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Information correction and fusion ...

Problem: to extract truthful and precise knowledge about a
quantity of interest, from information coming from various sources.
Applications: computer vision, robotics, machine learning...
Old problem: origin of probability theory, where formalizing and
merging partially reliable testimonies was a concern.
Requires meta-knowledge on the sources, i.e., knowledge about
their quality (typically, their reliability).
Called information correction when there is a single information
source and information fusion when there are several sources.
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... using belief functions

Related to the issue of uncertainty modeling.
Uncertainty theories: probability, possibility, belief function,
imprecise probability theories.
Central role in belief function theory (BFT):

1 [Shafer, 1976]: BFT as an approach for representing and merging
partially reliable and elementary testimonies;

2 Numerous theoretical contributions on information fusion;
3 BFT used in applications for merging information.

→ This lecture: some recent results in line with 1 – 3 , based on a
modeling of source quality, reinforcing the relevance of BFT for
information correction and fusion.
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Contents of this lecture

A general approach to information correction and fusion using
belief functions
A prism to understand some important belief function correction
and fusion schemes
An interpretation of belief functions (∼ [Shafer, 1976] revisited)
Means to tackle correction and fusion problems in practice

Not in this lecture:
An exhaustive review of all combination rules
A discussion on conflit measurement (see Anne-Laure’s lecture)
A discussion on rule properties (see, e.g., Sébastien’s lecture at
the 2015 BFAS school)
Implementation aspects (see Arnaud’s lecture)
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Outline

1 Reliability
One source
Two sources
K sources
Uncertain testimonies

2 Truthfulness and beyond
Crudest form
Refined form
General model

3 Selecting meta-knowledge
Absence of prior information
Learning data
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Reliability One source

Reliability

Classically, to interpret information items provided by sources
(sensor, human, ...), assumptions are made about their reliability
(relevance), where a reliable source is a source providing useful
information regarding the quantity of interest.
Examples :

I A broken watch is useless to try and find the time it is since there is
no way to know whether the supplied information is correct or not:
this source is not reliable for the time;

I My six-year-old child is ignorant about the name of the latest Nobel
Peace Prize laureate: he is not reliable for this question (in contrast
to the source nobelprize.org).

Basic idea : a piece of information received from a reliable source
is considered valid, whereas it is useless if the source is not
reliable.
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Reliability One source

Formalization
Let X be a variable of interest taking values in a finite set
X = {x1, . . . , xn} (frame of discernment), and whose actual value
is unknown
Assume a source s telling that X ∈ A ⊆ X

I If s is not reliable, we replace X ∈ A by X ∈ X
I If s is reliable, we keep X ∈ A

Let R be the variable denoting its reliability, defined on R = {0,1}
where 0 means that s is reliable and 1 means not reliable.

The interpretation of the testimony
according to the reliability may be
encoded by ΓA : R → 2X such that

ΓA(0) = A,
ΓA(1) = X .
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Reliability One source

Uncertain reliability
Assume now s is not reliable with probability PR(R = 1) = π (and
reliable with probability PR(R = 0) = 1− π) with π ∈ [0,1]

What can then be inferred about X?
π should be transferred to ΓA(1) = X ,
1− π to ΓA(0) = A, and thus our
knowledge about X is represented by
a mass function (MF) on X such that

m(A) = 1− π,
m(X ) = π

X
R

0

1

ΓA
A(1-π)

(π)

m(A) : probability of knowing that X ∈ A and nothing more, given
the available evidence.
m is a so-called simple mass function (SMF), since it has two focal
sets including X . It is more simply denoted by Aπ.
Other useful notation for m: m[PR,A]
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Reliability One source

Example

Assume a sensor s in charge of recognizing the type X of an
aircraft which can be airplane (a), glider (g), or helicopter (h), i.e.,
X = {a,g,h}.
s tells it is a glider or a helicopter, i.e., X ∈ A = {g,h}.
The probability that the sensor is not reliable is 0.1, i.e., π = 0.1.
Hence, our knowledge about X is
represented by the SMF {g,h}0.1

m({g,h}) = 0.9
m(X ) = 0.1

X
R

0

1

G{g,h}(0.9)

(0.1)

a

h

g
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Reliability Two sources

Outline

1 Reliability
One source
Two sources
K sources
Uncertain testimonies

2 Truthfulness and beyond
Crudest form
Refined form
General model

3 Selecting meta-knowledge
Absence of prior information
Learning data
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Reliability Two sources

Two information sources

Assume now two sources s1 and s2 providing information X ∈ A1
and X ∈ A2, respectively.
Let ΓAi : Ri → 2X represent the interpretation of information Ai
from si given its reliability Ri defined on Ri = {0,1}.
If they are in the state

I (R1 = 0,R2 = 0), then
X ∈ ΓA1 (0) ∩ ΓA2 (0) = A1 ∩ A2

I (R1 = 1,R2 = 0), then
X ∈ ΓA1 (1)∩ΓA2 (0) = X ∩A2 = A2

I (R1 = 0,R2 = 1), then
X ∈ ΓA1 (0)∩ΓA2 (1) = A1∩X = A1

I (R1 = 1,R2 = 1), then
X ∈ ΓA1 (1) ∩ ΓA2 (1) = X ∩ X = X

X

(0,0)

(1,1)

A2

A1

(1,0)

(0,1)

R1×R2
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Reliability Two sources

Notation

When the sources provide information A = (A1,A2) and are in the
state r = (r1, r2) ∈R := R1 ×R2, we should deduce

X ∈ ΓA(r) := ΓA1(r1) ∩ ΓA2(r2)

ΓA : R→ 2X

Example

ΓA(0,1) = ΓA1(0) ∩ ΓA2(1)

= A1 ∩ X
= A1
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Reliability Two sources

Uncertain reliabilities

Assume now the sources are in
state r = (r1, r2) with probability
PR(R1 = r1,R2 = r2) = pr

pr should be transferred to ΓA(r).
Our knowledge about X can then
be represented by

m(B) =
∑

r:ΓA(r)=B

pr.

X(0,0)

(1,1)

ΓA

A2

p00

A1

p11

(1,0)
p10
(0,1)
p01

R1×R2

Notation: m[PR,A]
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Reliability Two sources

Example
Two sensors s1 and s2 for the type X of an aircraft
s1 tells X ∈ A1 = {a} = {g,h}
s2 tells X ∈ A2 = {g} = {a,h}

We have

ΓA(0,0) = A1 ∩ A2 = {h}
ΓA(1,0) = A2 = {a,h}
ΓA(0,1) = A1 = {g,h}
ΓA(1,1) = X

X(0,0)

(1,1)

ΓA
0.3

0.2

(1,0)
0.1

(0,1)
0.4

R1×R2

a

h

g

Induced knowledge about X :

m({h}) = 0.3,m({a,h}) = 0.1,m({g,h}) = 0.4,m(X ) = 0.2
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Reliability Two sources

Decomposition of meta-knowledge
PR is a bivariate Bernoulli distribution
It is characterized by

πi := E[Ri ] = PRi (Ri = 1), i = 1,2,
σ := E [(R1 − π1)(R2 − π2)] = E [R1R2]− E[R1]E[R2]

= PR(R1 = 1,R2 = 1)− PR1(R1 = 1)PR2(R2 = 1)

We have

PR(R1 = 0,R2 = 0) = π1 · π2 + σ

PR(R1 = 1,R2 = 0) = π1 · π2 − σ
PR(R1 = 0,R2 = 1) = π1 · π2 − σ
PR(R1 = 1,R2 = 1) = π1 · π2 + σ

with πi = 1− πi
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Reliability Two sources

Example

Knowledge on the reliabilities of the sensors s1 and s2:

PR(R1 = 0,R2 = 0) = 0.3

PR(R1 = 1,R2 = 0) = 0.1

PR(R1 = 0,R2 = 1) = 0.4

PR(R1 = 1,R2 = 1) = 0.2

 ⇐⇒

π1 = 0.3

π2 = 0.6

σ = 0.02
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Reliability Two sources

Independent reliabilities
SMF-based expression

R1 and R2 independent⇔ σ = 0
In this case

m[PR,A] = m[PR1 ,A1] ∩©m[PR2 ,A2]

= Aπ1
1 ∩© Aπ2

2

Reminder: unnormalized Dempster’s rule (conjunctive rule)

(m1 ∩©m2)(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ X .
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Reliability Two sources

Dependent reliabilities
SMF-based expression

More generally, i.e., for any dependency σ, m[PR,A] can always
be expressed as a conjunctive combination of Aπ1

1 and Aπ2
2 having

some dependency...
“Reminder”: conjunctive combination m∩ of m1 and m2 having
some known dependency

1 A joint MF jm : 2X × 2X → [0,1] is built, having m1 and m2 as
marginals and encoding their mutual dependence

2 Each joint mass jm(B,C) is allocated to B ∩ C:

m∩(A) =
∑

B∩C=A

jm(B,C)
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Reliability Two sources

Dependent reliabilities
SMF-based expression

Let mi = Aπi
i . Any jm having Aπ1

1 and Aπ2
2 as marginals can always

be written as

jm(A1,A2) = π1 · π2 + σ

jm(X ,A2) = π1 · π2 − σ
jm(A1,X ) = π1 · π2 − σ
jm(X ,X ) = π1 · π2 + σ

for some σ.
Conjunctive combination of Aπ1

1 and Aπ2
2 with dependence

structure represented by jm, is completely determined by σ.
→ Parameterized conjunctive rule ∩©σ for two SMF, with parameter σ

representing the dependence structure, such that

∩©σ(Aπ1
1 ,A

π2
2 ) := m∩

For σ = 0, ∩©σ ⇔ ∩©
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Reliability Two sources

Dependent reliabilities
SMF-based expression

For any dependency σ between the source reliabilities, we have

m[PR,A] = ∩©σ(m[PR1 ,A1],m[PR2 ,A2])

= ∩©σ(Aπ1
1 ,A

π2
2 )

Example:
I Sensor s1 not reliable with probability π1 = 0.3
I Sensor s2 not reliable with probability π2 = 0.6
I Dependence between their reliability: σ = 0.02
I Induced knowledge on X from the information A = ({g,h}, {a,h})

provided by the sensors satisfies

m[PR,A] = ∩©(0.02)

(
{g,h}0.3, {a,h}0.6)
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Reliability Two sources

Cautious rule for SMF

Let Aπ1
1 and Aπ2

2 be two non-independent SMF.
How to combine them ?
Cautious conjunctive combination ∧©: select the least committed
(according to some informational ordering) MF among those that
are at least as committed as Aπ1

1 and Aπ2
2 .

Solution based on the w-ordering yields

Aπ1
1 ∧© Aπ2

2 =

{
Aπ1∧π2

1 if A1 = A2

Aπ1
1 ∩© Aπ2

2 if A1 6= A2

F. Pichon (LGI2A) Information correction and fusion BFAS School 22



Reliability Two sources

Cautious rule revisited

We have
Aπ1

1 ∧© Aπ2
2 = ∩©σ(Aπ1

1 ,A
π2
2 )

with

σ =

{
π1 ∧ π2 − π1π2 if A1 = A2

0 if A1 6= A2

Partially reliable sources analysis:
I si not reliable with probability πi and telling X ∈ Ai
I s1 and s2 have dependent reliabilities if they support the same

subset (actually, perfect dependence between them not being
reliable) and independent reliabilities otherwise.
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Reliability K sources

Outline

1 Reliability
One source
Two sources
K sources
Uncertain testimonies

2 Truthfulness and beyond
Crudest form
Refined form
General model

3 Selecting meta-knowledge
Absence of prior information
Learning data
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Reliability K sources

K information sources

Assume sources si , i = 1, . . . ,K , providing A = (A1, . . . ,AK ).
When the sources are in the state r = (r1, . . . , rK ) ∈R := ×K

i=1Ri ,
we should deduce

X ∈ ΓA(r) :=
K⋂

i=1

ΓAi (ri)

Example: K = 3

ΓA(0,0,1) = ΓA1(0) ∩ ΓA2(0) ∩ ΓA3(1)

= A1 ∩ A2 ∩ X
= A1 ∩ A2

F. Pichon (LGI2A) Information correction and fusion BFAS School 25



Reliability K sources

Uncertain reliabilities

Assume state r is allocated probability pr:

PR(R1 = r1, . . . ,RK = rK ) = pr

Knowledge about X is then represented by

m[PR,A](B) =
∑

r:ΓA(r)=B

pr

→ Any set of partially reliable and elementary testimonies is
represented by a (unique) MF
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Reliability K sources

Separable mass function

Independence of all the Ri

m[PR,A] = ∩©K
i=1m[PRi ,Ai ]

= ∩©K
i=1Aπi

i

with πi := PRi (Ri = 1).
→ Choosing A s.t. Ai 6= Aj , 1 ≤ i < j ≤ K , we obtain a partially

reliable sources analysis of separable MF1, which form an
important class of MF (often encountered in practice)

1MF that can be written as a conjunctive combination of independent SMF
supporting different subsets
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Reliability K sources

/////////////Separable mass function

Let X = {x1, . . . , xn} and Ar denote the subset of X such that
xi ∈ Ar if ri = 1 and xi 6∈ Ar if ri = 0, for r = (r1, . . . , rK ).
Example: X = {x1, x2, x3} then A001 = {x3}

Proposition

Let m be a MF on X , K = |X |, Ai = {xi}, and pr = m(Ar). We have

m[PR,A] = m

Proof : Follows from ΓA(r) = Ar.
Recall: Any set of partially reliable and elementary testimonies is
represented by a (unique) MF.

→ Any mass function represents (at least) a set of partially reliable
and elementary testimonies
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Reliability K sources

Example

Let m be the FM on X = {a,g,h} defined by

m({a,g}) = 0.5,m({h}) = 0.2,m({g,h}) = 0.3

Consider K = |X | = 3 sources s1, s2 and s3, providing
respectively information

X ∈ A1 = {a} = {g,h}
X ∈ A2 = {g} = {a,h}
X ∈ A3 = {h} = {a,g}

F. Pichon (LGI2A) Information correction and fusion BFAS School 29



Reliability K sources

Example

Consider meta-knowledge PR on the sources such that
r Ar m(Ar) = pr

(0,0,0) ∅ 0
(1,0,0) {a} 0
(0,1,0) {g} 0
(1,1,0) {a,g} 0.5
(0,0,1) {h} 0.2
(1,0,1) {a,h} 0
(0,1,1) {g,h} 0.3
(1,1,1) {a,g,h} 0

Then, e.g., p001 = PR(R1 = 0,R2 = 0,R3 = 1) = m(A001) = 0.2 is
allocated to ΓA(0,0,1) = A1 ∩ A2 ∩ X = {a} ∩ {g} = {h} = A001.
Since this happens for all r, we have m[PR,A] = m.
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Reliability K sources

Decomposition of meta-knowledge

PR is a multivariate Bernoulli distribution
It is characterized by

πi = E[Ri ]

σr = E

[
K∏

i=1

(Ri − πi)
ri

]

with r = (r1, . . . , rK ) such that
∑K

i=1 ri > 1
There are 2K − K − 1 central moments σr. They represent the
dependencies between any subset (of at least two) of all the Ri .
Notation: σ vector whose elements are the dependencies σr
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Reliability K sources

Example
K = 3

σ123

R1(π1) R2(π2) R3(π3)

σ12 σ13 σ23

where
σ12 := σ110 = E [(R1 − π1)(R2 − π2)]

and σ13 := σ101, σ23 := σ011, σ123 := σ111

σ = (σ12, σ13, σ23, σ123)
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Reliability K sources

Example

Knowledge on the reliabilities of the sources s1, s2 and s3:

PR(R1 = 0,R2 = 0,R3 = 0) = 0

PR(R1 = 1,R2 = 0,R3 = 0) = 0

PR(R1 = 0,R2 = 1,R3 = 0) = 0

PR(R1 = 1,R2 = 1,R3 = 0) = 0.5

PR(R1 = 0,R2 = 0,R3 = 1) = 0.2

PR(R1 = 1,R2 = 0,R3 = 1) = 0

PR(R1 = 0,R2 = 1,R3 = 1) = 0.3

PR(R1 = 1,R2 = 1,R3 = 1) = 0



⇐⇒



π1 = 0.5

π2 = 0.8

π3 = 0.5

σ12 = 0.1

σ13 = −0.25

σ23 = −0.1

σ123 = 0
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Reliability K sources

Example

PR is recovered from πi and σr as follows:

PR(R1 = 0,R2 = 0,R3 = 0) = π1 π2 π3 + π3σ12 + π2σ13 + π1σ23 − σ123

PR(R1 = 1,R2 = 0,R3 = 0) = π1π2 π3 − π3σ12 − π2σ13 + π1σ23 + σ123

PR(R1 = 0,R2 = 1,R3 = 0) = π1π2π3 − π3σ12 + π2σ13 − π1σ23 + σ123

PR(R1 = 1,R2 = 1,R3 = 0)) = π1π2π3 + π3σ12 − π2σ13 − π1σ23 − σ123

PR(R1 = 0,R2 = 0,R3 = 1) = π1 π2π3 + π3σ12 − π2σ13 − π1σ23 + σ123

PR(R1 = 1,R2 = 0,R3 = 1) = π1π2π3 − π3σ12 + π2σ13 − π1σ23 − σ123

PR(R1 = 0,R2 = 1,R3 = 1) = π1π2π3 − π3σ12 − π2σ13 + π1σ23 − σ123

PR(R1 = 1,R2 = 1,R3 = 1) = π1π2π3 + π3σ12 + π2σ13 + π1σ23 + σ123

Remark: simple matrix-based expressions exist to switch from
one representation to the other.
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Reliability K sources

Decomposition of a mass function

Based on the previous proposition as well as the decomposition of
meta-knowledge, any MF m on X is induced by the following basic
components:

1 A set of |X | sources S = {s1, . . . , s|X |}, with si providing
information X ∈ {xi};

2 Probabilistic knowledge on their reliability characterized by :
I For each si , a (marginal) probability πi of being not reliable;
I For each Sr ⊆ S, knowledge about the dependency between their

reliabilities in the form of the central moment σr.

Remark: we have πi = pl({xi}).
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Reliability K sources

Example

m defined by m({a,g}) = 0.5,m({h}) = 0.2,m({g,h}) = 0.3.
This MF is induced by

1 Considering |X | = 3 sources s1, s2 and s3, providing information

X ∈ A1 = {a}
X ∈ A2 = {g}
X ∈ A3 = {h}

2 And by assuming that
F s1, s2 and s3 are not reliable with respective probabilities π1 = 0.5,
π2 = 0.8 and π3 = 0.5

F there is a dependence σ12 = 0.1 between the reliabilities of s1 and s2,
σ13 = −0.25 between s1 and s3, σ23 = −0.1 between s2 and s3, and
σ123 = 0 between s1, s2 and s3.
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Reliability K sources

SMF-based expression of m[PR,A]
Let m∩ denote the conjunctive combination of SMF Aπi

i , 1 ≤ i ≤ K ,
with dependence structure represented by jm
jm can always be written in a particular (familiar) form such that
the dependencies it encodes are completely determined by
2K − K − 1 parameters

Example: K = 3, four parameters noted σ12, σ13, σ23, σ123

jm(A1,A2,A3) = π1 π2 π3 + π3σ12 + π2σ13 + π1σ23 − σ123

jm(X ,A2,A3) = π1π2 π3 − π3σ12 − π2σ13 + π1σ23 + σ123

jm(A1,A2,A3) = π1π2π3 − π3σ12 + π2σ13 − π1σ23 + σ123

jm(X ,X ,A3) = π1π2π3 + π3σ12 − π2σ13 − π1σ23 − σ123

jm(A1,A2,X ) = π1 π2π3 + π3σ12 − π2σ13 − π1σ23 + σ123

jm(X ,A2,X ) = π1π2π3 − π3σ12 + π2σ13 − π1σ23 − σ123

jm(A1,X ,X ) = π1π2π3 − π3σ12 − π2σ13 + π1σ23 − σ123

jm(X ,X ,X ) = π1π2π3 + π3σ12 + π2σ13 + π1σ23 + σ123
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Reliability K sources

SMF-based expression of m[PR,A]

Parameterized conjunctive rule ∩©σ for K SMF, with σ the vector
whose elements are the dependency parameters σr, such that

∩©σ(Aπ1
1 , . . . ,A

πK
K ) := m∩

Theorem
For any dependency σ between the source reliabilities, we have

m[PR,A] = ∩©σ(m[PR1 ,A1], . . . ,m[PRK ,AK ])

= ∩©σ(Aπ1
1 , . . . ,A

πK
K )
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Reliability K sources
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Reliability K sources

Conjunctive canonical decomposition of a MF
Theorem
Any MF m satisfies

m = ∩©σ

(
{x1}

pl(x1)
, . . . , {xn}

pl(xn)
)
,

with σ the vector of dependencies between the reliabilities of the
sources underlying m.

Example: m defined by

m({a,g}) = 0.5,m({h}) = 0.2,m({g,h}) = 0.3

satisfies

m = ∩©(0.1,−0.25,−0.1,0)

(
{a}0.5, {g}0.8, {h}0.5

)
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Reliability K sources
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Reliability K sources

Conclusions

Any mass function can be seen as the result of the
I interpretation of a set of partially reliable and elementary

testimonies
I conjunctive combination of SMF (focused on {xi}) having some

dependencies.

In the spirit of [Shafer, 1976] and [Smets, 1995] interpretations of
belief functions (they considered only independent SMF to try and
recover the entire space of mass functions, see Didier’s lecture)
Combining conjunctively SMF focused on {xi} is found in some
important results: generalized Bayesian theorem, BFT analysis of
binary logistic regression [Denoeux, 2019].
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Reliability Uncertain testimonies
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Reliability Uncertain testimonies

The case of a single source

Assume now the source s provides an uncertain testimony about
X in the form of a MF ms.
If s is reliable, then each ms(A) should be transferred to ΓA(0) = A.
If s is not reliable, then each ms(A) should be transferred to
ΓA(1) = X .
Assuming s to be not reliable with probability PR(R = 1) = π then
yields the following MF on X :

m[PR,ms] = (1− π) ·ms + π ·mX

with mX the vacuous MF (mX (X ) = 1).
This is known as the discounting of ms with discount rate π (basic
information correction mechanism in BFT).
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Reliability Uncertain testimonies

Example
Uncertain testimony:

ms({a,g}) = 0.8,ms({h}) = 0.2

Uncertain reliability:

PR(R = 0) = 0.7,PR(R = 1) = 0.3

ms \ PR R = 0 R = 1
0.7 0.3

{a,g} {a,g} X
0.8 0.56 0.24
{h} {h} X
0.2 0.14 0.06

→ m[PR,ms]({a,g}) = 0.56, m[PR,ms]({h}) = 0.14,
m[PR,ms](X ) = 0.30
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Reliability Uncertain testimonies

The case of multiple sources

Assume sources s1, . . . , sK provide uncertain testimonies
m = (m1, . . . ,mK ).
Assume they are independent: interpreting mi(Ai) as the
probability that si supplies X ∈ Ai , then the probability, denoted
m(A), that they supply A = (A1, . . . ,AK ) is

∏K
i=1 mi(Ai).

If they are in state r ∈R, then m(A) should be transferred to ΓA(r)

Assuming they are in state r with probability pr then yields the
following MF on X :

m[PR,m](B) =
∑

r,A:ΓA(r)=B

pr ·m(A)
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Reliability Uncertain testimonies

Particular cases

m[PR,m] reduces to
∩©K

i=1mi if pr = 1 for r = (0,0, . . . ,0,0), i.e., all sources are reliable
→ conjunctive rule

∩©K
i=1m[PRi ,mi ] if pr =

∏K
i=1 PRi (Ri = ri), i.e., the sources have

independent reliabilities
→ discount and combine approach∑K

i=1 wi ·mi if pr = wi for r such that ri = 1 and rj = 0, for all j 6= i ,
i.e., source si is reliable and the other are not with probability wi

→ weighted average
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Truthfulness and beyond

Truthfulness

Reliability of a source includes another dimension besides its
relevance: its truthfulness.
A source is said truthful if it actually supplies the information it
possesses.
Lack of truthfulness can take several forms, and can be intentional
or accidental.
For instance, a sensor that has a systematic bias (such as a
watch that has not been calibrated to winter time), is a kind of
(unintentional) lack of truthfulness.
Let us first consider the crudest form, where a source is non
truthful if it tells the contrary of what it knows.
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Truthfulness and beyond Crudest form

Outline

1 Reliability
One source
Two sources
K sources
Uncertain testimonies

2 Truthfulness and beyond
Crudest form
Refined form
General model

3 Selecting meta-knowledge
Absence of prior information
Learning data

F. Pichon (LGI2A) Information correction and fusion BFAS School 48



Truthfulness and beyond Crudest form

Formalization
Assume a source s supplying information item X ∈ A

I If s is not relevant, we replace X ∈ A by X ∈ X
I If s is relevant,

F either it is truthful, in which case we keep X ∈ A
F or it lies, in which case we replace X ∈ A by X ∈ A

Relevance R defined on R = {rel,¬rel}
Truthfulness T defined on T = {tru,¬tru}
Let RT := R× T
The interpretation of the testimony according to the relevance and
truthfulness may be encoded by ΛA : RT → 2X such that

ΛA(rel, tru) = A
ΛA(rel,¬tru) = A
ΛA(¬rel, tru) = X

ΛA(¬rel,¬tru) = X
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Truthfulness and beyond Crudest form

Example

Sensor s tells X ∈ A = {a} = {g,h}.
It is assumed to be relevant and non truthful, i.e., in state (rel,¬tru)

Knowledge about X :

X ∈ Λ{a}(rel,¬tru) = {a}
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Truthfulness and beyond Crudest form

Uncertain meta-knowledge and testimony

Assume now s is in state (r , t) ∈ RT with probability
prt = PRT (R = r ,T = t) (and still PR(R = ¬rel) = π)
In addition, s provides the uncertain testimony ms.
This yields the following knowledge on X

m[PRT ,ms] = prel,tru ·ms + prel,¬tru ·ms + πmX

with ms the negation of ms (ms(A) = ms(A), for all A ⊆ X )
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Truthfulness and beyond Crudest form

Particular cases

m[PRT ,ms] reduces to
m[PR,ms] if PT (T = tru) = 1, i.e., if s is partially relevant and
totally truthful

→ discounting
PT (T = tru) ·ms + PT (T = ¬tru) ·ms if PR(R = rel) = 1, i.e., if s
is totally relevant and partially truthful

→ negating
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Truthfulness and beyond Crudest form

The case of multiple sources
Assume sources si , i = 1 . . . ,K , supplying A = (A1, . . . ,AK ).
Let ΛAi : RTi → 2X represent the interpretation of X ∈ Ai given the
reliability Ri and truthfulness Ti of si

When the sources are in the state

rt = (rt1, . . . , rtK ) ∈RT := ×K
i=1RTi

we must conclude

X ∈ ΛA(rt) :=
K⋂

i=1

ΛAi (rti)

Example: K=2

ΛA(rel1, tru1, rel2,¬tru2) = ΛA1(rel1, tru1) ∩ ΛA2(rel2,¬tru2)

= A1 ∩ A2
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Truthfulness and beyond Crudest form

Non-elementary behavior assumptions
Non-elementary assumptions RT ⊆RT on the relevance and
truthfulness of the sources can also be considered.
We have

ΛA(RT) =
⋃

rt∈RT

ΛA(rt)

Example: RT = {(rel1, tru1, rel2,¬tru2), (rel1,¬tru1, rel2, tru2)}
(s1 and s2 relevant and exactly one of them is truthful)

ΛA(RT) = ΛA(rel1, tru1, rel2,¬tru2) ∪ ΛA(rel1,¬tru1, rel2, tru2)

= (A1 ∩ A2) ∪ (A1 ∩ A2)

= A1∆A2 (exclusive or)

→ All connectives of Boolean logic can be reinterpreted in terms of
source behavior assumptions wrt relevance and truthfulness
⊗RT Boolean connective associated to RT.
Different assumptions may induce the same connective.
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Truthfulness and beyond Crudest form

Uncertain meta-knowledge and testimonies

Sources s1, . . . , sK provide m = (m1, . . . ,mK ) and are assumed to
be independent.
Uncertain meta-knowledge in the form of a MF mRT :

m[mRT ,m](B) =
∑

RT,A:ΛA(RT)=B

mRT (RT) ·m(A)

=
∑

⊗,A:⊗(A)=B

p(⊗) ·m(A)

with
p(⊗) =

∑
⊗RT=⊗

mRT (RT)
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Truthfulness and beyond Crudest form

Particular cases

Suppose mRT is such that mRT (RT) = 1 for some RT ⊆RT
and K = 2. Then, m[mRT ,m] reduces to

I m1 ∩©m2 for RT= s1 and s2 relevant and truthful
I m1 ∪©m2 for RT= s1 and s2 relevant and at least one of them is

truthful (disjunctive rule, def. of ∩© with ∩ replaced by ∪)
I m1 ∪©m2 for RT= s1 and s2 relevant and exaclty one of them is

truthful (exclusive disjunctive rule, ∩ replaced by ∆)
I m1 ∩©m2 for RT= s1 and s2 relevant and s1 is truthful if and only if s2

is so too (equivalence rule, ∩ replaced by↔)

More generally, all rules relying on Boolean connectives are
particular cases. For instance, the rule extending q-relaxation
from interval analysis is recovered for RT= (K − q)-out-of-K
sources relevant and all truthful (ranges from ∩© to ∪©).
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Truthfulness and beyond Refined form
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Truthfulness and beyond Refined form

Contextual and polarized lack of truthfulness
¬tru : one must deduce the contrary of what s tells for each xi ∈ X
and whatever the polarity of the clause used by s regarding xi .

s non truthful only for some xi ∈ X , and maybe even only for the
positive or negative clauses regarding xi .
Example : Sensor s is

I non truthful when it tells that a is not a possible value for X ,
I non truthful when it tells that g is a possible value for X ,
I and truthful in all other cases, e.g., truthful when it tells that a is a

possible value for X

Sensor s tells X ∈ A = {g,h}, i.e., a is not a possible value and g
and h are possible values for X
We deduce (assuming s relevant): X ∈ {a,h}

→ By considering source states based on this refined form of lack of
truthfulness, we can recover contextual discounting and the
α-junctions, and contextualize negating (see appendix)
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Truthfulness and beyond General model

Beyond relevance and truthfulness
Knowledge about the source quality may be different from
knowing their relevance and truthfulness
The provided information by a source may also bear on another
variable Y , related to X .

→ An approach to account for general source quality (behaviour)
assumptions

R,RT  H = {h1, . . . ,hN}
X ∈ A ⊆ X  Y ∈ A ⊆ Y

If the source is in state h ∈ H, we should deduce X ∈ B ⊆ X from
information item Y ∈ A ⊆ Y.
For all A ⊆ Y, ΠA : H → 2X such that

ΠA(h) = B
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Truthfulness and beyond General model

Example
X with possible values in X = {a,g,h}
Sensor s does not know the type airplane, i.e., Y = {g,h}.
It uses either the shape or the material of the aircraft

I If s uses the shape, then when it tells
F glider, we can deduce airplane or glider
F helicopter, we keep this piece of information

I If s uses the material, then when it tells
F glider, we keep this piece of information
F helicopter, we replace by helicopter or airplane

H = {shape,material}

Πg(shape) = {a,g}
Πh(shape) = {h}

Πg(material) = {g}
Πh(material) = {a,h}
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Truthfulness and beyond General model

Example

We are interested by the number X ∈ X = {x1, . . . , xn}={1, . . . ,n}
of aircrafts in a particular area.
Information about X comes from a source s, which can be reliable,
approximately reliable or non reliable.
If s is approximately reliable, the information item it supplies must
be expanded using the lowest and highest closest values.

H = {rel,ap-rel,¬rel}
For any Ai,j ⊆ X , with Ai,j = {xi , . . . , xj}, 1 ≤ i ≤ j ≤ n

ΠAi,j (rel) = Ai,j

ΠAi,j (ap-rel) = {xi−1} ∪ Ai,j ∪ {xj+1}
ΠAi,j (¬rel) = X

with x0 = xn+1 = ∅.

F. Pichon (LGI2A) Information correction and fusion BFAS School 62



Truthfulness and beyond General model

Example

We are interested by the number X ∈ X = {x1, . . . , xn}={1, . . . ,n}
of aircrafts in a particular area.
Information about X comes from a source s, which can be reliable,
approximately reliable or non reliable.
If s is approximately reliable, the information item it supplies must
be expanded using the lowest and highest closest values.
H = {rel,ap-rel,¬rel}
For any Ai,j ⊆ X , with Ai,j = {xi , . . . , xj}, 1 ≤ i ≤ j ≤ n

ΠAi,j (rel) = Ai,j

ΠAi,j (ap-rel) = {xi−1} ∪ Ai,j ∪ {xj+1}
ΠAi,j (¬rel) = X

with x0 = xn+1 = ∅.

F. Pichon (LGI2A) Information correction and fusion BFAS School 62



Truthfulness and beyond General model

Uncertain meta-knowledge and testimonies

Single information source

m[mH,mYs ](B) =
∑

H,A:ΠA(H)=B

mH(H) ·mYs (A)

Behaviour-based correction (BBC)

Multiple information sources: H := ×K
i=1Hi

m[mH,m](B) =
∑

H,A:ΠA(H)=B

mH(H) ·m(A)

with m(A) =
∏K

i=1 mYi (Ai)

Behaviour-based fusion (BBF)
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Truthfulness and beyond General model

Operations on product spaces
BBC and BBF can be recovered using the following standard
operations of BFT :

Marginalization ↓

mX×Y↓X (A) =
∑

{B⊆X×Y,(B↓X)=A}

mX×Y(B), ∀A ⊆ X ,

Conjunctive rule on product spaces

mX1 ∩©mY2 = mX↑X×Y1 ∩©mY↑X×Y2 .

with ↑ (vacuous extension) defined as

mX↑X×Y(B) =

{
mX (A) if B = A× Y for some A ⊆ X ,
0 otherwise.
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Truthfulness and beyond General model

BBC

Mappings ΠA, A ⊆ Y, define a relation between spaces H, 2Y and
X , which can be represented by MF mΠ on H× 2Y ×X s.t.

mΠ

 ⋃
h∈H,A∈2Y

({h} × {A} × ΠA(h))

 = 1

X 2Y

H

mΠ

mH

mS

Lemma

m[mH,mYs ] =
(
ms ∩©mΠ ∩©mH

)↓X
with ms on 2Y s.t. ms({A}) = mYs (A)

F. Pichon (LGI2A) Information correction and fusion BFAS School 65



Truthfulness and beyond General model

BBC

Mappings ΠA, A ⊆ Y, define a relation between spaces H, 2Y and
X , which can be represented by MF mΠ on H× 2Y ×X s.t.

mΠ

 ⋃
h∈H,A∈2Y

({h} × {A} × ΠA(h))

 = 1

X 2Y

H

mΠ

mH

mS

Lemma

m[mH,mYs ] =
(
ms ∩©mΠ ∩©mH

)↓X
with ms on 2Y s.t. ms({A}) = mYs (A)

F. Pichon (LGI2A) Information correction and fusion BFAS School 65



Truthfulness and beyond General model

BBF

X

2Y1

mΠ1

mH

m1

H1 H2

mΠ2

2Y2

m2

Lemma

m[mH,m] =
(
∩©K

i=1(mi ∩©mΠi) ∩©mH
)↓X
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Truthfulness and beyond General model

Independent behaviours (meta-independence)
Theorem
If mH = ∩©K

i=1mHi then

m[mH,m] = ∩©K
i=1m[mHi ,mi ]

Proof : Uses local computation (see Prakash’s lecture).

mX

m1
Y

m2
Y

mH, {	ΠA,A	⊆ Y }

BBF

m1
Y

m2
Y

mH1, {	ΠA,A	⊆ Y }

BBC

BBC

mH2, {	ΠA,A	⊆ Y }

m1
X

m2
X

m1
Y BBC

mH1,  {*A, A� Y}

m1
X

mX

m2
Y BBC

mH2,  {*A, A� Y}

m2
X

�
m1

Y

BBF

mH12,  {*A, A� Y}

mX

m2
Y
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Selecting meta-knowledge

Outline

1 Reliability
One source
Two sources
K sources
Uncertain testimonies

2 Truthfulness and beyond
Crudest form
Refined form
General model

3 Selecting meta-knowledge
Absence of prior information
Learning data
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Selecting meta-knowledge

Typology of approaches

The model allows to interpret pieces of information given
meta-knowledge on the emitting sources.
It does not however indicate which meta-knowledge to use.

→ Means to select meta-knowledge
Two possible situations:

1 One has some prior information (learning data, expert knowledge)
on the sources

2 The only available information are the pieces of information
received

Typically, in both cases, a set S of candidate assumptions
(meta-knowledge) is considered, and some sensible strategy is
used to pick an assumption in this set.
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Selecting meta-knowledge Absence of prior information

Outline

1 Reliability
One source
Two sources
K sources
Uncertain testimonies

2 Truthfulness and beyond
Crudest form
Refined form
General model

3 Selecting meta-knowledge
Absence of prior information
Learning data
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Selecting meta-knowledge Absence of prior information

Consistency and specificity
Only m = (m1, . . . ,mK ) available.

→ Selection of meta-knowledge based on the two primary features
sought regarding knowledge about X : consistency and specificity

3 sources about X ∈ X = {a,g,h} supplying A = (A1,A2,A3) s.t.

A1 = {a},A2 = {a,g},A3 = {g,h}

Assumption R1 = “all sources are reliable” yields

X ∈ ΓA(R1) = A1 ∩ A2 ∩ A3 = ∅

i.e. an inconsistent result, and thus cannot hold.
In contrast, the assumption R3 = “at least one of the sources is
reliable” yields

X ∈ ΓA(R3) = A1 ∪ A2 ∪ A3 = X

and is thus plausible (it does not yield a contradiction). However, it
is useless as it is not informative at all.
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Selecting meta-knowledge Absence of prior information

Meta-knowledge selection strategy
The intermediate assumption R2 = “at least two of the sources are
reliable” yields

X ∈ ΓA(R2) = (A1 ∩ A2) ∪ (A1 ∩ A3) ∪ (A2 ∩ A3) = {a,g}

R2 is plausible (the result is consistent) and informative (or, at
least, more informative than R3).

Here, R2 is preferable, but for other A, it could be R1 or R3 due to

ΓA(R1) ⊆ ΓA(R2) ⊆ ΓA(R3), ∀A

Ri+1 will always yield a result that is on the hand at least as
consistent as that of Ri , but also on the other hand as most as
specific as that of Ri .

→ Consistency and specificity are antagonists goals
Sensible strategy for a given A: test iteratively each Ri and select
the first one which yields a consistent result (it will then be the
most specific and consistent possible result).
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Selecting meta-knowledge Absence of prior information

Extension to uncertain meta-knowledge and
testimonies

In general, meta-knowledge and supplied information are
uncertain, i.e., we have mH and m = (m1, . . . ,mK ), and thus their
interpretation is the MF m[mH,m] (assuming independent
sources).
Need extensions to MF of consistency and specificity in order to
compare pieces of meta-knowledge:

I consistency of a MF m: φ(m) = maxx∈X pl(x).
I specificity: m1 v m2 with v the specialization

Proposition
Let mH

1 and mH
2 be two assumptions.

m[mH
1 ,m] v m[mH

2 ,m],∀m⇒ φ(m[mH
1 ,m]) ≤ φ(m[mH

2 ,m]), ∀m

→ Consistency and specificity are at odds !
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Selecting meta-knowledge Absence of prior information

General meta-knowledge selection strategy

Strategy
1 Define a set S = {mH

1 , ...,m
H
M }:

I m[mH
j ,m] v m[mH

j+1,m],∀m;
I mH

1 corresponds to the conjunctive rule.
2 Test iteratively each mH

j until φ(m[mH
j ,m]) ≥ τ .

Practical instances of S:
I mH

j : K − j + 1 out of K reliable sources.
I mH

j : sources with independent reliabilities, source i reliable with
probability pj

i such that pj
i ≥ pj+1

i (increasing discount and combine,
often used for conflict management)

I mH
j : meta-knowledge corresponding to the α-conjunctions for

some α = αj such that αj ≥ αj+1.
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Selecting meta-knowledge Absence of prior information

Application
Nuclear reactor safety

Project BEMUSE of the Nuclear Energy Agency.
K = 10 sources (CEA, IRSN,...) providing uncertain estimates of
parameter values of a nuclear power plant.
Costly data and complex phenomena involved→ no reliable
means to know the source reliabilities.
Chose S with mH

j = K − j + 1 out of K reliable sources.

PCT2 parameter with domain X = {x1, . . . , x6},
m := (m1, . . . ,m10).

I φ(m[mH
1 ,m]) = 0.19 (all sources reliable)

I φ(m[mH
2 ,m]) = 0.81 (9 out of 10 reliable)

I φ(m[mH
3 ,m]) = 1 (8 out of 10 reliable)

I Values x4 and x5 are definitely more plausible.

→ Results that are consistent, informative and readable by the
end-user.
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Selecting meta-knowledge Learning data

Outline

1 Reliability
One source
Two sources
K sources
Uncertain testimonies

2 Truthfulness and beyond
Crudest form
Refined form
General model

3 Selecting meta-knowledge
Absence of prior information
Learning data
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Selecting meta-knowledge Learning data

General setting

Consider a system which outputs for a given object o, a guess
about the actual value x∗ of some feature X ∈ X of o.
To produce this output, the system uses internally some
information correction or fusion, characterized by some mH ∈ S.
Output for object o may thus be noted f (o; mH).

Assume a set of ` objects for which the true value of X is known,
i.e., {x∗i }`i=1 is available.
Assume outputs {f (oi ; mH)}`i=1 may be obtained for any mH ∈ S.
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Selecting meta-knowledge Learning data

Loss minimization
The m̂H to be used to produce the output for a new object may
then be the chosen as the one in S minimizing the average loss

J(mH) =
1
n

∑̀
i=1

L(f (oi ; mH), x∗i )

for some loss function L(f (o; mH), x∗)
Typically, f (o; mH) is a MF on X , which is transformed into a
probability measure PXo , and the squared error (SE) or
cross-entropy (CE) loss is used:

LSE (f (o; mH), x∗) =
∑
x∈X

(1x∗(x)− po(x))2

LCE (f (o; mH), x∗) = −
∑
x∈X

1x∗(x) log po(x)

Remark: more or less complex optimisation problem to solve
depending on S and L
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Selecting meta-knowledge Learning data

Application
Classifier correction [Elouedi et al., 2004]

X is the class of an object.
The system is a classifier whose outputs are corrected with
meta-knowledge mH = PR (discounting) with

PR ∈ S = {PR|π ∈ [0,1]}

The classifier output for a given object o is a mass function mo.
The system output is thus

f (o; mH) = m[PR,mo]

Loss function : pignistic probability transformation with SE.
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Selecting meta-knowledge Learning data

Application
Illustrative example

Classifier outputs moi for 4 objects with actual values x∗i in
X = {a,g,h}.

g h {a,h} {g,h} X x∗i
mo1 0 0.5 0 0.3 0.2 a
mo2 0.5 0.2 0 0 0.3 g
mo3 0.4 0 0.6 0 0 a
mo4 0 0 0.6 0.4 0 h

Meta-knowledge minimizing the average loss: π̂ = 0.66
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Conclusion

Summary

Interpretation of BFT as a theory of partially reliable and
elementary pieces of information

I Any set of such pieces of information is represented by a unique MF
I To any MF can be associated uniquely such a set.

Beyond reliability, information correction and fusion given
knowledge on other aspects of source quality, such as
truthfulness.
Numerous and important correction and fusion approaches can
be read using this prism.
Means to determine knowledge on source quality in practice, with
and without prior information on the sources.
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Conclusion

Open topics of interest

Exploitation of the ∩©σ rule for SMF and the associated
decomposition of a MF into (in)dependent SMF

I Cautious combination
I Refining of approaches based on conjunctive combination of

independent SMF, such as GBT, E-KNN, DS analysis of GLR
classifiers, contextual reinforcement.

Interpretation of other correction and fusion approaches.
Selection of meta-knowledge: refine arguments for the

I Choice of S (include dependence between the sources)
I Choice of L (including for the case of partially known true values)

Conflict measurement: decomposition, measure selection for a
given situation (properties, learning), refine with measures from
logic, links with distances
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Additional bibliography

Additional bibliography

The following bibliography contains:
Some other relevant BFT-based references on modeling and
selecting assumptions on sources
Some other interesting references, and in particular some more
application-oriented papers, where correction/fusion is not the
main topic but plays an important part.
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Appendix

Contextual and polarized lack of truthfulness

¬tru : one must deduce the contrary of what s tells for each xi ∈ X
and whatever the polarity of the clause used by s regarding xi .
s non truthful only for some xi ∈ X , and maybe even only for the
positive or negative clauses regarding xi .
Example : Sensor s is

I non truthful when it tells that a is not a possible value for X
(negatively non truthful for a)

I and non truthful when it tells that g is a possible value for X
(positively non truthful for g)

I and truthful in all other cases, e.g., truthful when it tells that a is a
possible value for X (positively truthful for a).

Sensor s tells X ∈ A = {g,h}, i.e., a is not a possible value and g
and h are possible values for X
We deduce (assuming s relevant): X ∈ {a,h}
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Appendix

Contextual and polarized lack of truthfulness

Three interesting states (contextual lies):
I nB : negatively non truthfull for xi ∈ B;
I pB : positively non truthful for xi ∈ B;
I `B : non truthful for xi ∈ B.

Let T̃ = {nB,pB, `B|B ⊆ X} and Λ̃A : RT̃ → 2X represent the
interpretations of testimony X ∈ A given the possible states in RT̃
of the source
Λ̃A extends ΛA, e.g., Λ̃A(`∅) = ΛA(¬tru) and Λ̃A(`X ) = ΛA(tru)
(assuming relevance)

A B
Λ̃A(nB)

A B
Λ̃A(pB)

A B
Λ̃A(`B)

F. Pichon (LGI2A) Information correction and fusion BFAS School 92



Appendix

Contextual and polarized lack of truthfulness

Three interesting states (contextual lies):
I nB : negatively non truthfull for xi ∈ B;
I pB : positively non truthful for xi ∈ B;
I `B : non truthful for xi ∈ B.

Let T̃ = {nB,pB, `B|B ⊆ X} and Λ̃A : RT̃ → 2X represent the
interpretations of testimony X ∈ A given the possible states in RT̃
of the source
Λ̃A extends ΛA, e.g., Λ̃A(`∅) = ΛA(¬tru) and Λ̃A(`X ) = ΛA(tru)
(assuming relevance)

A B
Λ̃A(nB)

A B
Λ̃A(pB)

A B
Λ̃A(`B)
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Appendix

Uncertain meta-knowledge and testimonies

Single information source

m[mRT̃ ,ms](B) =
∑

RT̃ ,A:Λ̃A(RT̃ )=B

mRT̃ (RT̃ ) ·ms(A)

Multiple information sources

m[mRT̃ ,m](B) =
∑

RT̃,A:Λ̃A(RT̃)=B

mRT̃ (RT̃) ·m(A)
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Appendix

Particular cases

Let B = {B1, . . . ,BN} ⊆ 2X . Consider iterative corrections (series
of agents) of testimony ms provided by agent 1 with respective
assumptions “preceding agent i is relevant, and is truthful with
probability βBi and with probability 1− βBi commits lie

I nBi ”: ms ∪©Bi∈BmBi with mBi (∅) = βBi ,mBi (Bi ) = 1− βBi , called
contextual discounting (it can also be obtained as a single
correction m[mRT̃ ,ms] with mRT̃ the ∪©-combination of the
preceding assumptions)

I `Bi ”: ms ∩©Bi∈BB
βBi
i , contextual negating

I pBi ”: ms ∩©Bi∈BB
βBi
i , contextual reinforcement

Remarks:
I These correction mechanisms generalize their non-contextual

versions for specific B such that |B| = 1, hence their names.
I An alternative interpretation exists for contextual discounting when
B is a partition of X (see Thierry’s lecture).

F. Pichon (LGI2A) Information correction and fusion BFAS School 94



Appendix

Example
Contextual discounting

Suppose a sensor s supplies information X ∈ A = {g}
We know that s is relevant and that at least one of the following
independent pieces of meta-knowledge holds:

I s commits lie n{a,g} with probability 0.2
I s commits lie n{g,h} with probability 0.3

Our knowledge on X is then obtained by

ms({g}) = 1 ∪©

{
m{a,g}({a,g}) = 0.2

m{a,g}(∅) = 0.8

}
∪©

{
m{g,h}({g,h}) = 0.3

m{g,h}(∅) = 0.7

}

which yields

m({g}) = 0.56,m({a,g}) = 0.14,m({g,h}) = 0.24,m(X ) = 0.06
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Appendix

Particular cases
Consider the following meta-knowledge about two sources s1 and
s2 supplying information m1 and m2:

I They are both relevant
I And they are either both truthful or commit the same contextual lie
`B with probability α|B|(1− α)|B|, for some α ∈ [0,1]

Then

m[mRT̃ ,m](A) =
∑

(A1∩A2)∪(A1∩A2∩B)=A

m1 (A1) m2 (A2) mα (B)

where mα (B) = α|B|(1− α)|B|

→ α-conjunctions ∩©α [Smets, 1997]: family of the associative,
commutative and linear combination rules having the vacuous
mass function as neutral element (family depending on a
parameter α ∈ [0,1], such that ∩©1 = ∩© and ∩©0 = ∩©).
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