problem, in an
algebraic form.

This so-called likelihood-based method is framed in the Dempster-Shafer theory of belief functions [3,
20] and satisfies the important requirement of being compatible with Bayesian reasoning. It assumes a
parametric model, with parameter θ, for the random variable to be predicted. It is based on three steps.
First, estimation uncertainty on θ is quantified by a possibility distribution; in the example above, this
possibility distribution is nothing but the relative likelihood of θ given the observed counts. Next, the
random variable to be predicted is expressed as a function, called a φ-equation, of a pivotal random
variable and θ. Finally, the possibility distribution is combined with the pivotal distribution to yield a
predictive belief function (PBF) that quantifies the uncertainty about the future observation.

There exist a few other methods to statistical inference and prediction, based on Dempster-Shafer
theory. In particular, Dempster’s original approach [4], which relies as well on a φ-equation, satisfies also
the property of being compatible with Bayesian inference. However, its application poses severe technical
difficulties in general [9, 10]. The other main methods, such as Martin and Liu’s Inferential Model
approach [15], which is an adaptation of Dempster’s approach and uses also a φ-equation, or Denœux’s
confidence level-based approach [5, 10], satisfy frequentist-oriented requirements and are incompatible
with Bayesian reasoning, as highlighted in the works [6, 9, 10] to which we refer for in-depth comparisons,
as well as connections, between the main Dempster-Shafer theory-based methods to statistical inference
and prediction.

The likelihood-based approach has been used for the prediction of quantitative variables (see, e.g., [12,
13]) as well as qualitative variables. The simplest qualitative case, i.e., the binary case, which involves
only a parameter θ ∈ [0, 1], has been addressed for possibility distributions on θ obtained in various
contexts: observation of a binomial variable [13], calibration of binary classifiers [22, 17], and binary
classification through logistic and choquistic regressions [19]. Of particular interest with the binary case
is that the PBF can be computed exactly, simply by integrating the possibility distribution on θ, under
the condition that this distribution is unimodal and continuous. The PBF even admits an algebraic
expression when the possibility distribution is the relative likelihood of θ given observed data having
a binomial distribution with proportion θ [22]; we have thus an elegant and convenient solution to a
basic, yet fundamental, problem, which can readily be used to address all applied problems that involve
predicting a binary variable from its past observations, such as the binning-based approach to calibration
as done in [22].

The nominal case, which involves a “structure of the second kind” [3], was considered recently in [9]
for a possibility distribution on θ obtained in the context of multinomial logistic regression. The last
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qualitative case, i.e., the ordinal case, which relies on a “structure of the first kind” [3], is at play in [21]
with a possibility distribution on θ obtained in a context of calibrating multi-class classifiers. Notably,
in both the nominal and ordinal cases, contrarily to the binary case, no condition on the possibility
distribution on θ simplifying the expression of the PBF (and even less leading to an algebraic form for
it) has been identified and thus for these cases the computation of the PBF always has to be carried out
only approximately, through Monte Carlo simulation, as was the case in [9, 21].

In this paper1, we fill this gap, for the ordinal case. First (Section 3), we bring to light that the
PBF can be computed by integrating the possibility distribution on θ, under some conditions on this
distribution, which basically extend those of the binary case. Second (Section 4), we show that the PBF
even admits an algebraic form, generalizing that of the binary case, when the possibility distribution is
the relative likelihood of θ given observed data having non empty categories and following a multinomial
distribution whose underlying categorical distribution has parameter θ. The paper starts (Section 2) by
recalling the prediction approach introduced in [12, 13] and, in particular, the results related to the exact
computation of the PBF in the binary case. We will assume that the reader has some basic knowledge
of the Dempster-Shafer theory of belief functions (a recent reminder can be found in [8]).

2 Likelihood-based evidential prediction
Let Z be a random variable, with probability function gθ where θ ∈ Θ is the unknown parameter.
Consider the problem of predicting a future observation z ∈ Z of Z, having observed a realisation y ∈ Y
of a random vector Y with probability function fθ. This section summarizes first (Section 2.1) the
necessary elements of the method introduced in [12, 13] for this general problem and then (Section 2.2)
recalls results with respect to the specific case of predicting a binary variable Z, using this approach.

2.1 Method
Estimation uncertainty about θ given the observation y is quantified by a possibility distribution plΘ on
Θ, interpreted as the contour function of a consonant belief function BelΘ and defined as the relative
likelihood of any value θ of θ after observing Y = y, i.e.,

plΘ(θ) = L(θ; y)/L(θ̂; y),

for all θ ∈ Θ, where L(θ; y) = cfθ(y) with c > 0 an arbitrary constant and where θ̂ is a maximum
likelihood estimator (MLE) of θ.

We recall that BelΘ, being consonant, is characterized by plΘ and its focal sets are the sets

Γ(w) = {θ ∈ Θ | plΘ(θ) ≥ w},

for all w ∈ [0, 1]. Moreover, let W be a random variable with distribution λ, where λ is the uniform
probability measure on [0, 1]. Then BelΘ is induced by the random set Γ(W ), meaning that we have

BelΘ(A) = λ(w ∈ [0, 1] | Γ(w) ⊆ A),

for all A ⊆ Θ.
Now, Z can always be expressed as a function, called a φ-equation, of θ and a pivotal variable V

whose distribution µ does not depend on θ:

Z = φ(θ, V ).

Such φ-equation can be constructed canonically by inverting the cumulative distribution function FZ(·; θ)
of Z, i.e., we have φ(θ, V ) = F −1

Z (V ; θ) with V ∼ U([0, 1]) [6, 12]. Hereafter, we assume only φ-equations
such that V ∼ U([0, 1]).

1This paper is an extended and revised version of [18].
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Combining the estimation uncertainty about θ with the φ-equation yields prediction uncertainty
about a future realisation of Z, quantified by a PBF noted BelZ and induced by the random set
φ(Γ(W ), V ), i.e., for all A ⊆ Z:

BelZ(A) = λ ⊗ µ({(w, v) ∈ [0, 1]2 | φ(Γ(w), v) ⊆ A}), (1)

where λ ⊗ µ is the uniform probability measure on [0, 1]2. The focal sets of BelZ are the sets φ(Γ(w), v)
for all (w, v) ∈ [0, 1]2.

2.2 Prediction of a binary variable
Let Z ∈ Z = {1, 2} be a binary random variable with (unknown) parameter P1 ∈ P1 = [0, 1], where
P1 := P(Z = 1). Z can be expressed as follows:

Z = φ(P1, V ) =
{

1 if V ≤ P1,
2 otherwise. (2)

Assume estimation uncertainty about P1 quantified by a possibility distribution plP1 . Let BelP1 be
the consonant belief function with contour function plP1 . If plP1 is unimodal, continuous and such that
plP1 (0) = plP1 (1) = 0 (thus with mode 0 < P̂1 < 1), the focal sets Γ(w) = {P1 ∈ P1 | plP1 (P1) ≥ w} of
BelP1 form closed intervals Γ(w) = [L1(w), U1(w)], for all w ∈ [0, 1], where L1(w) and U1(w) are the two
roots of the equation plP1 (P1) = w. Hence, BelP1 is induced by the random interval [L1(W ), U1(W )]
with W ∼ U([0, 1]). In this case, the PBF BelZ about a future realisation of Z is given by (1) with φ
defined by (2). It satisfies2 [13]

BelZ({1}) = λ ⊗ µ({(w, v) ∈ [0, 1]2 | φ(Γ(w), v) ⊆ {1})
= λ ⊗ µ({(w, v) ∈ [0, 1]2|L1(w) ≥ v))

=
∫ 1

0

∫ L1(w)

0
1dvdw

=
∫ 1

0
L1(w)dw

=
∫ plP1 (P̂1)

plP1 (0)
L1(w)dw

=
∫ P̂1

0
L1(plP1 (t))pl

′P1 (t)dt

=
∫ P̂1

0
t pl

′P1 (t)dt

= [t plP1 (t)]P̂1
0 −

∫ P̂1

0
plP1 (t)dt

= P̂1 −
∫ P̂1

0
plP1 (P1)dP1, (3)

2The derivation followed here is slightly different from the original one in [13] and is useful for further results
of this paper. Let us also mention that, as shown in [9], Eqs. (3) and (4) can also be derived using the recent
refinement of the prediction method recalled in Section 2.1, based on the theory of epistemic random fuzzy sets [7,
8], which views the relative likelihood as a possibility distribution and the PBF as induced by a random fuzzy set.
This refinement is more satisfactory conceptually with regard to handling independent samples. However, since
we are concerned in this paper only with the case of a single sample, the original version of the method, which
involves only the simpler notion of a random set, is sufficient and is therefore followed.
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and, similarly, we can obtain

BelZ({2}) = 1 − P̂1 −
∫ 1

P̂1

plP1 (P1)dP1. (4)

A particular situation where the possibility distribution plP1 has the aforementioned properties (i.e.,
being continuous, unimodal and zero at the bounds of the unit interval), is when it is defined as the
relative likelihood of P1 given an observation y1, 0 < y1 < n, of a random variable Y1 following a binomial
distribution with parameters n known and P1 unknown, and with y1 the number of successes out of the
n experiments. We have then

plP1 (P1) = P y1
1 (1 − P1)n−y1

P̂ y1
1 (1 − P̂1)n−y1

, ∀P1 ∈ [0, 1], (5)

with P̂1 = y1/n the MLE of P1. In this case, it has even been shown [22] that Eqs. (3) and (4) admit
algebraic expressions

BelZ({1}) = P̂1 − B(P̂1; y1 + 1, n − y1 + 1)
P̂ y1

1 (1 − P̂1)n−y1
, (6)

BelZ({2}) = 1 − P̂1 − B(P̂1; y1 + 1, n − y1 + 1)
P̂ y1

1 (1 − P̂1)n−y1
, (7)

with B and B, respectively, the lower and upper incomplete beta functions defined as

B(z; a, b) =
∫ z

0
ta−1(1 − t)b−1dt, (8)

B(z; a, b) =
∫ 1

z

ta−1(1 − t)b−1dt = B(1 − z; b, a), (9)

that admit algebraic forms for integer values of a and b as

B(z; a, b) =
a+b−1∑

j=a

(a − 1)!(b − 1)!
j!(a + b − 1 − j)!z

j(1 − z)a+b−1−j .

Example 2. Suppose y1 = 5 successes out of n = 15 experiments. Estimation uncertainty about P1
is therefore represented by the belief function BelP1 with contour function of the form (5) illustrated
by Figure 1. The predictive uncertainty about a future realisation of Z is quantified by the PBF BelZ

defined by Eqs. (6) and (7). The mass function mZ associated to BelZ verifies mZ({i}) = BelZ({i}) for
i = 1, 2, and mZ(Z) = 1 −

∑2
i=1 mZ({i}). We find mZ({1}) ≈ .20, mZ({2}) ≈ .51 and mZ(Z) ≈ .29.

The areas associated with these masses are shown on Figure 1.

3 Prediction of an ordinal variable
Let Z be an ordinal random variable taking its value in Z = {1, . . . , K}, where the K categories are,
without lack of generality, denoted by the integers from 1 to K and ordered according to the natural
order between integers. The probability measure of Z is characterized by the vector P = (P1, . . . , PK−1)
of (unknown) parameters Pj :=

∑j

i=1 P(Z = i), 1 ≤ j < K. We have P ∈ P, where

P = {(P1, . . . , PK−1) ∈ [0, 1]K−1 | P1 ≤ · · · ≤ PK−1}.

Following [3], Z can be expressed as, with PK := 1:

Z = φ(P, V ) =
{

j , if Pj−1 < V ≤ Pj for some j such that 1 < j ≤ K,
1 , otherwise (i.e., V ≤ P1). (10)
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Figure 1: Contour function plP1 for y1 = 5 successes out of n = 15 experiments ( ), induced
predictive mass function mZ ( mZ({1}), mZ({2}), mZ(Z)).

It can easily be verified that P(φ(P, V ) = j) = P(Z = j), for all 1 ≤ j ≤ K.
Consider estimation uncertainty about P quantified by a possibility distribution plP . Let BelP be

the consonant belief function with contour function plP . Its focal sets are Γ(w) = {P ∈ P | plP(P) ≥ w},
with w ∈ [0, 1]. Under such estimation uncertainty about P, the PBF BelZ about a future realisation
of Z is given by (1) with φ defined by (10).

In this section, we show that under four conditions on BelP , BelZ admits a simple expression. More
precisely, first, we provide in Section 3.1 a simple expression for BelZ(Ji, jK) for all 1 ≤ i ≤ j ≤ K, which
holds under three of these conditions. Then, in Section 3.2, we add a fourth condition to BelP , which
implies that BelZ is characterized by BelZ(Ji, jK), for all 1 ≤ i ≤ j ≤ K.

3.1 Expression of BelZ(Ji, jK) based on the marginals of plP

In the binary case (Section 2.2), the simple expression given by Eqs. (3) and (4) of the PBF was obtained
under the assumptions that estimation uncertainty about P1 is quantified by a possibility distribution
plP1 , which is continuous, unimodal and zero at the bounds. These assumptions yield the roots L1(w)
and U1(w), w ∈ [0, 1], such that 0 < L1(1) = U1(1) = P̂1 < 1, which play a central role in the
derivation of the PBF, in particular through the property that we have, for all (w, v) ∈ [0, 1]2 and for
any A ⊆ Z = {1, 2},

φ(Γ(w), v) ⊆ A

⇔ min
z∈A

z ≤ min
P1∈Γ(w)

φ(P1, v) and max
P1∈Γ(w)

φ(P1, v) ≤ max
z∈A

z (11)

⇔ min
z∈A

z ≤ φ(U1(w), v) and φ(L1(w), v) ≤ max
z∈A

z (12)

with φ defined by (2). This property is at play when moving from the first line to the second line of
Eq. (3), where Eq. (12) reduces to φ(L1(w), v) ≤ 1, which is in turn equivalent to L1(w) ≥ v.

The simple expression of BelZ(Ji, jK), for all 1 ≤ i ≤ j ≤ K, that will be presented in this section,
holds under extensions of these assumptions of the binary case. They allow us to obtain an extension of
the roots L1(w) and U1(w) that respects a similar property as above (thanks to extending the equivalence
between (11) and (12)) with respect to φ defined by (10), which is instrumental in the derivation of
BelZ(Ji, jK).

We start by extending the assumption of the binary case that plP1 is zero at the bounds. This
assumption means that the “extreme” distributions P1 and P2, such that P1(Z = 1) = 0 and P2(Z =
2) = 0, are considered impossible. We recall that, as we have seen in Section 2.2, this assumption is
satisfied when a binomial variable has been observed with 0 < y1 < n successes, i.e., at least one success
(category 1) and at least one failure (category 2) have been observed.
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Let us introduce a condition about BelP , which extends this assumption to the ordinal case: any
P ∈ P for which there exists 1 ≤ i ≤ K such that P(Z = i) = 0, is impossible (equivalently, plausible P’s
are those such that for all 1 ≤ i ≤ K, P(Z = i) > 0). This condition is formally stated by Assumption 1
and, as will be shown in Section 4, is satisfied when BelP represents estimation uncertainty about P
induced by past observations of Z, where each category has been observed at least once.

Assumption 1. plP(P) > 0 if and only if P ∈ P∗ := {(P1, . . . , PK−1) ∈ (0, 1)K−1 | P1 < · · · < PK−1}.

The second condition that we need to introduce about BelP is an extension of the assumptions
of continuity and unimodality of plP1 in the binary case. It relies on the notion of marginal contour
function, which we recall below.

Let Pj = [0, 1], for all 1 ≤ j < K, and plPj be the marginal contour function of plP for the j-th
component of P, defined by [12, Eq. (76)]:

plPj (Pj) = sup
P−j

plP(P), ∀Pj ∈ [0, 1], (13)

where P−j is the subvector of P with component j removed.
We can now state the second condition about BelP , which bears on its marginal contour functions:

Assumption 2. plPj , 1 ≤ j < K, is continuous and unimodal (with mode denoted P̂j).

Much as the assumptions of continuity, unimodality and being zero at the bounds in the binary
case imply that the mode of plP1 lies in the open unit interval, the following Lemma 1 shows that their
extensions to the ordinal case, i.e., Assumptions 1 and 2, imply that the modes of the marginals of BelP

lie in the open unit interval and, in addition, that the mode of the i-th marginal is lower than that of
the j-th marginal, for all 1 ≤ i < j < K.

Lemma 1. Assumptions 1 and 2 imply that 0 < P̂i < 1 for all 1 ≤ i < K, and that P̂i < P̂j, for all
1 ≤ i < j < K.

Proof. From Assumption 2, mode P̂i is the unique value Pi ∈ [0, 1] such that plPi (Pi) = 1, for all
1 ≤ i < K. Furthermore, for all 1 ≤ i < K, we have plPi (0) = 0 since any P ∈ P whose i-th component
is equal to 0 does not belong to P∗ and therefore, from Assumption 1, its possibility plP(P) is equal to
0. We can show similarly that, for all 1 ≤ i < K, we have plPi (1) = 0. Therefore, the mode P̂i must be
in (0, 1).

Now, consider all P ∈ P that have P̂i as i-th component. plPi (P̂i) = 1 implies that there is at least
one of those P, which is such that plP(P) = 1, hence it belongs to P∗, and thus it has value Pj for
its j-th component, 1 ≤ i < j < K, such that Pj > P̂i. Moreover, for this P, since plP(P) = 1, then
plPj (Pj) = 1 and thus, from Assumption 2, we have P̂j = Pj . Overall, we have P̂j = Pj > P̂i.

Now that extensions of the assumptions of the binary case have been introduced, let us unveil an
extension of the roots L1(w) and U1(w) that they allow us to obtain. These “roots” are two particular
elements, denoted by L(w) and U(w), of P, obtained from the marginal contour functions of BelP .
Their definition rely on the following simple lemma about the marginal contour functions of BelP ,
which extends the fact that in the binary case plP1 (P1) = w has roots L1(w) and U1(w):

Lemma 2. Assumptions 1 and 2 imply that, for all 1 ≤ j < K, the equation plPj (Pj) = w has only two
roots for all w ∈ [0, 1) and only one root (0<P̂j<1) for w = 1.

Proof. From Lemma 1, we know that Assumptions 1 and 2 imply that 0 < P̂j < 1 for all 1 ≤ j < K.
The lemma follows then directly from Assumption 2.

For all 1 ≤ j < K and w ∈ [0, 1), we denote the two roots of the equation plPj (Pj) = w by Lj(w) and
Uj(w), where Lj(w) < Uj(w). Furthermore, let Lj(1) := P̂j and Uj(1) := P̂j and let us introduce, for
all w ∈ [0, 1], L(w) := (L1(w), . . . , LK−1(w)) and U(w) := (U1(w), . . . , UK−1(w)), i.e., L(w) and U(w)
are the vectors composed of the “lower” and “upper” roots, respectively, of all the marginals.

Example 3 below illustrates the main notions covered so far in this section, i.e., the extensions
(Assumptions 1 and 2) to the ordinal case of the assumptions of the binary case, the extensions (Lemmas 1
and 2) of what they imply and the extensions L(w) and U(w) of the roots L1(w) and U1(w).

7



0 P̂1 .6 .8 1
0

.2

.4

P̂2

1

L(.01)

U(.01)

L(.3)

U(.3)

L(.8)

U(.8)
P̂

P1

P
2

(a) Contour plot of plP . Focal sets Γ(.01)( ),
Γ(.3)( ) and Γ(.8)( ). Suprema (◦) associated
to marginals plP1 ( ◦ ) and plP2 ( ◦ ). Roots (+)
L(w) and U(w) for w ∈{.01, .3, .8, 1}.
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(b) Marginals plP1 ( ◦ ) and plP2 ( ◦ ). Modes
P̂1 and P̂2. Intersection (⊗) at value P1,2. Mass
function mZ associated to BelZ (see Corollary 1):

mZ({1}), mZ({2}), mZ({3}), mZ(J1, 2K),
mZ(J2, 3K), mZ(Z).

Figure 2: BelP respecting Assumptions 1-4 (focal sets in Fig. 2a, marginals in Fig. 2b), associated
mZ (Fig. 2b).

Example 3. Consider the case where BelP represents estimation uncertainty about P given n past
observations of Z; we denote by yi the number of times the i-th category has been observed and we
assume that yi > 0, for all 1 ≤ i ≤ K. In this case, using the approach recalled in Section 2.1, BelP is
characterized by the relative likelihood plP , which has the following expression and satisfies Assumptions 1
and 23:

plP(P) =
(

P1

P̂1

)y1 (1 − PK−1

1 − P̂K−1

)yK K−1∏
j=2

(
Pj − Pj−1

P̂j − P̂j−1

)yj

, ∀P ∈ P. (14)

An example of such BelP for a case where K = 3, n = 15, y1 = 4, y2 = 6 and y3 = 5, is provided
in Figure 2: Figure 2a illustrates Assumption 1 by showing, for w ∈ {.01, .3, .8}, the focal sets Γ(w) of
BelP ; Figure 2b shows the marginals of its contour function plP and their modes at play in Assumption 2,
Lemma 1 and Lemma 2. U(w) and L(w) are illustrated by Figure 2a for w ∈ {.01, .3, .8, 1}.

Contrarily to the binary case, in the ordinal case, there are several (marginal) contour functions
involved. In order to obtain our simple expression for BelZ(Ji, jK), for all 1 ≤ i ≤ j ≤ K, we need that
these marginal contour functions satisfy a particular condition with respect to one another, specifically
each pair of marginals should intersect only once in the open unit interval. This condition is formally
stated by Assumption 3 and illustrated4 in Figure 2b where the two marginals of Example 3 intersect
only at the value P1,2.

Assumption 3. For all 1 ≤ i < j < K, there is a value Pi,j ∈ (0, 1) such that plPi (Pi,j) = plPj (Pi,j)
and, for all P ∈ (0, 1), P ̸= Pi,j, plPi (P ) ̸= plPj (P ).

We are now ready to provide our first main result, which is that under the preceding conditions,
BelZ(Ji, jK), for all 1 ≤ i ≤ j ≤ K, can be computed by integrating the marginal contour functions
(which is a generalization of Eqs. (3) and (4)):

3See Section 4.1 for the complete derivation of this expression and Section 4.2 for the fact that it satisfies these
assumptions.

4It is shown in Section 4.2 that the marginals of plP defined by (14) satisfy Assumption 3.
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Theorem 1. Under Assumptions 1-3, BelZ(Ji, jK) is equal to
1 , if i = 1, j = K,

P̂j −
∫ P̂j

0 plPj (P )dP , if i = 1, j < K,

1 − P̂i−1 −
∫ 1

P̂i−1
plPi−1 (P )dP , if 1 < i, j = K,

P̂j − P̂i−1 −
∫ Pi−1,j

P̂i−1
plPi−1 (P )dP −

∫ P̂j

Pi−1,j
plPj (P )dP , if 1 < i, j < K.

(15)

Proof. From Eq. (1), we obtain, for all 1 ≤ i ≤ j ≤ K,

BelZ(Ji, jK) = λ ⊗ µ({(w, v) ∈ [0, 1]2 | φ(Γ(w), v) ⊆ Ji, jK})
= λ ⊗ µ({(w, v)∈[0, 1]2|i ≤ ℓ(w, v), u(w, v) ≤ j}), (16)

with, for all (w, v) ∈ [0, 1]2,

ℓ(w, v) := min
P∈Γ(w)

φ(P, v), (17)

u(w, v) := max
P∈Γ(w)

φ(P, v). (18)

The first part of this proof consists in showing that, for all (w, v) ∈ [0, 1]2, the “bounds”, i.e., the
minimum ℓ(w, v) and the maximum u(w, v), of the focal set φ(Γ(w), v) of the PBF BelZ , are attained
for U(w) and L(w), i.e., we have

ℓ(w, v) = φ(U(w), v), (19)
u(w, v) = φ(L(w), v). (20)

Equalities (19) and (20) are shown in Appendix A. We then have the equivalence

i ≤ ℓ(w, v) and u(w, v) ≤ j

⇔ i ≤ φ(U(w), v) and φ(L(w), v) ≤ j, (21)

which is an extension of the equivalence between (11) and (12) in the binary case. Hence, Eq. (16) can
be rewritten, for all 1 ≤ i ≤ j ≤ K,

BelZ(Ji, jK) = λ ⊗ µ({(w, v)∈[0, 1]2|i ≤ φ(U(w), v), φ(L(w), v) ≤ j}). (22)

As in the binary case, where Eq. (12) reduces for all A ⊆ Z = {1, 2} to simple expressions based
on the roots L1(w) and U1(w), e.g., for A = {1} it reduces to L1(w) ≥ v, which in turn leads to being
able to compute the PBF by integrating the contour function plP1 , it happens that Eq. (21) reduces for
all 1 ≤ i ≤ j ≤ K to simple expressions based on the roots Lj(w) and Ui−1(w), which in turn leads to
being able to compute BelZ(Ji, jK) (defined by (22)) by integrating the marginal contour functions plPj

and plPi−1 according to Eq. (15); this is shown in Appendix B.

We remark that thanks to Theorem 1, we have simple expressions for the cumulative belief and plau-
sibility functions about Z, defined respectively as cbelZ(j) := BelZ((J1, jK) and cplZ(j) := P lZ((J1, jK) =
1 − BelZ(Jj + 1, KK), for all 1 ≤ j ≤ K, which are quantities that are often used when the variable of
interest is ordered; for instance, in Example 1 (which as will be seen in Section 4 respects Assumptions 1-
3), one may be interested in the degrees of belief and of plausibility that the precipitation will be, e.g.,
below 1.25 inches, which amounts to the quantities cbelZ(2) = BelZ((J1, 2K) and cplZ(2) = P lZ((J1, 2K),
respectively.
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3.2 Simple expression of BelZ

In the binary case, the assumptions on plP1 (continuous, unimodal, zero at the bounds) imply the focal
sets of BelP1 to be, for all w ∈ [0, 1], closed intervals [L1(w), U1(w)] such that P̂1 ∈ [L1(w), U1(w)] with
0 < P̂1 < 1. The considered extensions (Assumptions 1 and 2) to the ordinal case of these assumptions
lead clearly to the superlevel sets of the marginal contour functions of BelP to exhibit a similar property;
they are closed intervals [Lj(w), Uj(w)] such that P̂j ∈ [Lj(w), Uj(w)] with 0 < P̂j < 1. Moreover, they
also imply that the focal sets Γ(w) of BelP include, for all w ∈ [0, 1], the element P̂ = (P̂1, . . . , P̂K−1)
of P∗, as shown by Lemma 3 below, hence extending the property in the binary case that 0 < P̂1 < 1
belongs to all focal sets of BelP1 .

Lemma 3. Assumptions 1 and 2 imply that P̂ ∈ P∗ and, for all w ∈ [0, 1], P̂ ∈ Γ(w) with P̂ =
(P̂1, . . . , P̂K−1).

Proof. From Lemma 1, we obtain P̂ ∈ P∗. From Assumption 2, P̂i is the unique value such that
plPi (P̂i) = 1, for all 1 ≤ i < K. Moreover, plP1 (P̂1) = 1 implies that there is at least one P ∈ P that has
P̂1 as first component and such that plP(P) = 1, hence it belongs to P∗ from Assumption 1, and thus it
has value P2 for its second component, such that P2 > P̂1. Moreover, for this P, since plP(P) = 1, then
plP2 (P2) = 1 and thus, from Assumption 2, we have P2 = P̂2. More generally, by induction, we obtain
that this P, which is such that plP(P) = 1, satisfies P = P̂. Hence, for all w ∈ [0, 1], P̂ ∈ Γ(w).

However, it does not seem that Assumptions 1 and 2 (even complemented with Assumption 3) are
sufficient to imply that the focal sets Γ(w) of BelP satisfy a simple corresponding property to that, in
the binary case, of the focal sets of BelP1 being intervals. This leads us to consider, in this section, an
additional condition about BelP .

An usual extension to Rd, d > 1, of the notion of an interval of R is that of a convex set. Another,
less common but more general5, extension is that of a star-convex set [2]: a set S ⊆ Rd is said star-convex
if there exists an x0 ∈ S (called star center) such that the line segment from x0 to any point x in S is
contained in S. The fourth and last condition that we introduce about BelP is that its focal sets be
star-convex, as stated by Assumption 4.

Assumption 4. For all w ∈ (0, 1], Γ(w) is star convex.

Example 4. BelP in Example 3 satisfies Assumption 4, as its focal sets respect the stronger condition
of being convex6.

Assumption 4, together with Assumption 1, imply that the focal sets of BelZ are intervals, as shown
by the following lemma.

Lemma 4. Under Assumptions 1 and 4, we have, for all (w, v) ∈ [0, 1]2,

φ(Γ(w), v) = Jℓ(w, v), u(w, v)K, (23)

with ℓ(w, v) and u(w, v) defined by (17) and (18), respectively.

Proof. See Appendix C.

As shown in [5], when the focal sets of some belief function BelZ
0 on Z are intervals, then this belief

function is characterized by BelZ
0 (Ji, jK), for all 1 ≤ i ≤ j ≤ K. This latter fact, together with Theorem 1

and Lemma 4, yield directly our second main result (Theorem 2), which is that under the four preceding
Assumptions 1-4, we have a simple expression for BelZ .

Theorem 2. Under Assumptions 1-4, BelZ is characterized by BelZ(Ji, jK) for all 1 ≤ i ≤ j ≤ K, with
BelZ(Ji, jK) defined by (15).

5If a set is convex, then it is star-convex, but the converse is not true.
6This is shown in Section 4.2.
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For completeness, Corollary 1 provides the expression of the mass function mZ associated to BelZ

of Theorem 2; this corollary shows that mZ can also be expressed in terms of integration of the marginal
contour functions. This expression for mZ is illustrated graphically by Figure 2b: similarly as in the
binary case (see Figure 1 of Example 2), we can see that the masses allocated to the intervals Ji, jK,
1 ≤ i ≤ j ≤ K, are in one-to-one correspondence with the areas of the elements of the partition of [0, 1]2
resulting from the marginal contour function overlay.

Corollary 1. The mass function mZ associated to BelZ is characterized by mZ(Ji, jK) for all 1 ≤ i ≤
j ≤ K, with mZ(Ji, jK) equal to

A1,K , if i = 1, j = K,

A1,j −
P1,j∫

P0,j

plPj (P )dP if i = 1, j < K,

Ai,K −
Pi−1,K∫

Pi−1,K−1

plPi−1 (P )dP, if 1 < i, j = K,

Ai,j −
Pi−1,j∫

Pi−1,j−1

plPi−1 (P )dP −
Pi,j∫

Pi−1,j

plPj (P )dP if 1 < i, j < K,

(24)

with

Ai,j :=


Pj,j − Pj−1,j−1 if i = j,

Pi,j−1∫
Pi−1,j−1

plPj−1 (P )dP +
Pi,j∫

Pi,j−1

plPi (P )dP otherwise, (25)

Pj,j := P̂j , P0,j := 0, Pj,K := 1, for all 1 ≤ j < K and P0,0 := 0, PK,K := 1.

Proof. See Appendix D.

4 Prediction given past observations
Consider an ordinal variable Z with K categories and with probability measure characterized by some
(unknown) P ∈ P. In this section, we consider the problem where we want to predict a future observation
of this variable and where estimation uncertainty about P comes from n past observations of the variable,
with yi denoting the number of times the i-th category has been observed and yi assumed to be such
that yi > 0, 1 ≤ i ≤ K. An illustration of this problem is provided by Example 1. In Section 4.1, the
definition of the relative likelihood function in this case is recalled, and some useful notations are also
introduced. In Section 4.2, it is shown that this function satisfies the assumptions considered in Section 3
and therefore that Theorem 2 can be evoked to compute the predictive uncertainty about the future
observation. Then, in Section 4.3, it is shown that this predictive uncertainty can even be computed
algebraically. Finally, in Section 4.4, this solution to the problem of predicting a future observation of an
ordinal variable given past observations of the variable, is compared to two Dempster-Shafer theory-based
alternative solutions.

4.1 Relative likelihood for multinomial data
Formally, the past observations amounts to having observed a realisation y = (y1, . . . , yK), with non
empty7 categories (i.e., yi > 0, 1 ≤ i ≤ K), of a random vector Y = (Y1, . . . , YK), where Yj =∑n

i=1 I(Xi = j), with I(·) the indicator function and X1, . . . , Xn an iid sample of parent random

7The case of an empty category may be addressed by fusing it with a neighbouring category, i.e., by considering
a coarsening of Z, or, similarly to [11], by removing it, i.e., by converting the problem to a problem with K − 1
categories. Alternatively, one may employ a kind of Laplace correction [14], where an imaginary observation is
added to each category, i.e., by replacing y by y′ = (y′

1, . . . , y′
K) with y′

i = yi + 1, for all 1 ≤ i ≤ K. A detailed
study of this situation is beyond the scope of this paper and is left for further research.
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variable X following a categorical distribution with K categories such that P(X ≤ j) = Pj , 1 ≤ j < K,
with (P1, . . . , PK−1) ∈ P unknown and n known. Y follows a multinomial distribution with parameters
n and p ∈ Π where

Π := {(p1, . . . , pK) ∈ [0, 1]K−1 |
K∑

i=1

pi = 1}

with
pj := Pj − Pj−1, ∀1 ≤ j ≤ K, (26)

where P0 := 0 and PK := 1.
The relative likelihood of any p ∈ Π given y is plΠ(p) with plΠ the possibility distribution such that

plΠ(p) = L(p; y)
L(p̂; y) =

K∏
i=1

(
pi

p̂i

)yi

, (27)

with p̂ = (p̂1, . . . , p̂K) the MLE of p where p̂i = yi/n, 1 ≤ i ≤ K. Since yi > 0, 1 ≤ i ≤ K, we clearly
have plΠ(p) > 0 if and only if p ∈ Π∗ where

Π∗ := {(p1, . . . , pK) ∈ (0, 1)K−1 |
K∑

i=1

pi = 1}.

It will be convenient to express the one-to-one correspondence between elements of P and of Π (p ∈ Π
is obtained from P ∈ P using (26), and P is obtained from p using Pj =

∑j

i=1 pi, 1 ≤ j < K) in a
matrix form. Specifically, let T := (∆, 0) be the (K − 1 × K)-matrix formed by the concatenation of the
(K − 1 × K − 1) lower triangular matrix of ones ∆ and the (column) vector 0 of K − 1 zeros. Then, the
element P ∈ P in correspondence with p ∈ Π is P = T p.

Given this one-to-one correspondence, it is clear that the relative likelihood plP(P) of any P ∈ P
given y is equal to the relative likelihood plΠ(p) of p given y, for p the unique vector in Π such that
P = T p, i.e., we have

plP(P) = L(p; y)
L(p̂; y) (28)

for P = T p. It is also clear that the MLE P̂ = (P̂1, . . . , P̂K−1) of P satisfies P̂ = T p̂ and we have thus
that the MLE P̂j of Pj is

P̂j =
j∑

i=1

p̂i =
j∑

i=1

yi

n
. (29)

Using Eqs. (26), (27), (28) and (29), we obtain that plP is defined by Eq. (14).

4.2 Satisfied assumptions
We consider in this section the relative likelihood function plP defined by Eq. (14) when yi > 0, 1 ≤ i ≤
K. We show that it satisfies the four assumptions introduced in Section 3, starting with Assumption 1
(Lemma 5), proceeding then to Assumption 4 (Lemma 6, which shows that its superlevel sets are convex
thereby satisfying Assumption 4) and Assumption 2 (Lemma 7), and concluding with Assumption 3
(Lemma 8).

Lemma 5. plP satisfies Assumption 1.

Proof. As remarked in Section 4.1, given yi > 0, 1 ≤ i ≤ K, we have plΠ(p) > 0 if and only if p ∈ Π∗,
i.e., p ∈ Π∗ ⇔ plΠ(p) > 0.

We have, for P = T p, plΠ(p) > 0 ⇔ plP(P) > 0. Hence, p ∈ Π∗ ⇔ plP(P) > 0, for P = T p.
Furthermore, it is easy to show that p ∈ Π∗ ⇔ P ∈ P∗, for P = T p. Hence, we have plP(P) > 0 ⇔

P ∈ P∗.
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Lemma 6. Γ(w), for all w ∈ (0, 1], is convex.

Proof. See Appendix E.

Lemma 7. The marginal contour functions plPj , 1 ≤ j < K, of plP satisfy Assumption 2.

Proof. See Appendix F.

Lemma 8. The marginal contour functions plPj , 1 ≤ j < K, of plP satisfy Assumption 3.

Proof. See Appendix G.

In sum, in this section, we have shown the following proposition:

Proposition 1. plP defined by (14) satisfies Assumptions 1-4.

From Proposition 1 and Theorem 2, we have that, given past observations y = (y1, . . . , yK) of an
ordinal variable, our predictive uncertainty about a future observation of this variable is quantified by
the belief function BelZ characterized by BelZ(Ji, jK) for all 1 ≤ i ≤ j ≤ K, with BelZ(Ji, jK) defined
by (15). Next section will show that, actually, in this particular setting, BelZ even has a closed-form.

4.3 Algebraic formula for BelZ

The last main result of this paper is that, when estimation uncertainty is characterized by (14), then
Eq. (15) admits an algebraic expression:

Theorem 3. Under estimation uncertainty given by Eq. (14), BelZ is characterized by BelZ(Ji, jK) for
all 1 ≤ i ≤ j ≤ K, with BelZ(Ji, jK) =

1 , if i = 1, j = K,

P̂j − B(P̂j ;nj +1,n−nj +1)
cj

, if i = 1, j < K,

1 − P̂i−1 − B(P̂i−1;ni−1+1,n−ni−1+1)
ci−1

, if 1 < i, j = K,

P̂j − P̂i−1 − B(Pi−1,j ;ni−1+1,n−ni−1+1)−B(P̂i−1;ni−1+1,n−ni−1+1)
ci−1

if 1 < i, j < K,

− B(P̂j ;nj +1,n−nj +1)−B(Pi−1,j ;nj +1,n−nj +1)
cj

,

(30)

where nj :=
∑j

i=1 yi, cj := P̂
nj

j (1 − P̂j)n−nj , for all 1 ≤ j < K, and

Pi,j =

(( P̂j

1 − P̂j

)̂Pj
(

1 − P̂i

P̂i

)̂Pi
(

1 − P̂j

1 − P̂i

))−1/(P̂j −P̂i)

+1

−1

, ∀1 ≤ i < j < K. (31)

Proof. See Appendix H.

Theorem 3 is illustrated by Examples 5 and 6.

Example 5. In Example 3, we considered estimation uncertainty about P for a case K = 3, induced by
the observed realisation y = (4, 6, 5) of an ordinal variable, and therefore represented by the belief function
BelP with contour function of the form (14). According to Theorem 3, the predictive uncertainty about a
future observation of this variable is quantified by the PBF BelZ defined by (30). The mass function mZ ,
associated to BelZ and which, we recall, is illustrated graphically by Fig. 2b, is such that mZ({1}) ≈ .15,
mZ({2}) ≈ .12, mZ({3}) ≈ .20, mZ(J1, 2K) ≈ .24, mZ(J2, 3K) ≈ .25, mZ(Z) ≈ .04.

Suppose now that estimation uncertainty is induced by the observed realisation y = (266, 400, 334),
which amounts to n = 1000 observations (the empirical proportions associated to this realisation are
approximately the same as that of y = (4, 6, 5) where n = 15). In this case, the mass function mZ

is such that mZ({1}) ≈ .25, mZ({2}) ≈ .36, mZ({3}) ≈ .31, mZ(J1, 2K) ≈ .04, mZ(J2, 3K ≈ .04,
mZ(Z) = 0. As can be seen, with more observations, the mass function obtained is more specific (less
uncertain).
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Figure 3: Marginal contour functions (Fig. 3a) and predictive mass function (Fig. 3b) for the
Arizona January precipitation data.

Example 6. Example 1 corresponds to n = 110 past observations of an ordinal variable with K = 6
categories, grouped in the vector of counts y = (48, 17, 19, 11, 6, 9). The marginal contour functions plPj ,
1 ≤ j < 6, are illustrated by Fig 3a; we recall (see the proof of Lemma 7 in Appendix F) that plPj

is nothing but the relative likelihood of a binomial variable for which we have observed nj =
∑j

i=1 yi

successes out of n experiments. According to Lemma 8, each pair of marginals plPi and plPj intersects
exactly once within the open unit interval. This intersection happens at the value Pi,j given by Eq. (31).
These marginals, together with their intersections, create a partition of the unit square [0, 1]2. This
partition contains 6(6+1)/2 = 21 elements, which are assigned according to Corollary 1 to the (interval)
focal sets of the mass function mZ associated to the PBF BelZ and whose areas are equal to the masses
allocated to these focal sets. Mass function mZ is illustrated in Fig. 3b: the node at the intersection
of the i-th row and the j-th column corresponds to the interval focal set Ji, jK and the area of the circle
at that node is proportional to the mass value allocated to this interval. The degrees of belief and of
plausibility that the precipitation will be, e.g., below 1.25 inches, amounts to computing the cumulative
belief cbelZ(2) and cumulative plausibility cplZ(2), respectively. We find, using Theorem 3, cbelZ(2) ≈
0.53 and cplZ(2) ≈ 0.65.

4.4 Predictive belief functions at confidence level 1 − α

As mentioned in the introduction, there exist a few other Dempster-Shafer theory-based approaches to
statistical inference and prediction, besides the likelihood-based one. Among them, to our knowledge,
only the work [5] has handled the problem of the prediction of an ordinal variable given past observations
of the variable. Instead of satisfying the requirement of being compatible with Bayesian reasoning, the
solution proposed in [5] satisfies the requirement of being frequency-calibrated in the following sense:
the PBF BelZ(·; y) should be less committed than the true probability distribution PZ(·; P), for at least
a proportion 1 − α ∈ (0, 1) of the samples y, under repeated sampling [10, 5]. Formally, BelZ should
satisfy, for any P ∈ P:

PY
(
BelZ(·; Y) ≤ PZ(· ; P) ; P

)
≥ 1 − α. (32)

A belief function satisfying (32), at least asymptotically (as the sample size n tends to infinity), will be
called hereafter a PBF at confidence level 1 − α (1 − α-level PBF for short). It should be underlined
that, as remarked in [10], a major drawback of 1 − α-level PBFs is that they require the user to specify
the value α, e.g., 0.05, this value being arbitrary.

The 1 − α-level PBF obtained in [5] will be denoted BelZ
G due to the fact that it relies on Goodman

confidence intervals (we refer the reader to [5] for details). Its focal sets are intervals and thus BelZ
G is
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characterized by BelZ
G(Ji, jK), 1 ≤ i ≤ j ≤ K. For a vector of counts y, it is defined as:

BelZ
G(Ji, jK) = max

(∑
k∈Ji,jK

p−
k , 1 −

∑
k /∈Ji,jK

p+
k

)
, (33)

with, for all 1 ≤ k ≤ K,

p−
k = b + 2yk −

√
∆k

2(n + b) , and p+
k = b + 2yk +

√
∆k

2(n + b) , (34)

with b = χ2
1;1−α/K and ∆k = b (b + 4yk (n − yk) /n).

Interestingly, thanks to some technical results obtained earlier in this paper as well as [10, Setion
2.2], which provides an adaptation of the prediction method of Section 2.1 allowing one to compute a
PBF at a given confidence level, we can derive another 1 − α-level PBF that admits a simple expression.
From [10, Setion 2.2], it is straightforward to obtain that the belief function denoted8 BelZ

W and induced
by the random set φ(Γ(wα), V ), with V ∼ U([0, 1]) and Γ(wα) the wα-superlevel set of plP defined
by (14) where wα = exp(−0.5χ2

K−1;1−α), i.e.,

BelZ
W (A) = µ({v ∈ [0, 1] | φ(Γ(wα), v) ⊆ A}), ∀A ⊆ Z, (35)

with µ the uniform probability measure on [0, 1], is a 1 − α-level PBF. The simple expression for this
PBF is provided by Theorem 4.

Theorem 4. BelZ
W defined by (35) is characterized by BelZ

W (Ji, jK) for all 1 ≤ i ≤ j ≤ K, with

BelZ
W (Ji, jK) =


1, if i = 1, j = K,
Lj(wα), if i = 1, j < K,
1 − Ui−1(wα), if 1 < i, j = K,
max(Lj(wα) − Ui−1(wα), 0) if 1 < i, j < K,

(36)

with, for all 1 ≤ j < K, Lj(wα) and Uj(wα) the two roots of the equation plPj (Pj) = wα, such that
Lj(wα) ≤ Uj(wα), and where plPj is the marginal of plP for its j-th component.

Proof. See Appendix I.

Example 7 illustrates PBFs BelZ
G and BelZ

W , and compares them to the likelihood-based PBF BelZ

defined by (30).

Example 7. Figure 4 shows the PBFs BelZ
G and BelZ

W , at confidence level 0.95, for the Arizona January
precipitation data of Example 1. Comparing visually Fig. 4b and Fig. 3b, we see that BelZ

W , which relies
on the w0.05-cut9 of the relative likelihood plP defined by (14), allocates masses to less specific focal sets
than the likelihood-based PBF BelZ , which relies on the entire relative likelihood. Numerically, we find
that BelZ

W (A) ≤ BelZ(A) for all A ⊆ Z, i.e., BelZ
W is less committed than BelZ , which is an expected

behaviour [6, Section 4.2]. Even though BelZ is not more committed than BelZ
G, i.e., we do not have

BelZ
G(A) ≤ BelZ(A) for all A ⊆ Z, we note that BelZ

G also tends to allocate masses to less specific focal
sets than BelZ , as can be seen by comparing Fig. 4a and Fig. 3b.

To further compare the three PBFs BelZ , BelZ
G and BelZ

W , in the remainder of this section we check
experimentally, similarly as done in [7], the frequentist property (32) of the 1 − α-level PBFs BelZ

G and
BelZ

W , and we also examine this property with respect to the likelihood-based PBF BelZ , which, we
recall, was not derived to satisfy this requirement.

In our experiment, we considered an ordinal variable with K = 6 categories and assumed that Y
follows a multinomial distribution with parameters n = 110 and p0 ∈ Π such that p0 = (p01, . . . , p06) =
(0.45, 0.15, 0.17, 0.10, 0.05, 0.08) (this arbitrary multinomial distribution was chosen to be close to the

8This notation is due to the fact that BelZW relies on Wilks’ theorem, see [10, Setion 2.2] for details.
9We have w0.05 = 3.9e−03.
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W .

Figure 4: Predictive mass values mZ(Ji, jK) for all 1 ≤ i ≤ j ≤ K, for the Arizona January
precipitation data, according to the 0.95-level PBFs BelZ

G (Fig. 4a) and BelZ
W (Fig. 4b).

empirical proportions of the data of Example 1). Equivalently, this multinomial distribution can be
defined with parameters P0 = (P01, . . . , P0K−1), such that P0k =

∑k

j=1 p0j , for all 1 ≤ j < K, which
yields P0 = (0.45, 0.60, 0.77, 0.87, 0.92). We drew nine realisations y of Y. For each realisation drawn,
we computed the degrees of belief allocated to the 6(6 + 1)/2 = 21 intervals Ji, jK ⊆ Z, by the three
PBFs BelZ , BelZ

G and BelZ
W (using α = 0.05 for both BelZ

G and BelZ
W ). We also computed the true

probabilities of these intervals, which are given by PZ(i ≤ Z ≤ j; P0) = PZ(Z ≤ j; P0) − PZ(Z <
i; P0) = P0j − P0i−1.

Figure 5 shows the results of this experiment. We can check that, for all nine realisations, we have
BelZ

G(Ji, jK) ≤ PZ(Ji, jK) and BelZ
W (Ji, jK) ≤ PZ(Ji, jK) for all 1 ≤ i ≤ j ≤ K. In addition, we can observe

that BelZ
W is competitive with BelZ

G: for low probability intervals, it is typically not as good, i.e., more
cautious, but for high probability intervals, it is usually better, i.e., closer to the true probabilities. We
can also notice that, for each of the three PBFs, the most probable the realisation y is, the less scattered
the degrees of belief seem to be. Importantly, for the five most probable realisations (Figs. 5e-5i), we can
observe that the likelihood-based PBF BelZ is better calibrated than the 1−α-level PBFs: it respects as
well BelZ(Ji, jK) ≤ PZ(Ji, jK), for all 1 ≤ i ≤ j ≤ K, whilst being closer to the diagonal. For the four least
probable realisations (Figs. 5a-5d), when BelZ does go over the diagonal for some events, then it does
not go over by much. Overall, this experiment suggests that while the likelihood-based PBF BelZ is not
designed to have the frequentist property (32), it might still exhibit some useful calibration behaviour
in terms of being close to the true probabilities. Moreover, if property (32) needs to be enforced, then
BelZ

W , which has a simple expression and may be regarded as the frequency-calibrated adaptation of
BelZ , is an interesting alternative to the 1 − α-level PBF BelZ

G proposed in [5].

5 Conclusion
In this paper, we considered the problem of the prediction of an ordinal variable, according to the
likelihood-based evidential method for statistical inference and prediction. First, we established that
this prediction can be computed, under some conditions on the possibility distribution representing the
estimation uncertainty in this method, by integrating the marginals of this distribution. Then, we showed
that the prediction even admits an algebraic expression, when the estimation uncertainty is obtained
from past observations of the variable.

In the case of a binary variable, a simple expression, based on the integration of the estimation
uncertainty, was obtained for the exact prediction under the condition that the estimation uncertainty
is unimodal and continuous. An algebraic expression was even obtained in the particular case where
the estimation uncertainty comes from past observations of the binary variable to be predicted. These
two results were used in several works in the binary classification domain, which have introduced evi-
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Figure 5: Degrees of belief (vertical axes) vs. true probabilities (horizontal axes) of the 21 interval
subsets of Z = J1, 6K, for 9 draws y (ordered in ascending probability), for the different methods:
likelihood-based PBF BelZ ( ), 0.95-level PBF BelZ

G ( ), 0.95-level PBF BelZ
W ( ).
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dential extensions of binary classifier calibration techniques [22, 17] and of binary logistic and choquistic
regressions [19], allowing a finer uncertainty quantification than their probabilistic counterparts. Since
our results generalize these two results of the binary case, a natural perspective is to try and use them
in the more general, ordinal, classification domain. In particular, preliminary experiments suggest that
the four conditions considered in Section 3 might be respected when deriving an evidential extension of
ordinal logistic regression [16] in the same way that the evidential extension of binary logistic regression
was derived. Another important line of future work is to try and bridge the gap, in terms of conditions
for the exact prediction, also for the nominal case.
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A Proof of the equalities (19) and (20)
First, given the definition of φ (Eq. (10)), we need to make sure that, as can be observed on Fig. 2a,

L(w) and U(w) belong to P, which is formally proven by Lemma 9:
Lemma 9. For all w ∈ [0, 1], U(w) ∈ P and L(w) ∈ P. Specifically, we have L(0) ∈ P\P∗, U(0) ∈
P\P∗, and, for all w ∈ (0, 1], U(w) ∈ P∗ and L(w) ∈ P∗.

Proof.
• Case w = 0.

For all 1 ≤ j < K, given Assumption 1, it is clear that plPj (Pj) = 0 if and only if Pj = 0 or
Pj = 1, i.e., we have Lj(0) = 0 and Uj(0) = 1. We have thus L(0) ∈ P\P∗ and U(0) ∈ P\P∗.

• Case w ∈ (0, 1].
L(w) ∈ P∗ is equivalent to Lj−1(w) < Lj(w), for all 1 < j < K, with Lj(w) ∈ (0, 1) for all
1 ≤ j < K.
Assume Lj(w) ∈ {0, 1}. Given Assumption 1, plPj (Pj) = 0 if and only if Pj = 0 or Pj = 1. Hence,
plPj (Lj(w)) = 0, which contradicts the definition of Lj(w) (it is a Pj such that plPj (Pj) = w > 0).
We now show Lj−1(w) < Lj(w), for all 1 < j < K.
First, notice that necessarily P̂i < Pi,j < P̂j for all 1 ≤ i < j < K, since the marginals being
unimodal (Assumption 2) and given P̂i < P̂j (Lemma 1), on [P̂i, P̂j ], plPi is strictly decreasing from
plPi (P̂i) = 1 to plPi (P̂j) < 1 while plPj is strictly increasing from plPj (P̂i) < 1 to plPj (P̂j) = 1
and therefore it exists P ∈ [P̂i, P̂j ], such that plPi (P ) = plPj (P ), which must be P = Pi,j given
Assumption 3.
Next, we show that, for any 1 ≤ i < j < K,

plPi (P ) > plPj (P ), ∀P ∈ (0, Pi,j). (37)

As there is no P ∈ (0, P̂i] such that plPi (P ) = plPj (P ) (from Assumption 3 and, necessarily,
P̂i < Pi,j < P̂j), this implies that, for any P ∈ (0, P̂i], either plPi (P ) > plPj (P ) or plPi (P ) <
plPj (P ). However, plPi (P ) = 1 > plPj (P ) for P = P̂i and consequently, for all P ∈ (0, P̂i],
we have plPi (P ) > plPj (P ). Moreover, on [P̂i, Pi,j ], plPi is decreasing from plPi (P̂i) = 1 to
wi,j := plPi (Pi,j), and plPj is increasing from plPj (P̂i) to plPj (Pi,j) = wi,j , with necessarily
plPj (P̂i) ≤ wi,j , so that we have plPi (P ) > plPj (P ), for all P ∈ [P̂i, Pi,j). We have thus shown (37).
We can then show L(w) ∈ P∗ as follows. For all w ∈ (0, 1], we have, for all 1 < j < K,
Lj−1(w) ≤ P̂j−1. Since, for all P ∈ (0, P̂j−1], we have, by (37), plPj−1 (P ) > plPj (P ), we deduce
that

plPj (Lj−1(w)) < plPj−1 (Lj−1(w)) = w. (38)
In addition, for all w ∈ (0, 1], we have Lj(w) ≤ P̂j and plPj (Lj(w)) = w. From that and Eq. (38),
we obtain plPj (Lj−1(w)) < plPj (Lj(w)). plPj is strictly increasing on (0, P̂j ] and Lj(w) ≤ P̂j ,
consequently Lj−1(w) < Lj(w).
It can be shown similarly that U(w) ∈ P∗.

Let us consider Eqs. (19) and (20) for w = 0 and for all v ∈ [0, 1]. When w = 0, we have Γ(w) = P.
If v = 0 then φ(Γ(w), v) = 1 (since φ(P, 0) = 1, for all P ∈ P) and therefore ℓ(0, 0) = u(0, 0) = 1.
If v ∈ (0, 1] then φ(Γ(w), v) = Z (since, for all k ∈ Z, there exists P ∈ P such that Pk−1 < v ≤ Pk)
and therefore ℓ(0, v) = 1 and u(0, v) = K. Now, from the proof of Lemma 9 (“Case w = 0”), we have
L(0) = (L1(0), . . . , LK−1(0)) = (0, . . . , 0) and U(0) = (U1(0), . . . , UK−1(0)) = (1, . . . , 1). It is clear
therefore that φ(L(0), 0) = φ(U(0), 0) = 1 and, for v ∈ (0, 1], φ(L(0), v) = K and φ(U(0), v) = 1.
Hence, Eqs. (19) and (20) hold when w = 0 for all v ∈ [0, 1].
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Let us now turn our attention to Eqs. (19) and (20) for the case w ∈ (0, 1] (and v ∈ [0, 1]). Consider,
for w ∈ (0, 1], the set

Γ(w) :=
{

P ∈ P∗
∣∣∣ P ∈

∏K−1

j=1
[Lj(w), Uj(w)]

}
.

Let P ∈ Γ(w), hence P ∈ P∗ from Assumption 1. Let Pj be the j-th component of P, 1 ≤ j < K.
We have, by (13), plPj (Pj) ≥ plP(P) ≥ w. From Assumption 2, we have Pj ∈ [Lj(w), Uj(w)]. Hence,
P ∈

∏K−1
j=1 [Lj(w), Uj(w)] and thus P ∈ Γ(w). We have thus shown that we have

Γ(w) ⊇ Γ(w). (39)

Let ℓ̃(w, v) := minP∈Γ(w) φ(P, v) and ũ(w, v) = maxP∈Γ(w) φ(P, v). From (39), we have:

ℓ̃(w, v) ≤ ℓ(w, v) ≤ u(w, v) ≤ ũ(w, v). (40)

Given (40), Eqs. (19) and (20) are shown to hold when w ∈ (0, 1] for all v ∈ [0, 1], by showing first
(Lemma 10) that

ℓ̃(w, v) = φ(U(w), v),
ũ(w, v) = φ(L(w), v),

and then (Lemma 11) that

ℓ̃(w, v) ≥ ℓ(w, v),
u(w, v) ≥ ũ(w, v).

Lemma 10. For all w ∈ (0, 1] and all v ∈ [0, 1],

ℓ̃(w, v) = φ(U(w), v),
ũ(w, v) = φ(L(w), v).

Proof. Assume in this proof some w ∈ (0, 1].
From Lemma 9, L(w) ∈ P∗ and U(w) ∈ P∗ thus L(w) ∈ Γ(w) and U(w) ∈ Γ(w), hence we can show

that ũ(w, v) = φ(L(w), v) and ℓ̃(w, v) = φ(U(w), v) merely by showing that φ(L(w), v) ≥ φ(P, v) and
φ(U(w), v) ≤ φ(P, v) for all P ∈ Γ(w) and all v ∈ [0, 1]. This is done as follows.

For all v ∈ [0, 1] and for all P ∈ Γ(w), assume φ(P, v) = i for some 1 ≤ i ≤ K. This means there
exists 1 < i ≤ K such that Pi−1 < v ≤ Pi, otherwise v ≤ P1. Assume first the former, hence Pi−1 < v.
In this case, since Li−1(w) ≤ Pi−1, then Li−1(w) < v and, from L(w) ∈ P∗, we have Li−1(w) < Li(w),
thus φ(L(w), v) ≥ i. Assume now the latter, i.e., v ≤ P1. Since L1(w) ≤ P1, either v ≤ L1(w) in
which case φ(L(w), v) = φ(P, v), or v > L1(w), thus φ(L(w), v) > φ(P, v). Overall, we have thus
φ(L(w), v) ≥ φ(P, v) for all v ∈ [0, 1] and for all P ∈ Γ(w)

We show φ(U(w), v) ≤ φ(P, v) similarly as follows.
For all v ∈ [0, 1] and for all P ∈ Γ(w), assume φ(P, v) = i for some 1 ≤ i ≤ K. This means

there exists 1 < i ≤ K such that Pi−1 < v ≤ Pi, otherwise v ≤ P1. Assume first the former, hence
v ≤ Pi. In this case, since Ui(w) ≥ Pi, then Ui(w) ≥ v. Furthermore, Ui−1(w) ≥ Pi−1, hence either
Ui−1(w) < v ≤ Ui(w) (using U(w) ∈ P∗), in which case φ(U(w), v) = φ(P, v), or Ui−1(w) ≥ v, in which
case φ(U(w), v) < φ(P, v). Assume now the latter, i.e., v ≤ P1. Since U1(w) ≥ P1, then v ≤ U1(w),
thus φ(U(w), v) = φ(P, v). Overall, we have thus φ(U(w), v) ≤ φ(P, v) for all v ∈ [0, 1] and for all
P ∈ Γ(w).

Lemma 11. For all w ∈ (0, 1] and all v ∈ [0, 1],

ℓ̃(w, v) ≥ ℓ(w, v), (41)
u(w, v) ≥ ũ(w, v).
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Proof. Assume in this proof some w ∈ (0, 1].
If φ(L(w), v) = 1, then, since necessarily u(w, v) ≥ 1, we have u(w, v) ≥ φ(L(w), v) = ũ(w, v).
Assume now φ(L(w), v) = ũ for some 1 < ũ ≤ K. This implies that we have Lũ−1(w) < v ≤ Lũ(w),

with the convention Lũ(w) = 1 for ũ = K.
Let Pũ−1 := Lũ−1(w). Let

Pũ−1 := arg sup
P↓Pũ−1 =Pũ−1

plP(P),

where P↓Pũ−1 denotes the value of component ũ−1 of P. Since plPũ−1 (Pũ−1) = w, then plP(Pũ−1) = w,
i.e., Pũ−1 ∈ Γ(w). Furthermore, P↓Pũ−1

ũ−1 = Pũ−1 hence, since Pũ−1 < v, we have φ(Pũ−1, v) ≥ ũ and
thus φ(Pũ−1, v) ≥ φ(L(w), v).

From Pũ−1 ∈ Γ(w) and u(w, v) maximum of φ(P, v) under the constraint P ∈ Γ(w), we have
u(w, v) ≥ φ(Pũ−1, v), hence u(w, v) ≥ φ(L(w), v) = ũ(w, v).

Eq. (41) is shown (almost) similarly as follows.
If φ(U(w), v) = K, then, since necessarily ℓ(w, v) ≤ K, we have ℓ(w, v) ≤ φ(U(w), v) = ℓ̃(w, v).
Assume now φ(U(w), v) = ℓ̃ for some 1 < ℓ̃ < K. This implies that we have Uℓ̃−1(w) < v ≤ Uℓ̃(w).
Let Pℓ̃ := Uℓ̃(w). Let

Pℓ̃ := arg sup
P↓P

ℓ̃ =Pℓ̃

plP(P).

Since plPℓ̃ (Pℓ̃) = w, then plP(Pℓ̃) = w, i.e., Pℓ̃ ∈ Γ(w). Furthermore, P↓Pℓ̃

ℓ̃
= Pℓ̃ hence, since Pℓ̃ ≥ v,

we have φ(Pℓ̃, v) ≤ ℓ̃ and thus φ(Pℓ̃, v) ≤ φ(U(w), v).
Assume now φ(U(w), v) = 1. This implies that we have v ≤ U1(w).
Let P U

1 := U1(w). Let
P1 := arg sup

P↓P1 =P U
1

plP(P).

Since plP1 (P U
1 ) = w, then plP(P1) = w, i.e., P1 ∈ Γ(w). Furthermore, P↓P1

1 = P U
1 hence, since v ≤ P U

1 ,
we have φ(P1, v) = 1 and thus φ(P1, v) = φ(U(w), v).

Therefore, when φ(U(w), v) = ℓ̃ for some 1 ≤ ℓ̃ < K, we can find a P ∈ Γ(w) such that φ(P, v) ≤
φ(U(w), v). Since ℓ(w, v) is the minimum of φ(P, v) under the constraint P ∈ Γ(w), we have ℓ(w, v) ≤
φ(U(w), v) = ℓ̃(w, v).

B Proof of the expression (15) of BelZ(Ji, jK)
We start from expression (22) of BelZ(Ji, jK).

Let us first consider the case i = 1 and j = K. For w = 0 and v = 0, we have φ(U(w), v) =
φ(L(w), v) = 1. For w = 0 and v ∈ (0, 1], we have φ(U(w), v) = 1 and φ(L(w), v) = K. For w ∈ (0, 1],
U(w) ∈ P∗ and L(w) ∈ P∗, hence φ(U(w), v) ≥ 1 and φ(L(w), v) ≤ K, for all v ∈ [0, 1]. In sum, for
all (w, v) ∈ [0, 1]2, 1 ≤ φ(U(w), v) and φ(L(w), v) ≤ K hold, hence BelZ(J1, KK) = λ ⊗ µ({(w, v) ∈
[0, 1]2}) = 1, which gives us the first case in Eq.(15).

For i = 1 and j < K, since we have established that for all (w, v) ∈ [0, 1]2, 1 ≤ φ(U(w), v), Eq. (22)
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reduces to

λ ⊗ µ({(w, v) ∈ [0, 1]2|φ(L(w), v) ≤ j})
= λ ⊗ µ({(w, v) ∈ [0, 1]2|Lj(w) ≥ v)})

=
∫ 1

0

∫ Lj (w)

0
1dvdw

=
∫ 1

0
Lj(w)dw

=
∫ pl

Pj (P̂j )

pl
Pj (0)

Lj(w)dw

=
∫ P̂j

0
Lj(plPj (t))pl

′Pj (t)dt

which reduces to (given that plPj is strictly increasing on [0, P̂j ], and therefore Lj : [0, 1] → [0, P̂j ] is its
inverse function on this interval)

=
∫ P̂j

0
t pl

′Pj (t)dt

= [t plPj (t)]P̂j

0 −
∫ P̂j

0
plPj (t)dt

= P̂j −
∫ P̂j

0
plPj (t)dt,

which gives us the second case in Eq. (15).
For 1 < i and j = K, since we have established that for all (w, v) ∈ [0, 1]2, K ≥ φ(L(w), v), Eq. (22)

reduces to

λ ⊗ µ({(w, v) ∈ [0, 1]2|i ≤ φ(U(w), v)})
= λ ⊗ µ({(w, v) ∈ [0, 1]2|Ui−1(w) < v)})

=
∫ 1

0

∫ 1

Ui−1(w)
1dvdw

=
∫ 1

0
1 − Ui−1(w)dw

= 1 −
∫ 1

0
Ui−1(w)dw

= 1 −
∫ pl

Pi−1 (P̂i−1)

pl
Pi−1 (1)

Ui−1(w)dw

= 1 −
∫ P̂i−1

1
Ui−1(plPi−1 (t))pl

′Pi−1 (t)dt

= 1 +
∫ 1

P̂i−1

Ui−1(plPi−1 (t))pl
′Pi−1 (t)dt

which reduces to (given that plPi−1 is strictly decreasing on [P̂i−1, 1], and therefore Ui−1 : [0, 1] →
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[P̂i−1, 1] is its inverse function on this interval )

= 1 +
∫ 1

P̂i−1

t pl
′Pi−1 (t)dt

= 1 + [t plPi−1 (t)]1P̂i−1
−
∫ 1

P̂i−1

plPi−1 (t)dt

= 1 − P̂i−1 −
∫ 1

P̂i−1

plPi−1 (t)dt,

which gives us the third case in Eq. (15).
For 1 < i and j < K, since for all (w, v) ∈ [0, 1]2, we have 1 < i ≤ φ(U(w), v) ⇔ Ui−1(w) < v and

φ(L(w), v) ≤ j < K ⇔ v ≤ Lj(w), Eq. (22) reduces to

λ ⊗ µ({(w, v) ∈ [0, 1]2|Ui−1(w) < v, Lj(w) ≥ v)})
= λ ⊗ µ({(w, v) ∈ [0, 1]2|Ui−1(w) < v ≤ Lj(w)}) (42)

Let wi−1,j := plPi−1 (Pi−1,j) = plPj (Pi−1,j). On [P̂i−1, 1], plPi−1 is (strictly) decreasing from plPi−1 (P̂i−1) =
1 to plPi−1 (1) = 0, hence its inverse function (for this interval) Ui−1 is decreasing on [0, 1] (and we also
have 0 < wi−1,j < 1 since 0 < P̂i−1 < Pi−1,j < P̂j < 1). On [0, wi−1,j ], Ui−1 decreases from Ui−1(0) = 1
to Ui−1(wi−1,j) = Pi−1,j , and on [wi−1,j , 1] it decreases from Ui−1(wi−1,j) = Pi−1,j to Ui−1(1) = P̂i−1.

Similarly, we obtain that Lj increases on [0, wi−1,j ] from Lj(0) = 0 to Lj(wi−1,j) = Pi−1,j , and on
[wi−1,j , 1] it increases from Lj(wi−1,j) = Pi−1,j to Lj(1) = P̂j . Consequently, for all w ∈ [0, wi−1,j), we
have Ui−1(w) > Lj(w), and for all w ∈ [wi−1,j , 1], Ui−1(w) ≤ Lj(w). Eq.(42) reduces thus to

λ ⊗ µ({v ∈ [0, 1], wi−1,j ≤ w ≤ 1|Ui−1(w) < v ≤ Lj(w))

=
∫ 1

wi−1,j

∫ Lj (w)

Ui−1(w)
1dvdw

=
∫ 1

wi−1,j

Lj(w) − Ui−1(w)dw

=
∫ 1

wi−1,j

Lj(w)dw −
∫ 1

wi−1,j

Ui−1(w)dw. (43)

We have ∫ 1

wi−1,j

Lj(w)dw =
∫ pl

Pj (P̂j )

pl
Pj (Pi−1,j )

Lj(w)dw

=
∫ P̂j

Pi−1,j

Lj(plPj (t))pl
′Pj (t)dt

=
∫ P̂j

Pi−1,j

t pl
′Pj (t)dt

= [t plPj (t)]P̂j

Pi−1,j
−
∫ P̂j

Pi−1,j

plPj (t)dt

= P̂j − Pi−1,j wi−1,j −
∫ P̂j

Pi−1,j

plPj (t)dt,
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and ∫ 1

wi−1,j

Ui−1(w)dw =
∫ pl

Pi−1 (P̂i−1)

pl
Pi−1 (Pi−1,j )

Ui−1(w)dw

=
∫ P̂i−1

Pi−1,j

Ui−1(plPi−1 (t))pl
′Pi−1 (t)dt

= −
∫ Pi−1,j

P̂i−1

Ui−1(plPi−1 (t))pl
′Pi−1 (t)dt

= −
∫ Pi−1,j

P̂i−1

t pl
′Pi−1 (t)dt

= −([t plPi−1 (t)]Pi−1,j

P̂i−1
−
∫ Pi−1,j

P̂i−1

plPi−1 (t)dt)

= P̂i−1 − Pi−1,j wi−1,j +
∫ Pi−1,j

P̂i−1

plPi−1 (t)dt.

Eq. (43) simplifies then to

= P̂j − Pi−1,j wi−1,j −
∫ P̂j

Pi−1,j

plPj (t)dt − (P̂i−1 − Pi−1,j wi−1,j +
∫ Pi−1,j

P̂i−1

plPi−1 (t)dt)

= P̂j − P̂i−1 −
∫ P̂j

Pi−1,j

plPj (t)dt −
∫ Pi−1,j

P̂i−1

plPi−1 (t)dt,

which gives us the last case in Eq. (15).

C Proof of Lemma 4
In the cases where ℓ(w, v) = u(w, v) or ℓ(w, v) = u(w, v) − 1, Eq. (23) clearly holds.

Consider the case w = 0, in which case Γ(w) = P. If v = 0 then φ(Γ(w), v) = 1 since φ(P, 0) = 1,
for all P ∈ P. If v ∈ (0, 1] then φ(Γ(w), v) = Z since, for all k ∈ Z, there exists P ∈ P such that
Pk−1 < v ≤ Pk. In other words, Eq. (23) holds for w = 0.

It remains thus to consider the cases for which ℓ(w, v) < u(w, v) − 1 and w ∈ (0, 1].
Let w ∈ (0, 1] and v ∈ [0, 1] such that ℓ(w, v) < u(w, v) − 1. For short, we denote ℓ(w, v) by ℓ and

u(w, v) by u. Let (P(ℓ), P(u)) ∈ Γ(w)2 such that φ(P(ℓ), v) = ℓ and φ(P(u), v) = u. Furthermore, given
Assumption 4, let P∗ ∈ Γ(w) be the star center of Γ(w). Let z := φ(P∗, v). Since P∗ ∈ Γ(w), then
necessarily z ∈ Jℓ, uK and thus Jℓ, uK = Jℓ, zK∪ Jz, uK. Hence, for Eq. (23) to hold, it remains to show that
for any k, ℓ < k < z, there exists P(k) ∈ Γ(w) such that φ(P(k), v) = k and that for any k′, z < k′ < u,
there exists P(k′) ∈ Γ(w) such that φ(P(k′), v) = k′.

If ℓ = z or ℓ = z − 1, then there is no k such that ℓ < k < z, so we merely need to consider the cases
where ℓ < z − 1. Remark first that in such cases, and given Assumption 1, we have

φ(P∗, v) = z =⇒ 0 < P ∗
z−1 < v

with z > 2. Similarly,
φ(P(ℓ), v) = ℓ =⇒ v ≤ P

(ℓ)
ℓ < 1

with ℓ < K − 1.
Furthermore, consider some k ∈ Z such that 1 ≤ ℓ < k < z ≤ K. From Assumption 1 we have

0 <P
(ℓ)
ℓ < P

(ℓ)
k < 1,

0 <P ∗
k ≤ P ∗

z−1 < 1.
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Therefore, overall, we have
0 < P ∗

k ≤ P ∗
z−1 < v ≤ P

(ℓ)
ℓ < P

(ℓ)
k < 1. (44)

Let
tk := v − P ∗

k

P
(ℓ)
k − P ∗

k

. (45)

From (44), we have v − P ∗
k > 0, P

(ℓ)
k − P ∗

k > 0 and v − P ∗
k < P

(ℓ)
k − P ∗

k , thus tk ∈ (0, 1).
Since Γ(w) is a star convex set (Assumption 4), P(k) := tkP(ℓ) + (1 − tk)P∗ ∈ Γ(w). Furthermore,

given (45), P(k) satisfies

P
(k)
k = v − P ∗

k

P
(ℓ)
k − P ∗

k

P
(ℓ)
k +

(
1 − v − P ∗

k

P
(ℓ)
k − P ∗

k

)
P ∗

k

= v − P ∗
k

P
(ℓ)
k − P ∗

k

P
(ℓ)
k + P

(ℓ)
k − v

P
(ℓ)
k − P ∗

k

P ∗
k

= vP
(ℓ)
k − P ∗

k P
(ℓ)
k + P

(ℓ)
k P ∗

k − vP ∗
k

P
(ℓ)
k − P ∗

k

= v(P (ℓ)
k − P ∗

k )
P

(ℓ)
k − P ∗

k

= v.

Finally, from Assumption 1 and P(k) ∈ Γ(w), we have P
(k)
k−1 < P

(k)
k = v, so that φ(P(k), v) = k.

The fact that for any k′, z < k′ < u, there exists P(k′) ∈ Γ(w) such that φ(P(k′), v) = k′, is shown
similarly as follows.

If z = u or z = u − 1, then there is no k′ such that z < k′ < u, so we merely need to consider the
cases where z < u − 1. In such cases, and given Assumption 1, we have

φ(P(u), v) = u =⇒ 0 < P
(u)
u−1 < v

with u > 2. Similarly,
φ(P∗, v) = z =⇒ v ≤ P ∗

z < 1
with z < K − 1.

Furthermore, consider some k′ ∈ Z such that 1 ≤ z < k′ < u ≤ K. From Assumption 1 we have

0 <P ∗
z < P ∗

k′ < 1

0 <P
(u)
k′ ≤ P

(u)
u−1 < 1

Therefore, overall, we have
0 < P

(u)
k′ ≤ P

(u)
u−1 < v ≤ P ∗

z < P ∗
k′ , (46)

Let

tk′ :=
v − P

(u)
k′

P ∗
k′ − P

(u)
k′

. (47)

From (46), we have v − P
(u)
k′ > 0, P ∗

k′ − P
(u)
k′ > 0 and v − P

(u)
k′ < P ∗

k′ − P
(u)
k′ , thus tk′ ∈ (0, 1).

Since Γ(w) is a star convex set (Assumption 4), P(k′) := tk′ P∗ + (1 − tk′ )P(u) ∈ Γ(w). Furthermore,
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given (47), P(k′) satisfies

P
(k′)
k′ =

v − P
(u)
k′

P ∗
k′ − P

(u)
k′

P ∗
k′ +

(
1 −

v − P
(u)
k′

P ∗
k′ − P

(u)
k′

)
P

(u)
k′

=
v − P

(u)
k′

P ∗
k′ − P

(u)
k′

P ∗
k′ + P ∗

k′ − v

P ∗
k′ − P

(u)
k′

P
(u)
k′

=
vP ∗

k′ − P
(u)
k′ P ∗

k′ + P ∗
k′ P

(u)
k′ − vP

(u)
k′

P ∗
k′ − P

(u)
k′

=
v(P ∗

k′ − P
(u)
k′ )

P ∗
k′ − P

(u)
k′

= v.

Finally, from Assumption 1 and P(k′) ∈ Γ(w), we have P
(k′)
k′−1 < P

(k′)
k′ = v, so that φ(P(k′), v) = k′.

D Proof of Corollary 1
According to [5, Eq. (29)], we have

mZ(Ji, jK) = (48)
BelZ({j}) , if j = i,

BelZ(Ji, jK) − BelZ(Ji + 1, jK) − BelZ(Ji, j − 1K) , if j = i + 1,

BelZ(Ji, jK) − BelZ(Ji + 1, jK) − BelZ(Ji, j − 1K) + BelZ(Ji + 1, j − 1K) , otherwise.

Consider the first case of Eq. (24) where i = 1 and j = K. According to Eq. (48), we have

mZ(J1, KK) = BelZ(J1, KK) − BelZ(J2, KK) − BelZ(J1, K − 1K) + BelZ(J2, K − 1K)

= 1 −
(

1 − P̂1 −
∫ 1

P̂1

plP1 (P )dP

)
−

(
P̂K−1 −

∫ P̂K−1

0
plPK−1 (P )dP

)

+

(
P̂K−1 − P̂1 −

∫ P1,K−1

P̂1

plP1 (P )dP −
∫ P̂K−1

P1,K−1

plPK−1 (P )dP

)

=
∫ P̂K−1

0
plPK−1 (P )dP −

∫ P̂K−1

P1,K−1

plPK−1 (P )dP

+
∫ 1

P̂1

plP1 (P )dP −
∫ P1,K−1

P̂1

plP1 (P )dP

=
∫ P1,K−1

0
plPK−1 (P )dP +

∫ 1

P1,K−1

plP1 (P )dP

=
∫ P1,K−1

P0,K−1

plPK−1 (P )dP +
∫ P1,K

P1,K−1

plP1 (P )dP

= A1,K .
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Consider now the second case of Eq. (24) where i = 1 and j < K. For j = i = 1, we have

mZ({1}) = BelZ({1})

= P̂1 −
∫ P̂1

0
plP1 (P )dP

= (P1,1 − P0,0) −
∫ P1,1

P0,1

plP1 (P )dP

= A1,1 −
∫ P1,1

P0,1

plP1 (P )dP.

For j = i + 1 = 2 we have

mZ(J1, 2K) = BelZ(J1, 2K) − BelZ({2}) − BelZ({1})

=

(
P̂2 −

∫ P̂2

0
plP2 (P )dP

)

−

(
P̂2 − P̂1 −

∫ P1,2

P̂1

plP1 (P )dP −
∫ P̂2

P1,2

plP2 (P )dP

)

−

(
P̂1 −

∫ P̂1

0
plP1 (P )dP

)

=
∫ P̂1

0
plP1 (P )dP +

∫ P1,2

P̂1

plP1 (P )dP

+
∫ P̂2

P1,2

plP2 (P )dP −
∫ P̂2

0
plP2 (P )dP

=

(∫ P̂1

0
plP1 (P )dP +

∫ P1,2

P̂1

plP1 (P )dP

)
−
∫ P1,2

0
plP2 (P )dP

=

(∫ P1,1

P0,1

plP1 (P )dP +
∫ P1,2

P1,1

plP1 (P )dP

)
−
∫ P1,2

P0,2

plP2 (P )dP

= A1,2 −
∫ P1,2

P0,2

plP2 (P )dP.
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For 2 < j < K we have

mZ(J1, jK) = BelZ(J1, jK) − BelZ(J2, jK) − BelZ(J1, j − 1K) + BelZ(J2, j − 1K)

=

(
P̂j −

∫ P̂j

0
plPj (P )dP

)

−

(
P̂j − P̂1 −

∫ P1,j

P̂1

plP1 (P )dP −
∫ P̂j

P1,j

plPj (P )dP

)

−

(
P̂j−1 −

∫ P̂j−1

0
plPj−1 (P )dP

)

+

(
P̂j−1 − P̂1 −

∫ P1,j−1

P̂1

plP1 (P )dP −
∫ P̂j−1

P1,j−1

plPj−1 (P )dP

)

=
∫ P̂j−1

0
plPj−1 (P )dP −

∫ P̂j−1

P1,j−1

plPj−1 (P )dP

+
∫ P1,j

P̂1

plP1 (P )dP −
∫ P1,j−1

P̂1

plP1 (P )dP

+
∫ P̂j

P1,j

plPj (P )dP −
∫ P̂j

0
plPj (P )dP

=

(∫ P1,j−1

0
plPj−1 (P )dP +

∫ P1,j

P1,j−1

plP1 (P )dP

)
−
∫ P1,j

0
plPj (P )dP

=

(∫ P1,j−1

P0,j−1

plPj−1 (P )dP +
∫ P1,j

P1,j−1

plP1 (P )dP

)
−
∫ P1,j

P0,j

plPj (P )dP

= A1,j −
∫ P1,j

P0,j

plPj (P )dP.

Consider now the third case of Eq. (24) where 1 < i and j = K. For i = j = K we have

mZ({K}) = BelZ({K})

= 1 − P̂K−1 −
∫ 1

P̂K−1

plPK−1 (P )dP

= (PK,K − PK−1,K−1) −
∫ PK−1,K

PK−1,K−1

plPK−1 (P )dP

= AK,K −
∫ PK−1,K

PK−1,K−1

plPK−1 (P )dP.

29



For i = j − 1 = K − 1 we have

mZ(JK − 1, KK) = BelZ(JK − 1, KK) − BelZ({K}) − BelZ({K − 1})

=

(
1 − P̂K−2 −

∫ 1

P̂K−2

plPK−2 (P )dP

)

−

(
1 − P̂K−1 −

∫ 1

P̂K−1

plPK−1 (P )dP

)

−

(
P̂K−1 − P̂K−2 −

∫ PK−2,K−1

P̂K−2

plPK−2 (P )dP −
∫ P̂K−1

PK−2,K−1

plPK−1 (P )dP

)

=
∫ 1

P̂K−1

plPK−1 (P )dP +
∫ P̂K−1

PK−2,K−1

plPK−1 (P )dP

+
∫ PK−2,K−1

P̂K−2

plPK−2 (P )dP −
∫ 1

P̂K−2

plPK−2 (P )dP

=

(∫ P̂K−1

PK−2,K−1

plPK−1 (P )dP +
∫ 1

P̂K−1

plPK−1 (P )dP

)

−
∫ 1

PK−2,K−1

plPK−2 (P )dP

=

(∫ PK−1,K−1

PK−2,K−1

plPK−1 (P )dP +
∫ PK−1,K

PK−1,K−1

plPK−1 (P )dP

)

−
∫ PK−2,K

PK−2,K−1

plPK−2 (P )dP

= AK−1,K −
∫ PK−2,K

PK−2,K−1

plPK−2 (P )dP.

For 1 < i < K − 1 we have

mZ(Ji, KK) = BelZ(Ji, KK) − BelZ(Ji + 1, KK) − BelZ(Ji, K − 1K) + BelZ(Ji + 1, K − 1K)

=

(
1 − P̂i−1 −

∫ 1

P̂i−1

plPi−1 (P )dP

)

−
(

1 − P̂i −
∫ 1

P̂i

plPi (P )dP

)
−

(
P̂K−1 − P̂i−1 −

∫ Pi−1,K−1

P̂i−1

plPi−1 (P )dP −
∫ P̂K−1

Pi−1,K−1

plPK−1 (P )dP

)

+

(
P̂K−1 − P̂i −

∫ Pi,K−1

P̂i

plPi (P )dP −
∫ P̂K−1

Pi,K−1

plPK−1 (P )dP

)

=
∫ 1

P̂i

plPi (P )dP −
∫ Pi,K−1

P̂i

plPi (P )dP

+
∫ Pi−1,K−1

P̂i−1

plPi−1 (P )dP −
∫ 1

P̂i−1

plPi−1 (P )dP
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+
∫ P̂K−1

Pi−1,K−1

plPK−1 (P )dP −
∫ P̂K−1

Pi,K−1

plPK−1 (P )dP

=

(∫ Pi,K−1

Pi−1,K−1

plPK−1 (P )dP +
∫ 1

Pi,K−1

plPi (P )dP

)
−
∫ 1

Pi−1,K−1

plPi−1 (P )dP

=

(∫ Pi,K−1

Pi−1,K−1

plPK−1 (P )dP +
∫ Pi,K

Pi,K−1

plPi (P )dP

)
−
∫ Pi−1,K

Pi−1,K−1

plPi−1 (P )dP

= Ai,K −
∫ Pi−1,K

Pi−1,K−1

plPi−1 (P )dP.

Finally, consider the fourth case of Eq. (24) where 1 < i and j < K. For i = j we have

mZ({j}) = BelZ({j})

=
(
P̂j − P̂j−1

)
−
∫ Pj−1,j

P̂j−1

plPj−1 (P )dP −
∫ P̂j

Pj−1,j

plPj (P )dP

= (Pj,j − Pj−1,j−1) −
∫ Pj−1,j

Pj−1,j−1

plPj−1 (P )dP −
∫ Pj,j

Pj−1,j

plPj (P )dP

= Aj,j −
∫ Pj−1,j

Pj−1,j−1

plPj−1 (P )dP −
∫ Pj,j

Pj−1,j

plPj (P )dP.

For j = i + 1 we have

mZ(Jj − 1, jK) = BelZ(Jj − 1, jK) − BelZ({j}) − BelZ({j − 1})

=

(
P̂j − P̂j−2 −

∫ Pj−2,j

P̂j−2

plPj−2 (P )dP −
∫ P̂j

Pj−2,j

plPj (P )dP

)

−

(
P̂j − P̂j−1 −

∫ Pj−1,j

P̂j−1

plPj−1 (P )dP −
∫ P̂j

Pj−1,j

plPj (P )dP

)

−

(
P̂j−1 − P̂j−2 −

∫ Pj−2,j−1

P̂j−2

plPj−2 (P )dP −
∫ P̂j−1

Pj−2,j−1

plPj−1 (P )dP

)

=
∫ P̂j

Pj−1,j

plPj (P )dP −
∫ P̂j

Pj−2,j

plPj (P )dP

+
∫ P̂j−1

Pj−2,j−1

plPj−1 (P )dP +
∫ Pj−1,j

P̂j−1

plPj−1 (P )dP

+
∫ Pj−2,j−1

P̂j−2

plPj−2 (P )dP −
∫ Pj−2,j

P̂j−2

plPj−2 (P )dP

=

(∫ P̂j−1

Pj−2,j−1

plPj−1 (P )dP +
∫ Pj−1,j

P̂j−1

plPj−1 (P )dP

)

−
∫ Pj−2,j

Pj−2,j−1

plPj−2 (P )dP −
∫ Pj−1,j

Pj−2,j

plPj (P )dP

=

(∫ Pj−1,j−1

Pj−2,j−1

plPj−1 (P )dP +
∫ Pj−1,j

Pj−1,j−1

plPj−1 (P )dP

)
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−
∫ Pj−2,j

Pj−2,j−1

plPj−2 (P )dP −
∫ Pj−1,j

Pj−2,j

plPj (P )dP

= Aj−1,j −
∫ Pj−2,j

Pj−2,j−1

plPj−2 (P )dP −
∫ Pj−1,j

Pj−2,j

plPj (P )dP.

For j > i + 1 we have

mZ(Ji, jK) = BelZ(Ji, jK) − BelZ(Ji + 1, jK) − BelZ(Ji, j − 1K) + BelZ(Ji + 1, j − 1K)

=

(
P̂j − P̂i−1 −

∫ Pi−1,j

P̂i−1

plPi−1 (P )dP −
∫ P̂j

Pi−1,j

plPj (P )dP

)

−

(
P̂j − P̂i −

∫ Pi,j

P̂i

plPi (P )dP −
∫ P̂j

Pi,j

plPj (P )dP

)

−

(
P̂j−1 − P̂i−1 −

∫ Pi−1,j−1

P̂i−1

plPi−1 (P )dP −
∫ P̂j−1

Pi−1,j−1

plPj−1 (P )dP

)

+

(
P̂j−1 − P̂i −

∫ Pi,j−1

P̂i

plPi (P )dP −
∫ P̂j−1

Pi,j−1

plPj−1 (P )dP

)

=
∫ P̂j−1

Pi−1,j−1

plPj−1 (P )dP −
∫ P̂j−1

Pi,j−1

plPj−1 (P )dP

+
∫ Pi,j

P̂i

plPi (P )dP −
∫ Pi,j−1

P̂i

plPi (P )dP

+
∫ Pi−1,j−1

P̂i−1

plPi−1 (P )dP −
∫ Pi−1,j

P̂i−1

plPi−1 (P )dP

+
∫ P̂j

Pi,j

plPj (P )dP −
∫ P̂j

Pi−1,j

plPj (P )dP

=

(∫ Pi,j−1

Pi−1,j−1

plPj−1 (P )dP +
∫ Pi,j

Pi,j−1

plPi (P )dP

)

−
∫ Pi−1,j

Pi−1,j−1

plPi−1 (P )dP −
∫ Pi,j

Pi−1,j

plPj (P )dP

= Ai,j −
∫ Pi−1,j

Pi−1,j−1

plPi−1 (P )dP −
∫ Pi,j

Pi−1,j

plPj (P )dP.

E Proof of Lemma 6
For any p ∈ Π∗, we have

log plΠ(p) =
K∑

i=1

yi(log(pi) − log(p̂i)),

∂ log plΠ(p)
∂pi

= yi

pi
, ∀1 ≤ i ≤ K,

and
∂2 log plΠ(p)

∂pi∂pj
=
{

−yi/p2
i if i = j,

0 otherwise.
(49)
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Consider the Hessian matrix H of log plΠ(p), whose i-th row and j-th column entry is given by
Eq. (49). H is negative definite since, for any vector r = (r1, . . . , rK)⊺ ∈ RK , r ̸= 0, we have

r⊺Hr = −
K∑

i=1

yir
2
i

p2
i

< 0.

Hence, plΠ is strictly log-concave in Π∗, which implies that its w-superlevel sets Λ(w) := {p ∈ Π∗|plΠ(p) ≥
w}, for all w ∈ (0, 1], are convex [1].

Since T : RK → RK−1 is a linear transformation, T (Λ(w)) is convex, for any w ∈ (0, 1]. In addition,
for any w ∈ (0, 1], we have T (Λ(w)) = {P ∈ P∗|plP(P) ≥ w}, since for P := T p, p ∈ Π∗ ⇔ P ∈ P∗

and plΠ(p) ≥ w ⇔ plP(P) ≥ w. Since plP satisfies Assumption 1 (Lemma 5), any P ∈ P such that
plP(P) ≥ w for some w ∈ (0, 1] belongs to P∗. Therefore, for w ∈ (0, 1], Γ(w) = {P ∈ P|plP(P) ≥ w} =
{P ∈ P∗|plP(P) ≥ w} = T (Λ(w)) and is thus convex.

F Proof of Lemma 7
Given (28), plPj (P ) = supP−j

plP(P) is obtained by finding a p⋆j = (p⋆j
1 , . . . , p⋆j

K ) ∈ Π, which maximises
L(p; y) under the constraint

∑j

i=1 pi = P . Accordingly, plPj can be written as

plPj (P ) = sup
p∈Π:

∑j

i=1
pi=P

L(p; y)
L(p̂; y)

= L(p⋆j ; y)
L(p̂; y) . (50)

Maximising L(p; y) is equivalent to maximising log L(p; y). Such a p⋆j can thus be obtained by
considering the Lagrangian function

Lj(p,λλλ) = log L(p; y) + λ1(
j∑

i=1

pi − P ) + λ2(
K∑

i=1

pi − 1)

=
K∑

i=1

yi log pi + log n! −
K∑

i=1

log yi! + λ1(
j∑

i=1

pi − P ) + λ2(
K∑

i=1

pi − 1)

The partial derivatives of Lj with respect to pi for i = 1, . . . , K, as well as λ1 and λ2, are the following:

∂Lj(p,λλλ)
∂pi

= yi

pi
+ λ1 · I(i ≤ j) + λ2, i = 1, . . . , K, (51)

∂Lj(p,λλλ)
∂λ1

=
j∑

i=1

pi − P, (52)

∂Lj(p,λλλ)
∂λ2

=
K∑

i=1

pi − 1. (53)

p⋆j = (p⋆j
1 , . . . , p⋆j

K ) is obtained when the K partial derivatives in Eq. (51) are zeros, in which case we
have

p⋆j
i = −yi

λ1 · I(i ≤ j) + λ2
, i = 1, . . . , K. (54)

By substituting these expressions in Eq. (52) and by imposing that the latter cancels out, we obtain

λ1 + λ2 =
−
∑j

i=1 yi

P
. (55)
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By substituting Eq. (54) in Eq. (53) and by imposing that the latter cancels out, we obtain

j∑
i=1

−yi

λ1 + λ2
+

K∑
i=j+1

−yi

λ2
= 1,

which, thanks to Eq. (55), becomes

P +
K∑

i=j+1

−yi

λ2
= 1

⇔ λ2 =
∑K

i=j+1 yi

P − 1 . (56)

Let nk
l :=

∑k

i=l
yi for all 1 ≤ l ≤ k ≤ K. By substituting both Eqs. (55) and (56), in Eq. (54), we

obtain
p⋆j

i =
{

(ni
i/nj

1)P if i ≤ j,
(ni

i/nK
j+1)(1 − P ) else.

Let P⋆j = (P ⋆j
1 , . . . , P ⋆j

K−1) be the vector such that P ⋆j
i =

∑i

l=1 p⋆j
l . We then have

P ⋆j
i =

{
(ni

1/nj
1)P if i ≤ j,

(ni
j+1/nK

j+1) (1 − P ) + P else. (57)

Consequently, given Eqs. (28) and (50), we obtain

plPj (P ) = plP(P⋆j). (58)

From Eqs. (14), (58) and (57), we have

plPj (P ) =
(

P ⋆j
1

P̂1

)y1
(

K−1∏
i=2

(
P ⋆j

i − P ⋆j
i−1

P̂i − P̂i−1

)yi
)(

1 − P ∗j
K−1

1 − P̂K−1

)yK

=
(

P ⋆j
1

P̂1

)y1
(

j∏
i=2

(
P ⋆j

i − P ⋆j
i−1

P̂i − P̂i−1

)yi
)(

P ⋆
j+1 − P ⋆

j

P̂j+1 − P̂j

)yj+1
(

K−1∏
i=j+2

(
P ⋆j

i − P ⋆j
i−1

P̂i − P̂i−1

)yi
)(

1 − P ⋆j
K−1

1 − P̂K−1

)yK

=
(

nK
1 P

nj
1

)y1
(

j∏
i=2

(
nK

1 P

nj
1

)yi

)(
nK

1 (1 − P )
nK

j+1

)yj+1
(

K−1∏
i=j+2

(
nK

1 (1 − P )
nK

j+1

)yi

)(
nK

1 (1 − P )
nK

j+1

)yK

=

(
j∏

i=1

(
nK

1 P

nj
1

)yi

)(
K∏

i=j+1

(
nK

1 (1 − P )
nK

j+1

)yj

)

=
(

nK
1 P

nj
1

)n
j
1
(

nK
1 (1 − P )

nK
j+1

)nK
j+1

,

which, with nj :=
∑j

i=1 yi, 1 ≤ j < K, is equal to(
nP

nj

)nj
(

n(1 − P )
n − nj

)n−nj

=
(

P

P̂j

)nj
(

1 − P

1 − P̂j

)n−nj

. (59)

We can then remark that plPj is nothing other than the relative likelihood function of a binomial
variable Yj with parameters n and Pj for which we have observed nj successes out of n experiments,
where n > nj > 0. It is therefore unimodal, with mode P̂j =

∑j

i=1 yi/n, and continuous, and thus it
satisfies Assumption 2.
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G Proof of Lemma 8
Let h(P ) := log plPi (P ) − log plPj (P ) for P ∈ (0, 1). From (59), we obtain for all P ∈ (0, 1)

h(P ) = log

((
P

P̂i

)ni
(

1 − P

1 − P̂i

)n−ni

)
− log

((
P

P̂j

)nj
(

1 − P

1 − P̂j

)n−nj

)

= log
(

P

P̂i

)ni

+ log
(

1 − P

1 − P̂i

)n−ni

− log
(

P

P̂j

)nj

− log
(

1 − P

1 − P̂j

)n−nj

= ni log P

P̂i

+ (n − ni) log 1 − P

1 − P̂i

− nj log P

P̂j

− (n − nj) log 1 − P

1 − P̂j

= ni log P − ni log P̂i + (n − ni) log(1 − P ) − (n − ni) log(1 − P̂i) − nj log P + nj log P̂j

−(n − nj) log(1 − P ) + (n − nj) log(1 − P̂j)

and
∂h(P )

∂P
= ni

P
− n − ni

1 − P
− nj

P
+ n − nj

1 − P

= (ni − nj)
( 1

P
+ 1

1 − P

)
< 0,

hence h(P ) is decreasing on (0, 1). In addition, log plPi (P̂i) = 0 and log plPj (P̂i) < 0, so that h(P̂i) > 0
and, similarly, we obtain h(P̂j) < 0. Hence there exists an unique Pi,j ∈ (0, 1) (satisfying P ∈ (P̂i, P̂j))
such that h(Pi,j) = 0 ⇔ plPi (Pi,j) = plPj (Pi,j), i.e., Assumption 3 holds.

H Proof of Theorem 3
The unique “intersection” value Pi,j between plPi and plPj , ∀1 ≤ i < j < K, is such that

plPi (Pi,j) = plPj (Pi,j)

⇐⇒
(

Pi,j

P̂i

)ni
(

1 − Pi,j

1 − P̂i

)n−ni

=
(

Pi,j

P̂j

)nj
(

1 − Pi,j

1 − P̂j

)n−nj

⇐⇒
(

(P̂j)nj (1 − P̂j)n−nj

(P̂i)ni (1 − P̂i)n−ni

)(
(Pi,j)ni (1 − Pi,j)n−ni

(Pi,j)nj (1 − Pi,j)n−nj

)
= 1.

Setting ci,j := ((P̂j)nj (1 − P̂j)n−nj )/((P̂i)ni (1 − P̂i)n−ni ), we have

plPi (Pi,j) = plPj (Pi,j)
⇐⇒ ci,j(Pi,j)ni−nj (1 − Pi,j)nj −ni = 1
⇐⇒ log ci,j + (ni − nj) log Pi,j + (nj − ni) log(1 − Pi,j) = 0
⇐⇒ log ci,j = (nj − ni)(log Pi,j − log(1 − Pi,j))

⇐⇒ log
(

Pi,j

1 − Pi,j

)
= log ci,j

nj − ni

⇐⇒ Pi,j =
(

exp
(

− log ci,j

nj − ni

)
+ 1
)−1

Moreover, we have

ci,j = (P̂j)nj (1 − P̂j)n(1 − P̂i)ni

(1 − P̂j)nj (P̂i)ni (1 − P̂i)n

=
(

P̂j

1 − P̂j

)nj
(

1 − P̂i

P̂i

)ni
(

1 − P̂j

1 − P̂i

)n
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and

exp
(

− log ci,j

nj − ni

)
= c

−1/(nj −ni)
i,j

=
((

P̂j

1 − P̂j

)nj
(

1 − P̂i

P̂i

)ni
(

1 − P̂j

1 − P̂i

)n)−1/(nj −ni)

=

((
P̂j

1 − P̂j

)P̂j
(

1 − P̂i

P̂i

)P̂i
(

1 − P̂j

1 − P̂i

))−1/(P̂j −P̂i)

.

Consequently

Pi,j =

(( P̂j

1 − P̂j

)P̂j
(

1 − P̂i

P̂i

)P̂i
(

1 − P̂j

1 − P̂i

))−1/(P̂j −P̂i)

+ 1

−1

,

which establishes (31).
Now, Eq. (30) is obtained from Eq. (15) as follows.
The case where i = 1, j = K is immediate.
The case where i = 1, j < K, is obtained as follows. From (59), we obtain∫ P̂j

0
plPj (P )dP =

∫ P̂j

0

P nj (1 − P )n−nj

P̂
nj

j (1 − P̂j)n−nj
,

which, using (8), equals
B(P̂j ; nj + 1, n − nj + 1)

P̂
nj

j (1 − P̂j)n−nj
,

from which the equation for the case where i = 1, j < K follows.
The case where 1 < i, j = K, is obtained similarly by noticing that, using (59) and (9),∫ 1

P̂i−1

plPi−1 (P )dP = B(P̂i−1; ni−1 + 1, n − ni−1 + 1)
P̂

ni−1
i−1 (1 − P̂i−1)n−ni−1

.

Finally, the last case is obtained by noticing that for all 0 ≤ z1 < z2 ≤ 1, we have, for all 1 ≤ j < K,∫ z2

z1

plPj (P )dP =
∫ z2

0
plPj (P )dP −

∫ z1

0
plPj (P )dP

= B(z2; nj + 1, n − nj + 1) − B(z1; nj + 1, n − nj + 1)
P̂

nj

j (1 − P̂j)n−nj
.

I Proof of Theorem 4
From Proposition 1, plP respects Assumptions 1 and 4, and thus from Lemma 4, we have, for all v ∈ [0, 1],

φ(Γ(wα)), v) = Jℓ(wα, v), u(wα, v)K. (60)

Hence, the focal sets of BelZ
W are intervals and therefore BelZ

W is characterized by BelZ
W (Ji, jK), for all

1 ≤ i ≤ j ≤ K, with

BelZ
C (Ji, jK) = µ({v ∈ [0, 1] | φ(Γ(wα), v) ⊆ Ji, jK})

= µ({v ∈ [0, 1] | i ≤ ℓ(wα, v), u(wα, v) ≤ j}). (61)
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Furthermore, from Proposition 1, plP respects Assumptions 1-3. In this case, as shown in the proof
of Theorem 1, the equalities (19) and (20) hold for all (w, v) ∈ [0, 1]2, from which we obtain

BelZ
C (Ji, jK) = µ({v ∈ [0, 1] | i ≤ φ(U(wα), v), φ(L(wα), v) ≤ j}), (62)

with L(wα) = (L1(wα), . . . , LK−1(wα)) and U(wα) = (U1(wα), . . . , UK−1(wα)).
Let us first consider the case i = 1 and j = K. From Lemma 9, U(wα) ∈ P∗ and L(wα) ∈ P∗,

hence, for all v ∈ [0, 1], φ(U(wα), v) ≥ 1 and φ(L(wα), v) ≤ K, and thus BelZ
C (J1, KK) = µ({v ∈

[0, 1]}) = 1, which gives us the first case in Eq.(36).
For i = 1 and j < K, since we have established that for all v ∈ [0, 1], 1 ≤ φ(U(wα), v), Eq. (62)

reduces to

µ({v ∈ [0, 1] | φ(L(wα), v) ≤ j})
= µ({v ∈ [0, 1] | Lj(wα) ≥ v})

=
∫ Lj (wα)

0
1dv

= Lj(wα), (63)

which gives us the second case in Eq. (36).
For 1 < i and j = K, since we have established that for all v ∈ [0, 1], K ≥ φ(L(wα), v), Eq. (62)

reduces to

µ({v ∈ [0, 1] | i ≤ φ(U(wα), v)})
= µ({v ∈ [0, 1] | Ui−1(wα) < v)})

=
∫ 1

Ui−1(w)
1dv

= 1 − Ui−1(wα),

which gives us the third case in Eq. (36).
For 1 < i and j < K, since for all v ∈ [0, 1], we have 1 < i ≤ φ(U(wα), v) ⇔ Ui−1(wα) < v and

φ(L(wα), v) ≤ j < K ⇔ v ≤ Lj(wα), Eq. (62) reduces to

µ({v ∈ [0, 1] | Ui−1(wα) < v, Lj(wα) ≥ v})
= µ({v ∈ [0, 1] | Ui−1(wα) < v ≤ Lj(wα)}) (64)

Let wi−1,j := plPi−1 (Pi−1,j) = plPj (Pi−1,j). As established in Appendix B, for all w ∈ [0, wi−1,j), we
have Ui−1(w) > Lj(w). Hence, for wα < wi−1,j , Eq. (64) reduces thus to

µ({v ∈ [0, 1] | Ui−1(wα) < v ≤ Lj(wα)}) = 0. (65)

In addition, as established in Appendix B, for all w ∈ [wi−1,j , 1], we have Ui−1(w) ≤ Lj(w). Hence, for
wα ≥ wi−1,j , Eq. (64) reduces thus to

µ({v ∈ [0, 1] | Ui−1(wα) < v ≤ Lj(wα)}) = Lj(wα) − Ui−1(wα) ≥ 0. (66)

From (65) and (66), Eq. (64) simplifies to

µ({v ∈ [0, 1] | Ui−1(wα) < v ≤ Lj(wα)}) = max(Lj(wα) − Ui−1(wα), 0),

which gives us the last case in Eq. (36).
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