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Introduction

Problem Statement

Information fusion problems, such as heterogeneous sensor fusion, classi�cation, and
expert opinion pooling, have gained considerable interest in the last decades. Such
problems can be summarized as follows. Consider a variable, whose true value is
unknown. Suppose a set of sources, e.g., sensors or experts, providing information
on the value taken by this variable. The problem consists then in combining this
information in order to determine the most plausible values of the variable.

The fusion process faces various di�culties. First, the information delivered
by the sources is generally imperfect, that is, imprecise and uncertain. Second,
knowledge about the sources, such as their truthfulness, must be accounted for. In
order to deal with all these aspects of the information fusion problem, formal models
are needed.

In the last thirty years, it has been acknowledged that the most classical ones,
probability theory and set theory, cannot handle all facets of the imperfection of
the information due to an �unreasonable requirement for precision� [100] in the
case of probability theory and a poor expressivity of uncertainty in the case of set
theory. Nowadays, the most researched alternatives to probability theory and set
theory seem to be possibility theory [27], imprecise probability theory [100], and the
Dempster�Shafer theory of belief functions [11, 77, 80]. These theories are related
to one another (see, e.g., [60, 61]) and may be used in a complementary fashion, as
illustrated in [3].

Di�erent interpretations of the Dempster�Shafer theory of belief functions have
been proposed [84] and, in particular, the Transferable Belief Model (TBM), which
views belief functions as representing beliefs held by rational agents. In contrast
to other interpretations (based, e.g., on random sets or imprecise probabilities), the
TBM does not assume any underlying probability concepts [88, 96]. It has been
successfully applied to the information fusion problems mentioned above (see, e.g.,
[2, 4, 72] for sensor fusion applications in the military domain, [14, 20, 58, 69] for
classi�cation applications, and [23, 40] for expert opinion pooling applications). All
of these applications involve fusing belief functions and rely thus critically on belief
functions aggregation operators, called combination rules in the TBM.

Despite the aforementioned successes, it may be argued that the TBM su�ers
from a lack of �exibility in terms of combination rules, especially as compared to
possibility theory. Indeed, it appears that belief functions are usually combined in
the TBM using either the unnormalized version of Dempster's rule [11], referred to
as the TBM conjunctive rule throughout this thesis, or the TBM disjunctive rule

1



2 INTRODUCTION

[26, 83]. Both rules �t with the particular situation where the sources are believed
to be independent. Furthermore, the TBM conjunctive rule is appropriate when
all sources are assumed to tell the truth, whereas the TBM disjunctive rule should
be used when at least one of the sources is known to tell the truth. In possibility
theory, the situation is quite di�erent since there exist combination rules to deal
with many more cases. In particular, one �nds in possibility theory a conjunctive
rule and a disjunctive rule suitable to the combination of information coming from
nonindependent sources. More generally, possibility theory enjoys an in�nity of
conjunctive rules and an in�nity of disjunctive rules, as well as parameterized
and more re�ned fusion modes that �t with more elaborated knowledge about the
sources (see, e.g., [29, 30]). This multiplicity of rules is particularly useful from an
applicative point of view, since it allows the choice of a combination rule based on
the application's characteristics.

A general and important problem that needs to be addressed in the TBM is
thus the one of introducing some �exibility for the combination of belief functions.
In particular, it seems interesting to have more choice in terms of conjunctive and
disjunctive operators, as is the case in possibility theory. It seems also relevant to
�nd operators allowing us to deal with situations other than the conjunctive and
disjunctive ones, i.e., other than when all the sources are assumed to tell the truth
or when at least one of the sources is assumed to tell the truth.

Let us remark that the �exibility issue is not new. Indeed, in [25, 28], Dubois
and Prade already defended the idea that no single combination rule is suitable
to all information fusion situations. As a matter of fact, alternatives to the TBM
conjunctive and TBM disjunctive rules have been proposed in the literature (see,
e.g., [76, 95] for recent surveys), but they do not seem to have enjoyed the success
of the TBM conjunctive and TBM disjunctive rules and they never matched the
extent of combination rules that are available in possibility theory. This thesis
reports yet another attempt at discovering useful alternative combination rules for
belief functions, in the context of the TBM.

Contributions

Two main contributions are exposed in this thesis. The �rst one consists in the
introduction of in�nite families of conjunctive and disjunctive combination rules,
mimicking thus the situation in possibility theory. The second one is a set of results
making a purely formal and in�nite family of rules, discovered by Smets in 1997 and
called the α-junctions [87], of practical interest. The next two sections introduce
these contributions in more details.

In�nite Families of Rules Based on Weight Functions

A limitation, which applies to both Dempster's rule and the TBM conjunctive rule,
is the requirement that the items of evidence combined be distinct, or in other
words, that the information sources be independent. Some authors [7, 21, 36, 56]
have attempted to address this issue. However, those proposals are either restricted



INTRODUCTION 3

to particular classes of belief functions or do not possess desirable properties such
as associativity. Recently, Den÷ux [16, 18] proposed a rule, called the cautious
conjunctive rule (or cautious rule for short), for the combination of nondistinct
bodies of evidence. The term cautious is reminiscent of the derivation of the
rule, which is based on the least commitment principle (LCP) [83]. The LCP
stipulates that one should never give more beliefs than justi�ed by the available
information, hence it promotes a cautious attitude. The cautious rule is based
on the conjunctive weight function [85], which is an equivalent representation of a
nondogmatic belief function arising from its conjunctive canonical decomposition.
The TBM conjunctive rule can also be expressed using the conjunctive weight
function, which makes it interesting to study rules based on this rarely exploited
function.

One of the main di�erences between the cautious rule and the TBM conjunctive
rule is that the former has no neutral element, whereas the latter admits the
vacuous belief function as neutral element. This last property is quite natural for
a conjunctive operator, as the vacuous belief function encodes ignorance. Hence,
rules based on the conjunctive weight function and that admit the vacuous belief
function as neutral element are of particular interest. The �rst important result
presented in this thesis is that, among those rules, the TBM conjunctive rule is
the least committed one. This can be seen as a new formal justi�cation of the
TBM conjunctive rule as a rule that respects a central principle of the TBM. A
counterpart to this result is also obtained for the TBM disjunctive rule using the
disjunctive canonical decomposition of a belief function and its associated disjunctive
weight function [18].

In addition to o�ering a new justi�cation for the TBM conjunctive rule, this
result is essential for the problem of introducing �exibility for the combination
of belief functions. Indeed, it is useful to de�ne a natural generalization of the
TBM conjunctive rule: this rule can be seen as a member of an in�nite family
of conjunctive combination rules based on uninorms [108] on (0,+∞] having one
as neutral element. As will be seen, the TBM conjunctive rule has also a special
position in this family: it is the least committed element. Interestingly, similar facts
are shown to hold for the cautious rule: it belongs to an in�nite family of conjunctive
combination rules based on t-norms [49] on (0,+∞], and it is the least committed
element of this family. Counterparts to these results are also obtained for disjunctive
combinations. The introduction of those in�nite families of combination rules is
interesting since it allows us to shed some new light on the fundamentally di�erent
behaviors of the cautious and TBM conjunctive rules, by putting them in a broader
perspective. However, most importantly, it shows that the TBM is not poorer than
possibility theory in terms of conjunctive and disjunctive operations. Besides the
theoretical importance of this discovery of in�nite families of combination rules, it is
demonstrated that these rules have at least one practical use: in some classi�cation
applications, they lead to improved performances.

Computational aspects of the uninorm-based conjunctive combination rules in
problems involving multiple variables, are also investigated, by studying whether
these rules �t the valuation algebra framework [51]. This abstract framework is
useful for many di�erent AI formalisms. In particular, it can be used to manage
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e�ciently information represented by belief functions de�ned on product spaces,
if the belief functions are combined using the TBM conjunctive rule. It is shown
that, despite the numerous properties shared by the TBM conjunctive rule and the
family of conjunctive combination rules based on uninorms, the TBM conjunctive
rule is the only rule in this family that satis�es an axiom of the valuation algebra
framework [51]. The consequences of this result are twofold. On the one hand, this
singular property of the TBM conjunctive rule strengthens the fact that this rule
has a special position in this family of combination rules and may thus be seen as
yet another argument in favor of this rule. On the other hand, it may be seen as a
restriction to the breadth of problems that can be tackled by the combination rules
based on uninorms, since these rules will be di�cult to use in problems involving
many variables. Finally, it is also shown that the cautious rule does not satisfy an
axiom of the valuation algebra framework. Hence, it will also be di�cult to use the
cautious rule in applications involving a large number of variables.

α-Junctions

In [87], Smets introduced an in�nite family of combination rules for belief functions,
the so-called α-junctions or α-junctive rules. This family basically represents the
set of associative, commutative and linear operators for belief functions with a
neutral element. It includes as particular cases the TBM conjunctive rule, the TBM
disjunctive rule, as well as the exclusive disjunctive rule and its negation [26, 87].
The exclusive disjunctive rule �ts with the situation where exactly one source is
assumed to tell the truth, without knowing which one, and the negation of the
exclusive disjunctive rule is suitable when all or none of the sources are assumed to
tell the truth or, equivalently, to be truthful [87]. The behavior of an α-junction is
determined by a parameter α and the four special cases are recovered for particular
values of α. For other values of this parameter, the α-junctions did not have an
interpretation.

To our knowledge, this family of rules has never been exploited. This can be
explained, at least in part, by the fact that these rules did not have an interpretation.
However, the lack of interpretation of a rule is not a de�nite argument for not
using it. Indeed, a rule with no interpretation may be useful for, e.g., a classi�-
cation application, if this rule yields lower classi�cation error rates than the other
combination rules. This potential use of the α-junctions has not been considered
in the literature. A possible explanation is that the mathematics involved in the
computation of the combination by an α-junctive rule are rather hard to handle and
di�cult to implement.

In our search for alternatives to the TBM conjunctive and TBM disjunctive rules,
we carefully reexamine in this thesis this never exploited, yet important contribution
of the late Professor Philippe Smets to the theory of belief functions, and propose
solutions to the interpretation and computation problems. Smets' mention of the
existence of an α-junctive canonical decomposition [91] is also a motivation for this
study since the results on combination rules mentioned in the previous section, rely
on the (conjunctive and disjunctive) canonical decompositions of a belief functions.
The three main �ndings reported in this thesis and related to the α-junctions are



INTRODUCTION 5

the following.
First, an interpretation for the α-junctions is proposed. It is shown that they

correspond to a particular form of knowledge, determined by the parameter α,
about the truthfulness of the sources. The α-junctions become thus suitable as
�exible combination rules that allow one to take into account some particular knowl-
edge about the sources. Second, several e�cient and simple ways of computing a
combination by an α-junction are laid bare, making the practical use of the α-
junctions in applications possible. These new means are based on generalizations of
mechanisms that can be used to compute the combinations by the TBM conjunctive
and TBM disjunctive rules. In particular, the conditioning operation and the
matrices that permit the easy computation of the commonality and implicability
functions associated to a belief function [91], are generalized in the context of the
α-junctions. Third, it is shown that an α-junctive canonical decomposition indeed
exists. Although Smets already mentioned such a decomposition, we believe that
the exposition of this result is worthwhile since �nding this decomposition was not
trivial. Indeed, it relies on the conjunctive and disjunctive canonical decompositions
of a signed belief function [53], which is another result of this thesis. It is also proved
that an α-junction actually amounts to the combination by the TBM conjunctive
rule of signed belief functions. This last result is important since it sees this rule
surfacing once again and because it leads to an expression of an α-junction in terms of
so-called α-junctive weights that arise from the α-junctive canonical decomposition.
As will be seen, this expression generalizes the expressions based on conjunctive
and disjunctive weights of, respectively, the TBM conjunctive and TBM disjunctive
rules.

Organization

This report is structured in three parts. The �rst part is dedicated to the presen-
tation of the TBM and is divided into two chapters. Chapter 1 recalls fundamental
concepts of the TBM such as belief functions, combination rules and the LCP.
Chapter 2 focuses on the conjunctive and disjunctive weight functions that originate
from the conjunctive and disjunctive canonical decompositions of a belief function.
It also summarizes material on the cautious rule and its dual, the bold rule. The
second part deals with new results related to rules based on the weight functions.
This part is broken up into three chapters. Chapter 3 presents a new justi�cation
of the TBM conjunctive rule based on the LCP. Chapter 4 introduces four in�nite
families of rules based on generalized t-norms and uninorms. A singular property of
the TBM conjunctive rule among rules based on uninorms is shown in Chapter 5.
Eventually, Part III is concerned with the α-junctions. It is made of two chapters.
Chapter 6 details new results on the interpretation and the computation of the α-
junctions. The α-junctive decomposition of a belief function is unveiled by Chapter
7. The report ends with a general conclusion and some directions for future work.
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Chapter 1

Fundamental Concepts

Summary

In this chapter, the main notions of the Transferable Belief Model (TBM) � a
nonprobabilistic interpretation of Dempster-Shafer theory � are presented. This
model is divided into two parts: the credal level, whose concern is reasoning under
uncertainty, and the pignistic level, which deals with decision-making.

Our presentation starts with the credal level. At this level, beliefs are quanti�ed
using belief functions and combined using aggregation operators, called combination
rules in the TBM. The most often encountered combination rules are recalled in this
chapter. It is also explained how belief functions can be informationally compared,
thus leading to partial orderings for belief functions. Those partial orderings are
useful to make operational the least commitment principle of the TBM, which
postulates that, given a set of belief functions compatible with a set of constraints,
the most appropriate belief function is the least informative. The matrix notation,
which is useful to greatly simplify the mathematics of belief function theory, is also
described in this chapter.

We proceed then to the pignistic level. This level requires the transformation of
a belief function to a probability measure. The pignistic transformation advocated
by Smets is recalled. The plausibility transformation defended by Cobb and Shenoy
is also presented.

Résumé

Dans ce chapitre, les notions principales du Modèle des Croyances Transférables
(MCT) � une interprétation non probabiliste de la théorie de Dempster-Shafer � sont
présentées. Ce modèle est divisé en deux parties : le niveau crédal, qui s'intéresse
au raisonnement dans l'incertain, et le niveau pignistique, qui permet la prise de
décision.

Notre présentation commence avec le niveau crédal. A ce niveau, les croyances
sont quanti�ées par des fonctions de croyance et combinées par des opérateurs
d'agrégation, appelés règles de combinaison dans le MCT. Les règles de combinaison
les plus fréquemment rencontrées sont rappelées dans ce chapitre. Il est également
expliqué comment des fonctions de croyance peuvent être comparées par rapport
à leur contenu informationnel, amenant ainsi à des ordres partiels sur l'ensemble
des fonctions de croyance. Ces ordres partiels sont utiles car ils permettent d'ap-
pliquer le principe d'engagement minimal du MCT qui stipule que, étant donné un

9
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ensemble de fonctions de croyance compatibles avec un ensemble de contraintes,
la plus appropriée est la moins informative. La notation matricielle, qui est utile
pour simpli�er considérablement les mathématiques de la théorie des fonctions de
croyance, est également décrite dans ce chapitre.

Le niveau pignistique est ensuite abordé. Ce niveau requiert la transformation
d'une fonction de croyance en une mesure de probabilité. La transformation pignis-
tique préconisée par Smets est rappelée. La transformation basée sur les plausibilités
défendue par Cobb et Shenoy est aussi présentée.
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1.1 Introduction

A core hypothesis underlying the TBM is that reasoning under uncertainty and
decision-making are two di�erent cognitive tasks, which can be handled at two
distinct levels:

• the credal level, where beliefs are entertained and combined using belief func-
tions;

• the pignistic level, where it is accepted that decisions are made according to
the principle of maximization of expected utility, hence requiring the transfor-
mation of a belief function to a probability measure in order to compute those
expectations.

The part of the credal level dealing with the representation of beliefs is called the
static part, in opposition to the dynamic part, which handles the revision of beliefs
in light of new information.

This chapter is organized as follows. First, the concepts pertaining to the
static part of the credal level are detailed in Section 1.2. In particular, di�erent
representations of a belief function are de�ned. Then, Section 1.3 presents the
dynamic part of the model: notions such as combination rules and the informational
comparison of belief functions are reviewed in this section. A notation that helps
to simplify the mathematics of belief function theory is introduced in Section 1.4.
Eventually, the pignistic level is summarized in Section 1.5.

1.2 Credal Level - Static Part

Let Ω = {ω1, ..., ωK} denote a �nite set of possible values of a variable ω; Ω is called
the frame of discernment of ω. In the TBM, the state of belief of a rational agent Ag
regarding the actual value ω0 taken by ω is represented by a basic belief assignment
(BBA) m de�ned as a mapping from 2Ω to [0, 1] verifying

∑
A⊆Ωm (A) = 1. The

quantity m(A), called mass of A, is interpreted as a fraction of a unit mass of belief
that supports A (i.e., the hypothesis ω0 ∈ A) and that, due to a lack of information,
cannot be allocated to any strict subset of A. Total ignorance is thus represented
by the so called vacuous BBA, noted mΩ and de�ned by m(Ω) = 1, whereas full
knowledge correspond to the case m({ω}) = 1, for some ω ∈ Ω. Subsets A of Ω
such that m(A) > 0 are called focal sets of m. A BBA m is said to be:

• normal if ∅ is not a focal set;

• subnormal if ∅ is a focal set;

• dogmatic if Ω is not a focal set;

• categorical if it has only one focal set;

• Bayesian if its focal sets are singletons;

• simple if it has at most two focal sets and, if it has two, Ω is one of those.
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The normality condition m(∅) = 0 is not required by the TBM. Indeed, under
the so-called open-world assumption [82], one may interpret the mass m(∅) as
quantifying the agent's belief that ω0 6∈ Ω. Let us note that the quantity m(∅) may
also be interpreted as the amount of con�ict after combining several information
sources; this interpretation will be discussed in the next section. A subnormal BBA
m can be transformed into a normal BBAm∗ by the normalization operation de�ned
as follows:

m∗(A) =

{
k ·m(A) if A 6= ∅,
0 otherwise,

(1.1)

for all A ⊆ Ω, with k = (1−m(∅))−1.
Several set functions, which are in one-to-one correspondence with m, can be

de�ned [77]. Two such functions are the belief function bel and plausibility function
pl de�ned, respectively, as:

bel (A) =
∑

∅6=B⊆A

m (B) ,

and
pl (A) =

∑
B∩A6=∅

m (B) = bel (Ω)− bel
(
Ā
)
,

for all A ⊆ Ω. The quantity bel(A) represents the total amount of justi�ed and
speci�c support committed by the agent to the proposition ω0 ∈ A [96]: justi�ed
because only masses allocated to subsets of A are taken into consideration, and
speci�c because m(∅) is not included, as ∅ is a subset of both A and A, where A
denotes the complement of A. The quantity pl(A) measures to what extent one
fails to believe in Ā, i.e., to doubt A. Let us note that another interpretation can
be given to pl(A): it will be presented later since it requires some concepts not yet
de�ned. We may end the presentation of the functions bel and pl with a remark
related to their formal nature (Remark 1.1 below), which places those functions
in a more general context. Material on this interesting theoretical aspect of belief
function theory may be found in [50] and [39].

Remark 1.1. A (normal) belief function bel is a Choquet capacity monotone of
in�nite order [8]. Its associated BBA m and plausibility function pl are, respectively,
its Möbius transform [73] and its conjugate [39].

Two other useful representations of a BBA m are the implicability and common-
ality functions, which are de�ned, respectively, as:

b (A) =
∑
B⊆A

m (B) ,

and

q (A) =
∑
B⊇A

m (B) ,
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for all A ⊆ Ω. The BBA m can be recovered from any of the functions bel, pl, b and
q. In particular, we have:

m(A) =
∑
B⊇A

(−1)|B|−|A|q(B), (1.2)

for all A ⊆ Ω and where |A| denotes the cardinality of A. The functions q and
b are mainly used in this thesis as mathematical tools. An interpretation of the
commonality function will nonetheless be provided in the next section. Let us even-
tually note that since a BBA and its associated belief, plausibility, commonality and
implicability functions are all in one-to-one correspondence, by abuse of language
any one of them may sometimes be referred to by the term �belief function�.

The negation (or complement) m of a BBA m is de�ned as the BBA verifying
m(A) = m(A), ∀A ⊆ Ω [26]. m represents the BBA that would be induced if the
agent knows that the source providing a BBA m is not telling the truth, i.e., is
telling the false or, equivalently, is lying [87]. It can be shown that the implicability
function b associated to m and the commonality function q associated to m are
linked by the following relation:

b(A) = q(A), ∀A ⊆ Ω.

Knowledge about the reliability of a source of information is taken into account in
the TBM through the discounting operation as follows. Suppose a source providing
a BBA m. Let 1− β, with β ∈ [0, 1], be the agent's degree of belief that the source
is reliable. The agent's belief βm on Ω is then equal to [77, 83]:

βm(A) =

{
(1− β)m(A) if A 6= Ω,
β + (1− β)m(Ω) if A = Ω.

(1.3)

We have presented at the beginning of this section some particular cases of BBAs.
There exists another interesting situation, which allows one to build a bridge between
possibility theory and the TBM. When its focal sets are nested, a BBA m is said
to be consonant, and its associated plausibility function is a possibility measure
[109]: it veri�es pl (A ∪B) = pl (A) ∨ pl (B) , for all A,B ⊆ Ω, where ∨ denotes
the maximum operator [77]. Consequently, a consonant BBA uniquely de�nes a
possibility measure. The corresponding possibility distribution π is then given by

π(ω) = pl({ω}) = q({ω}), ∀ω ∈ Ω.

Noticing that we have pl(A) = maxω∈A π(ω) for a consonant BBA m, one can
reconstruct m from π as follows. Let us note πk = π(ωk) and let us assume that the
elements of Ω = {ω1, ..., ωK} have been arranged in decreasing order of plausibility,
i.e., we have 1 ≥ π1 ≥ π2 ≥ ... ≥ πK ≥ πK+1 = 0. m can then be computed as [24]

m(A) =


1− π1 if A = ∅,
πk − πk+1 if A = {ω1, ..., ωk} , 1 ≤ k < K,
πK if A = Ω,
0 otherwise.
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Di�erent types of BBA

(a) vacuous, (b) simple, (c) categorical, (d) consonant, (e) Bayesian, (f) arbitrary. A

white area indicates a null mass while a shaded area indicates a non-null mass.

Figure 1.1 illustrates the shapes of the di�erent special cases of BBA that we have
de�ned.

To conclude this section, we may note that, although not considered in this thesis,
the TBM has been extended to continuous frames of discernment, fuzzy focal sets
and fuzzy-valued masses. The reader is referred to [1, 15, 92] for clear presentations
of those topics and for further references.

1.3 Credal Level - Dynamic Part

1.3.1 Combination rules

The beliefs represented by BBAs can be aggregated, at the credal level, using
appropriate operators. Those operators are called combination rules in the TBM.
Several combination rules have been proposed in the literature (see [76, 95] for
recent surveys). We review in this section the most often encountered ones for the
combination of heterogeneous1 sources.

1In some problems, the set of sources can be viewed as a single source producing di�erent inputs,
in which case averaging operations are justi�ed [31]. Such a situation is not investigated in this
thesis and thus averaging operations are not covered in this section.
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The TBM conjunctive rule

The TBM conjunctive rule is noted ∩©. It is de�ned as follows. Let m1 and m2 be
two BBAs, and let m1 ∩©m2 = m1 ∩©2 denote the result2 of their combination by ∩©.
We have:

m1 ∩©2 (A) =
∑

B∩C=A

m1 (B)m2 (C) , ∀A ⊆ Ω. (1.4)

This rule is appropriate when the sources that have induced m1 and m2, are
known to tell the truth and to be independent, meaning that those sources are
assumed to provide distinct, non overlapping pieces of evidence. This rule can be
justi�ed in several ways, which are presented in Chapter 3.

The TBM conjunctive rule is commutative, associative and admit a unique
neutral element: the vacuous BBA. Let M be the set of BBAs, (M, ∩©) is thus a
commutative monoid. We may remark that reference [43] studies further properties
of this monoid, called Dempster semigroup in [43], when M is the set of BBAs
de�ned on binary frames of discernment.

The TBM conjunctive rule has a simple expression in terms of commonality
functions. We have:

q1 ∩©2(A) = q1 (A) · q2 (A) , ∀A ⊆ Ω. (1.5)

The combination by ∩© may yield m1 ∩©2(∅) > 0, even if m1 and m2 are normal.
The mass m1 ∩©2(∅) is then interpreted in the TBM as representing the amount of
con�ict between the pieces of evidence that have induced m1 and m2. If a high
con�ict is observed after combination, it is important to understand why it has
occurred. In the TBM, m1 ∩©2(∅) has at least three origins [95]:

• either the frame Ω is not exhaustive, in which case m1 ∩©2(∅) is interpreted as
quantifying the belief that ω0 6∈ Ω;

• or m1 ∩©2(∅) represents a belief that the sources do not report on the same
object � such an information may be useful to cluster sources according to
which object they report about (see, e.g., [2, 75]);

• or the assumption that the sources are telling the truth, is wrong, in which
case combination rules that do not make such an assumption should be used.

Other rules

When it cannot be assumed that all the sources tell the truth, it may be assumed
that at least one of them tells the truth, without knowing which one. In such a
situation, and provided that the sources are independent, the TBM disjunctive rule
[26, 83] is appropriate. The TBM disjunctive rule is noted ∪©. Let m1 and m2 be
two distinct BBAs, and let m1 ∪©2 be the result of their combination by ∪©. We have:

m1 ∪©2 (A) =
∑

B∪C=A

m1 (B)m2 (C) , ∀A ⊆ Ω.

2In this thesis, the result of the combination of two BBAs m1 and m2 by a combination operator
⊗ will be denoted interchangeably by m1 ⊗m2 or m1⊗2.
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This rule has a simple expression in terms of implicability functions, which is the
counterpart of (1.5):

b1 ∪©2(A) = b1 (A) · b2 (A) , ∀A ⊆ Ω.

The TBM disjunctive rule is commutative, associative and admits a unique neutral
element: the BBA which assigns the total mass of belief to the empty set, i.e.,
m(∅) = 1. This BBA, which we note m∅, is the negation of the neutral BBA mΩ

of the TBM conjunctive rule and is sometimes called the or-vacuous BBA [87].
Eventually, we can remark that (M, ∪©) is a commutative monoid.

The dual nature of ∩© and ∪© becomes apparent when one notices that these
operators are linked by De Morgan's laws [26]:

m1 ∪©m2 = m1 ∩©m2

m1 ∩©m2 = m1 ∪©m2. (1.6)

The TBM disjunctive rule is suitable to situations where it is known that at least
one of the sources tells the truth, which may occur for instance when combining
beliefs held on climate sensitivity by groups of experts [40]. We may note that in
addition to such situations, the TBM disjunctive rule �nds at least one other use:
it allows a simple expression of the (contextual) discounting operation [59].

Besides the TBM disjunctive rule, other notable proposals are Yager's rule [107]
and Dubois and Prade's rule [28] de�ned as follows. Let m1 and m2 be two BBAs.
Further, let mY

12 and mDP
12 denote the result of the applications of, respectively,

Yager's rule and Dubois and Prade's rule. We have

mY
12 (A) =


m1 ∩©2 (A) ∀A ⊂ Ω, A 6= ∅,
m1 ∩©2 (Ω) +m1 ∩©2 (∅) if A = Ω,
0 if A = ∅,

and

mDP
12 (A) =

{
m1 ∩©2 (A) +

∑
B∩C=∅,B∪C=Am1 (B)m2 (C) ∀A ⊆ Ω, A 6= ∅,

0 if A = ∅.

Dubois and Prade's rule is a mix of a conjunctive and a disjunctive behavior: it
�ts with the situation where the sources are assumed to tell the truth when they are
not in con�ict, and at least one of the sources is right when a con�ict occurs [28].
Yager's rule is similar in that it also assumes the sources to tell the truth when they
are not in con�ict. However, when a con�ict occurs, Yager's rule is di�erent because
it assumes that the sources are not reliable. Let us eventually note that, in contrast
to the TBM conjunctive and TBM disjunctive rules, Yager's rule and Dubois and
Prade's rule are not associative.

The TBM conjunctive rule and its related concepts

When it is safe to assume that the sources are independent, telling the truth
and reporting on the same object, and if it can be defended that the frame of
discernment is exhaustive, then the normalization operation (1.1) can be used after
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the combination by the TBM conjunctive rule, to eliminate the con�ict [95]. This
amounts to combining the belief functions byDempster's rule [11] � the rule proposed
in Shafer's seminal book for the combination of belief functions. However, note that
�Dempster's rule is not robust to inaccurate estimates of uncertainty values� [28],
and thus the normalization procedure should be used with great care.

In the TBM, conditioning by B ⊆ Ω is equivalent to conjunctive combination
with a categorical BBA mB focused on B, i.e., mB(B) = 1. The result is noted
m[B], with m[B] = m ∩©mB. The conditional BBA m[B] quanti�es our belief on Ω,
in a context where B holds. This operation is called the unnormalized Dempster's
rule of conditioning. Its internal mechanism can be better understood using the
following equivalent de�nition of m[B]:

m[B](A) =

{ ∑
B∩C=Am(C) if A ⊆ B,

0 otherwise.
(1.7)

As can be seen with this other expression of the unnormalized Dempster's rule of
conditioning, any mass that is initially given to C ⊆ Ω is transferred to C ∩B when
a given hypothesis B has been ascertained. We may note that this idea of transfer
of mass is at the origin of the name Transferable Belief Model. The unnormalized
Dempster's rule of conditioning is particularly useful to give interpretations to the
plausibility and commonality functions. Indeed, we have pl(A) = bel[A](A), hence
pl(A) is the maximum degree of belief that could potentially be assigned to A, if
further evidence became available [96]. Similarly, we have q(A) = m[A](A), hence
q(A) represents the �share of belief free to potentially support any proposition in
the context where [...] A holds true� [34] or, equivalently, q(A) is a �measure of
unassigned belief in the context where [...] A holds true� [34]. Eventually, note that
the combination by the TBM conjunctive rule ∩© has a simple expression using the
unnormalized Dempster's rule of conditioning. Indeed, let m1 and m2 be two BBAs.
We have

m1 ∩©2 (A) =
∑
B⊆Ω

m1 [B] (A)m2 (B) , ∀A ⊆ Ω. (1.8)

As can easily be seen from (1.8), the conjunctive combination generalizes the condi-
tioning operation: the conditioning by B is obtained when m2 is a categorical BBA
focused on B.

Another important concept related to the TBM conjunctive rule is that of
decombination. Let us assume that m1 ∩©2 has been obtained by combining two
BBAs m1 and m2, and then we learn that m2 is in fact not supported by evidence
and should be �removed� from m1 ∩©2. This operation is called decombination [85]
or removal [78]. It is well de�ned if m2 is nondogmatic. Let 6∩© denote this operator.
We can write:

m1 ∩©2 6∩©m2 = m1.

Let q1 and q2 be the commonality functions of two BBAs m1 and m2, the decombi-
nation is de�ned as follows:

q1 6∩©2 (A) =
q1(A)

q2(A)
, ∀A ⊆ Ω. (1.9)
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Note that q2(A) > 0 for all A as long as m2 is nondogmatic. One must also be
aware that the pointwise division of two commonality functions is not always a
commonality function, hence the resulting function m1 6∩©2 may not be a BBA and
its associated function bel1 6∩©2 may not a belief function. In this case, it is called
a pseudo belief function [85] or signed belief function [53] (signed belief functions
will be discussed at length in Chapter 7). We may further note that the inverse of
Dempster's rule was �rst suggested for binary frames of discernment by Ginsberg in
[38], and that it may easily be shown (see Appendix A) that the operator proposed
by Ginsberg is just the equivalent to the operator 6∩© followed by normalization using
(1.1).

1.3.2 Informational comparison of belief functions

The least commitment principle (LCP) of the TBM postulates that, given a set of
BBAs compatible with a set of constraints, the most appropriate BBA is the least
informative [83]. It is similar to the principle of minimal speci�city in possibility
theory [105]. Both ordinal and quantitative approaches can be used to make this
principle operational; however, we will mainly use ordinal approaches in this thesis.

Several partial orderings, generalizing set inclusion, were proposed in [10, 26, 62,
106] for the informational comparison of belief functions. Their interpretations are
discussed from a set-theoretical perspective in [26] and from the point of view of the
TBM in [34]. They are de�ned as follows:

• pl-ordering: m1 vpl m2, i� pl1 (A) ≤ pl2 (A) for all A ⊆ Ω ;

• q-ordering: m1 vq m2, i� q1 (A) ≤ q2 (A) for all A ⊆ Ω;

• s-ordering: m1 vs m2, i� there exists a square matrix S with general term
S (A,B), A,B ⊆ Ω verifying:∑

B⊆Ω

S (A,B) = 1, ∀A ⊆ Ω,

S (A,B) > 0 ⇒ A ⊆ B, ∀A,B ⊆ Ω,

such that

m1 (A) =
∑
B⊆Ω

S (A,B)m2 (A) , ∀A ⊆ Ω. (1.10)

The quantity S(A,B) may be seen as the proportion of the mass m2(B) that
is transferred to A. The matrix S is called a specialization matrix [48], and
m1 is said to be a specialization of m2, or, equivalently, m2 is said to be a
generalization of m1.

A BBAm1 is said to be x-more committed thanm2, with x ∈ {pl, q, s}, if we have
m1 vx m2. It was shown in [26] that those de�nitions are not equivalent: m1 vs m2

implies m1 vpl m2 and m1 vq m2, but the converse is not true. Furthermore, the
orderings vpl and vq are not comparable. The vacuous BBA mΩ is the unique
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greatest element for partial orderings vx with x ∈ {s, q, pl}, i.e., we have m vx mΩ

for all m. Informally, this latter property means that all beliefs are more informative
than ignorance, as they should be. Dubois and Prade show in [26] that when the
BBAs are consonant, those three partial orderings come down to the possibilistic
ordering of speci�city on singletons [105].

We mentioned above that there is also a quantitative approach to the informa-
tional comparison of belief functions. As for the ordinal case, there is no consensus on
a unique �measure of uncertainty� [50]. Indeed, some measures quantify the amount
of nonspeci�city of a belief function, whereas other render its con�ict [50]. There are
also so-called total measures, which are basically combinations of nonspeci�city and
con�ict measures. We provide below an illustrative example of one of these measures
of uncertainty, which was proposed by Smets [81] as a measure of the information
content of a BBA. The interested reader may �nd further material on measures of
uncertainty in [50].

Smets' information measure will be noted I. It is de�ned for all nondogmatic
BBA m as

I(m) = −
∑
A⊆Ω

ln(q(A)).

From the de�nition of I, we �nd that this measure is always nonnegative and that
the vacuous BBA contains no information, i.e., I(mΩ) = 0. When a nondogmatic
BBAm contains at least as much information as another BBAm′, i.e., when I(m) ≥
I(m′), we write m vI m

′ [89].
An interesting property of this measure is the following. We have for any two

nondogmatic BBAs m1 and m2:

I(m1 ∩©m2) = I(m1) + I(m2). (1.11)

This property means that the amount of information of the combination of two
distinct BBAs is equal to the sum of the amount of information of those BBAs [104].
We may note that this property can be axiomatically justi�ed [98]. Proposition 1.1
shows that a related property holds for the measure I.

Proposition 1.1. For any two nondogmatic BBAs m1 and m2 we have:

I(m1 6∩©m2) = I(m1)− I(m2). (1.12)

Proof.

I(m1 6∩©m2) = −
∑
A⊆Ω

ln(q1(A)/q2(A))

= −
∑
A⊆Ω

(ln(q1(A))− ln(q2(A)))

= −
∑
A⊆Ω

ln(q1(A)) +
∑
A⊆Ω

ln(q2(A))

= I(m1)− I(m2).
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The next proposition shows that the partial ordering vq implies the order vI ,
but that the converse is not true.

Proposition 1.2. For any two nondogmatic BBAs m1 and m2, we have

m1 vq m2 ⇒ m1 vI m2,

but m1 vI m2 does not imply m1 vq m2.

Proof. Let us �rst prove that we have

m1 vq m2 ⇒ m1 vI m2,

for any two nondogmatic BBAs m1 and m2.
From the de�nition of vq, we have q1(A) ≤ q2(A) for all A ⊆ Ω, and from the

de�nition of the commonality functions, we have q1(A), q2(A) ∈ (0, 1] for all A ⊆ Ω.
It is then clear that

∏
A⊆Ω q1(A) ∈ (0, 1],

∏
A⊆Ω q2(A) ∈ (0, 1] and

∏
A⊆Ω q1(A) ≤∏

A⊆Ω q2(A) holds. Hence, we have ln(
∏

A⊆Ω q1(A)) ≤ ln(
∏

A⊆Ω q2(A)), and thus
I(m1) ≥ I(m2), or, equivalently, m1 vI m2.

We now show using a counterexample that @I does not imply @q. Table 1.1
gives two nondogmatic BBAsm1 andm2 together with their associated commonality
functions. As can easily be seen, the two BBAs are not comparable with respect to
the q-ordering. However, we have

I(m1) = − (2 · ln(1) + 4 · ln(0.5) + 2 · ln(0.8)) ≈ 3.2189,

and
I(m2) = − (2 · ln(1) + 4 · ln(0.6) + 2 · ln(0.7)) ≈ 2.7567,

i.e., m1 vI m2.

Table 1.1: Two nondogmatic BBAs that are not comparable with respect to the

q-ordering.
A m1 q1 m2 q2
∅ 0 1 0 1
{a} 0 0.5 0 0.6
{b} 0.2 1 0.3 1
{a, b} 0 0.5 0 0.6
{c} 0 0.8 0 0.7
{a, c} 0 0.5 0 0.6
{b, c} 0.3 0.8 0.1 0.7

Ω 0.5 0.5 0.6 0.6

Let us eventually remark that the BBAs m1 and m2 of Table 1.1, which are
consonant, also allow us to conclude that the @I ordering does not come down to the
possibilistic ordering of speci�city on singletons, since we have m1 vI m2, π1(a) <
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π2(a) and π1(c) > π2(c), with π1 and π2 the possibility distributions associated,
respectively, to m1 and m2.

In summary, we thus have, for any two nondogmatic BBAs m1 and m2:

m1 vs m2 ⇒
{
m1 vpl m2

m1 vq m2 ⇒ m1 vI m2,
(1.13)

where all implications are strict.

1.3.3 Coarsening, re�nement and product spaces

Granularity of the frame of discernment

As remarked by Shafer [77], the degree of granularity of the frame Ω is always, to
some extent, a matter of convention, as any element ω ∈ Ω representing a state of
nature can always be split into several possibilities. Hence, one should study how a
belief function de�ned on a frame may be expressed in a coarser, or conversely, in a
�ner frame.

Let Ω and Θ be two �nite sets. A mapping ρ : 2Θ → 2Ω is called a re�ning if it
veri�es the two following properties:

1. The set {ρ({θ}), θ ∈ Θ} ⊆ 2Ω is a partition of Ω.

2. For all B ⊆ Θ, we have:

ρ(B) =
⋃
θ∈B

ρ({θ}).

Ω is called a re�nement of Θ, and Θ is called a coarsening of Ω. Figure 1.2 shows
a coarsening Θ = {θ1, θ2} of a frame Ω = {ω1, ω2, ω3, ω4}, de�ned by a re�ning
ρ({θ1}) = {ω1, ω2}, ρ({θ2}) = {ω3, ω4}.

Figure 1.2: Coarsening Θ = {θ1, θ2} of a frame Ω = {ω1, ω2, ω3, ω4}.
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Formally, de�ning a coarsening of a frame amounts to de�ning a partition of that
frame. Note that de�ning the inverse operation, i.e., associating a subset of Θ to
each subset of Ω is not easy since a re�ning ρ : 2Θ → 2Ω is not generally onto. This
leads to the concepts of inner reduction and outer reduction [77]. We focus only on
the outer reduction. It is de�ned as a mapping θ̄ : 2Ω → 2Θ verifying:

θ̄(A) = {θ ∈ Θ|ρ({θ}) ∩ A 6= ∅} ,

for all A ⊆ Ω.
The mappings ρ and θ̄ can be extended from sets to BBA. A BBA mΘ on Θ may

be transformed into a BBA on a re�nement Ω by transferring each mass mΘ(B) for
B ⊆ Θ to A = ρ(B). This operation is called the vacuous extension of mΘ to Ω. It
is justi�ed by the LCP [83] and it is noted mΘ↑Ω. Formally, we have:

mΘ↑Ω(A) =

{
mΘ(B) if A = ρ(B) for some B ⊆ Θ,
0 otherwise.

A BBA mΩ on Ω may be transformed into a BBA on a coarsening Θ through an
operation called restriction (or outer reduction). It is noted mΩ↓Θ and de�ned as

mΩ↓Θ(A) =
∑

{B⊆Ω|ρ(A)∩B 6=∅}

mΩ(B),

for all A ⊆ Θ.

Operations on Product Spaces

Related to the previous notions of coarsening and re�nement is the issue of dealing
with BBAs de�ned on product spaces.

Let mΩ×Θ denote a BBA de�ned on the Cartesian product Ω×Θ of the frames
of two variables ω and θ. The marginal BBA mΩ×Θ↓Ω is de�ned, for all A ⊆ Ω, as

mΩ×Θ↓Ω(A) =
∑

{B⊆Ω×Θ,(B↓Ω)=A}

mΩ×Θ(B), (1.14)

where (B ↓ Ω) denotes the projection of B onto Ω, de�ned as

(B ↓ Ω) = {ω ∈ Ω|∃θ ∈ Θ, (ω, θ) ∈ B} .

Marginalization may be seen as going from a frame Ω×Θ to a coarsening Ω.
Conversely, let mΩ be a BBA de�ned on Ω. Its vacuous extension on Ω × Θ is

de�ned as:

mΩ↑Ω×Θ(B) =

{
mΩ(A) if B = A×Θ, for some A ⊆ Ω,
0 otherwise.

(1.15)

Note that the vacuous extension on Ω×Θ may be seen as a re�ning of Ω.
Given two BBAs mΩ

1 and mΘ
2 , their conjunctive combination on Ω × Θ can be

obtained by combining their vacuous extensions on Ω×Θ using (1.15). Formally:

mΩ
1 ∩©mΘ

2 = mΩ↑Ω×Θ
1 ∩©mΘ↑Ω×Θ

2 . (1.16)

A similar de�nition can be given for the combination by Dempster's rule.
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Example 1.1 (Illustration of the computations involved by the application of the
TBM conjunctive rule, and the marginalization and vacuous extension operations).
Consider two binary frames of discernment Ω = {ω1, ω2} and Θ = {θ1, θ2}. Let mΩ

1

and mΩ×Θ
2 be two BBAs de�ned, respectively, as:

mΩ
1 ({ω1}) = 0.6,

mΩ
1 (Ω) = 0.4,

and

mΩ×Θ
2 ({(ω1, θ2) , (ω2, θ1)}) = 0.7,

mΩ×Θ
2 (Ω×Θ) = 0.3.

Given mΩ
1 and mΩ×Θ

2 , one may infer a BBA mΘ
12 on Θ using the following

equation:

mΘ
12 =

(
mΩ↑Ω×Θ

1 ∩©mΩ×Θ
2

)↓Θ
. (1.17)

The computation of the right side of (1.17) involves �rst a vacuous extension of mΩ
1

to Ω×Θ:

mΩ↑Ω×Θ
1 ({(ω1, θ1) , (ω1, θ2)}) = 0.6,

mΩ↑Ω×Θ
1 (Ω×Θ) = 0.4.

The BBA mΩ↑Ω×Θ
1 may then be combined by ∩© with mΩ×Θ

2 . The result of this
combination is noted mΩ×Θ

1 ∩©2 . We �nd:

mΩ×Θ
1 ∩©2 ({(ω1, θ1) , (ω1, θ2)}) = 0.6 · 0.3 = 0.18,

mΩ×Θ
1 ∩©2 ({(ω1, θ2)}) = 0.6 · 0.7 = 0.42,

mΩ×Θ
1 ∩©2 ({(ω1, θ2) , (ω2, θ1)}) = 0.4 · 0.7 = 0.28,

mΩ×Θ
1 ∩©2 (Ω×Θ) = 0.4 · 0.3 = 0.12.

Finally, marginalizing mΩ×Θ
1 ∩©2 on Θ, i.e., mΩ×Θ↓Θ

1 ∩©2 , yields mΘ
12:

mΘ
12 ({θ2}) = 0.42,

mΘ
12 (Θ) = 0.58.

Two other operations that have been de�ned for BBAs on product spaces are
the conditioning operation, and its inverse operation called the ballooning extension.
They are de�ned as follows. Let mΩ×Θ denote a BBA on Ω × Θ, and mΩ×Θ

B the
BBA on Ω×Θ with single focal set Ω×B with B ⊆ Θ, i.e., mΩ×Θ

B (Ω×B) = 1. The
conditional BBA on Ω given θ ∈ B is de�ned as:

mΩ[B] =
(
mΩ×Θ ∩©mΩ×Θ

B

)↓Ω
. (1.18)

Now, letmΩ[B] denote the conditional BBA on Ω, given θ ∈ B ⊆ Θ. The ballooning
extension of mΩ[B] on Ω × Θ is the least committed BBA, whose conditioning on
B yields mΩ[B] [83]. It is obtained as:

mΩ[B]⇑Ω×Θ(C) =

{
mΩ[B](A) if C = (A×B) ∪ (Ω× (Θ\B)), for some A ⊆ Ω,
0 otherwise.

(1.19)
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1.4 Matrix Notation

The matrix notation can be used to greatly simplify the mathematics of belief
function theory. In [91], Smets proposed a review of the application of the matrix
calculus to belief functions. This section is devoted to a summary of parts of [91]
that are relevant to this thesis.

1.4.1 Belief functions as column vectors

A BBA m (and its associated functions bel, pl, q and b) de�ned on 2Ω can be seen
as a column vector of size 2|Ω|. The elements of m can be ordered arbitrarily but
the so-called binary order is particularly convenient. The binary order means that
the �rst element of m is related to the empty set, the next to {a}, the next to {b},
the next to {a, b}, etc. Table 1.2 presents the vectors for Ω = {a, b, c}. The ith
element of the vector m corresponds to the set with elements indicated by 1 in the
binary representation of i − 1. For instance, let Ω = {a, b, c, d}. The �rst element
(i = 1) of the vector m corresponds to the emptyset since the binary representation
of 1 − 1 is 0000. The twelfth element (i = 12) corresponds to {a, b, d} since the
binary representation of 12− 1 is 1011.

Table 1.2: Order of the elements of the vectors m and f (f is used generically to denote

bel,pl,q,b) when Ω = {a, b, c}.

Position cba m f
1 000 m(∅) f(∅)
2 001 m({a}) f({a})
3 010 m({b}) f({b})
4 011 m({a, b}) f({a, b})
5 100 m({c}) f({c})
6 101 m({a, c}) f({a, c})
7 110 m({b, c}) f({b, c})
8 111 m({a, b, c}) f({a, b, c})

We use the following conventions:

• By default, the length of vectors and matrices are 2|Ω|, and vectors are column
vectors.

• Matrices and vectors are written in bold type, and their elements in normal
type, e.g., a matrix is noted M and the element on its ith row and jth column
is noted M(i, j). Sometimes a matrix will be de�ned by its general term,
in this case we write M = [M(i, j)]. For instance, if M(i, j) is de�ned by
M(i, j) = 0,∀i, j, then M is a matrix, whose elements are zeros. We may also
need to refer to the element on the row A and column B, with A,B ⊆ Ω, of
the matrix M. Such an element is noted M(A,B). The notations M(i, j) and
M(A,B) are related. For instance, let Ω = {a, b, c} and A = {a, b} and B =
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{b, c}. The element M(A,B) is, according to the binary notation, the element
on the 4th row and the 7th column of the matrix M, i.e., M(A,B) = M(4, 7).

• 0 and 1 denote the vectors, whose components are, respectively, zeros and
ones.

• 1A denotes the vector, whose components are zeros except the component
corresponding to A (with A a subset of Ω) which equals 1.

• Diag(v) is the diagonal matrix, whose diagonal elements are the elements of
vector v.

• To simplify the notation, we write a for {a}, abc for {a, b, c}, etc.

• In vectors and matrices, dots replace zeros.

• I denotes the unitary matrix, i.e., its elements are zeros except those on the
main diagonal that are ones.

• J denotes the square matrix, whose elements are zeros except on the secondary
diagonal that are ones. The matrix J has two major properties when multiplied
with a matrix M by the usual product of matrices: it inverses the order of
the rows of M when placed before it (the �rst becoming the last, etc), and it
inverses the order of the columns of M when placed behind it. We also have
J · J = I, J = J−1, m = J ·m, b = J · q and q = J · b [91].

• Kron(A,B) denotes the matrix resulting from the Kronecker product of a
m × n matrix A with a p × q matrix B. The matrix Kron(A,B) is de�ned
by:

Kron(A,B) =

A(1, 1)B · · · A(1, n)B
...

. . .
...

A(m, 1)B · · · A(m,n)B

 .
Its size is thus mp× nq.

The transformations between the di�erent representations of a belief function
can be represented using the matrix notation. For instance, the classical relation
b (A) =

∑
C⊆Am (C) can be written

b (A) =
∑
C⊆Ω

B(A,C)m (C) ,

where B(A,C) = 1 i� C ⊆ A and 0 otherwise. Letting B = [B(A,C)], A,C ⊆ Ω,
we have b = B ·m and m = B−1 · b [91]. The matrix B is given in Table 1.3 when
Ω = {a, b, c}.

As can be seen from Table 1.3, the matrix B is built from the following building
block: [

1 0
1 1

]
.
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Table 1.3: Matrix B when Ω = {a, b, c}.
∅ a b ab c ac bc abc

∅ 1 . . . . . . .
a 1 1 . . . . . .
b 1 . 1 . . . . .
ab 1 1 1 1 . . . .
c 1 . . . 1 . . .
ac 1 1 . . 1 1 . .
bc 1 . 1 . 1 1 .
abc 1 1 1 1 1 1 1 1

This block is what the matrix B would be if |Ω| = 1. In fact, going from a set Ω
with i elements to a set with i+1 elements consists in multiplying the building block
above by the matrix obtained with i elements using Kronecker multiplication, i.e.,
we have:

Bi+1 = Kron

([
1 0
1 1

]
, Bi

)
,B1 = 1. (1.20)

Let us remark that this is a very simple way to obtain the matrix B.
The matrix that allows the transformation from m to q is noted Q. It can be

obtained in a similar manner as the B matrix is obtained: one merely needs to
replace B by Q in (1.20), and to change the building block to[

1 1
0 1

]
.

We have q = Q ·m, m = Q−1 · q and Q = J · B · J [91]. Note that this last
relation can easily be proved from the following relation between the building blocks
of B and Q: [

1 1
0 1

]
= J ·

[
1 0
1 1

]
· J.

1.4.2 Transformations of BBA into BBA

In this section, we present how the transformation of a BBA into another BBA,
given a piece of evidence, can be expressed using the matrix notation.

Revision of a BBA

De�nition 1.1. A stochastic matrix M = [M(i, j)] is a square matrix withM(i, j) ≥
0 and

∑
iM(i, j) = 1,∀j.

Let MΩ be the set of BBAs de�ned on Ω. As shown by [91, Theorem 6.1], the
set of matrices that map every element of MΩ into an element of MΩ is the set of
stochastic matrices.
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The revision of a BBA m1 by a piece of evidence Ev can be represented by a
stochastic matrix M(Ev,m1) that transforms m1 into m1[Ev]:

m1[Ev] = M(Ev,m1) ·m1 .

If the value of the matrix depends only on Ev and not on m1 (in which case the
pieces of evidence that induced m1 and Ev are said `distinct' [91]), we can write:

m1[Ev] = M(Ev) ·m1 . (1.21)

It may happen that M(Ev) is a specialization matrix (see Section 1.3.2 for the
de�nition of this type of matrix). In this case, M is noted S.

The TBM conjunctive rule in the matrix notation

The combination by the TBM conjunctive rule and the TBM disjunctive rule can
be expressed using the matrix notation. In the rest of this section, we focus on the
combination by the rule ∩©.

The conjunctive revision of a BBA m1 by a distinct piece of evidence inducing a
BBA m2 is achieved by a special kind of specialization matrix, called a Dempsterian
specialization matrix [48] and noted Sm2 . This matrix is de�ned as a function of m2:
its general term is Sm2 (A,B) = m2[B](A), A,B ⊆ Ω. We have m2 ∩©m1 = Sm2 ·m1.

Remember that we have
q1 ∩©2 = q1 · q2. (1.22)

We now present a proof of this last relation, which will be useful in the next
paragraph (the proof below is similar to the one given in [91]).

Proof. Smets [90] shows that the commonalities are the eigenvalues of the Dempste-
rian specialization matrix Sm, and that the columns of Q−1 are the corresponding
right eigenvectors or, equivalently, that the rows of Q are the corresponding left
eigenvectors3. Hence, using the eigen decomposition theorem (see Appendix B), we
obtain

Sm = Q−1 ·Diag(q) ·Q, (1.23)

and thus
Sm ·Q−1 = Q−1 ·Diag(q),

or, equivalently,
Q · Sm = Diag(q) ·Q. (1.24)

We can then show the following. From the eigendecomposition (1.24) of Sm1 ∩©2
, we

have

Q · Sm1 ∩©2
= Diag(q1 ∩©2) ·Q. (1.25)

3Appendix B provides the de�nitions of right and left eigenvectors. Left eigenvectors are an
unusual notion in linear algebra. They are used in this thesis in order to be in line in Chapter 6
with the article [87] of Smets on which this chapter will be based.
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Multiplying both sides of (1.25) on the right by 1Ω (1Ω is the vector corresponding
to mΩ), we obtain

Q ·m1 ∩©2 = Diag(q1 ∩©2) · 1, (1.26)

since mΩ is a neutral element for ∩© and since Q(A,Ω) = 1,∀A ⊆ Ω. From (1.26),
we obtain

Q · Sm1 ·m2 = q1 ∩©2,

which, using the eigendecomposition (1.23) of Sm1 , yields

Q ·Q−1 ·Diag(q1) ·Q ·m2 = q1 ∩©2

Diag(q1) · q2 = q1 ∩©2. (1.27)

Eventually, we may note that the eigenvalues of Sm are on its diagonal since Sm

is a triangular matrix. Hence, the commonalities are not only the eigenvalues of Sm

but also its diagonal elements.

2|Ω|! commonality-like functions and 2|Ω|! Q-like matrices

Equipped with this last proof, we can make the following remark, which does not
seem important for the theory of belief functions, but that will nonetheless be central
to the reasoning of Section 6.4.2.

Let σ be a permutation of the rows of Q and of q, and let σQ and σq denote the
results of this permutation. It is clear that we have σQ·Sm = Diag(σq)·σQ, since σq
and σQ are just a reordering of the eigenvalues and corresponding left eigenvectors
of Sm. Besides, we have

σq1 ∩©2 = Diag(σq1) · σq2. (1.28)

To prove this last relation, simply replace Q by σQ, q1 ∩©2 by σq1 ∩©2, q1 by σq1 and
q2 by σq2 in the preceding proof.

Furthermore, it is also clear that there are 2|Ω|! such permutations σ of the rows
of Q and q since the vector q is of length 2|Ω|. Hence, there exists 2|Ω|! di�erent
functions that can be associated to a BBA m and such that the combination by
∩© can be computed in a similar way as (1.22), i.e., by pointwise product. These
functions will be referred to as �commonality-like� functions. Accordingly, there are
also 2|Ω|! �Q-like� matrices. Example 1.2 illustrates the commonality-like functions.

Example 1.2. Let Ω = {a, b}. Let m1 and m2 be two BBAs de�ned by m1(a) =
m1(Ω) = 0.5 and m2(b) = 0.4,m2(Ω) = 0.6. Their associated commonality functions
are q1(∅) = q1(a) = 1, q1(b) = q1(Ω) = 0.5 and q2(∅) = q2(b) = 1, q2(a) = q2(Ω) =
0.6. The matrix Q for a frame of discernment Ω having two elements is given by
table 1.4.

Let σ be a permutation that permutes the �rst rows of Q, q1 and q2 with their
last rows, and let σQ, σq1 and

σq2 denote the results of those permutations. We thus
have σq1(Ω) = σq1(a) = 1, σq1(b) = σq1(∅) = 0.5 and σq2(Ω) = σq2(b) = 1, σq2(a) =
σq2(∅) = 0.6. The matrix σQ is given by Table 1.5.

We have m1 ∩©2 = Q−1 ·Diag(q1) ·q2. One can check that we also have m1 ∩©2 =
σQ−1 ·Diag(σq1) · σq2.
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Table 1.4: Matrix Q when Ω = {a, b}.
∅ a b ab

∅ 1 1 1 1
a . 1 . 1
b . . 1 1
ab . . . 1

Table 1.5: The matrix σQ.

∅ a b ab
∅ . . . 1
a . 1 . 1
b . . 1 1
ab 1 1 1 1

1.5 Pignistic Level

In the TBM, it is accepted that decisions are made by maximizing expected utilities
(or, conversely, minimizing expected loss) [74]. Let us recall basic material on
decision theory, and its associated concept of expected loss. In a decision context,
we usually consider a �nite set of actions A = {a1, .., aK}. Typically, the action ai

is associated to the assignment to the singleton ωi. We de�ne by λ(ai, ωj) the cost
of choosing ai when the truth is actually ωj. Then, the expected loss of an action
ai, relative to a probability measure P , is de�ned as:

R(ai) =
∑
ωj∈Ω

λ(ai, ωj)P (ωj).

The Bayesian decision rule consists in choosing the action a∗i that minimizes the
expected loss. Formally,

a∗i = arg min
ai∈A

R(ai).

At the pignistic level, the beliefs held by the agent and represented by a belief
function must then be transformed to a probability measure. In [93], Smets justi�es
from a linearity requirement the use of the so-called pignistic transformation which
transforms a BBA m into a probability measure noted BetPm and de�ned as:

BetPm ({ωk}) =
∑

{A⊆Ω,ωk∈A}

m (A)

(1−m (∅)) |A|
.

This transformation distributes equally each mass m(A) to the singletons of A, for
all A ⊆ Ω.

Example 1.3 (Illustration of the pignistic transformation). Let us transform the
BBA mΩ×Θ

1 ∩©2 , computed in Example 1.1, into a probability measure using the pignistic
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transformation. We �nd:

BetPmΩ×Θ
1 ∩©2

({(ω1, θ1)}) =
0.18

2
+

0.12

4
= 0.12,

BetPmΩ×Θ
1 ∩©2

({(ω1, θ2)}) = 0.42 +
0.18

2
+

0.28

2
+

0.12

4
= 0.68,

BetPmΩ×Θ
1 ∩©2

({(ω2, θ1)}) =
0.28

2
+

0.12

4
= 0.17,

BetPmΩ×Θ
1 ∩©2

({(ω2, θ2)}) =
0.12

4
= 0.03.

The pignistic transformation is not the unique method that has been proposed
in the literature to transform a BBA m into a probability measure. In particular,
Cobb and Shenoy [9] motivate the use of the plausibility transformation, which is
noted PlPm and de�ned as

PlPm ({ωk}) = κ−1pl ({ωk}) ,

with κ =
∑K

j=1 pl ({ωj}). The principal argument of Cobb and Shenoy [9] for the
plausibility transformation is that it is invariant with respect to the combination by
∩© [99], which is not the case of the pignistic transformation. We can remark that
this transformation is also invariant with respect to the decombination by 6∩© [63].
Proposition 1.3 formulates this latter property of the plausibility transformation
using the decombination operator in probability theory, noted � and de�ned in [78]
as follows. Let P1 and P2 be two probability measures. Assume that P2(ωk) 6= 0 for
all k, then P1 � P2 is the probability measure de�ned by:

P1 � P2 ({ωk}) = κ−1P1 ({ωk}) /P2 ({ωk}) ,∀ωk ∈ Ω

with κ =
∑K

j=1 P1 ({ωj}) /P2 ({ωj}).

Proposition 1.3 (PlP is invariant with respect to 6∩©). Let m1 and m2 be two
nondogmatic BBAs:

PlPm1 6∩©m2 = PlPm1 � PlPm2 .

Proof. For all ωk ∈ Ω, let us denote αk = pl1 ({ωk}) = q1 ({ωk}), and βk =
pl2 ({ωk}) = q2 ({ωk}). From Equation (1.9) we have:

PlPm1 6∩©m2 ({ωk}) =

αk

βk∑K
i=1

αi

βi

. (1.29)
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Besides,

PlPm1 � PlPm2 ({ωk}) =

αk∑K
i=1

αi
βk∑K

i=1
βi∑K

j=1

(
αj∑K

i=1
αi

)
(

βj∑K
i=1

βi

)

=

αk·(
∑K

i=1 βi)
βk·(

∑K
i=1 αi)∑K

j=1

αj ·(
∑K

i=1 βi)
βj ·(

∑K
i=1 αi)

=

αk

βk
· (

∑K
i=1 βi)

(
∑K

i=1 αi)(∑K
j=1

αj

βj

)
· (

∑K
i=1 βi)

(
∑K

i=1 αi)

. (1.30)

(1.29) and (1.30) are equal.

1.6 Conclusion

In this chapter, the fundamental concepts of the Transferable Belief Model have
been exposed. This model distinguishes two cognitive tasks: reasoning and decision-
making. Reasoning is handled at the credal level where beliefs of rational agents
are represented by belief functions and manipulated using combination rules and
the Least Commitment Principle. Decision-making is reserved to the pignistic level
where beliefs must be transformed into a probability measure in order to be able to
use classical decision theory.

The next chapter is devoted to the presentation of a lesser used notion of the
TBM, which will be at the core of some contributions of this thesis.





Chapter 2

Conjunctive and Disjunctive

Canonical Decompositions

Summary

In this chapter, the conjunctive and disjunctive canonical decompositions of a belief
function are introduced. These decompositions allow one to represent a complex
belief state as the result of the combination, either by the TBM conjunctive rule or by
the TBM disjunctive rule, of elementary and distinct states of belief. Furthermore,
they yield two equivalent representations of a belief function, which are called
the conjunctive and disjunctive weight functions. As explained in this chapter,
these decompositions are interesting because they o�er new ways to look at the
informational comparison of belief functions, resulting in the de�nitions of two new
partial orderings for the informational comparison of belief functions. Of interest is
that these two partial orderings, called the w-ordering and v-ordering, have simple
de�nitions using the conjunctive and disjunctive weight functions, respectively.

This chapter covers also the derivations of the cautious conjunctive rule and
the bold disjunctive rule � two combination rules proposed recently by Den÷ux
for the combination of nondistinct belief functions. As shown in this chapter, the
least committed conjunctive rule, with respect to the w-ordering, is the cautious
conjunctive rule. Conversely, the bold disjunctive rule is the most committed
disjunctive rule, with respect to the v-ordering.

Résumé

Les décompositions canoniques conjonctive et disjonctive d'une fonction de croy-
ance sont introduites dans ce chapitre. Ces décompositions permettent de considérer
n'importe quelle fonction de croyance comme le résultat de la combinaison, par la
règle conjonctive du MCT ou la règle disjonctive du MCT, d'éléments d'évidence
simples. De plus, elles permettent d'introduire deux fonctions, appelées fonction
de poids conjonctifs et fonction de poids disjonctifs, qui sont deux représentations
équivalentes d'une fonction de croyance. Comme expliqué dans ce chapitre, ces
décompositions sont intéressantes car elles o�rent de nouvelles perspectives pour
la comparaison du contenu informationel des fonctions de croyance. En particulier,
deux nouveaux ordres partiels, appelés w-ordre et v-ordre, sont dé�nis pour la com-
paraison de l'information contenue dans des fonctions de croyance. Ces deux ordres

33
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partiels béné�cient notamment de dé�nitions simples utilisant, respectivement, les
fonctions de poids conjonctifs et disjonctifs.

Ce chapitre couvre également les dérivations de la règle conjonctive prudente et
de la règle disjonctive hardie � deux règles de combinaison proposées récemment
par Den÷ux pour la combinaison de fonctions de croyance non distinctes. Comme
montré dans ce chapitre, la règle conjonctive la moins engagée, par rapport au w-
ordre, est la règle conjonctive prudente. Inversement, la règle disjonctive hardie est
la règle disjonctive la plus engagée, par rapport au v-ordre.
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2.1 Introduction

In the preceding chapter, we have seen that there exist some equivalent representa-
tions of a BBA m. Here, we will introduce two other ones, called the conjunctive
and disjunctive weight functions, which will be important for the rest of this work.
Those functions arise from the so-called conjunctive and disjunctive canonical de-
compositions of a BBA [18, 85]. In essence, these decompositions allow one to
represent a complex belief state as the result of the combination, either by ∩© or
by ∪©, of elementary and distinct states of belief [85]. One may note that, to our
knowledge, it seems that an interest for those functions has been developed only
recently [37, 40, 70, 71, 75], due mainly to the introduction of the cautious rule by
Den÷ux [16, 18], whose derivation is recalled in this chapter.

This chapter is organized as follows. Sections 2.2 and 2.3 present, respectively,
the conjunctive and disjunctive canonical decompositions of a belief functions. Then,
in Section 2.4, two partial orderings for the informational comparison of belief
functions are de�ned based on these decompositions. Finally, Section 2.5 summarizes
the relevant parts of [18] related to the cautious rule and its dual, the bold rule,
which are two combination operators based on the weight functions.

2.2 Conjunctive Weight Function

A simple BBA (SBBA) m such that m (A) = 1−w for some A 6= Ω and m (Ω) = w
can be noted Aw. A categorical BBA can thus be noted A0 for some A 6= Ω and
the vacuous BBA can be noted A1 for any A ⊂ Ω. Let Aw1 and Aw2 be two SBBAs
with the same focal element A 6= Ω. Their combination by ∩© is the SBBA Aw1w2 .

Shafer [77, Chapter 4] named a BBA separable if it can be written as the
combination by Dempster's rule, noted ⊕, of SBBAs. For a separable BBA m,
one has thus:

m =
⊕

∅6=A⊂Ω

Aw(A),

with w (A) ∈ [0, 1] for all A ⊂ Ω, A 6= ∅. This representation is unique if m is
nondogmatic. In [18], Den÷ux extends the concept of separability to subnormal
BBAs by calling a BBA m u-separable if we have

m = ∩©A⊂ΩA
w(A), (2.1)

with w (A) ∈ [0, 1] for all A ⊂ Ω. The decomposition (2.1) is unique if m is
nondogmatic.

In [85], Smets proposed a solution to canonically decompose any nondogmatic
BBA. This decomposition uses the concept of a generalized SBBA (GSBBA) which
is de�ned as a function µ from 2Ω to R by:

µ (A) = 1− w,

µ (Ω) = w,

µ (B) = 0 ∀B ∈ 2Ω\ {A,Ω} ,



36 CHAPTER 2. CONJUNCTIVE AND DISJUNCTIVE CANONICAL DECOMPOSITIONS

for some A 6= Ω and some w ∈ [0,+∞). Extending the SBBA notation, any GSBBA
can be noted Aw. When w ≤ 1, µ is a SBBA. When w > 1, µ is no longer a BBA;
Smets [85] called such a function an inverse SBBA. An interpretation of an inverse
SBBA is proposed in Section 2.2.2.

Smets showed that any nondogmatic BBA can be uniquely represented as the
conjunctive combination of GSBBAs:

m = ∩©A⊂ΩA
w(A),

with w (A) ∈ (0,+∞) for all A ⊂ Ω. The quantities w (A) for each A ⊂ Ω are
obtained as follows:

w (A) =
∏
B⊇A

q (B)(−1)|B|−|A|+1

. (2.2)

The function w : 2Ω\ {Ω} → (0,+∞) is called the conjunctive weight function. It is
another equivalent representation of a nondogmatic BBA m. Based on the remark
that (2.2) can be equivalently written

lnw(A) = −
∑
B⊇A

(−1)|B|−|A| ln q(B), ∀A ⊂ Ω, (2.3)

and since (2.3) is similar to (1.2), one may compute the function w from q using
any procedure for transforming q to m (such as the Fast Möbius Transform [46] or
matrix multiplication [91]).

There exists a convenient analytical formula to compute the weight function as-
sociated to a consonant BBA. Letm be a consonant BBA with associated possibility
distribution π and associated conjunctive weight function w. Let us note πk = π(ωk)
and let us assume that the elements of Ω = {ω1, ..., ωK} have been arranged in
decreasing order of plausibility, i.e., we have 1 ≥ π1 ≥ π2 ≥ ... ≥ πK > πK+1 = 0.
We have [18, Proposition 2] (note that m is nondogmatic since we have assumed
πK > 0):

w(A) =


πk+1

πk
if A = {ω1, ..., ωk} , 1 ≤ k < K,

π1 if A = ∅
1 otherwise.

(2.4)

We may remark that consonant BBAs are u-separable, since they satisfy w(A) ≤ 1
for all A ⊂ Ω, as can easily be seen from (2.4) [18].

The methods described in the two preceding parapraghs are convenient ways to
obtain the conjunctive weight function w associated to a nondogmatic BBA or to a
consonant BBA. Note that the function w is available directly when the BBA m is
built from accumulation of SBBAs, which is often the case in practice. It happens
for instance in the evidential K-nearest neighbor classi�cation rule [12], which will
be summarized in Section 4.6.2.

Let us eventually reproduce a lemma related to the conjunctive weight function,
which will be very useful to get results based on this function.

Lemma 2.1 (Lemma 1 of [18]). Let m be a nondogmatic BBA with conjunctive
weight function w, and let w′ be a mapping from 2Ω\ {Ω} to (0,+∞) such that
w′(A) ≤ w(A) for all A ⊂ Ω. Then w′ is the conjunctive weight function of some
BBA m′.
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2.2.1 Rules as pointwise combination of conjunctive weights

The TBM conjunctive rule and its inverse have simple expressions using the conjunc-
tive weight function. Let m1 and m2 be two nondogmatic BBAs with conjunctive
weight functions w1 and w2. We have:

m1 ∩©2 =
(
∩©A⊂ΩA

w1(A)
)
∩©
(
∩©A⊂ΩA

w2(A)
)

= ∩©A⊂ΩA
w1(A)·w2(A),

and

m1 6∩©2 =
(
∩©A⊂ΩA

w1(A)
)
6∩©
(
∩©A⊂ΩA

w2(A)
)

= ∩©A⊂ΩA
w1(A)/w2(A). (2.5)

Hence we can write with obvious notations:

w1 ∩©2 = w1 · w2,

w1 6∩©2 = w1/w2.

Example 2.1. Let Ω = {a, b, c} be a frame of discernment, and m1 and m2 be
the BBAs with the associated commonality functions q1 and q2 shown in Table 2.1.
Further, let m1 ∩©2 be the BBA computed using (1.4) with associated commonality
function q1 ∩©2. It may be checked that the conjunctive weight function w1 ∩©2 asso-
ciated to m1 ∩©2 and computed from the commonality function q1 ∩©2 using (2.2) is
indeed equal to the pointwise multiplication of the conjunctive weight functions w1

and w2 associated to m1 and m2. We may also remark that

m1 ∩©2 = {b}w1({b})
∩© {a, b}w1({a,b})

∩© {c}w2({c})

∩© {a, c}w2({a,c})
∩© {b, c}w1({b,c})·w2({b,c})

= {b}9/5
∩© {a, b}1/3

∩© {c}9/8
∩© {a, c}2/3

∩© {b, c}2/9 .

In other words, m1 ∩©2 may be represented as the conjunctive combination of three

SBBAs {a, b}1/3 and {a, c}2/3 and {b, c}2/9, and two inverse SBBAs {b}9/5 and

{c}9/8.

2.2.2 Inverse SBBA and latent belief structure

In [85], Smets proposed to interpret an inverse SBBA as representing a state of
belief in which one has some reasons not to believe in A. This interpretation can
be motivated as follows. Suppose that our state of belief is represented by a BBA
m. Let us assume that m has been obtained by combining two SBBAs Aw′

and
Bw, and then we learn that Bw is in fact not supported by evidence and should be
removed from m; in other words we learn that we should give up our beliefs in B
or, equivalently, that we should not believe in B any more. Removing Bw from m
is done by decombining Bw from m:

m 6∩©Bw = m ∩©B1/w, (2.6)
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Table 2.1: Combination of two BBAs using the TBM conjunctive rule.

A m1 q1 m2 q2 m1 ∩©2 q1 ∩©2 w1 ∩©2 w1 w2

∅ 0 1 0 1 0 1 1 1 1
{a} 0 0.6 0 0.75 0.1 0.45 1 1 1
{b} 0 1 0 0.75 0.1 0.75 9/5 9/5 1
{a, b} 0.4 0.6 0 0.5 0.2 0.3 1/3 1/3 1
{c} 0 0.6 0 1 0.1 0.6 9/8 1 9/8
{a, c} 0 0.2 0.25 0.75 0.05 0.15 2/3 1 2/3
{b, c} 0.4 0.6 0.25 0.75 0.35 0.45 2/9 1/3 2/3

Ω 0.2 0.2 0.5 0.5 0.1 0.1

which allows us to interpret the inverse SSBA B1/w as representing a state of belief
in which one has some reasons not to believe in B. The inverse SBBA B1/w can even
be seen as corresponding to a situation where the agent has a �debt of belief� in B
[85], since combining B1/w with Bw yields the vacuous BBA, i.e., some evidence has
to be accumulated before one can start to believe in B.

Using (2.6), an interesting fact about a nondogmatic BBA m can be unveiled
as follows. Let m be a nondogmatic BBA and w its associated conjunctive weight
function. For each conjunctive weight w(A), let us de�ne the following quantities:

wc(A) = 1 ∧ w(A), (2.7)

and

wd(A) = 1 ∧ 1

w(A)
, (2.8)

where ∧ denotes the minimum operator. It is clear that we have:

w(A) =
wc(A)

wd(A)
.

Consequently, we can write

m = ∩©A⊂ΩA
wc(A)/wd(A)

=
(
∩©A⊂ΩA

wc(A)
)
6∩©
(
∩©A⊂ΩA

wd(A)
)

= mc 6∩©md, (2.9)

with mc = ∩©A⊂ΩA
wc(A) and md = ∩©A⊂ΩA

wd(A). Any nondogmatic BBA m can
thus be decomposed into two u-separable BBAs mc and md called, respectively,
the con�dence and di�dence components of m. The pair

(
mc,md

)
was referred

to as a latent belief structure (LBS) by Smets [85], who interpreted the con�dence
component as representing good reasons to believe in various propositions A ⊆ Ω,
and the di�dence component as representing good reasons not to believe in the
same propositions. The proposed interpretation for the di�dence component comes
from the idea, developed above, that removal of beliefs corresponds to giving up
of beliefs, hence to not believing any more. Note that the BBA m is recovered by
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removingmd frommc and is called the apparent belief structure of the LBS
(
mc,md

)
.

In Appendix C, we present some exploratory work that take further this concept
of LBS. In particular, some notions of belief function theory such as combination
rules, informational comparison, and transformation to a probability measure are
extended to LBSs.

2.3 Disjunctive Weight Function

Using a similar reasoning as in Section 2.2, Den÷ux [18] showed that any subnormal
BBA m can be uniquely represented as the disjunctive combination of negative
GSBBAs. A negative GSBBA is the negation of a GSBBA, i.e., a function from 2Ω

to R assigning a mass v ≥ 0 to ∅, a mass 1 − v to A 6= ∅, and a zero mass for all
B ∈ 2Ω\ {A, ∅}; this function is noted Av. For any subnormal BBA m, we have:

m = ∪©A6=∅Av(A),

with v (A) ∈ (0,+∞) for all A 6= ∅. The quantities v (A) for each A 6= ∅ may be
obtained from b using a formula similar to (2.3) as follows

ln v(A) = −
∑
B⊆A

(−1)|A|−|B| ln b(B).

The function v : 2Ω\ {∅} → (0,+∞) is called the disjunctive weight function. This
function is related to the conjunctive weight function w associated to the negation
m of m by the equation:

v(A) = w(A), ∀A 6= ∅.

The TBM disjunctive rule has a simple expression using the disjunctive weight
function. Let m1 and m2 be two subnormal BBAs with disjunctive weight functions
v1 and v2. We have:

m1 ∪©2 = ∪©A6=∅Av1(A)·v2(A),

and, equivalently, v1 ∪©2 = v1v2.
Eventually, we may note that there exists a disjunctive counterpart to the concept

of latent belief structure de�ned in the previous section: it is called a disjunctive
LBS [18] and it is based on the inverse of the ∪© rule, much as the concept of LBS
is based on the inverse of the ∩© rule.

2.4 Informational Comparison Based on the Canon-

ical Decompositions

The idea of decomposing a complex belief state into elementary states of belief
can be taken further. Indeed, as will be explained in this section, the canonical
decompositions o�er a new way to look at the informational comparison of belief
functions, which result in the de�nitions of two new partial orderings based on the
two equivalent representations w and v of a BBA m introduced in this chapter.
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2.4.1 The w-ordering

In Section 1.3.2, the partial orderings vx, with x ∈ {s, q, pl, I}, were de�ned. All
these partial orderings seem equally well justi�ed and reasonable. Hence, in the
absence of any de�nite argument to eliminate any of them, the choice of a particular
partial ordering for a given problem may be delicate. Nonetheless, we may identify
situations that make this choice simpler, due to the equivalence between some
partial orderings; for instance, we have seen in Section 1.3.2 that the orderings
vx, with x ∈ {s, q, pl}, become equivalent in the case of consonant BBAs. One
may wonder whether there exist situations where all the partial orderings vx,
with x ∈ {s, q, pl, I}, become equivalent. This is interesting since the question
of the appropriate ordering to be used among these four becomes then irrelevant
and, in that sense, the informational comparison becomes �unquestionable�. In
the remainder of this section, such situations are described and used to propose a
de�nition for the informational comparison of generalized SBBAs. This de�nition
is then used to explain the behavior of the so-called w-ordering introduced in [18].

Informational comparison of SBBAs

Let us �rst consider the informational comparison of two SBBAs Aw and Aw′
, i.e.,

two SBBAs focused on the same subset. In this context, the following proposition
holds.

Proposition 2.1. We have, for all A ⊂ Ω and all w,w′ ∈ (0, 1]:

w ≤ w′ ⇔ Aw vx A
w′
, ∀x ∈ {s, pl, q, I} . (2.10)

Proof. Let q and q′ denote the commonality functions associated, respectively, to
Aw and Aw′

. We have

q(B) =

{
1 if B ⊆ A,
w otherwise,

(2.11)

q′(B) =

{
1 if B ⊆ A,
w′ otherwise.

(2.12)

Let us show that w ≤ w′ ⇒ Aw vx A
w′

holds for all x ∈ {s, pl, q, I}. From (2.11)
and (2.12), we have q(A) ≤ q′(A),∀A ⊆ Ω if w ≤ w′. Hence, w ≤ w′ ⇒ Aw vq A

w′
.

From this latter implication and (1.13), we further obtain w ≤ w′ ⇒ Aw vI A
w′
.

Since Aw and Aw′
are consonant BBAs, we also have w ≤ w′ ⇒ Aw vx A

w′
, with

x ∈ {s, pl}, due to the equivalence between the partial orderings vs,vpl and vq in
case of consonant BBAs.

Let us now show that Aw vx A
w′ ⇒ w ≤ w′ holds for all x ∈ {s, pl, q, I}. It

may easily be seen from (2.11) and (2.12) that Aw vq A
w′
, i.e., q(A) ≤ q′(A) for all

A ⊆ Ω, implies w ≤ w′. Since Aw and Aw′
are consonant BBAs, Aw vs A

w′
and
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Aw vpl A
w′

imply Aw vq A
w′

and thus imply w ≤ w′. Eventually, we have

Aw vI Aw′

log(
∏
A⊆Ω

q(A)) ≤ log(
∏
A⊆Ω

q′(A))

wn ≤ w′n (2.13)

with n the number of sets B ⊆ Ω such that B 6⊆ A. From (2.13), one obtains
w ≤ w′, which completes the proof.

The consequences of Proposition 2.1 are twofold. First, this proposition shows
that all the partial orderings become equivalent when comparing SBBAs focused on
the same subset. Hence, in this particular setting, one does not need to specify a
particular partial ordering and we may simply say that a SBBA is more committed
(instead of x-more committed) or, equivalently, more �informed� [34] than another
SBBA. Second, the equivalence in (2.10) means that, if we consider two SBBAs
focused on the same subset A ⊂ Ω, it is equivalent to say that Aw is more informed
than Aw′

or that w ≤ w′.

Informational comparison of inverse SBBAs

Let us now discuss the case of inverse SBBAs. For that, we need the following
proposition.

Proposition 2.2. We have, for all A ⊂ Ω and all w,w′ ∈ [1,+∞):

w ≤ w′ ⇔ A1/w′
∩©Aw vx A

1/w′
∩©Aw′

, ∀x ∈ {s, pl, q, I} . (2.14)

Proof. Equation (2.14) can be written

w ≤ w′ ⇔ Aw/w′ vx A
1 = mΩ, ∀x ∈ {s, pl, q, I} , (2.15)

or, equivalently,
x ≤ 1 ⇔ Ax vx mΩ, ∀x ∈ {s, pl, q, I} . (2.16)

with x = w/w′. One can easily show that (2.16) holds using Proposition 2.1.

This proposition allows us to motivate a de�nition of the informational compar-
ison of inverse SBBAs as follows.

Suppose the agent is in a belief state represented by the SBBA A1/w′
, with

w′ ∈ [1,+∞), and that she receives a new piece of information represented by
the inverse SBBA Aw, with w ∈ [1,+∞). Suppose further that after adding Aw

to A1/w′
, the agent is in a state of belief that is at least as x-committed, with

x ∈ {s, q, pl, I}, as if she had added Aw′
. This means that the inverse SBBA

Aw must clearly represent at least as much information as the inverse SBBA Aw′
.

Proposition 2.2 then basically shows that it is equivalent to say an inverse SBBA
Aw is at least as informed as an inverse BBA Aw′

or that w ≤ w′.
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Informational comparison of SBBAs with inverse SBBAs

Proposition 2.3 unveils another situation where the partial orderings vx, with x ∈
{s, q, pl, I}, become equivalent.

Proposition 2.3. We have, for all A ⊂ Ω and all w ∈ (0, 1], w′ ∈ [1,+∞):

A1/w′
∩©Aw vx A

1/w′
∩©Aw′

, ∀x ∈ {s, pl, q, I} . (2.17)

Proof. Equation (2.17) can be written

Aw/w′ vx A
1 = mΩ, ∀x ∈ {s, pl, q, I} . (2.18)

As w/w′ ≤ 1, Aw/w′
is a SBBA. Since the vacuous BBA mΩ is the unique greatest

for partial orderings vx, with x ∈ {s, q, pl, I}, Equation (2.18) holds.

From this latter proposition and using a similar reasoning to the one developed
in the previous paragraph, one gets to the conclusion that a SBBA Aw must be at
least as committed as an inverse SBBA Aw′

.

Informational comparison based on the conjunctive canonical decompo-
sition

Based on the three preceding paragraphs, the informational comparison of two
simple items of evidence supporting the same subset A of the frame of discernment
and represented by two generalized SBBA Aw and Aw′

, with w,w′ ∈ (0,+∞), may
be reasonably de�ned as follows: Aw is said to be at least as informed as Aw′

i�
w ≤ w′.

Equipped with this de�nition of the information content of simple items of
evidence, it becomes possible, using the conjunctive canonical decomposition, to
informationally compare BBAs according to the information content of their under-
lying simple items of evidence. In particular, consider the situation where we have
two nondogmatic BBAsm1 andm2 such that each simple item of evidence underlying
m1 is at least as committed as the corresponding item of evidence underlying m2.
In this situation, it is clear that m1 must be at least as committed as m2, hence the
following de�nition.

De�nition 2.1 (w-ordering [18]). Given two nondogmatic BBAs m1 and m2, m1 is
said to be w-more committed than m2 i� w1(A) ≤ w2(A), for all A ⊂ Ω.

When m1 is w-more committed than m2, we write m1 vw m2. We present below
properties of this new partial ordering.

In [18], Den÷ux proves that the w-ordering is stronger than the s-ordering.
Hence, we have, for any two nondogmatic BBAs m1 and m2:

m1 vw m2 ⇒ m1 vs m2 ⇒
{
m1 vpl m2

m1 vq m2 ⇒ m1 vI m2,
(2.19)

where all implications are strict.
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The relation vw may be seen as generalizing set inclusion [18, Proposition 3],
much as x-orderings with x ∈ {s, q, pl} do. Furthermore, letting Mnd be the set of
nondogmatic BBAs, (Mnd, ∩©,vw) is a partially ordered commutative monoid, i.e.,
for all m1, m2 and m3, m1 vw m2 implies m1 ∩©m3 vw m2 ∩©m3.

In contrast to the partial orderings vx, with x ∈ {s, q, pl, I}, the vacuous BBA
mΩ (with conjunctive weight function wΩ(A) = 1, for all A ⊂ Ω) is only a maximal
element of the vw relation, i.e., we have mΩ vw m⇒ m = mΩ, for all nondogmatic
BBA m. All u-separable BBAs are w-less committed than mΩ, whereas non u-
separable BBAs are not comparable with mΩ according to the w-ordering. As can
be seen from (2.19), this ordering is also stronger than all the other orderings; a
behavior that one might expect as this ordering, by looking into the entrails of a
belief function, seems much more demanding than the other ones. The w-ordering
is still stronger than the classical ones in the case of consonant BBAs, i.e., the
possibilistic ordering does not imply the w-ordering in the case of consonant BBAs,
a startling fact at �rst sight. However, the lack of recovery of the possibilistic
ordering should not hurt our intuition, because one should remember that the w-
ordering is meaningful only for comparing BBAs in terms of underlying pieces of
information. Keeping that in mind, we may remark that the w-ordering has actually
an interesting behavior when comparing consonant BBAs. Indeed, let m1 and m2

be two consonant and nondogmatic BBAs such that m2 vpl m1. Then, in order to
have m2 vw m1 in this particular setting of consonant BBAs, we must also have
Aw2(A) vpl A

w1(A) for all A ⊂ Ω, i.e., in order to have m2 vw m1, the BBA m2 must
not only be more pl-speci�c than m1 but its underlying SBBAs must also be more
pl-speci�c than those of m1.

2.4.2 The v-ordering

Using a symmetrical reasoning to the one of Section 2.4.1, another partial ordering,
which is the disjunctive counterpart of vw, can be de�ned. This ordering, called the
v-ordering, is based on the disjunctive weight function. It is de�ned as follows [18]:
given two subnormal BBAs m1 and m2, m1 vv m2 i� v1 (A) ≥ v2 (A) for all A 6= ∅.
LetMs be the set of subnormal BBAs. We can note that (Ms, ∪©,vv) is a partially
ordered commutative monoid, with m∅ as neutral element. Furthermore, we have,
for any two subnormal BBAs m1 and m2 (cf. Section 4.2 of [18]):

m1 vv m2 ⇒ m1 vs m2 ⇒
{
m1 vpl m2

m1 vq m2 ⇒ m1 vI m2,
(2.20)

where all implications are strict.

In the following section, we will review how the vw and vv orderings can be
used to derive two rules of combination.
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2.5 Two Idempotent Rules Based on the Weight

Functions

We have seen that the TBM conjunctive and TBM disjunctive rules are based on
pointwise combination of conjunctive and disjunctive weights, respectively, using the
product. Recently, Den÷ux [18] proposed two other rules, called the cautious and
bold rules of combination, which are based on pointwise combination of conjunctive
and disjunctive weights, respectively, using the minimum. This section summarizes
necessary material on those two rules.

2.5.1 The cautious rule of combination

The TBM conjunctive rule is justi�ed only when it is safe to assume that the items
of evidence combined are distinct or, in other words, that the information sources
are independent. When this assumption does not hold, an alternative consists in
adopting a cautious, or conservative, attitude to the merging of belief functions by
applying the LCP [18, 21, 32]. Let us now recall the building blocks of the cautious
merging of belief functions.

As remarked in [26], it is possible to think of vx as generalizing set inclusion.
This reasoning can be used to see conjunctive combination rules as generalizing
set intersection. Let us consider the following situation. Suppose two sources of
information that are assumed to tell the truth. One states that ω is in A ⊆ Ω,
whereas the other states that it is in B ⊆ Ω. It is then certain that ω is in C such
that C ⊆ A and C ⊆ B. The largest subset C satisfying those constraints is A∩B.
Now, suppose that the two sources of information provide the BBAs m1 and m2.
Upon receiving those two pieces of information, the agent's state of belief should be
represented by a BBA m12 more informative than m1 and m2. Let Sx (m) be the
set of BBAs m′ such that m′ vx m, with x ∈ {v, w, s, q, pl, I}. Hence m12 ∈ Sx (m1)
and m12 ∈ Sx (m2), or equivalently m12 ∈ Sx (m1)∩Sx (m2). According to the LCP,
the x-least committed BBA should be chosen in Sx (m1) ∩ Sx (m2). This de�nes a
conjunctive combination rule if the x-least committed BBA exists and is unique.
Choosing the w-ordering yields an interesting solution [18, Proposition 4] which
Den÷ux uses to de�ne the so-called cautious rule of combination.

De�nition 2.2 (De�nition 1 of [18]). Let m1 and m2 be two nondogmatic BBAs,
and let m1 ∧©2 = m1 ∧©m2 denote the result of their combination by the cautious rule.
The BBA m1 ∧©2 has the following conjunctive weight function:

w1 ∧©2(A) = w1(A) ∧ w2(A), ∀A ⊂ Ω.

We thus have:

m1 ∧©2 = ∩©A⊂ΩA
w1(A)∧w2(A).

The cautious rule is commutative, associative, idempotent and monotonic with
respect to vw. This last property means that if a BBA m1 is less informative
than a BBA m2 according to the vw ordering, then this order is unchanged after
combination by ∧© with a third BBA.
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As we have seen, any non dogmatic BBA m can be decomposed into two u-
separable BBAs mc and md, called the con�dence and di�dence components of m.
Letm1 andm2 be two nondogmatic BBAs. Proposition 6 of [18] gives the expression
of the con�dence and di�dence components of m1 ∧©2:

mc
1 ∧©2 = ∩©A⊂ΩA

wc
1(A)∧wc

2(A),

md
1 ∧©2 = ∩©A⊂ΩA

wd
1(A)∨wd

2(A),

where ∨ denotes the maximum. Using this decomposition it is clear that we have
[18, Proposition 7]:

m ∧©mΩ = mc,

which means that the vacuous BBA is not a neutral element for the cautious rule. For
any nondogmatic BBA m, we have m ∧©mΩ = m i� m is u-separable [18, Proposition
8]. Furthermore, the cautious conjunctive rule has no neutral element, since the only
BBAm0 such thatm ∧©m0 = m for any u-separable BBAm is the vacuous BBA, and
this property is not satis�ed for non u-separable BBAs [18]. Hence, (Mnd, ∧©,vw)
is not a monoid but a partially ordered commutative semigroup.

Another property veri�ed by the cautious rule is the following:

m1 ∩©(m2 ∧©m3) = (m1 ∩©m2) ∧©(m1 ∩©m3),

for all nondogmatic BBAs m1,m2 and m3. This last property is called distributivity
of ∩© with respect to ∧©. Interpretations of all of these properties are proposed in
[18]. Of interest for Chapter 4 of this report is the fact that these properties are
due to similar properties of the minimum on (0,+∞], much as the properties of the
TBM conjunctive rule may be seen as consequences of the properties of the product
on (0,+∞].

To conclude this presentation of the cautious rule, we may remark that selecting
the vw ordering in its de�nition imposes a severe restriction on the search space
for choosing the combined BBA [18], which has a consequence on its �cautiousness�.
Indeed, let X12 denote the set Sx (m1) ∩ Sx (m2), with x ∈ {w, s, pl, q, I}. Then,
the cautious rule chooses the least committed element in the set W12, and in this
respect it may be termed �cautious�. However, due to (2.19), we have

W12 ⊆ S12 ⊆ PL12 (2.21)

and
W12 ⊆ S12 ⊆ Q12 ⊆ I12. (2.22)

As can be seen with (2.21) and (2.22), W12 is the smallest possible set to search
for the combined BBA. As a consequence, one may �nd outside ofW12 a BBA that is
x-less committed, with x ∈ {w, s, pl, q, I}, than m1 ∧©m2. In particular, when either
m1 or m2 is not an u-separable BBA, then m1 ∩©2 is not in W12, and it is possible to
choose two BBAs m1 and m2 such that m1 ∧©2 vx m1 ∩©2 with x ∈ {w, s, q, pl, I} (cf
[18, Example 3]), which shows that the cautious rule is not really more �cautious�
than the TBM conjunctive rule [18]. As remarked in [18], �these two rules actually
belong to two di�erent families of rules with distinct algebraic properties, and as
such they cannot easily be compared�. More information on those two di�erent
families are provided in Chapter 4.
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2.5.2 The bold rule of combination

We have seen that the cautious rule of combination extends set intersection, and
that it supposes the sources of information to tell the truth. Let us now consider
another situation. Suppose we get two sources of information and that it is known
that at least one of the two sources tells the truth, but we do not know which one.
One of them states that ω is in A ⊆ Ω, whereas the other one states that it is in
B ⊆ Ω. The smallest set containing both A and B is A ∪ B. This reasoning is
used in [18] to derive a disjunctive merging of belief functions based on the LCP,
which can be summarized as follows. Suppose we get two sources of information
that provide two BBAs m1 and m2, and that at least one of the sources tells the
truth but it is not known which one. Then, the BBA m12 resulting from the merging
of m1 and m2 should be the x-most committed BBA amongst the BBAs which are
x-less committed than m1 and m2, with x ∈ {v, w, s, pl, q, I} [18]. Den÷ux showed
that using the v-ordering yields an interesting solution [18, Proposition 13], from
which he de�ned the so-called bold rule of combination.

De�nition 2.3 (De�nition 2 of [18]). Let m1 and m2 be two subnormal BBAs, and
let m1 ∨©2 = m1 ∨©m2 denote the result of their combination by the bold rule. The
disjunctive weight function of the BBA m1 ∨©2 is:

v1 ∨©2(A) = v1(A) ∧ v2(A), ∀A 6= ∅.

We thus have:

m1 ∨©2 = ∪©A6=∅Av1(A)∧v2(A).

The bold rule has similar properties as the cautious rule since they are both
based on the minimum; in particular (Ms, ∨©,vv) is a partially ordered commutative
semigroup with no neutral element. Furthermore, the cautious and bold rules are
related by De Morgan's laws [18]:

m1 ∨©m2 = m1 ∧©m2, (2.23)

m1 ∧©m2 = m1 ∨©m2. (2.24)

2.6 Conclusion

In this chapter, two equivalent representations of a belief function have been in-
troduced. They are called the conjunctive and disjunctive weight functions and
stem, respectively, from the conjunctive and disjunctive canonical decompositions
of a belief function. Those decompositions allow one to see a complex belief state
as originating from the combination and decombination of simple BBAs, which
represent the simplest form of evidence.

Building on the semantics of those decompositions, two other partial orderings for
belief functions were proposed and their properties investigated. Those two orderings
were then used to derive two idempotent combination rules for belief functions, called
the cautious rule and the bold rule.
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Those last two rules have a simple expression based on the conjunctive and
disjunctive weight functions, much as the TBM conjunctive and TBM disjunctive
rules do. It thus appears interesting to study combinations rules based on these
rarely exploited functions. A major di�erence between those two pairs of rules is
that the cautious and bold rules do not have a neutral element. This may be seen as
a drawback of these rules, as having a neutral element for a conjunctive or disjunctive
operator is generally a required property. The next chapter will shed some light on
combination rules based on weight functions and that have a neutral element.
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Chapter 3

A New Justi�cation of the TBM

Conjunctive Rule

Summary

The TBM conjunctive rule and the cautious conjunctive rule can both be expressed
using the conjunctive weight function. It seems thus interesting to study rules based
on this function. The fundamental di�erence between the TBM conjunctive rule and
the cautious conjunctive rule is that the vacuous belief funtion is a neutral element
for the former, whereas it is not for the latter. However, this property may be
regarded as desirable for a conjunctive operator, as the vacuous belief function
represents total ignorance. In this chapter, the rules based on the conjunctive
weight function and that admit the vacuous belief function as neutral element,
are characterized. In particular, it is shown that, among those rules, the TBM
conjunctive rule is the least committed one. This can be seen as a new formal
justi�cation of the TBM conjunctive rule as a rule that respects a central principle
of the TBM. A counterpart to this result is also obtained for the TBM disjunctive
rule. This new justi�cation of the TBM conjunctive rule is put into perspective by
comparing it to the previously proposed justi�cations in the literature.

Résumé

La règle conjonctive du MCT et la règle conjonctive prudente peuvent toutes les
deux être exprimées avec la fonction de poids conjonctifs. Il semble donc intéressant
d'étudier les règles de combinaison basées sur cette fonction. La di�érence fonda-
mentale entre la règle conjonctive du MCT et la règle conjonctive prudente est que
la fonction de croyance vide est un élément neutre pour la première, alors que cela
n'est pas le cas pour la seconde. Cependant, cette propriété peut être considérée
comme souhaitable pour un opérateur conjonctif, car la fonction de croyance vide
représente l'ignorance totale. Dans ce chapitre, les règles de combinaison basées sur
la fonction de poids conjonctifs et qui ont pour élément neutre la fonction de croyance
vide, sont caractérisées. En particulier, nous montrons que, parmi ces règles, la règle
conjonctive du MCT est la moins engagée. Ceci peut être vu comme une nouvelle
justi�cation formelle de cette règle comme respectant un principe central du MCT.
Une justi�cation similaire est également proposée dans ce chapitre pour la règle
disjonctive du MCT. De plus, cette nouvelle justi�cation de la règle conjonctive
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du MCT est mise en perspective avec les autres justi�cations trouvées dans la
littérature.
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3.1 Introduction

The most often used combination rule in the TBM is the TBM conjunctive rule. This
is due to its intuitive appeal and to its numerous justi�cations [25, 42, 47, 48, 82]1.
It seems indeed reasonable to favor a principled rule over �ad hoc� ones [95], hence
the necessity for such justi�cations. In this chapter, yet another justi�cation is
proposed, following a completely di�erent approach to the existing ones.

This chapter is organized as follows. The previous justi�cations are reviewed
in Section 3.2. A new justi�cation is proposed in Section 3.3. In Section 3.4, a
counterpart to this justi�cation is provided for the TBM disjunctive rule. Eventually,
our justi�cation of the TBM conjunctive rule is compared to the existing ones in
Section 3.5.

The work presented in this chapter was published in [64].

3.2 Previous Justi�cations

This section is devoted to a summary of the various axiomatic derivations of the
TBM conjunctive rule that have been proposed in the literature.

Formally, the problem of axiomatically justifying the TBM conjunctive rule may
be formulated as follows. Let m1 and m2 be two BBAs de�ned on a frame of
discernment Ω and provided, respectively, by the sources of information S1 and S2.
Let m1⊗2 = m1 ⊗ m2 denote the result of their combination, where ⊗ symbolizes
the combination operator. One must show that m1⊗2 = m1 ∩©2 holds when the
combination satis�es a given set of axioms.

3.2.1 Dubois and Prade's justi�cation

In [25], Dubois and Prade study conjunctive rules of the form

(m1 ⊗m2)(A) =
∑

B∩C=A

m1(B)�m2(C), ∀A ⊆ Ω, (3.1)

where � is a binary operator on [0, 1]. They show that m1⊗2 is a BBA, i.e.,∑
A⊆Ωm1⊗2 (A) = 1, if and only if the binary operator � is the product. They

conclude that there is only one possible conjunctive rule in the theory of belief
functions, provided that the combination is asked to satisfy the algebraic property
given by Equation (3.1).

1Although those justi�cations use loosely the expression �Dempster's rule�, one should note
that they actually prove the unicity of the unnormalized version of Dempster's rule. Furthermore,
they are not based on probability concepts, hence they can readily be used to justify the TBM
conjunctive rule as already remarked by Smets [97, 95].
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3.2.2 Smets' justi�cation and related justi�cations

Smets' justi�cation

In [82], Smets shows that we have m1 ⊗ m2 = m1 ∩©m2 if ⊗ satis�es the following
eight axioms2:

S1: (bel1 ⊗ bel2)(A) is a function of m1, m2 and A only.

S2: ⊗ is commutative.

S3: ⊗ is associative.

S4: If m2(B) = 1, ⊗ amounts to the conditioning operation (1.7), i.e., m1⊗m2 =
m1[B].

S5: ⊗ is invariant with respect to a permutation of the elements of Ω (property
called internal symmetry in [82]).

S6: For all A 6= Ω, (m1 ⊗ m2)(A) does not depend on m1(B), for all B ⊂ Ā
(autofunctionality property [82]).

S7: There are at least three elements in Ω.

S8: Let mA be a categorical BBA such that mA(A) = 1 and let mε
2 be a simple

BBA de�ned by mε
2(A) = 1−ε,mε

2(Ω) = ε. ⊗ satis�es the following continuity
property, for any BBA m1:

∀B ⊆ Ω, lim
ε→0

(m1 ⊗mε
2)(B) = (m1 ⊗mA)(B).

Axiom S1 is essentially a formulation of the idea of distinctness [82]. Axioms
S2 and S3 mean that the result of the combination is independent of the order in
which the pieces of evidence are processed. Axiom S4 dictates the behavior of the
combination when a given hypothesis B has been ascertained: any mass given to
C ⊆ Ω is transferred to C ∩B. Axiom S5 means that the result of the combination
must not be modi�ed by a permutation of the elements of Ω. Axiom S6 expresses
the idea that the mass given to A after combination is independent of the masses
given by m1 and m2 to the subsets B ⊆ Ω, which are included in Ā. Eventually,
axioms S7 and S8 were added by Smets for technical reasons.

Klawonn and Schwecke's justi�cation

The six axioms found in [47] are for the most part quite similar to the ones of Smets
[82], as already remarked by Bloch [6]. The notable di�erences are that there are no
counterparts to S7 and S8 in [47] and that Klawonn and Schwecke [47] use relations
between frames of discernment whereas Smets [82] only works in a single frame of
discernment. Eventually, we may note that Klawonn and Schwecke argue that their
proof is simpler than the one of Smets.

2The formulation of Smets' axioms used here is the one of [6].
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Hájek's justi�cation

In [42], Hájek revisits Smets' justi�cation [82]. Hájek's major contribution is to
show that some of Smets' axioms are redundant and that one can derive the TBM
conjunctive rule merely from axioms S1, S2, S4 and S5 (S5 is actually slightly
modi�ed in [42]) or from axioms S1, S2, S3, S4, S6 and S7.

3.2.3 Klawonn and Smets' justi�cation

The justi�cation of Klawonn and Smets [48] may be summarized as follows3.
Let m1 and m2 be two BBAs. Let ⊗ be an operator such that:

m1 ⊗m2 = S1 ·m2,

and

m1 ⊗m2 = S2 ·m1,

where S1 and S2 are specialization matrices. If it is required that the following
properties be satis�ed

• Distinctness: S1 does not depend on m2 and S2 does not depend on m1,

• Generalization of conditioning: m1 ⊗ m2 = m[B], when m2 is a categorical
BBA focused on some subset B ⊆ Ω,

• Commutativity: m1 ⊗m2 = m2 ⊗m1,

then m1 ⊗m2 = m1 ∩©m2.
This justi�cation means that the TBM conjunctive rule follows from the notions

of commutativity, distinctness, specialization and conditioning (conditioning can
itself be derived from the specialization concept and the LCP [48]). It may be
compared to Hájek's justi�cation. Indeed, the commutativity, distinctness, and
conditioning axioms are shared by these two justi�cations. They thus di�er on
only one point: one postulates that the combination must result in a specialization,
whereas the other requires axiom S5 to be satis�ed. Arguably, the specialization
requirement seems more defendable.

3.3 New Justi�cation of the TBM Conjunctive Rule

In Part I of this thesis, it was explained that two important rules, the cautious rule
and the TBM conjunctive rule, share a remarkable property: they are based on
pointwise combination of conjunctive weights using a binary operator on (0,+∞]
(respectively, the minimum and the product). It is thus interesting to study rules
based on pointwise combination of conjunctive weights using a binary operator on
(0,+∞] (such rules will be hereafter referred to as w-based).

3The formulation of Klawonn and Smets' justi�cation used here is the one of [19].
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The fundamental di�erence between the TBM conjunctive rule and the cautious
rule is that the vacuous BBA is a neutral element for the former, whereas it is not
for the latter. However, this property may be regarded as desirable in the context
of conjunctive mergings, as the vacuous BBA represents total ignorance. In the
remainder of this section, we characterize the w-based rules that admit the vacuous
BBA as neutral element. A new justi�cation of the TBM conjunctive rule will
immediately follow from this characterization.

It is clear that a w-based rule based on a binary operator on (0,+∞], has the
vacuous BBA as neutral element if and only if 1 is a neutral element of the binary
operator. We may remark that the product on (0,+∞] satis�es this property,
whereas the minimum on (0,+∞] does not, hence the di�erence between the TBM
conjunctive rule and the cautious rule.

As will be shown by Proposition 3.1 and Theorem 3.1 below, a binary operator
must satisfy another property in order to obtain a w-based rule that has the vacuous
BBA as neutral element. We may already note that this property is essential since
it is the one that will lead to the justi�cation of the TBM conjunctive rule.

Proposition 3.1. Let ◦ be a binary operator on (0,+∞] such that 1 ◦x = x ◦ 1 = x
for all x ∈ (0,+∞) and x◦y ≤ xy for all x, y ∈ (0,+∞). Then, for any conjunctive
weight functions w1 and w2, the function w1◦2 de�ned by:

w1◦2(A) = w1(A) ◦ w2(A), ∀A ⊂ Ω,

is a conjunctive weight function associated to some nondogmatic BBA m1◦2.

Proof. We have

w1◦2(A) ≤ w1 ∩©2(A), ∀A ⊂ Ω.

From Lemma 2.1, w1◦2 is a conjunctive weight function since w1 ∩©2 is a conjunctive
weight function.

Proposition 3.1 has shown that if a binary operator is below the product and
has 1 as neutral element, then it can be used to de�ne a w-based rule that has the
vacuous BBA as neutral element. One may wonder if the constraint of being below
the product can be relaxed. The answer is negative, as shown by the following
theorem.

Theorem 3.1. Let ◦ be a binary operator on (0,+∞] such that

• 1 ◦ x = x ◦ 1 = x for all x ∈ (0,+∞) and

• x ◦ y > xy for some x, y ∈ (0,+∞).

Then, there exist two nondogmatic BBAs m1 and m2 on a frame Ω such that
the function obtained by pointwise combination using ◦ of the conjunctive weight
functions associated to m1 and m2 is not a conjunctive weight function.

Proof. See Appendix E.1.
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We may illustrate this theorem with an example.

Example 3.1. Let us combine the conjunctive weight functions w1 and w2 of Ex-
ample 2.1 using a binary operator ◦ having 1 as neutral element and such that
1
3
◦ 2

3
> 1

3
· 2

3
, e.g., 1

3
◦ 2

3
= 1

3
· 2

3
+ 0.01. We denote the function resulting from

this combination by w1 ◦ w2 = w1◦2. Then, the function w1◦2 is equal to w1 ∩©2 for
all A ∈ 2Ω\ {Ω, {b, c}} and we have w1◦2({b, c}) = w1 ∩©2({b, c}) + 0.01. Setting
m1◦2 = ∩©A⊂ΩA

w1◦2(A), we �nd that m1◦2(∅) = −0.0035 < 0, hence m1◦2 is not a
BBA.

The immediate corollary of this theorem constitutes the central result of this
chapter.

Corollary 3.1. The TBM conjunctive rule ∩© is the x-least committed rule, with
x ∈ {w, s, pl, q, I}, among the w-based rules that have the vacuous BBA mΩ as
neutral element.

Proof. From Theorem 3.1 and Proposition 3.1, it is clear that any w-based rule that
has the vacuous BBA as neutral element is based on a binary operator ◦ on (0,+∞]
with 1 as neutral element and such that x ◦ y ≤ xy for all x, y ∈ (0,+∞). For all
nondogmatic BBAs m1 and m2, we thus have

w1(A) ◦ w2(A) ≤ w1 ∩©2(A), ∀A ⊂ Ω.

Consequently, the rule based on ◦ is at least as w-committed as the rule ∩©. The
corollary follows then directly from (2.19).

According to this corollary, the TBM conjunctive rule thus respects a central
principle of the TBM: the least commitment principle, under the two requirements
of being based on pointwise combination of conjunctive weights and having the
vacuous BBA as neutral element. Corollary 1 further implies that it is the only rule
satisfying these properties. We thus have provided a new formal justi�cation of the
TBM conjunctive rule.

In Section 3.5, this justi�cation will be compared to the other ones proposed in
the literature. Before that, we will �rst state a corresponding result for the TBM
disjunctive rule, which is a consequence of the duality between these two rules.

3.4 The Disjunctive Case

The TBM disjunctive rule of combination can be justi�ed using a `disjunctive
version' of Dubois and Prade's justi�cation of the TBM conjunctive rule recalled
in Section 3.2.1: if it required that the combination be disjunctive then the mass
m(B,C) is assigned to the union B ∪C, and the TBM disjunctive rule is recovered.
There exists also a disjunctive version of Klawonn and Smets' justi�cation: it is
based on the concepts of generalization and deconditioning, which are duals of the
specialization and conditioning concepts. In this section, we provide a disjunctive
version of the justi�cation of the TBM conjunctive rule proposed in the preceding
section.
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The bold and TBM disjunctive rules are based on pointwise combination of
disjunctive weights using a binary operator on (0,+∞] (respectively, the minimum
and the product). The di�erence between these two rules is that the or-vacuous
BBA m∅ is a neutral element for the TBM disjunctive rule, whereas it is not for
the bold rule. This property is important in the context of a disjunctive merging.
Indeed, it is a direct consequence of generalizing set union, as is the use of the
principle of maximal commitment (instead of the LCP). The study of rules based
on pointwise combination of disjunctive weights (v-based rules for short) and which
admit the or-vacuous BBA as neutral element leads to the following conclusion.

Corollary 3.2. The TBM disjunctive rule ∪© is the x-most committed rule, with
x ∈ {v, s, pl, q, I} among the v-based rules that have the or-vacuous BBA m∅ as
neutral element.

Proof. Let ◦ be a binary operator on (0,+∞] having 1 as neutral element. Let v1

and v2 be the disjunctive weight functions associated to two subnormal BBAs m1

and m2. Let w1 and w2 be the conjunctive weight functions associated to m1 and
m2. We have:

∪©A6=∅Av1(A)◦v2(A) = ∩©A6=∅Av1(A)◦v2(A)

= ∩©A6=∅Ā
w1(Ā)◦w2(Ā)

= ∩©A⊂ΩA
w1(A)◦w2(A) (3.2)

From Theorem 3.1 and Lemma 2.1, (3.2) is guaranteed to be a BBA i� ◦ is such
that x ◦ y ≤ xy. For any operator ◦ on (0,+∞] having 1 as neutral element and
such that x ◦ y ≤ xy for all x, y ∈ (0,+∞), we have

v1 (A) ◦ v2 (A) ≤ v1 ∪©2 (A) , ∀A 6= ∅.

Consequently, the disjunctive rule based on ◦ is at most as v-committed as the rule
∪©. The corollary follows then directly from (2.20).

This corollary shows that the TBM disjunctive rule respects the principle of
maximal commitment, which is the one to be followed in the context of disjunctive
merging. It may thus be seen as a new justi�cation for the TBM disjunctive rule.

3.5 Discussion

The justi�cation of the TBM conjunctive rule proposed in this chapter as well as
the ones proposed in [25, 42, 47, 48, 82] completely �t the TBM since they are
obtained without introducing any underlying probability concepts. However, it is
interesting to remark that our approach is completely di�erent from the other ones.
Indeed, the main properties required of the combination operator in the justi�cations
presented in [42, 47, 48, 82] are: commutativity, distinctness and generalization of
the conditioning operation. The justi�cation of Dubois and Prade [25] is based on
the requirement that the combination should satisfy a particular algebraic property.
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In comparison, our justi�cation is based on two other requirements: the combi-
nation should be w-based and it should have the vacuous BBA as neutral element.
Whereas the latter requirement is intuitively appealing, the former may seem more
di�cult to interpret. However, some justi�cation may be found in the meaning of the
canonical decomposition of a belief function, which breaks down a belief function into
elementary pieces of evidence pertaining to single propositions. It may be argued
that the combination of two belief functions should be performed by considering
in turn each proposition and combining the two elementary pieces of evidence
pertaining to it, which leads to the w-based requirement. As a further motivation
for introducing this requirement, we may notice that w-based combinations o�er a
rarely considered, yet promising outlook on the combination of belief functions, as
demonstrated by the recent introduction of the cautious rule.

In summary, all those justi�cations seem reasonable and have their merits, even
though the requirements on which they are based can always be subject to discussion.
Globally, however, there seems to be a convergence of arguments in favor of the TBM
conjunctive rule, even if other rules may be valuable in some situations as explained
in the introduction of this thesis. As a matter of fact, the next chapter will reveal
the existence of in�nite families of combination rules in which the TBM conjunctive
rule and the cautious rule are particular members.





Chapter 4

Four In�nite Families of

Combination Rules

Summary

This chapter continues the study of rules based on weight functions. It is shown
that the cautious conjunctive rule and the TBM conjunctive rule are particular
members of two di�erent families of conjunctive rules. More precisely, the cautious
conjunctive rule is the least committed element of an in�nite family of conjunctive
rules based on extended triangular norms, whereas the TBM conjunctive rule is
the least committed element of an in�nite family of conjunctive rules based on
extended uninorms. Similar results are obtained for the TBM disjunctive rule and
the bold disjunctive rule. The introduction of those in�nite families of conjunctive
and disjunctive rules sheds some new light on the fundamentally di�erent behaviors
of the cautious conjunctive rule and the TBM conjunctive rule, as well as the bold
disjunctive rule and the TBM disjunctive rule. It also shows that the TBM is not
poorer than possibility theory in terms of conjunctive and disjunctive operators.
Some experiments with one of those families of rules are also conducted in this
chapter. They show that this family of rules may improve the performances in some
classi�cation applications.

Résumé

Ce chapitre continue l'étude des règles basées sur les fonctions de poids. Nous
montrons que la règle conjonctive prudente et la règle conjonctive du MCT sont
deux membres particuliers de deux familles di�érentes de règles. Plus précisément,
la règle conjonctive prudente est l'élément le moins engagé d'une famille in�nie de
règles conjonctives basée sur des normes triangulaires étendues, alors que la règle
conjonctive du MCT est l'élément le moins engagé d'une famille in�nie de règles
conjonctives basée sur des uninormes étendues. Des résultats similaires sont obtenus
pour la règle disjonctive hardie et la règle disjonctive du MCT. La mise à jour de ces
familles in�nies de règles conjonctives et disjonctives apporte un nouvel éclairage sur
les comportements fondamentalement di�érents de la règle conjonctive prudente et la
règle conjonctive du MCT, ainsi que la règle disjonctive hardie et la règle disjonctive
du MCT. Cela montre aussi que le MCT dispose d'autant d'opérateurs conjonctifs
et disjonctifs que la théorie des possibilités. Quelques expériences avec une de ces
familles de règles sont également conduites dans ce chapitre. Elles montrent que
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cette famille de règle peut être utile a�n d'améliorer les performances dans des
applications de classi�cation.
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4.1 Introduction

As discussed in the introduction of this thesis, having only one rule is not the
ideal situation to cope with real-world problems. It could thus be useful to have
other rules of combination. Such rules should at least satisfy a few basic properties
such as commutativity and associativity. This chapter shows that the cautious and
TBM conjunctive rules can be seen as particular members of two distinct families of
combination rules, which are based on binary operators having similar properties as
triangular norms [49] and uninorms [108], respectively. It thus provides an answer to
the need for more �exibility in terms of combination rules, and sheds some new light
on the fundamentally di�erent behaviors of the cautious and TBM conjunctive rules.
It also allows us to put the result of the preceding chapter in a broader perspective.

This chapter is organized as follows. In Section 4.2, the de�nitions of triangular
norms (t-norms for short) and uninorms, which are usually de�ned as binary oper-
ators on the unit interval, are extended to the interval (0,+∞]. A family of rules
based on conjunctive weights and t-norms on (0,+∞] is then de�ned in Section 4.3.
A family of rules based on conjunctive weights and uninorms on (0,+∞] having 1
as neutral element is introduced in Section 4.4. Section 4.5 presents counterparts
to those families for rules based on disjunctive weights. Eventually, Section 4.6
demonstrates the usefulness of one of those families of rules in two classi�cation
applications.

The work presented in this chapter was published in [65].

4.2 T-Norms and Uninorms on (0,+∞]

4.2.1 Extended de�nitions

The key to the family of rules that will be introduced in this chapter is to remark that
the cautious rule and the bold rule are based on the minimum of weights, whereas
the TBM conjunctive rule and the TBM disjunctive rule are based on the product
of weights. Furthermore, the minimum and the product on (0,+∞] are binary
operators that essentially di�er by the position of their neutral element. Indeed, on
the one hand, the minimum on (0,+∞] is commutative, associative, and monotonic.
In addition, the upper bound of (0,+∞] serves as neutral element for the minimum.
The minimum on (0,+∞] has thus similar properties as t-norms [49], which are
de�ned as commutative, associative, monotonic operators on [0, 1] that admit the
upper bound of [0, 1], i.e., 1, as neutral element. On the other hand, the product
on (0,+∞] is commutative, associative, monotonic and has one as neutral element.
It has thus similar properties as uninorms [108], which are de�ned as commutative,
associative, monotonic operators on [0, 1] that admit a number e ∈ [0, 1] as neutral
element. This comparison between the minimum and the product leads us to extend
the de�nitions of t-norms and uninorms on (0,+∞] as follows.

De�nition 4.1. A t-norm on (0,+∞] is a binary operator on (0,+∞], which is
commutative, associative, monotonic, and which admits +∞ as neutral element.
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De�nition 4.2. A uninorm on (0,+∞] is a binary operator on (0,+∞], which is
commutative, associative, monotonic, and which admits some positive real number
e ∈ (0,+∞] as neutral element.

4.2.2 Construction of t-norms and 1-uninorms on (0,+∞]

This section provides means of obtaining other t-norms on (0,+∞] and uninorms
on (0,+∞] having one as neutral element (1-uninorms for short) than, respectively,
the minimum and the product. Propositions 4.1 and 4.2 below give two construction
mechanisms to obtain such t-norms and 1-uninorms out of t-norms on [0, 1]. Note
that a t-norm > on [0, 1] verifying x>y > 0 whenever x > 0 and y > 0 will be said
positive.

Proposition 4.1. Let > be a positive t-norm on [0, 1], and let >′ be a t-norm on
[0, 1]. Then the operator T(>,>′) de�ned by

x T(>,>′) y =


x>y if x ∨ y ≤ 1,(
1−

((
1− 1

x

)
>′
(
1− 1

y

)))−1

if x ∧ y > 1,

x ∧ y otherwise,

(4.1)

for all x, y ∈ (0,+∞] is a t-norm on (0,+∞].

Proof. The notation is simpli�ed in this proof: the operator T(>,>′) de�ned by (4.1)
is simply noted T . To prove this proposition, we also need to introduce some usual
conventions related to the use of the extended real line (see [49, pp xviii]): we have
1/+∞ = 0 and 1/0 = +∞.

Let us �rst remark that the operator de�ned by (4.1) can be equivalently written

x T y =


x>y if x ∨ y ≤ 1,(

1
x
⊥′ 1

y

)−1

if x ∧ y > 1,

x ∧ y otherwise,

(4.2)

where ⊥′ is the dual t-conorm of >′ [49]. We recall that a t-conorm is a commutative,
associative, monotonic operator on [0, 1], whose neutral element is the lower bound
of [0, 1]. Furthermore, the dual t-conorm ⊥ of a t-norm > is de�ned by:

x⊥y = N (N (x)>N (y)) , x, y ∈ [0, 1],

with N a mapping from [0, 1] to [0, 1] de�ned by N(x) = 1−x, for all x ∈ [0, 1]. The
commutativity, associativity, and monotonicity of the operator de�ned by (4.2) can
be proved using Lemma 2 of [18]. Let us show that +∞ is a neutral element for this
operator: for x ≤ 1, +∞ T x = +∞∧x = x, and for x > 1, +∞ T x =

(
0⊥′ 1

x

)−1
=

x. Eventually, we must show that x T y > 0 holds for all x, y ∈ (0,+∞]:

• Suppose x T y = x>y, hence x ∨ y ≤ 1. The positivity of > ensures that
x T y > 0.
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• Suppose x T y =
(

1
x
⊥′ 1

y

)−1

, hence x ∧ y > 1. Clearly,
(

1
x
⊥′ 1

y

)−1

> 1 for all

x, y such that x ∧ y > 1.

• Suppose x T y = x ∧ y. Then, x T y > 0 since x ∧ y > 0 for all x > 0 and
y > 0.

Proposition 4.2. Let > be a positive t-norm on [0, 1], and let >′ be a t-norm on
[0, 1]. Then, the operator U(>,>′) de�ned by

x U(>,>′) y =


x>y if x ∨ y ≤ 1,

((1/x)>′ (1/y))−1 if x ∧ y ≥ 1,
x ∧ y otherwise,

(4.3)

for all x, y ∈ (0,+∞] is a uninorm on (0,+∞] having 1 as neutral element.

Proof. See Appendix E.2.

The construction mechanisms provided by Propositions 4.1 and 4.2 are illus-
trated, respectively, by Examples 4.1 and 4.2.

Example 4.1. The t-norm T on (0,+∞] de�ned by

x T y =

{ (
1
x

+ 1
y
− 1

x
· 1

y

)−1

if x ∧ y > 1,

x ∧ y otherwise,

for all x, y ∈ (0,+∞], is obtained by setting > = ∧ and >′ = · (product), with >
and >′ the t-norms involved in Proposition 4.1.

Example 4.2. The 1-uninorm U de�ned by

x U y =

{
((1/x) ∧ (1/y))−1 if x ∧ y ≥ 1,
x ∧ y otherwise,

for all x, y ∈ (0,+∞], is obtained by setting > = ∧ and >′ = ∧, with > and >′ the
t-norms involved in Proposition 4.2.

4.3 Conjunctive T-Rules

As previously mentioned, the minimum is a t-norm on (0,+∞]. The cautious rule
thus belongs to a family of rules based on pointwise combination of conjunctive
weights using t-norms on (0,+∞]. In order to characterize this family, we need to
remark that the minimum is the largest t-norm on (0,+∞], much as it is the largest
t-norm on [0, 1].

Lemma 4.1. The minimum is the largest t-norm on (0,+∞].
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Proof. Any t-norm T on (0,+∞] has by de�nition +∞ as neutral element and is
monotonic, hence we have x T y ≤ x T +∞ = x and x T y ≤ +∞ T y = y, so
x T y ≤ x ∧ y, for all x, y ∈ (0,+∞].

We may then show the following.

Proposition 4.3. Let T be a t-norm on (0,+∞]. Then, for any conjunctive weight
functions w1 and w2, the function w1 T©w2 de�ned by:

w1 T©w2(A) = w1(A) T w2(A), ∀A ⊂ Ω,

is a conjunctive weight function associated to some nondogmatic BBA m1 T©w2.

Proof. From Lemma 4.1, we have

w1 T©w2(A) ≤ w1 ∧©2(A), ∀A ⊂ Ω.

From Lemma 2.1, w1 T©w2 is a conjunctive weight function since w1 ∧©2 is a conjunctive
weight function.

Proposition 4.3 allows us to de�ne combination rules for belief functions which
can be formally de�ned as follows.

De�nition 4.3 (T-norm-based conjunctive combination rule). Let T be a t-norm
on (0,+∞]. Let m1 and m2 be two nondogmatic BBAs. Their combination using the
t-norm-based conjunctive combination rule, or conjunctive t-rule for short, is noted
m1 T©w2 = m1 T©wm2. It is de�ned as a BBA with the following conjunctive weight
function:

w1 T©w2(A) = w1(A) T w2(A), ∀A ⊂ Ω.

We thus have:

m1 T©w2 = ∩©A⊂ΩA
w1(A) T w2(A).

Proposition 4.4. Any conjunctive t-rule T©w has the following properties:

• Commutativity: for all m1 and m2, m1 T©wm2 = m2 T©wm1;

• Associativity: for all m1,m2 and m3,

m1 T©w(m2 T©wm3) = (m1 T©wm2) T©wm3;

• Monotonicity with respect to vw: for all m1, m2 and m3, we have m1 vw m2

⇒ m1 T©wm3vw m2 T©wm3;

Proof. These properties follow directly from corresponding properties of the t-norm
T .
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From this proposition it is clear that for any conjunctive t-rule T©w, the algebraic
structure (Mnd, T©w,vw) is a commutative, partially ordered semigroup.

Finally, the following proposition situates the cautious rule in the family of
conjunctive t-rules.

Proposition 4.5. Among all conjunctive t-rules, the cautious rule is the x-least
committed, with x ∈ {w, s, pl, q, I}:

m1 T©wm2 vx m1 ∧©m2, ∀m1,m2.

Proof. Since the minimum is the largest t-norm on (0,+∞], we have m1 T©wm2 vw

m1 ∧©m2 for all nondogmatic BBAs m1 and m2. The result follows then directly from
(2.19).

Given a positive t-norm > on [0, 1] and a t-norm >′ on [0, 1], Proposition 4.1
allows us to obtain a conjunctive t-rule based on the t-norm T(>,>′) on (0,+∞]
de�ned by (4.1). This conjunctive t-rule is noted T©>,>′

w . Explicitly, we have

m1 T©>,>′
w m2 = ∩©A⊂ΩA

w1(A) T(>,>′)w2(A). (4.4)

This conjunctive t-rule will be useful in Section 4.6.

4.4 Conjunctive U-Rules

We have seen that the TBM conjunctive rule is based on the product and that the
product is a 1-uninorm. Hence, the TBM conjunctive rule belongs to a family of rules
characterized by pointwise combination of conjunctive weights using 1-uninorms1.

De�nition 4.4 (Uninorm-based conjunctive combination rule). Let U be a 1-
uninorm, such that x U y ≤ xy for all x, y ∈ (0,+∞). Let m1 and m2 be
two nondogmatic BBAs. Their combination using the uninorm-based conjunctive
combination rule, or conjunctive u-rule for short, is noted m1 U©w2 = m1 U©wm2. It is
de�ned as a BBA with the following conjunctive weight function:

w1 U©w2(A) = w1(A) U w2(A), ∀A ⊂ Ω.

We thus have:

m1 U©w2 = ∩©A⊂ΩA
w1(A) U w2(A).

Proposition 4.6. Any conjunctive u-rule U©w is commutative, associative, mono-
tonic with respect to vw, and such that: m U©wmΩ = m, for all m.

1The idea of using the setting of uninorms to generalize the product of weights was �rst
mentioned in [21].
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Proof. These properties follow directly from corresponding properties of the uninorm
U .

From this proposition it is clear that for any conjunctive u-rule U©w, the algebraic
structure (Mnd, U©w,vw) is a commutative, partially ordered monoid, with the
vacuous BBA as neutral element.

The next proposition shows that the TBM conjunctive rule has a special position
in the family of the conjunctive u-rules.

Proposition 4.7. Among all conjunctive u-rules, the TBM conjunctive rule is the
x-least committed, with x ∈ {w, s, pl, q, I}:

m1 U©wm2 vx m1 ∩©m2, ∀m1,m2.

Proof. From the de�nition of the conjunctive u-rules, we have m1 U©wm2 vw m1 ∩©m2

for all nondogmatic BBAs m1 and m2. The result follows then directly from (2.19).

Finally, we complete the characterization of the conjunctive u-rules by the fol-
lowing remark.

Remark 4.1. Conjunctive u-rules are not idempotent.

Proof. This follows from the fact that idempotence and having the vacuous BBA
as neutral element are incompatible properties for w-based rules. Indeed, from
Proposition 3.1 and Theorem 3.1, a w-based rule that as the vacuous BBA as neutral
element is based on a binary operator ◦ satisfying x ◦ y ≤ xy, for all x, y > 0. Let
z ∈ (0, 1), we have z ◦ z ≤ z2 < z, hence ◦ is not idempotent.

In order to obtain other conjunctive u-rules than the TBM conjunctive rule, one
needs 1-uninorms U such that x U y ≤ xy for all x, y ∈ (0,+∞]. Proposition 4.8
below gives a construction mechanism to obtain such 1-uninorms out of t-norms on
[0, 1].

Proposition 4.8. Let > be a positive t-norm on [0, 1] verifying x>y ≤ xy for all
x, y ∈ [0, 1], and let >′ be a t-norm on [0, 1] verifying x>′y ≥ xy for all x, y ∈ [0, 1].
Then the operator U(>,>′) de�ned by

x U(>,>′) y =


x>y if x ∨ y ≤ 1,

((1/x)>′ (1/y))−1 if x ∧ y ≥ 1,
x ∧ y otherwise,

(4.5)

for all x, y ∈ (0,+∞] is a uninorm on (0,+∞] having 1 as neutral element and
verifying x U(>,>′) y ≤ xy for all x, y ∈ (0,+∞].

Proof. The operator U(>,>′) de�ned by (4.5) is simply noted U in this proof. Using
the proof of Proposition 4.2, it may be shown that the operator U is a uninorm on
(0,+∞] having 1 as neutral element. Hence, we merely have to show that x U y ≤ xy
holds for all x, y ∈ (0,+∞], i.e., U is below the product.
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• Suppose x U y = x>y. Then x U y ≤ xy by the de�nition of >.

• Suppose x U y = ((1/x)>′ (1/y))−1. By the de�nition of >′, we have

(1/x)>′ (1/y) ≥ (1/x) (1/y)

((1/x)>′ (1/y))
−1 ≤ ((1/x) (1/y))−1 = xy.

• Suppose x U y = x ∧ y. Hence, we have x ∨ y > 1 and x ∧ y < 1, and thus
x ∧ y ≤ xy clearly holds.

The construction mechanism provided by Proposition 4.8 is illustrated by the
following example.

Example 4.3. The 1-uninorm U de�ned by

x U y =


x · y if x ∨ y ≤ 1,

((1/x) ∧ (1/y))−1 if x ∧ y ≥ 1,
x ∧ y otherwise,

for all x, y ∈ (0,+∞], is obtained by setting > = · (product) and >′ = ∧, with >
and >′ the t-norms involved in Proposition 4.8.

Given a positive t-norm > on [0, 1] verifying x>y ≤ xy for all x, y ∈ [0, 1], and
a t-norm >′ on [0, 1] verifying x>′y ≥ xy for all x, y ∈ [0, 1], Proposition 4.8 allows
us to obtain a conjunctive u-rule based on the 1-uninorm U(>,>′) de�ned by (4.5).
This conjunctive u-rule is noted U©>,>′

w . Explicitly, we have

m1 U©>,>′
w m2 = ∩©A⊂ΩA

w1(A) U(>,>′)w2(A). (4.6)

4.5 Disjunctive T-Rules and U-Rules

For the sake of completeness, this section presents results corresponding to the
previous ones for v-based rules. Obvious results are stated succinctly, whereas De
Morgan relations between conjunctive and disjunctive rules are more detailed.

4.5.1 Disjunctive t-rules

The bold rule is based on the minimum. Hence, it belongs to a family of rules based
on pointwise combination of disjunctive weights using t-norms on (0,+∞]. The
counterpart of Proposition 4.3 for disjunctive weights allows us to de�ne a belief
function combination rule T©v, called a disjunctive t-rule, as

m1 T©v2 = ∪©A6=∅Av1(A) T v2(A),

where T is a t-norm on (0,+∞], and m1 and m2 are two subnormal BBAs.
Any disjunctive t-rule T©v is commutative, associative and monotonic with re-

spect to vv. Hence (Ms, T©v,vv) is a commutative, partially ordered semigroup.
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Furthermore, it may easily be shown, using similar arguments as developed in
Section 4.3, that the bold rule is the x-most committed disjunctive t-rule, with
x ∈ {v, s, pl, q, I}.

Finally, the following proposition shows that the T©w and T©v operations are dual
to each other with respect to complementation, i.e., they are linked by De Morgan
laws analogous to (2.23) and (2.24).

Proposition 4.9. Let T©w and T©v be respectively, conjunctive and disjunctive t-rules
based on a t-norm T on (0,+∞]. We have:

m1 T©vm2 = m1 T©wm2,

for all subnormal BBAs m1 and m2, and

m1 T©wm2 = m1 T©vm2, (4.7)

for all nondogmatic BBAs m1 and m2.

Proof. Let m1 and m2 be two subnormal BBAs. We have

m1 T©vm2 = ∪©A6=∅Av1(A) T v2(A)

= ∩©A6=∅Av1(A) T v2(A)

= ∩©A6=∅Ā
w1(Ā) T w2(Ā)

= ∩©A⊂ΩA
w1(A) T w2(A)

= m1 T©wm2.

The proof of (4.7) is similar.

4.5.2 Disjunctive u-rules

The TBM disjunctive rule is based on the product of disjunctive weights. Hence, it
belongs to a family of rules de�ned by pointwise combination of disjunctive weights
using 1-uninorms. From Corollary 3.2, the condition that those uninorms must
respect is known. We may thus de�ne a belief function combination rule U©v, called
a disjunctive u-rule, as

m1 U©v2 = ∪©A6=∅Av1(A) U v2(A),

where U is a 1-uninorm, such that x U y ≤ xy for all x, y ∈ (0,+∞), and where m1

and m2 are two subnormal BBAs.
Any disjunctive u-rule U©v is commutative, associative, monotonic with respect to

vv and has the BBA m∅ as neutral element. Hence (Ms, U©v,vv) is a commutative,
partially ordered monoid. Furthermore, the TBM disjunctive rule is the x-most
committed disjunctive u-rule, with x ∈ {v, s, pl, q, I}.

Finally, the following proposition shows that the U©w and U©v operations are dual
to each other with respect to complementation.
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Proposition 4.10. Let U©w and U©v be respectively, conjunctive and disjunctive u-
rules based on a 1-uninorm U . We have:

m1 U©vm2 = m1 U©wm2, (4.8)

for all subnormal BBAs m1 and m2, and

m1 U©wm2 = m1 U©vm2, (4.9)

for all nondogmatic BBAs m1 and m2.

Proof. The proof of (4.8) is direct using the proof of Proposition 3.2. The proof of
(4.9) is similar.

4.6 Application to Classi�cation Problems

Besides their nice mathematical properties, one may wonder if the families of rules
de�ned in this chapter might be useful in some applications. In this section, we
present two classi�cation applications showing that the conjunctive t-rules are more
e�cient on some data sets than the TBM conjunctive rule and the cautious rule.
We may already remark that, in both of these applications, the following idea
will be used. The existence of parameterized families of t-norms on [0, 1] [49]
makes it possible, using Proposition 4.1, to obtain parameterized families of t-
norms on (0,∞], which in turn lead to parameterized families of conjunctive t-rules.
Considering a classi�cation system based on a parameterized family of conjunctive
t-rules, one may learn the conjunctive t-rule in this family that will give the best
classi�cation results on new data, by selecting the rule optimizing the performances
of the classi�cation system on a set of data whose actual class is known.

4.6.1 Classi�er fusion

Overall scheme

Consider a classi�cation problem2 withQ classes andD continuous featuresX1, ..., XD.
The set of classes is denoted by Ω = {ω1, ...ωQ}. Assume that the available infor-
mation is a training set L of N objects xn = (xn

1 , ..., x
n
D), n = 1, ..., N , whose class

labels are singletons and are represented by vectors un = (un
1 , ..., u

n
Q), n = 1, ..., N ,

of binary indicator variables un
q : we have un

q = 1 if object xn belongs to class ωq,
and un

q = 0 otherwise. Suppose that a classi�er is trained using L on each feature.
We thus have D classi�ers, which we denote by C1, ..., CD. Eventually, suppose
that the values xs

1, ..., x
s
D of features X1, ..., XD have been observed for a new object

xs = (xs
1, ..., x

s
D), whose class is unknown, and that classi�ers C1, ..., CD are able to

provide partial information on the class of object xs in the form of D u-separable
BBAs m1, ...,mD. Given the information provided by the classi�ers, we wish to
classify xs.

2The formulation of this problem is inspired from [18, Section 6.1].
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In [70], this problem of classi�er fusion was considered. In order to classify xs,
Quost et al. [70] proposed to express �rst our belief m[xs] on Ω concerning the class
of object xs and then, assuming {0, 1} costs3, to assign xs to the class of maximal
pignistic probability (draws are resolved by randomly choosing a class among the
classes with equal pignistic probability). In [70], various ways to obtain the BBA
m[xs] were proposed. These di�erent ways are summarized below.

Provided that the classi�ers can be assumed to be distinct, m[xs] may be ob-
tained by combining the BBAs m1, ...,mD using the TBM conjunctive rule. In this
case, we have

m[xs] = ∩©D
d=1md

= ∩©A⊂ΩA
∏D

d=1 wd(A). (4.10)

If the classi�ers cannot be assumed distinct, we may use the cautious rule to combine
the classi�er outputs:

m[xs] = ∧©D
d=1md

= ∩©A⊂ΩA
∧D

d=1 wd(A). (4.11)

Since the classi�ers Cd are assumed to produce u-separable BBAs, we may remark
that the weights wd(A) are all smaller or equal to 1. Hence, the weights wd(A)
are combined in (4.10) using the product t-norm on [0, 1] and in (4.11) using the
minimum t-norm on [0, 1]. Using a conjunctive t-rule T©>,>′

w such as introduced in
Section 4.3 (Equation (4.4)) amounts to combining the wd(A) using the t-norm >
on [0, 1], i.e., we have

m[xs] = m1 T©>,>
w ... T©>,>

w mD

= ∩©A⊂ΩA
>D

d=1wd(A). (4.12)

Since the result of the combination by T©>,>′
w does not depend on >′ in this setting,

T©>,>′
w will be simply noted T©>

w in the sequel. If > is chosen in the Frank family of
parameterized t-norms de�ned, for all x, y ∈ [0, 1], by

x>λ y =


x ∧ y if λ = 0,
xy if λ = 1,

logλ

(
1 + (λx−1)(λy−1)

λ−1

)
otherwise,

where λ is a positive parameter, then the TBM conjunctive rule is recovered for
λ = 1, whereas the cautious rule is recovered for λ = 0. Choosing λ between 0 and
1 results in a combination rule T©>λ

w somewhere between these two rules.
In [70], Quost et al. proposed a method to learn the value λ̂ of the parameter λ

that will give the best classi�cation results on new data. Their method consists in
using a validation set of M objects and �nding the value λ̂ of the parameter λ that
minimizes the error criterion Err(λ) de�ned by:

Err(λ) =
M∑

m=1

Q∑
q=1

(
BetPm({ωq})− um

q

)2
, (4.13)

3See Section 1.5 for basic material on decision theory.
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where um
q is the 0 − 1 class membership indicator variable for object xm in class

ωq, and where BetPm is the pignistic probability measure computed from the BBA
m[xm], which is in turn given by

m[xm] = m1[x
m] T©>λ

w ... T©
>λ
wmD[xm],

where md[x
m] is the BBA, provided by classi�er Cd, on the class of object xm .

Numerical experiments

Quost et al. [70] considered �ve synthetic data sets and �ve real-world data sets
to experiment with this classi�er fusion scheme. The general procedure may be
summarized as follows. Each data set was divided into two sets: a training set and
a test set. The D classi�ers Cd were learnt on each variable using the training set.
For each object of the test set, the outputs of the D classi�ers were combined using
the TBM conjunctive rule, the cautious rule and a learnt conjunctive t-rule T©

>̂λ
w

somewhere between these two rules. The value λ̂ involved in the conjunctive t-rule
T©
>̂λ
w was learnt by taking the average of several values of the error de�ned by (4.13)

computed on several validation sets4. These validation sets were generated apart
in the case of the synthetic data sets or obtained from the training sets via 5 × 2
cross-validation in the case of real-world data sets.

Over the ten data sets considered, a conjunctive t-rule di�erent from the TBM
conjunctive rule was always learnt, and on four data sets the cautious rule was
learnt. The test error rates of the TBM conjunctive rule were lower than the
test error rates of the learnt conjunctive t-rules on only one synthetic data set
and one real-world data set. However, on these two data sets, the test error rates
of the TBM conjunctive rule and those of the learnt conjunctive t-rules were not
judged signi�cantly di�erent by a McNemar test [22] at level 5%. On �ve out of the
remaining eight data sets, where the test error rates of the learnt conjunctive t-rules
were strictly lower than the test error rates of the TBM conjunctive rule, the test
error rates of the learnt conjunctive t-rules were judged signi�cantly di�erent from
the test error rates of the TBM conjunctive rule by a McNemar test at level 5%. In
summary, Quost et al. [70] showed that the conjunctive t-rules and the cautious rule
can lead, in some instances of this classi�er fusion application, to better classi�cation
performances than the TBM conjunctive rule.

As a concluding remark to this �rst classi�cation application, we may note that
the classi�er fusion scheme studied in [70] was further re�ned in [71], where classi�ers
were clustered according to some measure of similarity. Interestingly, the work
presented in [71] con�rmed that the TBM conjunctive rule can be outperformed by
the cautious rule. In addition, it was shown in [71] that using multiple conjunctive
t-rules to combine the classi�ers Cd can lead to better classi�cation results than
using merely the TBM conjunctive rule or the cautious rule or a single conjunctive
t-rule.

4Note that the search space for λ̂ was restrained in [70] to the interval [0, 1]. This is the reason
why the learnt conjunctive t-rule T©>̂λ

w was an intermediate between the TBM conjunctive rule and
the cautious rule.
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4.6.2 Evidential K-nearest neighbor classi�cation rule

Overall scheme

In [12], Den÷ux proposed an evidential version of the K-nearest neighbor classi�-
cation rule [35]. This method works as follows.

Similarly to the previous section, consider a classi�cation problem with set of
classes Ω = {ω1, ..., ωQ} and continuous features X1, ..., XD. Assume that the avail-
able information is a training set L of N objects xn, n = 1, ..., N , whose class labels
are indicated by vectors un, n = 1, ..., N , of binary indicator variables. Eventually,
suppose that the values xs

1, ..., x
s
D of featuresX1, ..., XD have been observed for a new

object xs = (xs
1, ..., x

s
D), whose class is unknown. Given the training set information,

we wish to classify xs. Using the algorithm proposed by Den÷ux [12], we may obtain
an expression of our belief on the class of xs in the form of a BBA m[xs]. As was
the case in the classi�er fusion application, this BBA can then be transformed into
a pignistic probability measure in order to classify xs. We review below how m[xs]
is built from the training set information using Den÷ux' scheme.

Suppose that object xn, n ∈ {1, ..., N}, of the training set is close (according to
some relevant distance measure δ) in feature space to xs. Den÷ux [12] proposed to
regard the knowledge un

q = 1 as a piece of evidence that increases, to some degree,
our belief that xs also belongs to class ωq. In the TBM, such a belief may be modeled
by a BBA m[xs|xn] focused on ωq and Ω, due to the fact that un

q = 1 only points to
the hypothesis ωq. Furthermore, the mass assigned to ωq can reasonably be assumed
to be a decreasing function of δ(xs,xn), the distance between xs and xn. We then
arrive at the following expression for m[xs|xn]:

m[xs|xn](A) =


βϕq[δ(x

s,xn)] if A = {ωq} ,
1− βϕq[δ(x

s,xn)] if A = Ω,
0 otherwise,

(4.14)

where β is a parameter such that 0 < β < 1 and ϕq is a decreasing function verifying
ϕq(0) = 1 and limδ→∞ ϕq(δ) = 0 [12]. Note that the index q of ϕq indicates that the
in�uence of δ(xs,xn) may depend on the class of xn. When δ denotes the euclidean
distance, a rational choice for ϕq was shown in [13] to be:

ϕq(δ) = e−γqδ2

, (4.15)

where γq is a positive parameter associated to class ωq.
As m[xs|xn] is a simple BBA, we may obtain the following simple expression for

m[xs|xn], which will be useful in the remainder of this section:

m[xs|xn] =
{
ω(n)

}ds,n

,

where ω(n) denotes the class of object xn and with ds,n = 1−βϕ(n)[δ(x
s,xn)], where

the index (n) of ϕ(n) is given by the class of object xn, e.g., if the class of object xn

is ωq, then ϕ(n) = ϕq.
As a result of considering the N training objects, we obtain N BBAs. Regarding

these training objects as distinct items of evidence, we may use the TBM conjunc-
tive rule to combine these N BBAs in order to produce a global BBA m[xs|L]
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representing our belief on the class of xs:

m[xs|L] = ∩©N
n=1m[x|xn]

= ∩©Q
q=1

(
∩©{n,un

q =1} {ωq}ds,n
)

= ∩©Q
q=1 {ωq}

∏
{n,un

q =1} ds,n

.

To improve the computational e�ciency, we may modify this latter equation so
as to consider only the K nearest neighbors of xs in the feature space. We then
have:

m[xs|K] = ∩©Q
q=1 {ωq}

∏
{n∈SK (xs),un

q =1} ds,n

,

where SK(xs) denotes the set of K nearest neighbors of xs.
When the training objects cannot be considered distinct, we may use the cautious

rule instead of the TBM conjunctive rule to pool the pieces of evidence. We then
have:

m[xs|L] = ∧©N
n=1m[x|xn]

= ∧©Q
q=1

(
∧©{n,un

q =1} {ωq}ds,n
)

= ∧©Q
q=1 {ωq}

∧
{n,un

q =1} ds,n

.

= ∩©Q
q=1 {ωq}

∧
{n,un

q =1} ds,n

. (4.16)

The last line comes from Ax ∧©By = Ax ∩©By if A 6= B. From (4.16), we may remark
that pooling the pieces of evidence using the cautious rule actually amounts to
considering only the nearest neighbor of xs in each class.

As was done in the previous section, we may consider using the conjunctive t-
rule T©>,>′

w introduced in Section 4.3 instead of the conjunctive rule and the cautious
rule. Since the ds,n are smaller than 1, using T©>,>′

w amounts to combining the ds,n

using the t-norm > on [0, 1], i.e., we have

m[xs|K] = ∩©Q
q=1 {ωq}

>{n∈SK (xs),un
q =1}ds,n

. (4.17)

If > is chosen in the Dubois and Prade family of parameterized t-norms de�ned, for
all x, y ∈ [0, 1], by

x>θ y =
xy

max (x, y, θ)
,

where θ ∈ [0, 1], then the TBM conjunctive rule is recovered for θ = 1, whereas the
cautious rule is recovered for θ = 0.

Numerical experiments

A comparison between Den÷ux' original scheme based on the TBM conjunctive rule
and Den÷ux' extended scheme as de�ned by (4.17) (with > of (4.17) chosen in the
Dubois and Prade family of parameterized t-norms), was performed using real-world
classi�cation problems. Before presenting the results of some of these experiments,
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practical issues related to the implementation of these schemes need to be addressed.
Indeed, the parameters K, β, θ and γq, q = 1, ..., Q have to be �xed in order to allow
the use of the schemes.

A method for optimizing the parameters β and γq has been described in [110].
However, the results that will be presented in this section are based on the following
simple heuristic used in [12]: β = 0.95 and γq is equal to the inverse of the mean
distance between training patterns belonging to class ωq. We also choose K = 30
in order to reduce computations, yet still considering relatively many neighbors.
Eventually, the parameter θ is left free for the moment, since the purpose of the
two following experiments is to compare the original evidential K-nearest neighbor
classi�cation rule with its extended version.

Experiment 1

In this �rst experiment, we considered three real-world data sets5: Cleveland heart
disease, mammographic mass, and vehicle silhouettes. The �rst two data sets are
two-class problems, and the last data set is a four-class problem. For each of these
data sets, we computed the leave-one-out (LOO) cross-validation error rate of the
extended scheme for di�erent values of θ: θ = 0, 0.1, ..., 1. These LOO error rates
are given in Figures 4.1 to 4.3. Let us stress that, in these �gures, the �gure shown
for θ = 0 is the LOO error rate of the cautious rule, and the �gure shown for θ = 1
is the LOO error rate of the TBM conjunctive rule.

Figure 4.1: Cleveland heart disease data set. Best performance obtained for θ = 1.

5These data sets were obtained from the UCI Machine Learning repository at
http://archive.ics.uci.edu/ml. Patterns with missing feature values in the used data sets were
discarded.
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Figure 4.2: Mammographic mass data set. Best performance obtained for θ = 0.5.

Figure 4.3: Vehicle silhouettes data set. Best performance obtained for θ = 0.5.
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As can be seen in Figures 4.2 and 4.3, a conjunctive t-rule may have a lower LOO
error rate than the TBM conjunctive rule, which shows that the family of conjunctive
t-rules is useful in this classi�cation application. Note that on the Cleveland heart
disease data set, the lowest LOO error rate is obtained for the TBM conjunctive rule,
i.e., the conjunctive t-rules between the cautious rule and the TBM conjunctive rule
do not lead to an improvement for this particular data set. Let us already remark
that, in Chapter 6, we will show that on this latter data set, it is possible to obtain
with another family of rules than the conjunctive t-rules, a lower LOO error rate
than the one obtained with the TBM conjunctive rule.

Experiment 2

This experiment is similar to the one conducted by Quost et al. to test their classi�er
fusion scheme and reported in the previous section: we �rst split several real-world
data sets into a training set and a test set, and then we computed the test error
rates of the evidential K-nearest neighbor classi�cation schemes based (1) on the
TBM conjunctive rule, (2) the cautious rule and (3) a conjunctive t-rule based on
a t-norm >̂θ learnt using the training set. For each of these real-world data sets,
the t-norm >̂θ learnt was chosen as the one minimizing the LOO error rate on the
training set (the parameter space was restricted to θ = 0, 0.1, ..., 1).

We used the four following data sets of the UCI Machine Learning repository:
ionosphere, liver disorders, wine, and segment. The �rst two data sets are two-class
problems, the third data set is a three-class problem and the last data set is a seven-
class problem. These four data sets were split into a training set and a test set
with the following proportions: 2/3 of the data went into the training set and the
remaining 1/3 of the data were used as test data.

Error rates obtained with the TBM conjunctive rule, the cautious rule, and
the learnt conjunctive t-rule corresponding to the optimal parameter value θ̂ are
provided in Table 4.1, together with 95% con�dence intervals. The best result is
underlined. Whenever a result obtained with the cautious rule or a learnt conjunc-
tive t-rule is signi�cantly di�erent by a McNemar test at level 5%, from the result
obtained with the TBM conjunctive rule, it is printed in bold.

Table 4.1: Error rates of the TBM conjunctive rule, the cautious rule, and the learnt

conjunctive t-rule, together with 95% con�dence intervals.

Data TBM conjunctive rule Cautious rule Learnt conjunctive t-rule

Ionosphere 0.1466± 0.0644 0.1121± 0.0574 0.0948± 0.0533 (θ̂ = 0.8)

Liver disorders 0.3130± 0.0848 0.3391± 0.0865 0.3130± 0.0848 (θ̂ = 1)

Wine 0.0333± 0.0454 0.0333± 0.0454 0.0333± 0.0454 (θ̂ = 1)

Segment 0.0870± 0.0199 0.0519± 0.0157 0.0519± 0.0157 (θ̂ = 0)

The �rst striking remark that can be made from Table 4.1, is that the classi�ca-
tion results obtained with the learnt conjunctive t-rules are always at least as good
as the classi�cation results obtained with the TBM conjunctive rule and the cautious
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rule. When we look into the details, we see that the conjunctive t-rule learnt on
the liver disorders and wine data sets was the TBM conjunctive rule. Hence, the
conjunctive t-rules between the cautious rule and the TBM conjunctive rule do not
bring any improvement for these two data sets. However, on the other two data sets
(ionosphere and segment), the cautious rule and an intermediate rule were learnt,
yielding better classi�cation results than the TBM conjunctive rule. Furthermore,
the results obtained with the cautious rule in the case of the segment data set or
with the intermediate rule in the case of the ionosphere data set, are signi�cantly
di�erent from the ones obtained with the TBM conjunctive rule. In summary, we
have yet another experimental evidence that the conjunctive t-rules are useful in a
classi�cation application. Eventually, let us already remark that on the very data
sets where the TBM conjunctive rule is not outperformed by the conjunctive t-
rules, it is possible to �nd some rules, belonging to another family of rules than the
conjunctive t-rules, that do outperform the TBM conjunctive rule; this result will
be presented in Chapter 6.

4.6.3 Limitations of the experiments: discussion

The numerical experiments reported in the previous two sections have shown that the
conjunctive t-rules may improve the performances in two classi�cation applications.
However, these experiments su�er from at least three limitations. The �rst impor-
tant remark is that the BBAs involved in these applications were all u-separable.
Hence, these experiments have actually shown the usefulness of conjunctive t-rules,
only for classi�cation schemes based on combination of u-separable BBAs. This may
be seen as a limitation on the good results reported, since classi�cation schemes
based on combination of nonseparable BBAs were not studied. However, it may
be argued that this limitation is not so important since most BBAs encountered in
practice are u-separable. This is for instance the case with the method proposed in
[57], where the confusion matrix of a classi�er is used to transform the classi�cations
made by this classi�er into consonant BBAs, or with the supervised classi�cation
version of the evidential K-nearest neighbor classi�cation rule6 [12] or with the
TBM model-based classi�er [20]. This is also the case when one transforms the
probabilistic output of a classi�er into a consonant BBA, by choosing the q-least
committed BBA among the set of so-called isopignistic BBAs7 [34], as done in [70].

To our knowledge, the only situations where one may encounter nonseparable
BBAs are (1) the expert opinions elicitation method proposed in [5], (2) the BBA
construction mechanism proposed in [17] and based on the observation of a re-
alization of an independent, identically distributed random sample from the same
distribution, and (3) the application of the ballooning extension as done in [72] where
a BBA m de�ned on a frame Ω is built from a BBA m′ de�ned on a frame Ω′ with
Ω′ ⊆ Ω. Admittedly, we have not yet been able to design a realistic classi�cation
experiment, which would use standard pattern recognition data sets and that would

6The evidential K-nearest neighbor classi�cation rule is in its supervised classi�cation version if
the classes of the learning objects are known with certainty and precision, as is the case in Section
4.6.2.

7BBAs that induce the same pignistic probability measure are called isopignistic.
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require combining nonseparable BBAs. The only classi�cation experiment, involving
the combination of nonseparable BBAs, that we could think of and that is left for
future research is the following. Consider a classi�cation problem with Q classes
and D continuous features X1, ..., XD. Assume that the available information is a
training set L of N objects, whose class labels have been determined from expert
opinions using the method proposed in [5]. Hence, the class labels of the training
objects are in the form of BBAs, which may possibly be nonseparable. Eventually,
suppose that the values xs

1, ..., x
s
D of features X1, ..., XD have been observed for a

new object xs, whose class is unknown. Given the training set information, we wish
to classify xs. Using a more general version of the evidential K-nearest neighbor
classi�cation rule than the version used in this chapter (see [12, Section 3.3] for
this general version), it is possible to obtain a BBA m[xs] expressing our beliefs
on the class of xs, and thus xs may then be classi�ed using, e.g., the pignistic
transformation. The computation ofm[xs] using this general version of the evidential
K-nearest neighbor classi�cation rule, involves combining with the TBM conjunctive
rule, the possibly nonseparable BBAs associated to the training objects. The TBM
conjunctive rule could then be replaced by the new conjunctive rules de�ned in this
chapter, in order to investigate whether these new rules lead to better performances
than the TBM conjunctive rule, when nonseparable BBAs are involved.

The second limitation of the experiments presented above is that they do not
provide an answer to the following question: are the conjunctive u-rules also useful
for classi�cation applications? The numerical experiments that we have conducted,
use indeed conjunctive t-rules only. The reason behind this choice is that the
conjunctive t-rules T©>,>′

w de�ned by (4.4) are more relevant for classi�cation tasks
involving u-separable BBAs, than the conjunctive u-rules T©>,>′

w de�ned by (4.6).
This claim may be motivated as follows.

Proposition 4.11. Let > be a positive t-norm on [0, 1] verifying x>y ≤ xy for all
x, y ∈ [0, 1], and let >′ be a t-norm on [0, 1] verifying x>′y ≥ xy for all x, y ∈ [0, 1].
Let T©>,>′

w be a conjunctive t-rule based on the t-norm T(>,>′) de�ned by (4.1), and
let U©>,>′

w be a conjunctive u-rule based on the 1-uninorm U(>,>′) de�ned by (4.5).
Let m1 and m2 be two u-separable BBAs. We have:

m1 T©>,>′
w m2 = m1 U©>,>′

w m2. (4.18)

Proof. Since m1 and m2 are u-separable, we have

m1 T©>,>′
w m2 = ∩©A⊂ΩA

w1(A)>w2(A)

= m1 U©>,>′
w m2.

This proposition means that a conjunctive t-rule based on a t-norm T (>,>′)
coincides, when combining u-separable BBAs, with a conjunctive u-rule based on
a 1-uninorm U(>,>′), if > is a positive t-norm on [0, 1] such that x>y ≤ xy, for
all x, y ∈ [0, 1]. Now, let us remark that the t-norm > involved in the de�nition
of T (>,>′) may be any positive t-norm on [0, 1], whereas the t-norm > involved
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in the de�nition of U(>,>′) must be below the product. This implies that the
conjunctive t-rules T©>,>′

w encompass, when only u-separable BBAs are considered,
the conjunctive u-rules U©>,>′

w and thus they represent a larger spectrum of rules. In
addition, we may remark that a desirable property for the combination rule involved
in the experiments presented above is to have the vacuous BBA as neutral element.
Even though the conjunctive t-rules T©>,>′

w do not possess this property in general,
they do have the vacuous BBA as neutral element if they are used with u-separable
BBAs only. Hence, the conjunctive t-rules should be preferred over conjunctive u-
rules in classi�cation applications that require u-separable BBAs to be combined.
This is the reason why conjunctive t-rules rather than conjunctive u-rules were used
in our experiments.

Note that in the case of classi�cation schemes involving nonseparable BBAs
combinations, it may argued that the conjunctive u-rules represent, theoretically, a
better suited family of rules than the conjunctive t-rules. This is due to the fact that
the former rules have the vacuous BBA as neutral element, which is not the case of
the latter rules. This property may be regarded as essential in, e.g., the experiment
involving expert opinions sketched above: if the expert cannot determine the class
of a training object, which is modeled by a vacuous BBA, then this training object
must not have an impact on our beliefs regarding the class of the object xs. In the
general version of the evidential K-nearest neighbor classi�cation rule, this latter
property will be veri�ed only if the combination rule used has the vacuous BBA as
neutral element.

The third limitation of the experiments is that only the conjunctive t-rules,
which are intermediate between the TBM conjunctive rule and the cautious rule,
were considered. Besides looking at the combination of nonseparable BBAs, future
experiments will also focus on the combination of u-separable BBAs using conjunc-
tive t-rules based on t-norms that are below the product, i.e., conjunctive t-rules
that are not intermediate between the TBM conjunctive rule and the cautious rule.

4.7 Conclusion

This chapter has brought forward that the TBM conjunctive rule ∩© and the more
recent cautious rule ∧© have fundamental di�erent algebraic properties: the former
is based on a uninorm on (0,+∞] and has a neutral element while the latter is based
on a t-norm on (0,+∞] and has no neutral element. Similar properties hold for the
disjunctive duals of these two rules, namely the TBM disjunctive rule ∪© and the
bold rule ∨©.

In addition, it was revealed that to each of those four basic rules corresponds one
in�nite family of combination rules. Indeed, there exist two t-norm-based families
that are based, respectively, on the conjunctive and disjunctive weight functions.
There exist also two uninorm-based families that are based, respectively, on the
conjunctive and disjunctive weight functions. Those families of rules yield di�er-
ent algebraic structures: partially ordered commutative semigroups and partially
ordered commutative monoids. It was also shown that t-norm-based conjunctive
and disjunctive rules, as well as uninorm-based conjunctive and disjunctive rules,
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are related by De Morgan laws. The existence of such families of rules suggests that
the TBM is not poorer than Possibility theory [27] in terms of fusion operators, as
already noted in [18].

Of particular interest is that the four basic rules occupy a special position in
each of their respective family: the ∩© and ∧© rules are the least committed elements,
whereas the ∪© and ∨© rules are the most committed elements. This is summarized
in Figure 4.4. Eventually, numerical experiments have shown that the t-norm-based
conjunctive rules may improve the performances of classi�cation applications.

Figure 4.4: The four families of combination rules studied in this chapter, and the

singular positions of the four basic rules ∩©, ∧©, ∪© and ∨©.

We have seen in Chapter 1 that belief functions may be de�ned on product spaces.
It was also explained that it is possible to marginalize a belief function to a narrower
domain and that one may combine belief functions de�ned on di�erent frames using
the TBM conjunctive rule. A problem with this latter kind of combination is that
complexity grows with the size of the frames of the BBAs combined. However, if
one is only interested in a marginal of the combination of some BBAs, then one
can bene�t from a nice property of the TBM conjunctive rule: the sought marginal
can be obtained without explicitly computing the combination of the BBAs. This
chapter has shown that the TBM conjunctive rule share many algebraic properties
with the conjunctive u-rules. The next chapter will investigate whether the property
of the TBM conjunctive rule related to operations on product spaces is also satis�ed
by the conjunctive u-rules.



Chapter 5

Another Singular Property of the

TBM Conjunctive Rule

Summary

The conjunctive rules based on extended uninorms share many properties with the
TBM conjunctive rule. This latter rule �ts the valuation algebra framework, which
is a useful formalism to reduce computations when dealing with belief functions
de�ned on product spaces. In this chapter, it is shown that the conjunctive rules
based on extended uninorms and di�erent from the TBM conjunctive rule do not
satisfy an axiom of the valuation algebra framework. This result means that these
rules will be di�cult to use in problems involving a large number of variables. It also
brings a new argument in favor of the TBM conjunctive rule. Finally, it is also shown
that the cautious conjunctive rule does not satisfy an axiom of the valuation algebra
framework, which means that the cautious conjunctive rule will also be di�cult to
use in high dimensional problems.

Résumé

Les règles conjonctives basées sur des uninormes étendues partagent de nom-
breuses propriétés avec la règle conjonctive du MCT. Cette dernière règle peut
béné�cier d'un formalisme appelé algèbre de valuation a�n de réduire les calculs
lors de la combinaison de fonctions de croyance dé�nies sur des espaces produits.
Dans ce chapitre, nous montrons que les règles conjonctives basées sur des uninormes
étendues, di�érentes de la règle conjonctive du MCT, ne satisfont pas un axiome
de ce formalisme. Ce résultat implique que ces règles seront di�ciles à utiliser
dans des problèmes impliquant un grand nombre de variables. Il fournit aussi un
nouvel argument en faveur de la règle conjonctive du MCT. En�n, nous montrons
également que la règle conjonctive prudente ne véri�e pas l'un des axiomes des
algèbres de valuation, ce qui signi�e que cette règle sera aussi di�cile à utiliser pour
des problèmes de grande dimension.
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5.1 Introduction

The preceding chapter has introduced a family of rules based on the conjunctive
weight function and uninorms. All the rules in this family share some properties:
commutativity, associativity, monotonicity, and the same neutral element (the vacu-
ous BBA). It was also shown that the TBM conjunctive rule is a particular member
of this family.

A valuation algebra [51] is an abstract, yet useful, framework for many di�erent
AI formalisms. In particular, it can be used to manage e�ciently information
represented by belief functions de�ned on product spaces, if the belief functions are
combined using the TBM conjunctive rule. It is shown in this chapter that, despite
the numerous properties shared by the TBM conjunctive rule and the conjunctive
u-rules, the TBM conjunctive rule is the only rule that satis�es an axiom of the
valuation algebra framework. This property further singles out the TBM conjunctive
rule in this family of rules and also exhibits a weakness of the conjunctive u-rules.
Additionally, we discuss in this chapter the problem of combining belief functions
de�ned on product spaces and induced by items of evidence, which cannot be
assumed distinct.

This chapter is organized as follows. Basic notions on valuation algebras are �rst
recalled in Section 5.2. Our contribution on the inadequacy of the conjunctive u-
rules to the valuation algebra framework is then given in Section 5.3. Eventually, the
problem of combining belief functions induced by items of evidence, which cannot
be assumed distinct, is discussed in Section 5.4.

The work presented here was published in [66].

5.2 Valuation Algebras

Many formalisms dealing with information, such as the TBM, share an underly-
ing algebraic structure with the essential algebraic operations of combination and
marginalization [51]. Combination corresponds to aggregation of knowledge and
marginalization corresponds to focusing of knowledge to a narrower domain. A
recurrent task in these formalisms is that of inference, that is, aggregation of all
available pieces of information, in order to focus the result afterwards on the actual
questions of interest [68].

A problem faced by the inference process is that in many cases, computing the
combination of the available information is computationally intractable. Provided
that combination and marginalization satisfy some axioms, one can however bene�t
from local computation algorithms, such as the Shenoy-Shafer algorithm [79]. In
essence, these algorithms make it possible to compute marginals of a combination of
valuations without explicitly computing the combination (see, e.g., [68] for a clear
presentation of the most important local computation algorithms).

The algebraic structures with the operations of combination and marginalization
satisfying these axioms are called valuation algebras [51]. In this section, these
axioms are stated. It is also shown how the TBM �ts into the framework of valuation
algebras.
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5.2.1 Basic de�nitions

In the valuation algebra framework, it is considered that reasoning is concerned with
a �nite set of variables. Each variable is associated with a �nite set of possible values
called its frame; a variable is noted using an upper-case letter, e.g. X, and the frame
of the variable is noted ΩX . Sets of variables are noted using a lower-case letter,
e.g. s. Let s be a non empty set of variables. We note Ωs the Cartesian product
of the frames ΩX of the variables X ∈ s, and we call con�gurations the elements of
Ωs. Knowledge about the possible values of a set s of variables is represented by a
valuation. Valuations are noted using lower-case greek letters such as ϕ and ψ. If
ϕ is valuation for s, then we call s the domain of ϕ and we write d(ϕ) = s. Given
a set s of variables, we may consider that there is a set Φs of valuations. We note r
the set of all variables, and Φ = ∪s⊆rΦs the set of all valuations. Eventually, we use
D to denote the power set of r.

In the TBM, valuations are BBAs. Indeed, let m be a BBA with domain s.
Then, the BBA m represents some evidence regarding the actual value in Ωs. A
BBA thus �ts the notion of valuation.

Two operations are de�ned for valuations in the valuation algebra framework.
The combination of valuations is a binary operation⊗ : Φ×Φ → Φ, which is assumed
to be commutative and associative, hence Φ is a commutative semigroup under
combination. The marginalization of a valuation is a binary operation ↓: Φ×D → Φ.
For any valuation ϕ and domain s ⊆ d(ϕ), a valuation ϕ↓s is associated. ϕ↓s is called
the marginal of ϕ for s. Marginalization corresponds to focusing of the knowledge
represented by ϕ for d(ϕ) to the smaller domain s.

In the literature concerned with the belief functions instantiation of the valuation
algebra framework, combination is assimilated to the combination by the TBM
conjunctive rule (or by Dempster's rule), as de�ned by (1.16), and marginalization
is given by the marginalization operation de�ned by (1.14).

5.2.2 The problem of inference

Equipped with the de�nitions of the preceding section, the problem of inference [51]
(or projection problem [68]) can be formally stated as follows. Suppose a knowledge
base consisting of a �nite set of valuations ϕ1, ..., ϕm, and let ϕ1⊗ ...⊗ϕm represent
the combined knowledge, which we call the joint valuation. The problem of inference
is to marginalize the joint valuation to a domain s of interest: (ϕ1 ⊗ ... ⊗ ϕm)↓s.
Example 5.1 below illustrates the problem of inference.

Example 5.1 (Chest Clinic). The following paragraph is a quote from [55], which
formulates the chest clinic problem.

�Shortness of breath (dyspnoea) may be due to tuberculosis, lung cancer
or bronchitis, or none of them, or more than one of them. A recent visit
to Asia increases the chances of tuberculosis, while smoking is known to
be a risk factor for both lung cancer and bronchitis. The results of a single
chest X-ray do not discriminate between lung cancer and tuberculosis, as
neither does the presence or absence of dyspnoea� [55].
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In the context of the valuation algebra framework, the chest clinic problem may be
modeled as follows [51]. There are eight binary variables: A denotes �visit to Asia?�,
S denotes �Smoker?�, T denotes �has Tuberculosis?�, L denotes �has Lung cancer?�,
B denotes �has Bronchitis?�, E denotes �has Either bronchitis or tuberculosis?�,
X denotes �has positive X-ray?�, and D denotes �has Dysponea?�. The knowledge
prior to any observation is represented by eight valuations: α for {A}, σ for {S},
τ for {A, T}, λ for {S, L}, β for {S,B}, ε for {T, L,E}, ξ for {E,X}, and δ for
{E,B,D}.

Suppose a patient is observed and that this patient visited Asia recently and is
su�ering from dysponea. These two observations may be represented by two valua-
tions oA for {A} and oD for {D}. Suppose we are interested by the answer to the
following question: what is our belief that the patient is su�ering from tuberculosis?
Answering this question consists in marginalizing the joint valuation to the domain
T of interest.

A qualitative description of a knowledge base can be provided using a so-called
valuation network, which is a graphical display of a set of valuations, where variables
are represented by circular nodes and valuations are represented by square nodes.
Figure 5.1 shows the valuation network corresponding to Example 5.1.

The straightforward way to perform inference is to compute �rst the joint val-
uation and then marginalize to the domain of interest. However, if a valuation is
a belief function, its size increases exponentially in the number of variables in its
domain and also in the sizes of the frames of these variables. Hence, the computation
of the joint valuation, whose domain is the set r of all variables, may be intractable,
even if all the valuations ϕi in the knowledge base are de�ned on small domains.
Consider for instance the chest clinic example and suppose the valuations are BBAs.
Computing the joint valuation requires �nding 2(28) values, an infeasible task.

However, if combination and marginalization satisfy some axioms, then the
marginal (ϕ1 ⊗ ...⊗ ϕm)↓s can be computed without explicitly computing the joint
valuation. These axioms are the following [68]:

1. Commutative Semigroup: Φ is associative and commutative under ⊗.

2. Domain of combination: for ϕ, ψ ∈ Φ,

d(ϕ⊗ ψ) = d(ϕ) ∪ d(ψ).

3. Marginalization: for ϕ ∈ Φ, s ∈ D and s ⊆ d(ϕ).

d(ϕ↓s) = s,

4. Transitivity of marginalization: for ϕ ∈ Φ and t ⊆ s ⊆ d(ϕ),

(ϕ↓s)↓t = ϕ↓t.

5. Distributivity of marginalization over combination: for ϕ, ψ ∈ Φ with d(ϕ) = s,
d(ψ) = t, and z ∈ D such that t ⊆ z ⊆ s ∪ t,

(ϕ⊗ ψ)↓z = ϕ↓z∩s ⊗ ψ. (5.1)
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Figure 5.1: The valuation network corresponding to Example 5.1.
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6. Domain: for ϕ ∈ Φ with d(ϕ) = s,

ϕ↓s = ϕ.

A set Φ of valuations with set D of domains, combination ⊗, and marginalization
↓, which satis�es these six axioms is called a valuation algebra. It is denoted by
(Φ, D,⊗, ↓).

The �fth axiom is the crucial one for local computation. Indeed, it basically
means that if we have two valuations on two di�erent domains and we want to
perform inference onto the domain of one of the valuations, we can �rst marginalize
the other valuation to the intersection of the two domains and then combine, instead
of �rst combining the two valuations and then marginalizing [51].

Let M be the set of BBAs, and let ↓ be the projection operation as de�ned
by (1.14). It was originally shown in [79] that the structures (M, D, ∩©, ↓) and
(M, D,⊕, ↓) satisfy all the axioms of valuation algebras. Let us note that the axioms
in [79] are not exactly the ones given in this chapter; the relations between the axiom
system of [79] and the one used in this chapter is explained in [68, Section 2.1]. The
proof that (M, D, ∩©, ↓) and (M, D,⊕, ↓) satisfy the axioms used in this chapter is
given by the proof of [68, Theorem 3.3]. Informally, we may see that Axioms 3, 4
and 6 follow from the de�nition of the marginalization operation. Furthermore, the
TBM conjunctive rule and Dempster's rule are associative and commutative, and
thus Axiom 1 is satis�ed. Axiom 2 is veri�ed by the de�nition of the combination by
the TBM conjunctive rule on product spaces and the de�nition of the combination
by Dempster's rule on product spaces. The proof for Axiom 5 is, however, more
complex (see, e.g., [68, p.145]).

5.3 Conjunctive U-Rules and Valuation Algebras

We have seen that the TBM conjunctive rule belongs to the family of the conjunctive
u-rules, hence the rule ∩© has common properties with the conjunctive u-rules. It is
thus interesting to know whether more properties are shared by those rules. In order
to investigate properties of the conjunctive u-rules in the context of the valuation
algebra framework, the combination on product spaces by a conjunctive u-rule needs
to be de�ned. A natural way to de�ne this combination is given by De�nition 5.1;
this de�nition is based on the vacuous extension of BBAs, as is the case for the
TBM conjunctive rule (see Equation (1.16) of Section 1.3.3).

De�nition 5.1. Let mΩs
1 and mΩt

2 be two BBAs de�ned, respectively, on the frames
Ωs and Ωt. Let U©w be a conjunctive u-rule based on a 1-uninorm U . The combination
of mΩs

1 and mΩt
2 by U©w on Ωs × Ωt is de�ned as:

mΩs
1 U©wm

Ωt
2 = mΩs↑Ωs×Ωt

1 U©wm
Ωt↑Ωs×Ωt

2 . (5.2)

Equipped with this de�nition, we can study whether the algebraic structure
(Mnd, D, U©w, ↓) is a valuation algebra for at least one conjunctive u-rule based on
a 1-uninorm U di�erent from the product.
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As for the TBM conjunctive rule, determining whether this structure is a valu-
ation algebra depends mainly on the �fth axiom. Indeed, we can �rst remark that
Axioms 3, 4 and 6 do not need to be studied since they are independent from the
combination rule used. Furthermore, Axiom 2 is satis�ed by the de�nition given by
(5.2) of the combination by a conjunctive u-rule on product spaces. Axioms 1 is a
direct consequence of (Mnd, U©w) being a commutative monoid.

Proposition 5.1. Let U©w be a conjunctive u-rule. If the binary operator U under-
lying the conjunctive u-rule U©w is di�erent from the product, i.e., ∃x, y ∈ (0,+∞)
such that x U y 6= xy, then the algebraic structure (Mnd, D, U©w, ↓) does not satisfy
Axiom 5.

Proof. See Appendix E.3.

Proposition 5.1 tells us that Axiom 5 is not satis�ed by conjunctive u-rules di�er-
ent from the TBM conjunctive rule, i.e., among conjunctive u-rules, marginalization
is distributive only over the combination by the rule ∩©.

The practical consequence of this proposition is that the conjunctive u-rules will
be di�cult to use in problems involving many variables, since we cannot bene�t
from the valuation algebra framework and thus we must always work with the joint
valuation. However, note that the conjunctive u-rules remain applicable for many
problems, such as the classi�cation applications presented in the preceding chapter.

5.4 The Cautious Rule and Valuation Algebras

As we have seen, we may resort to the cautious rule when the items of evidence to
be combined cannot be assumed distinct. It thus seems interesting to know whether
the set of nondogmatic BBAs equipped with the combination by the cautious rule,
�t the axioms of the valuation algebra framework. If the combination on product
spaces by the cautious rule is de�ned in a similar manner as (5.2) and (1.16), i.e.,
if it is based on the vacuous extension, then it is relatively easy to check whether
(Mnd, D, ∧©, ↓) satis�es the axioms of the valuation algebra framework: as for the
conjunctive u-rules, we merely need to check the �fth axiom.

Proposition 5.2. Marginalization is not distributive over the combination by the
cautious rule.

Proof. Suppose m1 and m2 are the BBAs of Case 1 of the proof of Proposition 5.1
(see Appendix E.3), for some x, y ∈ (0, 1) �xed. We have (m1 ∧©m2)

↓t = (m1 ∩©m2)
↓t

and m↓t
1 ∧©m2 6= m↓t

1 ∩©m2. Hence, we have

(m1 ∧©m2)
↓t 6= m↓t

1 ∧©m2,

and thus
(m1 ∧©m2)

↓z 6= m↓z∩s
1 ∧©m2,

according to the choice of t, s and z in the proof of Proposition 5.1.
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The practical consequence of this proposition is similar to the consequence of
Proposition 5.1 for the conjunctive u-rules: it will be di�cult to use the cautious
rule in problems involving many variables. Let us stress that, despite this drawback,
the cautious rule remains nonetheless relevant for many other problems, such as
classi�cation applications, as demonstrated in Chapter 4.

5.5 Conclusion

The TBM conjunctive rule belongs to an in�nite family of rules based on generalized
uninorms. All the rules in this family share some basic properties. An interesting fact
related to this family is that the TBM conjunctive rule is its least committed element.
In this chapter, we have shown that the TBM conjunctive rule is also the only rule
in this family for which marginalization is distributive over the combination. On the
one hand, this second singular property of the TBM conjunctive rule strengthens the
fact that this rule has a special position in this family and may be seen as yet another
argument in favor of this rule. On the other hand, it may be seen as a restriction to
the breadth of problems that can be tackled by the conjunctive u-rules. A similar
conclusion holds for the cautious rule.

Interestingly, in the next part of this thesis, we will see the TBM conjunctive
rule surfacing once again in another family of combination rules, called α-junctions.





Part III

α-Junctions
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Chapter 6

Interpretation and Computation of

α-Junctions

Summary

The TBM conjunctive rule, the TBM disjunctive rule, the exclusive disjunctive rule
and its negation are particular cases of an in�nite family of combination rules called
α-junctions. Until now, the α-junctions su�ered from two main limitations. First,
they did not have an interpretation in the general case. Second, it was di�cult to
compute a combination by an α-junction. In this chapter, it is �rst shown that these
operators correspond to a particular form of knowledge on the truthfulness of the
sources of information. Then, it is shown that there exist several simple means to
compute a combination by an α-junction. These means are mere generalizations of
expressions that allow one to compute the combination by the TBM conjunctive rule.
These new results on the interpretation and the computation of the α-junctions make
this family of rules potentially interesting for applications. At the end of this chapter,
the usefulness of these rules in a classi�cation application is also investigated.

Résumé

La règle conjonctive du MCT, la règle disjonctive du MCT, la règle disjonctive
exclusive et sa négation sont des cas particuliers d'une famille in�nie de règles de
combinaison appelées α-jonctions. Ces règles sou�raient jusqu'ici de deux problèmes
majeurs. Tout d'abord, aucune interprétation des α-jonctions n'était connue dans le
cas général. De plus, il était di�cile de calculer la combinaison par une α-jonction.
Dans ce chapitre, nous montrons que ces règles correspondent à une connaissance
particulière quant à la véracité des sources d'information. Ensuite, nous donnons plu-
sieurs nouvelles formules simples permettant de calculer la combinaison par une α-
jonction. Ces formules généralisent des expressions permettant de calculer la combi-
naison par la règle conjonctive du MCT. Ces nouveaux résultats sur l'interprétation
et le calcul des α-jonctions rendent cette famille de règles intéressante d'un point
de vue applicatif. À la �n de ce chapitre, nous étudions aussi l'intérêt de ces règles
dans une application de classi�cation.

95





6.1. INTRODUCTION 97

6.1 Introduction

In [87], Smets introduced a family of combination rules, which he called α-junctions.
This family basically represents the set of associative, commutative and linear
operators for belief functions with a neutral element. It includes as particular
cases the TBM conjunctive rule, the TBM disjunctive rule, as well as the exclusive
disjunctive rule [26] and its negation [87] (the de�nitions of these two latter rules
will be given in this chapter). We recall that the use of the TBM conjunctive rule
is appropriate when one can assume that all the sources tell the truth. On the
other hand, the TBM disjunctive rule should be used when it is known that at least
one of the sources tells the truth, but it is not known which one. The uses of the
exclusive disjunctive rule and its negation are also conditioned by knowledge on
the truthfulness of the sources of information: the former �ts with the case where
exactly one of the sources is known to tell the truth, but it is not known which
one, whereas the latter corresponds to a situation where either all or none of the
sources are known to tell the truth [87]. The behavior of an α-junction, or α-junctive
rule, is determined by a parameter, noted α, and the chosen neutral BBA for the
combination, noted mvac, which can be either mΩ or m∅

1; the rule ∩©, the rule ∪©,
the exclusive disjunctive rule and its negation are recovered for particular values of
α and mvac. For other values of the parameter α, the α-junctive rules did not have
an interpretation.

To our knowledge, this in�nite family of rules has never been exploited in the
literature. A possible explanation is that, until now, these rules su�ered from two
main limitations. First, those operators did not have an interpretation in the general
case. Second, it was di�cult to compute a combination by an α-junction using the
methods proposed in [87], as already remarked in [91].

In our search for alternatives to the TBM conjunctive rule, we carefully reexamine
in this chapter this theoretical contribution of Smets: some new light on the meaning
of the α-junctions is shed and their mathematics are simpli�ed so that their compu-
tation be easier. More precisely, it is �rst shown that these operators correspond to a
particular form of knowledge, determined by the parameter α, about the truthfulness
of the sources. The α-junctions becomes thus suitable as �exible combination rules
that allows one to take into account some particular knowledge about the sources.
Several e�cient and simple ways of computing a combination by an α-junction
are then presented, making the practical use of the α-jonctions in applications
possible. These new means are based on generalizations of mechanisms that can
be used to compute combinations by the TBM conjunctive and TBM disjunctive
rules. In particular, the conditioning operation is generalized in the context of the
α-junctions. It is also shown that there exists a simple way to obtain two other
equivalent representations of a belief function, that do not have a name in Smets'
paper [87] but that we will call the α-commonality and α-implicability functions for
reasons that will become apparent. This is important since the combination by an α-
junctive rule can easily be computed once one has these functions. This contribution
will be based on a generalization of the matrices Q and B (see Chapter 1), that can
be used to obtain, in a simple manner, the commonality and implicability functions

1Recall that mΩ and m∅ are used, respectively, in place of m(Ω) = 1 and m(∅) = 1.
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associated to a belief function. We will also propose a light technical modi�cation to
a part of Smets' presentation of the α-junctions so that the so-called α-implicability
function is a complete generalization of the implicability function, which is not the
case with Smets' presentation as will be shown in this chapter.

This chapter is organized as follows. In Section 6.2, basic notions on α-junctions
are given. The interpretation of this family of rules is discussed in Section 6.3. Simple
means to perform a combination by an α-junctive rule are proposed in Section 6.4.
Eventually, the usefulness of these rules in a classi�cation application is investigated
in Section 6.5.

6.2 α-Junctions: Basic Notions

In [87], Smets studies the set of possible linear combination rules. Smets calls this set
the α-junctions because, as we will see, they cover the conjunction, the disjunction
and the exclusive disjunction. We report in this section the summary of [87] given
in [91].

Let m1 and m2 be two BBAs on Ω. Suppose we want to build a BBA m12

such that m12 = f(m1,m2), i.e., m12 depends only on m1 and m2. Smets [87]
determines the operators that mapMΩ×MΩ toMΩ and that satisfy the following
requirements (the origins of those requirements are summarized in [91, p.25]).

• Linearity: f(m, pm1 + qm2) = pf(m,m1) + qf(m,m2), p ∈ [0, 1], q = 1− p.

• Commutativity: f(m1,m2) = f(m2,m1).

• Associativity: f(f(m1,m2),m3) = f(m1, f(m2,m3)).

• Neutral element: existence of a belief function mvac such that f(m,mvac) = m
for any m.

• Anonymity: relabeling the elements of Ω does not a�ect the results.

• Context preservation: if pl1(X) = 0 and pl2(X) = 0 for some X ⊆ Ω, then
pl12(X) = 0.

It is shown in [87] that the solutions are stochastic matrices. We have:

m12 = Km1 ·m2,

where

Km1 =
∑
X⊆Ω

m1(X) ·KX . (6.1)

Smets [87] proves that the 2|Ω|× 2|Ω| matrices KX depend only on mvac and one
parameter α ∈ [0, 1]. Furthermore, he shows that there are only two solutions for
mvac: either mvac = mΩ = 1Ω or mvac = m∅ = 1∅. Hence, there are only two sets
of solutions, which are presented now.
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6.2.1 Case mvac = mΩ

The de�nition of the matrices KX that satisfy the above requirements when mvac =
mΩ is the following.

KΩ = I,

KX =
∏
x 6∈X

K{x}, ∀X ⊂ Ω,

where

K{x} = [kx(A,B)] , ∀x ∈ Ω, (6.2)

with

kx(A,B) =


1 if x 6∈ A, B = A ∪ {x},
α if x 6∈ B, B = A,
1− α if x 6∈ B, A = B ∪ {x},
0 otherwise,

(6.3)

where α ∈ [0, 1] and is constant for all KX .

When mvac = mΩ, the matrix Km computed using (6.1) is noted K∩,α
m . The

index ∩ is used because when α = 1, K∩,1
m becomes the Dempsterian specialization

matrix (Section 1.4.2) and we have K∩,1
m1
· m2 = m1 ∩©2 [91, p. 26]. Furthermore,

when mvac = mΩ, an α-junction is referred to as an α-conjunction since mΩ is the
neutral element of the conjunction [87, p. 144]; we denote an α-conjunctive rule by
∩©α. Note that we will give in the next chapter another motivation for using the
term α-conjunction when mvac = mΩ.

The case α = 0 corresponds to the combination rule noted ∩© and de�ned by

m1 ∩©2 (A) =
∑

A=(B∩C)∪(B∩C)

m1 (B)m2 (C) , ∀A ⊆ Ω. (6.4)

This rule corresponds to the situation where it is known that either both or none of
the sources of information tell the truth [87].

Example 6.1 illustrates the various matrices KX when Ω = {a, b} (this example
is a more detailed version of Example 12.1 of [91]).
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Example 6.1. Let α = 1− α. We have

m12 = (m1(∅) ·K∅) ·m2 + (m1(a) ·Ka) ·m2 + (m1(b) ·Kb) ·m2

+ (m1(Ω) ·KΩ) ·m2

=
(
m1(∅) ·K{a} ·K{b}

)
·m2 +

(
m1(a) ·K{b}

)
·m2 +

(
m1(b) ·K{a}

)
·m2

+ (m1(Ω) · I) ·m2

=

m1(∅) ·


α 1 . .
α . . .
. . α 1
. . α .

 ·

α . 1 .
. α . 1
α . . .
. α . .


 ·m2

+

m1(a) ·


α . 1 .
. α . 1
α . . .
. α . .


 ·m2 +

m1(b) ·


α 1 . .
α . . .
. . α 1
. . α .


 ·m2

+m1(Ω) ·m2

= m1(∅) ·


α2 α α 1
αα . α .
αα α . .
α2 . . .

 ·m2 +m1(a) ·


α . 1 .
. α . 1
α . . .
. α . .

 ·m2

+m1(b) ·


α 1 . .
α . . .
. . α 1
. . α .

 ·m2 +m1(Ω) ·m2.

6.2.2 Case mvac = m∅

The de�nition of the matrices KX that satisfy the above requirements when mvac =
m∅ is the following.

K∅ = I,

KX =
∏
x∈X

K{x}, ∀X ∈ 2Ω\ {∅} ,

where

K{x} = [kx(A,B)] , ∀x ∈ Ω,

with

kx(A,B) =


1 if x 6∈ B, A = B ∪ {x},
α if x ∈ B, B = A,
1− α if x 6∈ A, B = A ∪ {x},
0 otherwise,

where α ∈ [0, 1] and is constant for all KX .
When mvac = m∅, the matrix Km is noted K∪,α

m . The index ∪ is used because
when α = 1, we have K∪,1

m1
·m2 = m1 ∪©2. Furthermore, when mvac = m∅, an α-

junction is referred to as an α-disjunction since m∅ is the neutral element of the
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disjunction [87, p. 144]; we denote an α-disjunctive rule by ∪©α. Note that we will
give in the next chapter another motivation for using the term α-disjunction when
mvac = m∅.

The case α = 0 corresponds to the combination rule noted ∪© and de�ned by

m1 ∪©2 (A) =
∑

A=B∪C

m1 (B)m2 (C) , ∀A ⊆ Ω, (6.5)

where ∪ is the exclusive OR (XOR), i.e., B∪C =
(
B ∩ C

)
∪
(
B ∩ C

)
for allB,C ⊆ Ω.

This rule corresponds to the situation where it is known that exactly one of the
sources of information tells the truth, but it is not known which one [87]. This rule
is called the exclusive disjunctive rule. In the same vein, the rule ∩© may be called
the exclusive conjunctive rule since it corresponds to the XAND logical operator2.

Note that, besides using the notation K∪,α
m and K∩,α

m in order to enhance the
di�erence between the cases mvac = m∅ and mvac = mΩ, we will also write K∪,α

X

and K∩,α
X to make the distinction between the two possible sets of matrices KX .

Finally, we have, for any α ∈ [0, 1] [91, Theorem 12.2]:

m1 ∪©α m2 = m1 ∩©α m2

m1 ∩©α m2 = m1 ∪©α m2 (6.6)

i.e., α-conjunctive rules and α-disjunctive rules are linked by De Morgan laws.
In particular, the De Morgan duality between the TBM conjunctive and TBM
disjunctive rules (Equation (1.6)) is recovered by setting α = 1 in (6.6).

Figure 6.1 presents an overview of the α-junctions.

6.3 Interpretation

In [91], Smets stated that the meaning of the α-junctions is unclear when α ∈ (0, 1).
In this section, an interpretation for the α-junctions is proposed. In order to derive
this interpretation in Section 6.3.2, a new expression for the α-junctions is �rst
unveiled in Section 6.3.1.

6.3.1 A new expression for the α-junctions

It was stressed in Section 1.3.1 that the TBM conjunctive rule may be seen as a
generalization of the conditioning operation, since the conjunctive combination can
be expressed using the unnormalized Dempster's rule of conditioning (see Equation
(1.8)). Interestingly, Equation (1.8) may be generalized in the context of the α-
conjunctions, as shown by the following proposition.

2The XAND logical operator is equivalent to the XNOR logical operator, and thus the rule
∩© may also be called the exclusive non disjunctive rule. However, we will use the appellation
exclusive conjunctive rule, since we feel this name better re�ects the fact that the rule ∩© has the
vacuous BBA mΩ as neutral element.
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Figure 6.1: The α-junctions and the De Morgan duality.

Proposition 6.1. Let m1 and m2 be two BBAs. Let m1[B]α denote m1 ∩©α mB,
where mB is a categorical BBA focused on B ⊆ Ω. We have

m1 ∩©α2 (A) =
∑
B⊆Ω

m1 [B]α (A)m2 (B) , ∀A ⊆ Ω. (6.7)

Proof. We have

m1 ∩©α2 = K∩,α
m1
·m2.

Hence, we have

m1 ∩©α2(A) =
∑
B⊆Ω

K∩,α
m1

(A,B) ·m2(B), ∀A ⊆ Ω. (6.8)

Furthermore, the column B of K∩,α
m1

is equal to the column vector m1 ∩©α mB since
m1 ∩©α mB = K∩,α

m1
·mB and K∩,α

m1
·mB is equal to the column B of K∩,α

m1
. Hence,

Equation (6.8) can be rewritten

m1 ∩©α2(A) =
∑
B⊆Ω

m1 ∩©α mB(A) ·m2(B), ∀A ⊆ Ω.
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Note that, when α = 1, Equation (6.7) becomes equivalent to (1.8); this is the
reason why (6.7) may be seen as a generalization of (1.8).

Proposition 6.1 gives us another expression for the α-conjunctions using what
may be called �α-conditioning�, which may be formally de�ned as follows.

De�nition 6.1. The α-conditioning of a BBA by a subset B ⊆ Ω is equal to the
α-conjunction of this BBA with a categorical BBA focused on B.

The result of the α-conditioning operation on a BBA m given a subset B ⊆ Ω,
is noted m[B]α and is, by de�nition, equal to m ∩©α mB, where mB is a categorical
BBA focused on B. We use the term �α-conditioning� form[B]α = m ∩©αmB because
m[B]α = m[B] when α = 1.

The following proposition provides an expression for the α-conditioning opera-
tion.

Proposition 6.2. Let B ⊆ Ω. We have

m[B]α(X) =
∑

(A∩B)∪(A∩B∩C)=X

m (A)mα,∩ (C) , ∀X ⊆ Ω,

where mα,∩ is a BBA such that mα,∩ (A) = α|A|α|A|, for all A ⊆ Ω.

Proof. See Appendix F.1.

Using Propositions 6.1 and 6.2, we are now able to show the following proposition,
which gives us a new expression for the α-conjunctions. This expression will be useful
in the next section to derive an interpretation for these operators.

Proposition 6.3. Let m1 and m2 be two BBAs. We have

m1 ∩©α2 (X) =
∑

(A∩B)∪(A∩B∩C)=X

m1 (A)m2 (B)mα,∩ (C) , ∀X ⊆ Ω, (6.9)

where mα,∩ (A) = α|A|α|A|, for all A ⊆ Ω.

Proof. From Proposition 6.1, we have, for all X ⊆ Ω

m1 ∩©α2 (X) =
∑
B⊆Ω

m1 [B]α (X)m2 (B)

=
∑
B⊆Ω

 ∑
(A∩B)∪(A∩B∩C)=X

m1 (A)mα,∩ (C)

m2 (B) (from Proposition 6.2)

=
∑

(A∩B)∪(A∩B∩C)=X

m1 (A)m2 (B)mα,∩ (C) .



104 CHAPTER 6. INTERPRETATION AND COMPUTATION OF α-JUNCTIONS

Remark 6.1. If α = 0, then the BBAmα,∩ of Proposition 6.3 is such thatmα,∩ (Ω) =
1, and thus the term on the right side of (6.9) reduces to∑

(A∩B)∪(A∩B∩Ω)=X

m1 (A)m2 (B)mα,∩ (Ω) =
∑

(A∩B)∪(A∩B)=X

m1 (A)m2 (B)

= m1 ∩©m2(X),

as expected.
If α = 1, then mα,∩ (∅) = 1 and thus the term on the right side of (6.9) reduces

to ∑
(A∩B)∪(A∩B∩∅)=X

m1 (A)m2 (B)mα,∩ (∅) =
∑

(A∩B)=X

m1 (A)m2 (B)

= m1 ∩©m2(X),

as expected.

Proposition 6.4. Let m1 and m2 be two BBAs. We have

m1 ∪©α2 (X) =
∑

(A∩B)∪(A∩B)∪(A∩B∩C)=X

m1 (A)m2 (B)mα,∪ (C) , ∀X ⊆ Ω, (6.10)

where mα,∪ is a BBA such that mα,∪ (A) = α|A|α|A|, for all A ⊆ Ω.

Proof. See Appendix F.2.

Remark 6.2. If α = 0, then the BBAmα,∪ of Proposition 6.4 is such thatmα,∪ (∅) =
1, and thus the term on the right side of (6.10) reduces to∑

(A∩B)∪(A∩B)∪(A∩B∩∅)=X

m1 (A)m2 (B)mα,∪ (∅) =
∑

(A∩B)∪(A∩B)=X

m1 (A)m2 (B)

= m1 ∪©m2(X),

as expected.
If α = 1, then mα,∪ (Ω) = 1 and thus the term on the right side of (6.10) reduces,

as expected, to m1 ∪©m2(X) since we have∑
(A∩B)∪(A∩B)∪(A∩B∩Ω)=X

m1 (A)m2 (B)mα,∪ (Ω) =
∑

(A∩B)∪(A∩B)∪(A∩B)=X

m1 (A)m2 (B)

=
∑

A∪B=X

m1 (A)m2 (B) ,

as

(A ∩B) ∪ (A ∩B) ∪ (A ∩B) = (A ∩ (B ∪B)) ∪ (A ∩B)

= A ∪ (A ∩B)

= (A ∪ A) ∩ (A ∪B)

= A ∪B.
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6.3.2 Truthfulness of the sources

Let ω be a variable, which takes its values in a frame Ω. Suppose an agent who
does not know anything about the actual value ω0 taken by ω. Suppose a source S1
that tells the agent that the actual value ω0 is in A ⊆ Ω, i.e., ω0 ∈ A. If the source
tells the truth or, equivalently, is truthful, then the agent believes ω0 ∈ A. If the
source does not tell the truth, i.e., it lies or, equivalently, �tells the false� [87], then
the agent believes ω0 ∈ A.

Let τ be a variable taking its values in a frame T = {t, f}. We use τ to denote
the truthfulness of the source. The information ω0 ∈ A provided by S1 can be
modeled by a BBA mΩ

1 such that mΩ
1 (A) = 1. The information when the source tells

the truth, ω0 must be in A, and when the source does not tell the truth, ω0 must
be in A, may be modeled by a BBA noted mΩ×T

1′ and de�ned on the product space
Ω× T by

mΩ×T
1′ (A× {t} ∪ A× {f}) = 1. (6.11)

Note that we use the index 1′ in mΩ×T
1′ , i.e., the source number followed by the prime

symbol, to highlight that the BBA mΩ×T
1′ is obtained from the source S1, as is the

case of the BBA mΩ
1 , but that it conveys a di�erent information from the BBA mΩ

1 .
One veri�es that the BBA mΩ×T

1′ is appropriate to model the information avail-
able in this scenario since

• combining mΩ×T
1′ with a BBA mT

t de�ned on T by mT
t (t) = 1, and then

marginalizing on Ω, yields a BBA mΩ
Ag such that mΩ

Ag(A) = 1, i.e., if the agent
believes that the source tells the truth, then the agent believes ω0 ∈ A;

• combining mΩ×T
1′ with a BBA mT

f de�ned on T by mT
f (f) = 1, and then

marginalizing on Ω, yields a BBA mΩ
Ag such that mΩ

Ag(A) = 1, i.e., if the agent
believes that the source does not tell the truth, then the agent believes ω0 ∈ A.

We may further remark that

(mΩ×T
1′ ∩©mT↑Ω×T

t )↓Ω = mΩ
1 (6.12)

and
(mΩ×T

1′ ∩©mT↑Ω×T
f )↓Ω = mΩ

1 , (6.13)

which is sound sincem represents the BBA that would be induced if the agent knows
that the source providing a BBA m is not telling the truth [87], as mentioned in
Section 1.2.

This reasoning may be generalized when the source produces an information in
the form of a BBA rather than a set, in which case the BBA mΩ×T

1′ is such that

mΩ×T
1′ (A× {t} ∪ A× {f}) = mΩ

1 (A), ∀A ⊆ Ω. (6.14)

Here again, Equations (6.12) and (6.13) are veri�ed, which means that, as expected,
the agent's beliefs are equated to what the source says if the source tells the truth,
and the agent's beliefs are equal to the negation of what the source says if the source
does not tell the truth.

Using the BBA mΩ×T
1′ , as de�ned by (6.14), to represent the agent's beliefs when

she receives a BBA mΩ
1 from a source S1, we may now derive an interpretation for

the α-junctions.
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Interpretation of the α-conjunctions

Suppose two distinct sources S1 and S2 that induce two BBAs mΩ
1 and mΩ

2 on Ω.
Let T1 = {t1, f1} and T2 = {t2, f2}; these two frames will be used to model beliefs
on the truthfulness of S1 and S2, respectively. Suppose we want to quantify the
agent's beliefs on Ω given mΩ

1 , m
Ω
2 and the following distinct pieces of evidence.

• A piece of evidence stating that both or none of the sources tell the truth.
This piece of evidence may be modeled by a BBA mT1×T2

xand de�ned by

mT1×T2
xand ({(t1, t2) , (f1, f2)}) = 1. (6.15)

• Distinct items of evidence for all x ∈ Ω of the form

plT1×T2[x]({(f1, f2)}) = 1− α, (6.16)

indicating that if ω0 = x, then it is plausible with strength 1 − α that both
sources do not tell the truth.

To compute the agent's beliefs on Ω given these distinct pieces of evidence, the items
of evidence of the form given by (6.16), must be transformed into BBAs. In the TBM,
this may done using the LCP. The least committed BBA mT1×T2[x] corresponding
to (6.16) is the SBBA mT1×T2[x] = {(t1, t2) , (f1, t2) , (t1, f2)}α. Using all these
distinct items of evidence, the agent's belief mΩ

Ag on Ω is then equal to

mΩ
Ag = (mΩ×T1↑Ω×T1×T2

1′ ∩©mΩ×T2↑Ω×T1×T2
2′ ∩©mT1×T2↑Ω×T1×T2

xand

∩©( ∩©x∈Ωm
T1×T2[x]⇑Ω×T1×T2))↓Ω,

with

mΩ×Ti
i′ (A× {ti} ∪ A× {fi}) = mΩ

i (A), ∀A ⊆ Ω, i = 1, 2,

and

mT1×T2[x] = {(t1, t2) , (f1, t2) , (t1, f2)}α , ∀x ∈ Ω,

and
mT1×T2

xand ({(t1, t2) , (f1, f2)}) = 1.

Theorem 6.1. Let m1 and m2 be two BBAs. We have

m1 ∩©α m2 = (mΩ×T1↑Ω×T1×T2
1′ ∩©mΩ×T2↑Ω×T1×T2

2′ ∩©mT1×T2↑Ω×T1×T2
xand

∩©( ∩©x∈Ωm
T1×T2[x]⇑Ω×T1×T2))↓Ω, (6.17)

with mΩ×Ti
i′ , i = 1, 2, mT1×T2

xand and mT1×T2[x] as de�ned immediately above.

Proof. See Appendix F.3.



6.3. INTERPRETATION 107

Figure 6.2: Valuation network for the α-conjunction of two BBAs m1 and m2.

In the network, the term ( ∩©x∈ΩmT1×T2[x]⇑Ω×T1×T2) appearing in Theorem 6.1, is

replaced by a BBA mα,∩′ de�ned on Ω× T1× T2.

This theorem may be illustrated with a simple valuation network (Figure 6.2).
As shown by Theorem 6.1, an α-conjunction is equivalent to the pooling by the

TBM conjunctive rule of some simple pieces of evidence, which can all be interpreted
and that are, moreover, all related to the truthfulness of the sources. In particular,
the parameter α involved in the α-conjunctions can be interpreted in terms of the
plausibility, given ω0 = x, that the sources lie, since this plausibility is equal to
1 − α. Note that since the BBA mxand excludes the fact that one and only one
source tells the truth, we clearly see, from the interpretation given to α, that we
pass from the TBM conjunctive rule to the exclusive conjunctive rule as α varies
from 1 to 0. Finally, we may remark that since (6.16) is logically equivalent to

belT1×T2[x]({(t1, t2) , (f1, t2) , (t1, f2)}) = α,

then the parameter α involved in the α-conjunctions is equal to the belief, given
ω0 = x, that at least one of the sources tells the truth.

Interpretation of the α-disjunctions

The α-disjunctions can be interpreted in a similar way. Suppose two distinct sources
S1 and S2 that induce two BBAs mΩ

1 and mΩ
2 on Ω. Suppose we want to compute

the agent's beliefs on Ω given mΩ
1 , m

Ω
2 and the following distinct pieces of evidence.

• A piece of evidence stating that the sources don't lie simultaneously. This
piece of evidence may be modeled by a BBA mT1×T2

or de�ned by

mT1×T2
or ({(t1, t2) , (t1, f2) , (f1, t2)}) = 1. (6.18)

• Distinct items of evidence for all x ∈ Ω of the form

plT1×T2[x]({(t1, t2)}) = α, (6.19)
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indicating that if ω0 = x, then it is plausible with strength α that both sources
tell the truth.

The least committed BBAmT1×T2[x] corresponding to (6.19) is the SBBAmT1×T2[x] =
{(f1, t2) , (t1, f2) , (f1, f2)}α. Using all these distinct items of evidence, the agent's
belief mΩ

Ag on Ω is then equal to

mΩ
Ag = (mΩ×T1↑Ω×T1×T2

1′ ∩©mΩ×T2↑Ω×T1×T2
2′ ∩©mT1×T2↑Ω×T1×T2

or

∩©( ∩©x∈Ωm
T1×T2[x]⇑Ω×T1×T2))↓Ω, (6.20)

with

mΩ×Ti
i′ (A× {ti} ∪ A× {fi}) = mΩ

i (A), ∀A ⊆ Ω, i = 1, 2,

and

mT1×T2[x] = {(f1, t2) , (t1, f2) , (f1, f2)}α , ∀x ∈ Ω,

and
mT1×T2

or ({(t1, t2) , (t1, f2) , (f1, t2)}) = 1.

Theorem 6.2. Let m1 and m2 be two BBAs. We have

m1 ∪©α m2 = (mΩ×T1↑Ω×T1×T2
1′ ∩©mΩ×T2↑Ω×T1×T2

2′ ∩©mT1×T2↑Ω×T1×T2
or

∩©( ∩©x∈Ωm
T1×T2[x]⇑Ω×T1×T2))↓Ω,

with mΩ×Ti
i′ , i = 1, 2, mT1×T2

or and mT1×T2[x] as de�ned immediately above.

Proof. The proof is similar to the proof of Theorem 6.1.

As shown by Theorem 6.2, an α-disjunction is equivalent to the pooling by the
TBM conjunctive rule of some simple pieces of evidence. In particular, the parameter
α involved in the α-disjunctions is equal to the plausibility that the sources tell the
truth given ω0 = x. Note that since the BBAmor excludes the fact that both sources
lie, we clearly see, from the interpretation given to α, that we pass from the TBM
disjunctive rule to the exclusive disjunctive rule as α varies from 1 to 0.

To complete this section on the interpretation of the α-junctions, we may note
that the idea of recovering the TBM disjunctive rule and the exclusive disjunctive
rule through the use of the TBM conjunctive rule and BBAs de�ned on product
spaces was investigated by Haenni in [41]. The di�erence between Haenni's approach
and ours is that Haenni used the notion of the reliability of the sources, rather
than their truthfulness. In particular, he claimed that the exclusive disjunctive
rule corresponds to the situation where exactly one of the sources is reliable. In
Appendix D, we show that this claim is wrong, and we provide a short discussion on
the implications of making the di�erence between a reliable source and a truthful
source.
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6.4 Computation

In addition to lacking an interpretation, the α-junctions su�ered in Smets's paper
[87] from another limitation: they were hard to compute. Indeed, as remarked by
Smets [91] and as can be seen with Example 6.1 where Ω contains only two elements,
the de�nitions of the matrices underlying the α-junctions are quite laborious and
thus using an α-junctive rule looks like a complicated task. It seems thus interesting
to have simpler and more e�cient mechanisms to perform a combination by an α-
junctive rule. This is the topic of this section.

As the reader may have noticed, we have already brought to light some new
means to perform a combination by an α-conjunctive rule through either:

1. the α-conditioning operation (see Proposition 6.1);

2. or a �classical3� expression (see Proposition 6.3);

3. or the TBM conjunctive rule and BBAs de�ned on product spaces (see Theo-
rem 6.1).

In Sections 6.4.1 and 6.4.2, we propose yet another technique. In Section 6.4.3, the
computations involved in the use of each of these new means, will be illustrated with
an example. Furthermore, these new means will also be compared with one another
in Section 6.4.3.

6.4.1 The α-commonality function

In this section, a simple way to compute an α-conjunction is proposed. It is based
on the eigendecomposition of the matrix Km.

The eigendecomposition of the matrices K∩,α
X , given in [91], is

K∩,α
X = (G∩,α)−1 ·V∩,α

X ·G∩,α,

where

V∩,α
Ω = I,

V∩,α
X =

∏
x 6∈X

V∩,α
{x}, ∀X ⊆ Ω,

V∩,α
{x} =

[
v∩,α

x (A,B)
]
, ∀x ∈ Ω, (6.21)

with

v∩,α
x (A,B) =


1 if x 6∈ A, A = B,
α− 1 if x ∈ A, A = B,
0 if A 6= B,

where α ∈ [0, 1] and is constant for all V∩,α
X .

3We use the term classical since the expression in Proposition 6.3 is a generalization of the
classical, or most often encountered, de�nition of the TBM conjunctive rule given by Equation
(1.4).
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The X column of the 2|Ω|×2|Ω| G∩,α matrix is V∩,α
X ·1. Furthermore, all matrices

K∩,α
X for X ⊆ Ω share the same left and right eigenvectors [87], hence the matrix

G∩,α does not depend on X [91]. We may thus obtain the following expression for
K∩,α

m :

K∩,α
m =

∑
X⊆Ω

m(X) ·K∩,α
X

=
∑
X⊆Ω

m(X) · (G∩,α)−1 ·V∩,α
X ·G∩,α

= (G∩,α)−1 ·

(∑
X⊆Ω

m(X) ·V∩,α
X

)
·G∩,α.

Hence,

G∩,α ·K∩,α
m =

(∑
X⊆Ω

m(X) ·V∩,α
X

)
·G∩,α. (6.22)

In this last equation, we recognize an eigendecomposition: the elements on the
diagonal of the diagonal matrix

∑
X⊆Ωm(X) ·V∩,α

X are the eigenvalues of K∩,α
m (the

vector
(∑

X⊆Ωm(X) ·V∩,α
X

)
· 1 is thus the vector of eigenvalues of K∩,α

m ), and the
rows of the matrix G∩,α are the corresponding left eigenvectors of K∩,α

m [87].
Let g∩,α = G∩,α ·m. From (6.22), we may obtain:

G∩,α ·K∩,α
m · 1Ω =

(∑
X⊆Ω

m(X) ·V∩,α
X

)
·G∩,α · 1Ω

G∩,α ·m =

(∑
X⊆Ω

m(X) ·V∩,α
X

)
· 1,

as 1Ω is the neutral element for an α-conjunction, and as G∩,α(A,Ω) = 1 for all
A ⊆ Ω. Hence, the vector g∩,α is the vector of eigenvalues of K∩,α

m and is the
analogous of the commonality function within the generalized context of the α-
conjunction [87]. However, let us note that, contrary to the commonality function,
these eigenvalues are not necessarily on the diagonal of K∩,α

m as shown by Example
6.2.

Example 6.2. Let Ω = {a, b} be a frame of discernment. Let m be a BBA de�ned
on Ω by m({b}) = 0.8 and m(Ω) = 0.2. Let α = 0.6 and mvac = mΩ. The function
g∩,0.6 corresponding to this BBA is the following:

g∩,0.6(∅) = 1

g∩,0.6({a}) = −0.12

g∩,0.6({b}) = 1

g∩,0.6(Ω) = −0.12
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The matrix K∩,0.6
m associated to m when α = 0.6 and mvac = mΩ is the following:

K∩,0.6
m =

∑
X⊆Ω

m(X) ·K∩,0.6
X

= m(b) ·K∩,0.6
b +m(Ω) · I

=


m(b)α+m(Ω) m(b) · ·

m(b)α m(Ω) · ·
· · m(b)α+m(Ω) m(b)
· · m(b)α m(Ω)



=


0.68 0.8 · ·
0.32 0.2 · ·
· · 0.68 0.8
· · 0.32 0.2

 (6.23)

We can see that the elements on the diagonal of K∩,0.6
m are not its eigenvalues, since

the eigenvalues are given by g∩,0.6.

Letm1 ∩©αm2 = m1 ∩©α2 and let g∩,α
1 ∩©α2 = G∩,α·m1 ∩©α2. We have g∩,α

1 ∩©α2 = g∩,α
1 ·g∩,α

2

(using the counterpart of [87, Theorem 12] for the α-conjunctions), from which we
obtain

m1 ∩©α2 = (G∩,α)−1 ·Diag(g∩,α
1 ) · g∩,α

2 . (6.24)

Hence, the combination of two BBAs m1 and m2 by an α-conjunctive rule can be
simply expressed as the pointwise product of the functions g∩,α

1 and g∩,α
2 associated,

respectively, to m1 and m2. This is a �rst step in the simpli�cation of the computa-
tion by an α-conjunction. However, one may note that the de�nition of the matrix
G∩,α is as tedious as the de�nition of the matrix K∩,α

m . Fortunately, Theorem 6.3
shows that it is possible to obtain the matrix G∩,α in a simple manner, similar to
the way the matrices B and Q can be obtained, i.e., using Kronecker multiplication
and a particular building block.

Theorem 6.3. The matrix G∩,α can be obtained by Kronecker multiplication using
the building block: [

1 1
α− 1 1

]
(6.25)

Proof. See Appendix F.4.

Corollary 6.1. The matrix (G∩,α)−1 can be obtained by Kronecker multiplication
using the building block:([

1 1
α− 1 1

])−1

=
1

2− α
·
[

1 −1
1− α 1

]
. (6.26)
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Proof. This corollary may easily be shown using the following property of the
Kronecker product. Let A be a m×n matrix and let B a p×q matrix. Kron(A,B)
is invertible if and only if A and B are invertible, in which case the inverse of
Kron(A,B) is given by

(Kron(A,B))−1 = Kron(A−1,B−1).

Let us remark that Equation (6.24) together with Theorem 6.3 and Corollary
6.1 make the computation of an α-conjunction really simple. This simple new way
of computing an α-conjunction will be illustrated with an example in Section 6.4.3.

Two consequences of Theorem 6.3 are the following.
First, we can easily see that the G∩,α matrix generalizes the Q matrix in that we

have G∩,1 = Q and thus g∩,1 = q. This is interesting because we will see in the next
section that the matrix G∪,α, whose role is similar to that of the G∩,α matrix in the
context of the α-disjunctions, does not generalize the matrix B as one might have
expected. The fact that the function g∩,α generalizes the commonality function can
also be used to call this function the α-commonality function associated to a BBA
m.

Second, we may easily show the following proposition, which will be useful in
the next chapter.

Proposition 6.5. For all α ∈ [0, 1], we have

g∩,α(∅) = 1. (6.27)

Proof. In order to show (6.27), one merely needs to show that

G∩,α(∅, A) = 1, ∀A ⊆ Ω, (6.28)

holds, since
∑

A⊆Ωm(A) = 1. The fact that (6.28) holds may easily be shown from
the fact that the matrix G∩,α is based on the building block given in Theorem
6.3.

6.4.2 Alternative de�nition of the α-implicability function

In this section, we review Smets's presentation of the eigendecomposition of K∪,α
m

and we propose a slight technical modi�cation to a part of his presentation.
The eigendecomposition of the matrices K∪,α

X is given by

K∪,α
X = (G∪,α)−1 ·V∪,α

X ·G∪,α,

where

V∪,α
Ω = I,

V∪,α
X =

∏
x∈X

V∪,α
{x}, ∀X ⊆ Ω,

V∪,α
{x} = [v∪,α

x (A,B)] , ∀x ∈ Ω,
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with

v∪,α
x (A,B) =


1 if x 6∈ A, A = B,
α− 1 if x ∈ A, A = B,
0 if A 6= B,

where α ∈ [0, 1] and is constant for all V∪,α
X . The X column of the G∪,α matrix is

V∪,α
X · 1.
In a similar way as was done in the previous section, it may be shown that∑

X⊆Ωm(X) · V∪,α
X is a diagonal matrix, whose diagonal elements are the eigen-

values of K∪,α
m and that the rows of G∪,α are the corresponding left eigenvectors.

Furthermore, the vector g∪,α = G∪,α ·m is the vector of eigenvalues of K∪,α
m . We

can also show that

m1 ∪©α2 = (G∪,α)−1 ·Diag(g∪,α
1 ) · g∪,α

2 (6.29)

holds. Hence, the combination of two BBAs m1 and m2 by an α-disjunctive rule
can be simply expressed as the pointwise product of the functions g∪,α

1 and g∪,α
2

associated, respectively, to m1 and m2. In particular, we have

m1 ∪©2 = (G∪,1)−1 ·Diag(g∪,1
1 ) · g∪,1

2 . (6.30)

However, as shown below, we do not have G∪,1 = B (and thus we also do not
have g∪,1 = b) as could be expected from the comparison of (6.30) with m1 ∪©2 =
B−1 ·Diag(b1) · b2, and from the fact that the matrix G∩,α generalized the matrix
Q when α = 1. Indeed, let Ω = {a, b}. The matrix G∪,α is

1 1 1 1
1 −α 1 −α
1 1 −α −α
1 −α −α −α2

 ,
whereas the matrix B is 

1 . . .
1 1 . .
1 . 1 .
1 1 1 1

 .
Clearly, G∪,α 6= B when α = 1.
We have seen in Section 1.4.2 that the rows of the matrix Q are the left eigen-

vectors of the Dempsterian specialization matrix Sm. Furthermore, it was explained
that there exist 2|Ω|! ways to order those left eigenvectors in a matrix and thus there
exist 2|Ω|! Q-like matrices. The reason why we do not have G∪,α = B when α = 1 is
that the matrix G∪,α is actually a permutation of another matrix of left eigenvectors
of K∪,α

m , which does generalize B when α = 1. We note this other matrix G∪,α
new and

the matrix G∪,α is noted G∪,α
smets.

Proposition 6.6. The matrix G∪,α
new of left eigenvectors of K∪,α

m , which generalizes
the B matrix, is de�ned by G∪,α

new = J ·G∪,α
smets. It may be obtained using Kronecker

multiplication and the building block[
1 α− 1
1 1

]
.
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Proof. See Appendix F.5.

The function g∪,α
new de�ned by g∪,α

new = G∪,α
new ·m will be called the α-implicability

function associated to a BBA m, since it generalizes the implicability function.
There exists a relation between the matrices Q and B: Q = J ·B ·J. Proposition

6.7 shows that a similar property holds for the matrices G∪,α
new and G∩,α, which are

generalizations of the matrices B and Q, respectively.

Proposition 6.7. G∩,α = J ·G∪,α
new · J.

Proof. We show this proposition by induction and using the fact that matrices G∩,α

and G∪,α
new are based on Kronecker product.

In this proof, let G∩,α,n and G∪,α,n
new denote, respectively, the 2n × 2n matrices

G∩,α and G∪,α
new when Ω has cardinality n.

The base case of this proof by induction, i.e., G∩,α,1 = J ·G∪,α,1
new ·J, clearly holds

since we have [
1 1

α− 1 1

]
= J ·

[
1 α− 1
1 1

]
· J.

Suppose
G∩,α,n = Jn ·G∪,α,n

new · Jn (6.31)

holds. We must show that G∩,α,n+1 = Jn+1 ·G∪,α,n+1
new · Jn+1 holds. We have

G∩,α,n+1 =

[
G∩,α,n G∩,α,n

(α− 1)G∩,α,n G∩,α,n

]
=

[
Jn ·G∪,α,n

new · Jn Jn ·G∪,α,n
new · Jn

(α− 1)Jn ·G∪,α,n
new · Jn Jn ·G∪,α,n

new · Jn

]
(from (6.31))

= Jn+1 ·
[

G∪,α,n
new (α− 1)G∪,α,n

new

G∪,α,n
new G∪,α,n

new

]
· Jn+1 (from Lemma F.7 in Appendix F.5)

= Jn+1 ·G∪,α,n+1
new · Jn+1. (from (F.38))

Proposition 6.8 shows the counterpart to Proposition 6.5, which will be useful in
the next chapter.

Proposition 6.8. For all α ∈ [0, 1], we have

g∪,α
new(Ω) = 1. (6.32)

Proof. The proof is similar to the proof of Proposition 6.5.

Finally, it was explained at the beginning of this section that the matrices K∪,α
X

for X ⊆ Ω admit an eigendecomposition of the form K∪,α
X = (G∪,α

smets)
−1 · V∪,α

X ·
G∪,α

smets. For completeness of the presentation of the new matrix G∪,α
new, Proposition

6.9 provides the expression of the corresponding diagonal matrices, noted V∪,α
X,new,

which store the eigenvalues of the matrices K∪,α
X .
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Proposition 6.9. For all X ⊆ Ω, the matrix K∪,α
X admits the expression

K∪,α
X = (G∪,α

new)−1 ·V∪,α
X,new ·G

∪,α
new,

where V∪,α
X,new = J ·V∪,α

X J.

Proof.

K∪,α
X = (G∪,α

Smets)
−1 ·V∪,α

X ·G∪,α
Smets

= (G∪,α
Smets)

−1 · J · J ·V∪,α
X · J · J ·G∪,α

Smets

= (G∪,α
Smets)

−1 · J−1 · J ·V∪,α
X · J ·G∪,α

new

= (J ·G∪,α
Smets)

−1 · J ·V∪,α
X · J ·G∪,α

new

= (G∪,α
new)−1 · J ·V∪,α

X · J ·G∪,α
new

= (G∪,α
new)−1 ·V∪,α

X,new ·G
∪,α
new,

with V∪,α
X,new = J ·V∪,α

X · J.

6.4.3 Comparison and illustration of the new computation

methods

In this section, the new means proposed for the computation of the combination by
an α-conjunctive rule, are �rst illustrated with a simple example and then compared
with one another.

We have laid bare four new ways of performing such a combination:

1. using the α-conditioning operation (see Proposition 6.1);

2. using a �classical� expression (see Proposition 6.3);

3. using the TBM conjunctive rule and BBAs de�ned on product spaces (see
Theorem 6.1);

4. using the α-commonality function obtained using Kronecker product (see Equa-
tion (6.24), Theorem 6.3 and Corollary 6.1)4.

These four new means are illustrated, respectively, by Examples 6.3, 6.4, 6.5
and 6.6 below. In these examples, we compute the α-conjunction of a BBA m1

with another BBA m2, with m1 and m2 de�ned on Ω = {a, b} by, respectively,
m1({b}) = 1 and m2({b}) = 0.8, m2(Ω) = 0.2, and where α = 0.6.

Example 6.3 (Computation of an α-conjunction using the α-conditioning oper-
ation). For the reader's convenience, let us recall that we have from Proposition
6.1:

m1 ∩©α2 (X) =
∑
B⊆Ω

m1 [B]α (X)m2 (B) , ∀X ⊆ Ω. (6.33)

4Note that, as will be shown in the next chapter, this fourth way of computing an α-conjunction
may lead us to view an α-conjunction as the combination by the TBM conjunctive rule of signed
belief functions.
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Furthermore, from Proposition 6.2, we have, for all X,B ⊆ Ω

m[B]α(X) =
∑

(A∩B)∪(A∩B∩C)=X

m (A)mα,∩ (C) , (6.34)

where mα,∩ (X) = α|X|α|X|, for all X ⊆ Ω and where α = 1− α.
To compute m1 ∩©α2 using (6.33), we need �rst to compute m1 [B]α, for all B ⊆ Ω,

using (6.34).
Let B = ∅. We �nd

m1 [∅]α (∅) = mα,∩ (∅) +mα,∩ ({b})
= α2 + αα = α = 0.6,

m1 [∅]α ({a}) = mα,∩ ({a}) +mα,∩ (Ω)

= αα+ α2+ = α = 0.4,

and m1 [∅]α ({b}) = m1 [∅]α (Ω) = 0.
Let B = {a}. We have

m1 [{a}]α (∅) = mα,∩ (∅) +mα,∩ ({a}) +mα,∩ ({b}) +mα,∩ (Ω) = 1

and m1 [{a}]α ({a}) = m1 [{a}]α ({b}) = m1 [{a}]α (Ω) = 0.
Let B = {b}. We �nd

m1 [{b}]α ({b}) = mα,∩ (∅) +mα,∩ ({b})
= 0.6,

m1 [{b}]α (Ω) = mα,∩ ({a}) +mα,∩ (Ω)

= 0.4,

and m1 [{b}]α ({a}) = m1 [{b}]α (∅) = 0.
Let B = Ω. We have

m1 [Ω]α (Ω) = mα,∩ (∅) +mα,∩ ({a}) +mα,∩ ({b}) +mα,∩ (Ω) = 1

and m1 [Ω]α ({a}) = m1 [Ω]α ({b}) = m1 [Ω]α (∅) = 0.
Having computed the α-conditioning of m1 by all B ⊆ Ω, we may now compute

m1 ∩©α2 using (6.33). We �nd

m1 ∩©α2(∅) = m1 [∅]α (∅)m2(∅) +m1 [{a}]α (∅)m2({a})
+m1 [{b}]α (∅)m2({b}) +m1 [Ω]α (∅)m2(Ω) = 0,

m1 ∩©α2({a}) = m1 [∅]α ({a})m2(∅) +m1 [{a}]α ({a})m2({a})
+m1 [{b}]α ({a})m2({b}) +m1 [Ω]α ({a})m2(Ω) = 0,
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m1 ∩©α2({b}) = m1 [∅]α ({b})m2(∅) +m1 [{a}]α ({b})m2({a})
+m1 [{b}]α ({b})m2({b}) +m1 [Ω]α ({b})m2(Ω)

= 0.6 · 0.8 + 1 · 0.2 = 0.68,

and

m1 ∩©α2(Ω) = m1 [∅]α (Ω)m2(∅) +m1 [{a}]α (Ω)m2({a})
+m1 [{b}]α (Ω)m2({b}) +m1 [Ω]α (Ω)m2(Ω)

= 0.4 · 0.8 = 0.32.

Example 6.4 (Computation of an α-conjunction using a classical expression).
Recall that we have from Proposition 6.3:

m1 ∩©α2 (X) =
∑

(A∩B)∪(A∩B∩C)=X

m1 (A)m2 (B)mα,∩ (C) , ∀X ⊆ Ω, (6.35)

where mα,∩ (X) = α|X|α|X|, for all X ⊆ Ω. Applying (6.35), we �nd

m1 ∩©α2({b}) = m1({b})m2({b})mα,∩(∅) +m1({b})m2({b})mα,∩({b})
+m1({b})m2(Ω)mα,∩(∅) +m1({b})m2(Ω)mα,∩({a})
+m1({b})m2(Ω)mα,∩({b}) +m1({b})m2(Ω)mα,∩(Ω)

= m2({b})mα,∩(∅) +m2({b})mα,∩({b}) +m2(Ω)

= 0.8 · 0.36 + 0.8 · 0.24 + 0.2 = 0.68,

m1 ∩©α2(Ω) = m1({b})m2({b})mα,∩({a}) +m1({b})m2({b})mα,∩(Ω)

= 0.8 · 0.24 + 0.8 · 0.16 = 0.32

and m1 ∩©α2(∅) = m1 ∩©α2({a}) = 0.

Example 6.5 (Computation of an α-conjunction using the TBM conjunctive rule
and BBAs de�ned on product spaces). Recall that we have from Theorem 6.1:

m1 ∩©α2 = (mΩ×T1↑Ω×T1×T2
1′ ∩©mΩ×T2↑Ω×T1×T2

2′ ∩©mT1×T2↑Ω×T1×T2
xand

∩©( ∩©x∈Ωm
T1×T2[x]⇑Ω×T1×T2))↓Ω, (6.36)

with

mΩ×Ti
i′ (A× {ti} ∪ A× {fi}) = mΩ

i (A), ∀A ⊆ Ω, i = 1, 2, (6.37)

and

mT1×T2[x] = {(t1, t2) , (f1, t2) , (t1, f2)}α , ∀x ∈ Ω,

and

mT1×T2
xand ({(t1, t2) , (f1, f2)}) = 1.
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Using Lemma F.6, Equation (6.36) may be more simply rewritten

m1 ∩©α2 = (mΩ×T1↑Ω×T1×T2
1′ ∩©mΩ×T2↑Ω×T1×T2

2′ ∩©m)↓Ω, (6.38)

with m a BBA de�ned on Ω× T1× T2 by

m((A× (f1, f2)) ∪ (Ω× (t1, t2))) = α|A|α|A|, ∀A ⊆ Ω. (6.39)

The BBA m de�ned by (6.39) is thus such that

m(A) =


0.36 if A = {(a, t1, t2), (b, t1, t2)} ,
0.16 if A = {(a, f1, f2), (b, f1, f2), (a, t1, t2), (b, t1, t2)} ,
0.24 if A = {(a, f1, f2), (a, t1, t2), (b, t1, t2)} ,
0.24 if A = {(b, f1, f2), (a, t1, t2), (b, t1, t2)} ,
0 otherwise.

From (6.37), we obtain

mΩ×T1
1′ (A) =

{
1 if A = {(b, t1), (a, f1)} ,
0 otherwise,

and

mΩ×T2
2′ (A) =


0.8 if A = {(b, t2), (a, f2)} ,
0.2 if A = {(a, t2), (b, t2)} ,
0 otherwise,

The vacuous extensions on Ω× T1× T2 of the BBAs mΩ×T1
1′ and mΩ×T2

2′ are

mΩ×T1↑Ω×T1×T2
1′ (A) =

{
1 if A = {(b, t1, t2), (b, t1, f2), (a, f1, t2), (a, f1, f2)} ,
0 otherwise,

and

mΩ×T2↑Ω×T1×T2
2′ (A) =


0.8 if A = {(b, t1, t2), (b, f1, t2), (a, t1, f2), (a, f1, f2)} ,
0.2 if A = {(a, t1, t2), (a, f1, t2), (b, t1, t2), (b, f1, t2)} ,
0 otherwise,

Let mΩ×T1×T2
12 be a BBA de�ned on Ω× T1× T2 by

mΩ×T1×T2
12 = mΩ×T1↑Ω×T1×T2

1′ ∩©mΩ×T2↑Ω×T1×T2
2′ ∩©m, (6.40)

with m the BBA de�ned by (6.39). Hence, from (6.38), we get

mΩ×T1×T2↓Ω
12 = m1 ∩©α2.

From (6.40), we �nd

mΩ×T1×T2
12 (A) =


0.36 · 0.8 + 0.36 · 0.2 + 0.16 · 0.2
+0.24 · 0.2 + 0.24 · 0.8 + 0.24 · 0.2 if A = {(b, t1, t2)} ,

0.16 · 0.8 + 0.24 · 0.8 if A = {(a, f1, f2), (b, t1, t2)} ,
0 otherwise.

Marginalizing mΩ×T1×T2
12 on Ω, we obtain

mΩ×T1×T2↓Ω
12 (A) =


0.68 if A = {b} ,
0.32 if A = Ω,
0 otherwise.
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Example 6.6 (Computation of an α-conjunction using the α-commonality func-
tion). Let us recall the computation of an α-conjunction using the α-commonality
function. We have

m1 ∩©α2 = (G∩,α)−1 ·Diag(G∩,α ·m1) ·G∩,α ·m2, (6.41)

with G∩,α and (G∩,α)−1 two matrices of size 2|Ω|×2|Ω|, that can be obtained, as shown
by Theorem 6.3 and Corollary 6.1, by Kronecker multiplication using the building
blocks: [

1 1
α− 1 1

]
,

and
1

2− α
·
[

1 −1
1− α 1

]
,

respectively. In particular, when |Ω| = 2 and α = 0.6, we have

G∩,α = Kron(

[
1 1

α− 1 1

]
,

[
1 1

α− 1 1

]
)

=


1 1 1 1

α− 1 1 α− 1 1
α− 1 α− 1 1 1

(α− 1)2 α− 1 α− 1 1



=


1 1 1 1

−0.4 1 −0.4 1
−0.4 −0.4 1 1
0.16 −0.4 −0.4 1

 .
and

(G∩,α)−1 = Kron(
1

2− α
·
[

1 −1
1− α 1

]
,

1

2− α
·
[

1 −1
1− α 1

]
)

=


1

(2−α)2
− 1

(2−α)2
− 1

(2−α)2
1

(2−α)2
1−α

(2−α)2
1

(2−α)2
− 1−α

(2−α)2
− 1

(2−α)2
1−α

(2−α)2
− 1−α

(2−α)2
1

(2−α)2
− 1

(2−α)2

(1−α)2

(2−α)2
1−α

(2−α)2
1−α

(2−α)2
1

(2−α)2



=



25
49

−25
49

−25
49

25
49

10
49

25
49

−10
49

−25
49

10
49

−10
49

25
49

−25
49

4
49

10
49

10
49

25
49


.

We have

G∩,α ·m1 =


1

−0.4
1

−0.4

 ,
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G∩,α ·m2 =


1

−0.12
1

−0.12

 ,

Diag(G∩,α ·m1) ·G∩,α ·m2 =


1

0.048
1

0.048


and

(G∩,α)−1 ·Diag(G∩,α ·m1) ·G∩,α ·m2 =


0
0

0.68
0.32

 .
Each of the four new techniques that we have brought to light for the computation

of an α-conjuntion, has some advantages and some drawbacks. Method 4, i.e., the
computation of an α-conjunction using the α-commonality function, is arguably the
most simple one to implement. As a matter of fact, this method was used to perform
the experiments presented in Section 6.5. We provide below the MatLab code that
builds the matrix G∩,α needed in method 4, since Smets's MatLab code (see [91, p.
7]) for the construction of the matrix B cannot be extended in the context of the
α-junctions, due to the fact that we no longer have a zero in the building block. In
the code below, �Gca� stands for G∩,α.

Gca = [1];

GcaBuildingBlock = [1 1; alpha-1 1];

for i=1:cardinalOmega

Gca = kron(GcaBuildingBlock,Gca);

end

The problem of method 4 is that it may rapidly become impossible to use if the
frame of discernment Ω is too big, since this method requires computing matrices
G∩,α of size 2|Ω|×2|Ω|, which are, in addition, not sparse, and it requires performing
the pointwise product of vectors g∩,α of size 2|Ω|. Method 3 is also rather simple to
implement, since we merely need to perform combinations by the TBM conjunctive
rule. However, it requires working in the space Ω× T1× T2. Method 1 and 2 share
the same characteristics: they are more e�cient than method 4 when the frame is
big, since they do not require to work with vectors of size 2|Ω| as m1 and m2 may
have only a few focal sets, but they are harder to implement.

6.5 Application to a Classi�cation Problem

The previous section has presented simple means to perform a combination by an
α-junctive rule. This makes the practical use of these rules in applications easier. In
this section, the usefulness of these rules in a classi�cation application is investigated.
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6.5.1 The α-junctions in the evidential K-nearest neighbor

classi�cation scheme

Recall Section 4.6.2: the TBM conjunctive rule in the evidential K-nearest neighbor
classi�cation scheme was replaced by a conjunctive t-rule, whose behavior was
determined by a parameter θ. Then, two experiments were run. They showed
that for certain values of θ and for certain data sets, it is possible to obtain better
classi�cation results than with the TBM conjunctive rule.

Here, we propose to replace the TBM conjunctive rule in the evidential K-
nearest neighbor classi�cation scheme by an α-conjunctive rule. We obtain then the
following expression for the BBA m[xs|K] quantifying our beliefs on the class of a
new object xs given its K nearest neighbors:

m[xs|K] = ∩©α
n∈SK(xs)m[x|xn],

where, we recall, SK(xs) denotes the set of K nearest neighbors of xs.

6.5.2 Numerical experiments

Similar experiments to the two experiments reported in Section 4.6.2 were conducted
with this other extended version of the original evidential K-nearest neighbor classi-
�cation rule. Furthermore, in order to be able to compare results with the extension
based on the conjunctive t-rules, we used the same settings for the parameters K,
β, and γq, q = 1, ..., Q.

Experiment 1

For each of the data sets (Cleveland heart disease, mammographic mass, and vehicle
silhouettes), we computed the LOO cross-validation error rate of the extended
scheme for di�erent values of α: α = 0, 0.1, ..., 1. These LOO error rates are given
in Figures 6.3 to 6.5. Let us stress that, in these �gures, the �gure shown for α = 1
is the LOO error rate of the TBM conjunctive rule and thus one may verify that, as
expected, the LOO error rates for α = 1 in Figures 6.3 to 6.5 is equal to the LOO
error rates for θ = 1 in Figures 4.1 to 4.3.

As can be seen in Figures 6.4 and 6.5, it is not possible to �nd, for the mammo-
graphic mass and vehicle silhouettes data sets, an α-conjunctive rule that has a lower
LOO error rate than the TBM conjunctive rule. However, on the Cleveland heart
disease data set, there exists at least one α-conjunctive rule that performs better
than the TBM conjunctive rule. This is an interesting result for two reasons. First
and foremost, it shows that the α-conjunctive rules may be useful in a classi�cation
application. Second, it completes the experiments performed in Section 4.6.2, in
that it was not possible to obtain a lower LOO error rate on this latter data set,
with conjunctive t-rules intermediate between the TBM conjunctive rule and the
cautious rule.
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Figure 6.3: Cleveland heart disease data set.

Best performance obtained for α = 0.7 and α = 0.8.

Figure 6.4: Mammographic mass data set. Best performance obtained for α = 1.
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Figure 6.5: Vehicle silhouettes data set. Best performance obtained for α = 1.

Experiment 2

In a similar fashion as Experiment 2 of Section 4.6.2, we learnt the value α̂ of the
parameter α (the parameter space was restricted to α = 0, 0.1, ..., 1) optimizing
the LOO error rates on each of the training sets built from the ionosphere, liver
disorders, wine, and segment data sets. Then, we computed the test error rates
for the learnt α-conjunctive rule and the TBM conjunctive rule, together with 95%
con�dence intervals. The results are presented in Table 6.1, with the best results
underlined.

Table 6.1: Error rates of the TBM conjunctive rule and the learnt α-conjunctive rule,
together with 95% con�dence intervals.

Data TBM conjunctive rule α-conjunctive rule
Ionosphere 0.1466± 0.0644 0.1466± 0.0644 (α̂ = 1)

Liver disorders 0.3130± 0.0848 0.2696± 0.0811 (α̂ = 0.8)
Wine 0.0333± 0.0454 0.0167± 0.0324 (α̂ = 0)

Segment 0.0870± 0.0199 0.0870± 0.0199 (α̂ = 1)

As was the case with the learnt conjunctive t-rules, we can �rst remark that
the learnt α-conjunctive rules exhibit at worst the classi�cation results of the TBM
conjunctive rule and at best, better results than those of the TBM conjunctive
rule. Furthermore, on the liver disorders and wine data sets, where the conjunctive
t-rules did not outperform the TBM conjunctive rule, we note that the learnt α-
conjunctive rules show lower error rates than those of the TBM conjunctive rule,
which is an experimental veri�cation of the validity of the α-conjunctive rules in this
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classi�cation application. However, we must stress that this conclusion is less strong
than the similar conclusion reached for the conjunctive t-rules, since the error rates
here were not judged signi�cantly di�erent by a McNemar test at level 5%.

6.6 Conclusion

The α-junctions represent the set of associative, commutative and linear combination
operators for belief functions. They include as particular cases familiar combination
rules such as the TBM conjunctive rule and the TBM disjunctive rule. They have
never been used in the literature due, most certainly, to two factors: in the original
paper of Smets [87], they lacked (1) an interpretation and (2) simple means to
compute them. This chapter has proposed solutions to these two issues.

It was shown that the α-junctions correspond to some particular form of knowl-
edge about the truthfulness of the sources, making the α-junctions interesting for
applications where such kind of knowledge may be available. This might for instance
be the case when dealing with automatic deceiving agents, tampering with messages
sent between sensors and a coordination center [94].

It was known that the α-junctions generalize standard combination rules of the
TBM, in that these latter rules are particular cases of this family. We showed that
various notions that can be used to perform the computation by these standard rules
can be generalized to the α-junctions. In particular, we generalized the conditioning
operation and the part of the matrix calculus for belief functions related to the com-
putation of the commonality and implicability functions. This allowed us to uncover
simple methods to perform a combination by an α-junctive rule. A modi�cation to
a technical part of [87] related to the α-disjunctions was also proposed. Eventually,
the usefulness of this family of rules was investigated in a classi�cation application.
The results were encouraging, although not as good as the ones obtained in Chapter
4 with the conjunctive t-rules.

In addition to generalizing the TBM conjunctive and TBM disjunctive rules, the
α-junctions also lead to a generalization of the conjunctive and disjunctive canonical
decompositions of a belief function. This is the subject of the next chapter.



Chapter 7

α-Conjunctive and α-Disjunctive
Canonical Decompositions

Summary

In this chapter, it is shown that the generalization of the TBM conjunctive and
TBM disjunctive rules by the α-junctions goes all the way up to the conjunctive
and disjunctive canonical decompositions. Indeed, it is shown that one can �nd
a canonical decomposition of a belief function such that the combination by an
α-junctive rule be expressed as the pointwise product of some weight functions.
Furthermore, this decomposition degenerates to the classical ones when α = 1, i.e.,
it degenerates to the conjunctive or disjunctive canonical decompositions when the
α-junction is equivalent to the TBM conjunctive rule or to the TBM disjunctive
rule. However, �nding this decomposition is not trivial since it requires �nding the
conjunctive and disjunctive canonical decompositions of a signed belief function. It
is also shown in this chapter that the combination by an α-conjunction amounts to
the combination by the TBM conjunctive rule of some signed belief functions.

Résumé

Dans ce chapitre, nous montrons que la généralisation par les α-jonctions de la
règle conjonctive du MCT et de la règle disjonctive du MCT se véri�e aussi pour
les décompositions canoniques conjonctive et disjonctive. En e�et, nous montrons
qu'il existe une décomposition canonique d'une fonction de croyance telle que la
combinaison par une α-jonction s'exprime comme le produit terme à terme de deux
fonctions de poids. Il est aussi intéressant de remarquer que cette décomposition
se réduit aux décompositions classiques lorsque α = 1, c'est-à-dire lorsque l'α-
jonction est équivalente à la règle conjonctive du MCT ou à la règle disjonctive
du MCT. Cependant, il faut remarquer que la mise à jour de cette généralisation
de la décomposition canonique n'est pas triviale car elle implique de trouver les
décompositions canoniques conjonctive et disjonctive d'une fonction de croyance
signée. Nous montrons également dans ce chapitre que la combinaison par une α-
conjonction revient à la combinaison par la règle conjonctive du MCT de fonctions
de croyance signées.
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7.1 Introduction

The preceding chapter has presented new results related to an interesting family of
combination rules for belief functions called the α-junctions. This family generalizes
the classical TBM conjunctive and TBM disjunctive rules in that it not only includes
these two latter rules as particular cases, but also generalizes the mathematics
related to their computation. Most importantly, this family provides some �exibility
for the combination of belief functions. Indeed, it is possible, using this family,
to account for less categorical knowledge on the truthfulness of the sources than
conjunctive and disjunctive mergings represent.

In part II of this thesis, it was shown that it is possible to introduce some
�exibility for conjunctive and disjunctive mergings using the conjunctive and dis-
junctive canonical decompositions. In [91, p.24], Smets mentions the existence of
α-junctive canonical decompositions. It seems interesting to �nd these canonical
decompositions, since it might then become possible to generalize the results of Part
II to the α-junctions, resulting in two-dimensional �exibility for the combination of
belief functions. It might also lead to a generalization of the cautious rule.

This chapter will show that the generalization of the TBM conjunctive and TBM
disjunctive rules by the α-junctions goes indeed all the way up to the conjunctive
and disjunctive canonical decompositions. As will be seen, one can �nd a canonical
decomposition of a belief function such that the combination by an α-junctive
rule be expressed as pointwise product of some weight functions. Furthermore,
this decomposition degenerates to the classical ones when α = 1. However, it is
important to note that �nding this decomposition is not trivial, since it is based on
the conjunctive and disjunctive canonical decompositions of a signed belief function
[52, 53].

It will also be shown that an α-conjunction and an α-disjunction actually amount,
respectively, to a conjunction and a disjunction of signed belief functions. This result
is interesting as the TBM conjunctive rule and its dual are appearing once again and
as the use of the words �conjunction� and �disjunction� in the terms �α-conjunction�
and �α-disjunction� �nds a new motivation.

This chapter is organized as follows. In Section 7.2, the conjunctive and disjunc-
tive canonical decompositions of a signed belief function are introduced after a brief
summary of signed belief function theory. Those decompositions are then used in
Section 7.3 to obtain what will be called the α-junctive canonical decomposition of
a belief function.

7.2 Canonical Decompositions of Signed Belief Func-

tions

In this section, it is shown that there exist conjunctive and disjunctive canonical
decompositions of a signed belief function. Section 7.2.1 summarizes necessary
notions on signed belief functions and also introduces new notions such as the
negation of a signed belief function, the TBM disjunctive rule for signed belief
functions, and the signed implicability function. Sections 7.2.2 and 7.2.3 present,
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respectively, the conjunctive and disjunctive canonical decompositions of a signed
belief function.

7.2.1 Signed belief functions

Historically, signed belief functions were introduced as a solution to the �inversion
problem� [53]. This problem may be formulated as follows. Suppose the state
of belief of an agent is represented by a BBA m1. Then, this agent receives a
piece of evidence Ev2 inducing a BBA m2, which she/he combines with her/his
previous beliefs represented by m1. Some time later, the agent obtains a new piece
of information saying that Ev2 was completely irrelevant and must thus be removed
from her/his knowledge base. This situation can be handled in two ways. On the
one hand, one may use the inverse of the TBM conjunctive rule de�ned in Section
1.3, in which case we have m1 ∩©m2 6∩©m2 = m1. On the other hand, if one wants to
realize the cancellation of Ev2 by an application of the rule ∩©, then she/he must
represent the information claiming that Ev2 is irrelevant by the means of a BBA m3

such that m1 ∩©m2 ∩©m3 = m1 [53]. This actually amounts to �nding a BBA m3 such
that m2 ∩©m3 = mΩ. Clearly, there exists no BBA m3 that is such an inverse element
to m2. In fact, the only set function m3 that veri�es m2 ∩©m3 = mΩ is de�ned by
m3 = ∩©A⊂ΩA

1/w2(A). Indeed, we have, using (2.5) and (2.6):

mΩ = m2 6∩©m2

=
(
∩©A⊂ΩA

w2(A)
)
6∩©
(
∩©A⊂ΩA

w2(A)
)

=
(
∩©A⊂ΩA

w2(A)
)
∩©
(
∩©A⊂ΩA

1/w2(A)
)

= m2 ∩©m3.

It may easily be checked that m3 is a function from 2Ω to R. Consequently, if one
wants to �nd a solution to m2 ∩©m3 = mΩ, one needs to enlarge the space of BBAs
by some generalization of this notion [52]. This enlargement leads to the concept of
a signed belief function.

Formally, a signed belief function and its associated basic signed measure assign-
ment (BSMA) are de�ned as follows.

De�nition 7.1 (De�nition 11.3.1 of [53]). Let Ω be a nonempty �nite set. A BSMA
is a mapping sm : 2Ω → [−∞,+∞] such that sm takes at most one of the in�nite
values −∞,∞. The signed belief function sbel induced by sm is the mapping sbel :
2Ω → [−∞,+∞] de�ned by

sbel (A) =
∑

∅6=B⊆A

sm (B) ,

for all A ⊆ Ω. A BSMA sm is called finite, if −∞ < sm(A) < ∞ holds for each
A ⊆ Ω.

In this chapter, we work only with �nite BSMAs. Hence, we will omit the term
�nite from now on to simplify the presentation. Let us also note that BSMAs have
been referred to as real-valued set functions in [47].
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Lemma 11.3.2 of [53] shows that if two BSMAs sm1 and sm2 are such that
sm1(A) 6= sm2(A), for some A ⊆ Ω, then their associated signed belief functions
are such that sbel1(B) 6= sbel2(B), for some B ⊆ Ω. Furthermore, using Lemma 2.3
of [77], it may easily be shown that sm can be computed from sbel using the same
equation that allows one to transform a belief function bel to it associated BBA m.

One may remark that a BBA is a particular kind of BSMA, and thus a BSMA
is a generalization of a BBA. Similarly a signed belief function is a generalization of
a belief function. Other functions used in belief function theory can be generalized,
for instance the commonality and implicability functions.

De�nition 7.2 (Based on De�nition 4 of [52]). Let sm be a BSMA de�ned on
a �nite set Ω. The signed commonality function induced by sm is the mapping
sq : 2Ω → (−∞,+∞) de�ned by

sq (A) =
∑
B⊇A

sm (B) ,

De�nition 7.3. Let sm be a BSMA de�ned on a �nite set Ω. The signed implica-
bility function induced by sm is the mapping sb : 2Ω → (−∞,+∞) de�ned by

sb (A) =
∑
B⊆A

sm (B) ,

Using the proof of Theorem 2.4 of [77], it may be shown that a signed common-
ality function is in one-to-one relation with its associated signed belief function, and
thus with its associated BSMA. It may also be shown that a signed implicability
function is in one-to-one relation with its associated BSMA. Consequently, all equa-
tions relating the functions bel,m, q, b in belief function theory (see, e.g., [91, p. 4])
can be used for signed belief functions as well. Let us note that the conjunctive and
disjunctive weight functions, which are other equivalent representations of a BBA,
cannot be generalized so straightforwardly to signed belief functions because the
proof of [85] does not work as it assumes commonalities to be positive.

The negation of a BBA can also be extended to BSMAs. The negation (or
complement) sm of a BSMA sm is de�ned as the BSMA verifying sm(A) = sm(A),
∀A ⊆ Ω, where A denotes the complement of A.

Proposition 7.1. The signed implicability function sb associated to sm and the
signed commonality function sq associated to sm are linked by the following relation:

sb(A) = sq(A), ∀A ⊆ Ω.
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Proof.

sb(A) =
∑
B⊆A

sm(B)

=
∑
B⊆A

sm(B)

=
∑
B⊆A

sm(B)

=
∑
A⊆B

sm(B)

= sq(A)

The generalization of the TBM conjunctive rule to signed belief functions is
de�ned as follows.

De�nition 7.4 (De�nition 3 of [52]). Let sm1 and sm2 be two BSMAs. Let sm1 ∩©2

be the result of their combination by the TBM conjunctive rule ∩©. We have:

sm1 ∩©2 (A) =
∑

B∩C=A

sm1 (B) sm2 (C) , ∀A ⊆ Ω.

Kramosil [53] shows that this rule is commutative, associative and that it admits
mΩ as neutral element.

The combination by ∩© of two BSMAs has a simple expression using signed
commonalities. Indeed, it may be shown using Theorem 3.3 of [77] that we have:

sq1 ∩©2(A) = sq1(A) · sq2(A), ∀A ⊆ Ω. (7.1)

A simple BSMA (SBSMA) is de�ned as a BSMA which has at most two focal
sets and, if it has two, Ω is one of those. A SBSMA sm such that sm (A) = 1− sw
for some A 6= Ω and sm (Ω) = sw, with sw ∈ (−∞,+∞), can be noted Asw. Let us
remark that we have Asw1 ∩©Asw2 = Asw1·sw2.

The TBM disjunctive rule may also be generalized to BSMAs, and it may
be shown that it can be simply expressed as pointwise multiplication of signed
implicabilities. The neutral element of the TBM disjunctive rule ∪© is m∅.

Proposition 7.2 (De Morgan's Laws). Let sm1 and sm2 be two BSMAs. We have

sm1 ∪©sm2 = sm1 ∩©sm2 (7.2)

sm1 ∩©sm2 = sm1 ∪©sm2 (7.3)

Proof. This proof is based on a proof that works in belief function theory and that
was given in [87, p. 137].
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Let us prove (7.3). Let sb1 ∩©2 denote the signed implicability function associated
to sm1 ∩©sm2. We have:

sb1 ∩©2(A) = sq1 ∩©2(A)

= sq1(A) · sq2(A)

= sb1(A) · sb2(A)

The proof of (7.2) is similar.

7.2.2 Conjunctive canonical decomposition

Much as it is possible to �nd the conjunctive canonical decomposition of a particular
kind of BBAs, called nondogmatic BBAs, this section will show that it is possible to
provide a solution for the conjunctive canonical decomposition of a particular kind
of BSMAs, called invertible BSMAs in [52] (such BSMAs are renamed sq-invertible
BSMAs in this thesis).

De�nition 7.5 (De�nition 4 of [52]). A BSMA sm is called sq-invertible if sq(A) 6=
0 for all A ⊆ Ω.

The notion of sq-invertibility may be seen as generalizing nondogmatism [52].
In particular, one may remark that a nondogmatic BBA, which, we recall, is a
particular BSMA, is necessarily sq-invertible.

Let us de�ne another particular kind of BSMA.

De�nition 7.6 (Regular BSMA). A BSMA sm is called regular if sq(∅) = 1 or,
equivalently, sb(Ω) = 1 or, equivalently∑

A⊆Ω

sm(A) = 1. (7.4)

We may note that all BBAs are regular.

Theorem 7.1. Let sm be a sq-invertible regular BSMA and with associated signed
commonality function sq. Then,

sm = ∩©A⊂ΩA
sw(A), (7.5)

with sw a function 2Ω\ {Ω} → (−∞,+∞)\ {0} de�ned by:

sw(A) =
∏
B⊇A

sq(B)(−1)|B|−|A|+1

, (7.6)

for all A ⊂ Ω.

Proof. See Appendix F.6.

The function sw : 2Ω\ {Ω} → (−∞,+∞)\ {0} is called the conjunctive signed
weight function.
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Remark 7.1. Let m be a nondogmatic BBA (m is thus sq-invertible and regular).
The conjunctive signed weight function associated to m and computed using Theorem
7.1 is equal to its associated conjunctive weight function.

Proof. Direct from the comparison of (7.6) with (2.2).

From this remark, it is clear that this theorem is a direct generalization of
the theorem of [85]. Hence, in addition to the belief, mass, implicability and
commonality functions, the conjunctive weight function of belief function theory
has been generalized to signed belief function theory.

The next proposition shows that the conjunctive combination of two sq-invertible
regular BSMAs has a simple expression using the function sw.

Proposition 7.3. Let sm1 and sm2 be two sq-invertible regular BBAs and with
associated conjunctive signed weight functions sw1 and sw2. We have

sm1 ∩©2 = ∩©A⊂ΩA
sw1(A)·sw2(A),

and, equivalently, sw1 ∩©2 = sw1 · sw2.

Proof.

sw1 ∩©2(A) =
∏
B⊇A

sq1 ∩©2(B)(−1)|B|−|A|+1

=
∏
B⊇A

(sq1(B) · sq2(B))(−1)|B|−|A|+1

=

(∏
B⊇A

sq1(B)(−1)|B|−|A|+1

)
·

(∏
B⊇A

sq2(B)(−1)|B|−|A|+1

)
= sw1(A) · sw2(A)

7.2.3 Disjunctive canonical decomposition

This section extends the disjunctive canonical decomposition of belief functions
introduced in [18] to signed belief functions. Since there is a little subtlety related
to the notion of invertibility, demonstrations of [18] are fully rewritten here in the
context of signed belief functions.

The disjunctive canonical decomposition is possible for a belief function only if
this belief function is subnormal. The following de�nition generalizes the concept
of subnormality to signed belief functions, in a similar way that the concept of
nondogmatism was generalized to signed belief functions in the previous section.

De�nition 7.7. A BSMA sm is called sb-invertible if sb(A) 6= 0 for all A ⊆ Ω.

Let sm be a sb-invertible regular BSMA. Its complement sm is sq-invertible and
regular since sb(A) = sq(A). It can thus be decomposed as:

sm = ∩©A⊂ΩA
sw(A).
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Consequently, sm can be written

sm = ∩©A⊂ΩA
sw(A)

= ∪©A⊂ΩA
sw(A).

We recall that Asw(A) denotes the simple BSMA assigning a mass sw (A) to Ω

and a mass 1− sw (A) to A. Its complement Asw(A) thus assigns a mass sw (A) to ∅
and a mass 1−sw (A) to A. Such a mapping can be called a negative simple BSMA,
and noted Asv(A) with sv(A) = sw(A). We can thus write:

sm = ∪©A⊂ΩAsv(A)

= ∪©A6=∅Asv(A).

Using the reasoning of [18] and Theorem 7.1, we have thus proved the following
corollary.

Corollary 7.1. Let sm be a sb-invertible regular BSMA. Then,

sm = ∪©A6=∅Asv(A), (7.7)

with sv a function 2Ω\ {∅} → (−∞,+∞)\ {0} de�ned by:

sv(A) = sw(A), ∀A 6= ∅, (7.8)

where sw is the conjunctive signed weight function associated to the negation sm of
sm.

The function sv is called the disjunctive signed weight function. This function
generalizes the disjunctive weight function of belief function theory.

The disjunctive combination of two sb-invertible regular BSMAs has a simple
expression using the function sv.

Proposition 7.4. Let sm1 and sm2 be two sb-invertible regular BSMAs and with
disjunctive signed weight functions sv1 and sv2. We have

sm1 ∪©2 = ∪©A6=∅Asv1(A)·sv2(A),

and, equivalently, sv1 ∪©2 = sv1 · sv2.

Proof. The proof is similar to the one of Proposition 7.3

7.3 α-Junctive Canonical Decompositions

7.3.1 α-conjunctive weight function

In this section, we explain how the results of the preceding section can be used to
obtain a canonical decomposition of a belief function such that the combination by
an α-conjunctive rule be expressed as pointwise product of some weight functions.
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The key to this decomposition is to see the α-commonality function g∩,α associated
to a BBA m as a signed commonality function, noted sqα, associated to a BSMA,
noted smα. We may note that the idea of assimilating an α-commonality function
to a signed commonality function comes from the fact an α-commonality function
can take negative values as shown by Example 6.2 of Chapter 6.

For a �xed α, one may obtain smα from m in three steps.

1. Compute the α-commonality function g∩,α from m:

g∩,α = G∩,α ·m, (7.9)

2. Let

sqα = g∩,α, (7.10)

3. Compute smα from sqα:

smα = Q−1 · sqα.

Hence, from (7.9) and (7.10)

smα = Q−1 ·G∩,α ·m, (7.11)

and
m = (G∩,α)−1 ·Q · smα. (7.12)

It is clear that sqα(∅) = 1 since g∩,α(∅) = 1 by Proposition 6.5. Provided that smα

is also sq-invertible, Theorem 7.1 can be used to rewrite (7.12) into:

m = (G∩,α)−1 ·Q · ∩©A⊂ΩA
swα(A). (7.13)

The signed conjunctive weight function swα associated to smα is called the α-
conjunctive weight function associated to m. Furthermore, this canonical decom-
position is called the α-conjunctive canonical decomposition of m. If α = 1, this
decomposition reduces to the conjunctive canonical decomposition of m. Example
7.1 illustrates the α-conjunctive canonical decomposition of a BBA.

Example 7.1. Let Ω = {a, b, c} be a frame of discernment, and m a BBA with
associated α-commonality function g∩,α and α-conjunctive weight function swα.
Those functions are shown in Table 7.1 for α = 0.5. It may be checked that we
indeed have:

m = (G∩,0.5)−1 ·Q ·
(
{b}−0.8

∩© {a, b}−0.5
∩© {b, c}−0.5)

The next example illustrates the fact that the α-conjunctive weights take their
values in (−∞,+∞)\ {0}.
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Table 7.1: An α-conjunctive weight function.
A m g∩,α swα

∅ 0 1 1
{a} 0 0.4 1
{b} 0 1 -0.8
{a, b} 0.4 0.4 -0.5
{c} 0 0.4 1
{a, c} 0 -0.2 1
{b, c} 0.4 0.4 -0.5

Ω 0.2 -0.2

Table 7.2: A more complex α-conjunctive weight function
(numbers are rounded to hundredths).

A m g∩,α swα

∅ 0 1 -0.51
{a} 0 -0.28 0.19
{b} 0.6 0.68 0.07
{a, b} 0 -0.09 -5.55
{c} 0.2 0.04 -4.25
{a, c} 0 0.3 1.65
{b, c} 0 -0.28 -1.74

Ω 0.2 0.49
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Example 7.2. Let Ω = {a, b, c} be a frame of discernment, and m a BBA with
associated α-commonality function g∩,α and α-conjunctive weight function swα.
Those functions are shown in Table 7.2 for α = 0.4.

The α-conjunctive weight function can be found i� the BSMA smα associated to
m is sq-invertible. One should note that a nondogmatic BBA m does not necessarily
yield a sq-invertible BSMA smα as shown by the following example.

Example 7.3. Let m be the BBA of example 6.2. Let α = 0.75. We have:

g∩,0.75(∅) = 1

g∩,0.75({a}) = 0

g∩,0.75({b}) = 1

g∩,0.75(Ω) = 0

The BSMA sm0.75 associated to m is thus not sq-invertible.

The following proposition shows that the combination by an α-conjunctive rule
of two BBAs actually amounts to a combination by the TBM conjunctive rule of
two BSMAs.

Proposition 7.5. Let m1 and m2 be two BBAs. The result of their α-conjunction
is noted m1 ∩©α2. We have:

m1 ∩©α2 = (G∩,α)−1 ·Q · smα
1 ∩©smα

2 , (7.14)

where smα
1 and smα

2 are obtained from m1 and m2 using (7.11).

Proof. We have

g∩,α
1 ∩©α2 = g∩,α

1 · g∩,α
2

= sqα
1 · sqα

2 ,

with sqα
1 and sqα

2 the signed commonality functions associated to smα
1 and smα

2 .

Provided that both smα
1 and smα

2 are sq-invertible and since they verify sqα
1 (∅) =

1 and sqα
2 (∅) = 1, Proposition 7.3 can be used to rewrite (7.14) into:

m1 ∩©α2 = (G∩,α)−1 ·Q · ∩©A⊂ΩA
swα

1 (A)·swα
2 (A). (7.15)

Hence, the α-conjunction of BBAs can be seen as being based on pointwise product
of signed conjunctive weights (or α-conjunctive weights according to the terminology
introduced above). Furthermore, note that when α = 1, Equation (7.15) reduces to
the classical pointwise product of conjunctive weights.
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7.3.2 α-disjunctive weight function

For the sake of completeness, this section presents succinctly the results correspond-
ing to the previous ones for α-disjunctions.

The function g∪,α may be seen as the signed implicability function sbα of a
BSMA smα. Providing that smα is sb-invertible, and since sbα(Ω) = 1, we may
use Corollary 7.1 to obtain, in a similar manner as is done in Section 7.3.1, the
α-disjunctive weight function associated to a BBA m. We note this function svα.

The counterpart of Proposition 7.5 shows that the combination by an α-disjunctive
rule of two BBAs m1 and m2 actually amounts to a combination by the TBM
disjunctive rule of two BSMAs smα

1 and smα
2 . Hence, provided that both smα

1 and
smα

2 are sb-invertible, we may obtain the following expression (using Proposition
7.4):

m1 ∪©α2 = (G∪,α
new)−1 ·B · ∪©A6=∅Asvα

1 (A)·svα
2 (A). (7.16)

Consequently, the α-disjunction of BBAs can be seen as being based on pointwise
product of signed disjunctive weights (or α-disjunctive weights). In addition, if
α = 1, then (7.16) reduces to the classical pointwise product of disjunctive weights.

7.3.3 Discussion

Alternative canonical decompositions

Although Smets [91] mentioned the existence of α-junctive canonical decompositions,
he did not explain how one may obtain such decompositions and, in particular,
he did not mention the need to use signed belief function theory to �nd these
decompositions. Hence, he may have had in mind di�erent decompositions than the
ones proposed in this chapter. Let us note that since our α-junctive decompositions
are based on Theorem 7.1, which is a generalization of Theorem 1 of [85] that lead
to the conjunctive and disjunctive canonical decompositions, it seems reasonable to
believe that Smets' decompositions, if di�erent from ours, would have had to be
based on a completely di�erent reasoning than the one followed in this chapter.

Futhermore, one may wonder whether it is possible to �nd a canonical decom-
position of a BBA m, which would be based on an α-conjunctive rule ∩©α, i.e., an
expression of the form

m = ∩©α
A⊂ΩA

z(A), (7.17)

where z is some set function. It may well be that such a canonical decomposition
exists. However, let us remark that the nice expression Aw1 ∩©Aw2 = Aw1·w2 for all
A ⊂ Ω and all w1, w2 ∈ (−∞,+∞)\ {0} does not generalize well to α-conjunctions.
Indeed, let Ω = {a, b}, we have for instance, for α 6= 1 and w1, w2 ∈ [0, 1]:

{a}w1 ∩©α{a}w2 = {a}w1·w2+(1−w1)·α·(1−w2),

and

{∅}w1 ∩©α{∅}w2 = m,
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where m is not a simple BBA and is de�ned by

m(∅) = (1− w1) · α2 · (1− w2) + (1− w1) · w2 + w1 · (1− w2),

m({a}) = (1− w1) · α · α · (1− w2),

m({b}) = (1− w1) · α · α · (1− w2),

m(Ω) = (1− w1) · α2 · (1− w2) + w1 · w2.

Hence, even if a decomposition of the form given by (7.17) exists, it seems that there
is no hope to express an α-conjunction as a pointwise product of weights z obtained
using (7.17). In other words, a decomposition based on an α-conjunctive rule, if it
exists, does not seem interesting since it does not yield the convenient expression that
we have with the other canonical decompositions. Note that a similar conclusion
can be reached for the α-disjunctions.

Rules based on α-junctive weights

As explained in the introduction of this chapter, the motivation behind �nding the
α-junctive canonical decompositions is that it might be possible to generalize part
II of this thesis or the cautious rule to the α-junctions. Unfortunately, it has not
been possible during the course of this thesis to �nd such generalizations.

The fact that the α-junctive weights take their values in (−∞,+∞)\ {0} makes
these generalizations hard. In particular, Lemma 2.1, which states that it is possible
to decrease weights and that is essential for Part II and to derive the cautious rule,
does not hold for α-junctive weights as shown by Example 7.4. There exists perhaps
a property similar to the one given by Lemma 2.1 for α-junctive weights, e.g., it is
possible to decrease the weights on (0,+∞) and increase them on (−∞, 0), but we
have not been able to �nd it. Some insight to �nd such a property can perhaps be
gained by looking at the behavior of the product on (−∞,+∞)\ {0}.

Example 7.4. Let Ω = {a, b} be a frame of discernment. Let m1 and m2 be two
BBAs as given in Table 7.3. Let swα

1 and swα
2 be their associated α-conjunctive

weight functions, for α = 0.5. Let swα
1∧2 denote the minimum of the α-conjunctive

weight functions swα
1 and swα

2 , and let mα
1∧2 be the BSMA associated to swα

1∧2. As
can be seen in Table 7.3, mα

1∧2 is not a BBA.

Table 7.3: Minimum of α-conjunctive weights (numbers are rounded to hundredths).

A m1 m2 swα
1 swα

2 swα
1∧2 mα

1∧2

∅ 0.2 0.25 -0.8 0.11 -0.8 -0.05
{a} 0.4 0.24 -0.13 2.38 -0.13 0.65
{b} 0.2 0.5 0.5 -1.12 -1.12 0.12
{a, b} 0.2 0.01 1 1 1 0.28
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7.4 Conclusion

In this chapter, we have shown that there exist an α-conjunctive and an α-disjunctive
canonical decomposition of a belief function that generalize the classical conjunctive
and disjunctive canonical decompositions, in the same manner as the α-commonality
and α-implicability functions generalize the commonality and implicability func-
tions. Indeed, when α 6= 1, we have seen in the preceding chapter that an α-
conjunction, for instance, can be expressed as pointwise product of α-commonalities,
thus generalizing the classical expression of pointwise product of commonalities.
And, when α = 1, the generalization degenerates to the classical expression. Sim-
ilarly, this chapter has shown that an α-conjunction can be expressed as pointwise
product of α-conjunctive weights, thus generalizing the classical expression of point-
wise product of conjunctive weights. And, when α = 1, the generalization reduces
to the classical expression.





Conclusion

Summary of Contributions

This thesis has tackled the problem of the lack of �exibility for the combination of
belief functions, by introducing or revisiting in�nite families of combination rules.
Two main contributions were exposed in this thesis.

The �rst one is the introduction of four in�nite families of combination rules
based on weight functions and extended t-norms or uninorms. More precisely, there
exist two t-norm-based families that are based, respectively, on the conjunctive
and disjunctive weight functions. There exist also two uninorm-based families that
are based, respectively, on the conjunctive and disjunctive weight functions. It
was also shown that t-norm-based conjunctive and disjunctive rules, as well as
uninorm-based conjunctive and disjunctive rules, are related by De Morgan laws.
Numerical experiments showed that the t-norm-based conjunctive rules may improve
the performances in some classi�cation applications. The existence of such families
of rules suggests that the TBM is not poorer than possibility theory in terms of
conjunctive and disjunctive fusion operators.

Of particular interest is that the four basic rules - the TBM conjunctive, TBM
disjunctive, cautious, and bold rules - occupy a special position in each of their
respective family: the ∩© and ∧© rules are the least committed elements, whereas the
∪© and ∨© rules are the most committed elements. The fact that the TBM conjunctive
rule is the least committed element among the rules based on conjunctive weights
and that have the vacuous belief function as neutral element, was also used in this
thesis to propose a new justi�cation for this rule.

Computational aspects of the uninorm-based conjunctive rules in problems in-
volving multiple variables were also investigated. It was shown that, except the TBM
conjunctive rule, these rules cannot bene�t from the valuation algebra framework
in order to perform inference e�ciently. This other singular property of the TBM
conjunctive rule in its family of rules, may be seen as yet another argument in favor
of this rule, but also as a limitation to the breadth of problems that can be tackled
by the uninorm-based conjunctive rules.

Our second main contribution is a set of results making an in�nite and purely
formal family of rules, called the α-junctions, of practical interest. Those operators,
which generalize the TBM conjunctive, TBM disjunctive, exclusive conjunctive and
exclusive disjunctive rules, were shown to correspond to some particular knowledge
about the truthfulness of the sources. The α-junctions becomes thus suitable as
�exible combination rules that allows one to take into account some particular
knowledge about the sources. Several simple ways of computing a combination
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by an α-junction were also proposed, making the practical use of the α-junctions in
applications possible. These new means are based on generalizations of mechanisms
that can be used to compute the combinations by the TBM conjunctive and TBM
disjunctive rules. In particular, the conditioning operation and the matrices that
permit the easy computation of the commonality and implicability functions asso-
ciated to a belief function, have been generalized in the context of the α-junctions.
In the same vein, it was revealed that the conjunctive and disjunctive canonical
decompositions can be generalized, yielding the α-junctive canonical decomposition
of a belief function. Finding this decomposition was not trivial since it required the
use of the canonical decompositions of signed belief functions.

Perspectives

The work presented in this thesis may be continued in many directions. In the
following paragraphs, we sketch a few of them.

On a theoretical level, the problem of �nding in�nite family of rules based on
α-junctive weights must be tackled. This problem is interesting since it might lead
to a two-dimensional �exibility for the combination of belief functions and also to a
generalization of the cautious rule. Additionally, it seems also interesting to check
whether the α-junctions verify the axioms of the valuation algebra framework. The
answer to this problem might be found using the fact that an α-conjunction corre-
sponds to the combination by the TBM conjunctive rule of signed belief functions.
Another line of potentially interesting research is to work on the di�erence between
a truthful source and a reliable source, as touched upon in Appendix D, which
shows that this di�erence is not always clearly made in the literature although it is
important. In addition, it must be explained why the cautious rule does not reduce
to the minimum rule of the possibility distributions when the belief functions to be
combined are consonant.

On a practical level, it seems worthwhile to experimentally verify that the α-
junctions lead to better performances in applications. In particular, experiments are
under way to check whether replacing the TBM conjunctive rule by the α-junctions
when fusing classi�ers, improves classi�cation results. Finally, we should also pursue
the investigation on the usefulness of the families of rules based on extended t-norms
and uninorms, with a focus on information fusion problems involving nonseparable
belief functions.
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Appendix A

Inverse of Dempster's Rule:

Historical Remark

Let m be a normal BBA de�ned on a binary frame of discernment Ω = {p,¬p} as

m(p) = a,

m(¬p) = b,

m(Ω) = 1− a− b,

with 0 ≤ a, b < 1, a + b < 1, hence m is nondogmatic. The BBA m can be
equivalently noted using a pair (a, b), called a Dempster pair or d-pair in [44]. The
vacuous BBA mΩ can thus be noted using the pair (0, 0). Note that the d-pairs
(0, 1) and (1, 0), called extremal in [44], are excluded of our de�nition of m.

In [44, p. 31], Hájek and Valdes note that Ginsberg [38] claims that Dempster's
rule, which we note ⊕, is invertible. They further remark that this is false in the set
of (non extremal) d-pairs as there exists no BBA m′ such that m ⊕m′ = mΩ with
m 6= mΩ, i.e., m does not have an inverse element with respect to ⊕ in the set of
(non extremal) d-pairs. In this sense, it may indeed be said that ⊕ is not invertible.

The operator proposed by Ginsberg [38, p. 127, equation (7)], which we note 	,
is nonetheless historically the �rst operator, to our knowledge, to realize an inverse
operation to the Dempster's operation, i.e., it is an operator such thatm1⊕m2	m2 =
m1, form1 andm2 two nondogmatic BBAs de�ned on a binary frame of discernment.
Let us recall the de�nition of the 	 operator of Ginsberg:

(a, b)	 (c, d) =

(
c̄
(
ad̄− b̄c

)
c̄d̄− b̄cc̄− ādd̄

,
d̄ (bc̄− ād)

c̄d̄− b̄cc̄− ādd̄

)
, (A.1)

with ā = 1− a.
Let us verify that the operator 	 of Ginsberg allows one to retract previous

evidence. Let c = a and d = b, we have:

ad̄− b̄c = ab̄− b̄a = 0,

bc̄− ād = bā− āb = 0.

Further, we have

c̄d̄− b̄cc̄− ādd̄ = āb̄− b̄aā− ābb̄

= āb̄ (1− a− b) 6= 0.
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Hence (a, b)	 (a, b) = (0, 0).
Interestingly, Proposition A.1 shows that the operator 	 de�ned by (A.1) is just

the equivalent on d-pairs to the operator 6∩© de�ned by (1.9) followed by normaliza-
tion using (1.1).

Proposition A.1. Let m1 and m2 be two nondogmatic BBAs associated to the
d-pairs (a, b) and (c, d), respectively. We have

m1 	m2 = k ·m1 6∩©m2,

with k =
(
1−m1 6∩©2(∅)

)−1

Proof. The commonality functions associated to those BBAs are the following:

q1(p) = 1− b, q1(¬p) = 1− a, q1(Ω) = 1− a− b, q1(∅) = 1,

and
q2(p) = 1− d, q2(¬p) = 1− c, q2(Ω) = 1− c− d, q2(∅) = 1.

We have

q1 6∩©2(p) =
1− b

1− d
,

q1 6∩©2(¬p) =
1− a

1− c
=
ā

c̄
,

q1 6∩©2(Ω) =
1− a− b

1− c− d
,

q1 6∩©2(∅) = 1 .

Hence

m1 6∩©2(p) = q1 6∩©2(p)− q1 6∩©2(Ω)

=
1− b

1− d
− 1− a− b

1− c− d

=
b̄ (1− c− d)

d̄ (1− c− d)
− d̄ (1− a− b)

d̄ (1− c− d)

=
b̄− b̄c− b̄d− d̄+ ad̄+ bd̄

d̄ (1− c− d)
.

Since b̄− b̄d− d̄+ bd̄ = 0, we have

m1 6∩©2(p) =
ad̄− b̄c

d̄ (1− c− d)

=
c̄
(
ad̄− b̄c

)
c̄d̄ (1− c− d)

=
c̄
(
ad̄− b̄c

)
c̄d̄− d̄cc̄− c̄dd̄

.
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Furthermore, we have

1−m1 6∩©2(∅) = 1− q1 6∩©2(∅) + q1 6∩©2(p) + q1 6∩©2(¬p)− q1 6∩©2(Ω)

= m1 6∩©2(p) + q1 6∩©2(¬p) .

Let m∗
1 6∩©2 denote the normalized BBA obtained from m1 6∩©2 using (1.1). We have

m∗
1 6∩©2(p) =

m1 6∩©2(p)

m1 6∩©2(p) + q1 6∩©2(¬p)

=

c̄(ad̄−b̄c)
c̄d̄(1−c−d)

c̄(ad̄−b̄c)
c̄d̄(1−c−d)

+ q1 6∩©2(¬p)

=

c̄(ad̄−b̄c)
c̄d̄(1−c−d)

c̄(ad̄−b̄c)
c̄d̄(1−c−d)

+ ā
c̄
· d̄(1−c−d)

d̄(1−c−d)

=
c̄
(
ad̄− b̄c

)
c̄
(
ad̄− b̄c

)
+ ād̄ (1− c− d)

=
c̄
(
ad̄− b̄c

)
ad̄c̄− ād̄c+ ād̄− b̄cc̄− ād̄d

=
c̄
(
ad̄− b̄c

)
(1− ā)d̄c̄− ād̄c+ ād̄− b̄cc̄− ād̄d

=
c̄
(
ad̄− b̄c

)
c̄d̄+ ād̄(1− c̄− c)− b̄cc̄− ād̄d

=
c̄
(
ad̄− b̄c

)
c̄d̄− b̄cc̄− ād̄d

. (A.2)

We can see that the left term of the right side of (A.1) is equal to (A.2). The proof
is similar for the right term.





Appendix B

Right and Left Eigenvectors

This appendix provides necessary notions on right and left eigenvectors. This
appendix is based on [45, 101, 102, 103].

B.1 Basic De�nitions

Let A be a n× n square matrix. Consider the following equation

A · r = λr · r,

where λr is a scalar and r is a column vector. A value of λr for which this equation has
a solution r 6= 0 is called a right eigenvalue of the matrix A and r is a corresponding
right eigenvector (right eigenvectors are the usual eigenvectors encountered in linear
algebra).

Consider now the following equation

l ·A = λl · l,

where λl is a scalar and l is a row vector. A value of λl for which this equation has
a solution l 6= 0 is called a left eigenvalue of the matrix A and l is a corresponding
left eigenvector.

It may be shown that the right eigenvalues of A are also its left eigenvalues [102].

B.2 Relation between Left and Right Eigenvectors

Assume A has eigenvalues λ1, λ2, ...,λn and corresponding right eigenvectors r1, r2,
...,rn and corresponding left eigenvectors l1, l2, ..., ln. Let Λ denote the n×n diagonal
matrix whose diagonal element Λii is λi. Let R be the n×nmatrix whose ith column
is ri and let L be the n×n matrix whose ith row is li. From the eigen decomposition
theorem [101], we obtain:

A = R ·Λ ·R−1.

Hence, we have
A ·R = R ·Λ, (B.1)

and
R−1 ·A = Λ ·R−1. (B.2)
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It may also be shown (the proof is similar to the proof of (B.1) given in [103])
that

L ·A = Λ · L, (B.3)

holds. Hence, from (B.2) and (B.3), it is clear that any row of R−1 satis�es the
properties of a left eigenvector [45]. Similarly, any column of L−1 satis�es the
properties of a right eigenvector.



Appendix C

On Latent Belief Structures

C.1 Introduction

It was explained in Section 2.2.2 that a nondogmatic BBA m can be decomposed
into two u-separable BBAs notedmc andmd, and called, respectively, the con�dence
and di�dence component of m. Furthermore, Smets [85] proposed to interpret mc

as representing positive evidence, i.e., good reasons to believe in various propositions
A ⊆ Ω, and md as representing negative evidence, i.e., good reasons not to believe
in the same propositions. From this decomposition, Smets [85] de�ned a structure
to allow the representation of belief states, where both con�dence and di�dence are
involved. He called this structure a Latent Belief Structure (LBS). Formally, a LBS
may be de�ned as follows.

De�nition C.1 (Latent Belief Structure). A latent belief structure is de�ned as a
pair of u-separable nondogmatic BBAs mc and md called respectively the con�dence
and di�dence components. A LBS is noted using a upper-case L.

He also de�ned the concept of Apparent Belief Structure (ABS).

De�nition C.2 (Apparent Belief Structure). The apparent belief structure associ-
ated with a LBS L = (mc,md) is the BSMA1 sm obtained from the decombination
mc 6∩©md of the con�dence and di�dence components of L.

The properties linking these de�nitions are the following. By de�nition, the
apparent belief structure associated to a LBS may or may not be a belief function.
Furthermore, an in�nity of LBSs correspond to the same apparent belief structure.

In [85], Smets extends the combination of belief functions by the TBM con-
junctive rule to LBSs. In this appendix, we propose an exploratory work, which
extends to LBSs some notions of belief function theory such as combination rules,
informational comparison, and transformation to a probability measure.

This appendix is organized as follows. In Section C.2, some combination rules
and partial orderings allowing the informational comparison of LBSs are de�ned. A
transformation of a LBS to a probability measure is then de�ned in Section C.3.

This work was published in English in [63] and in French in [67].

1BSMA stands for Basic Signed Measure Assignment, see Section 7.2 for material on BSMAs.
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C.2 Combination Rules for LBSs

This section studies mathematical operations on LBSs. Let us �rst express two
known operations of belief function theory using LBSs.

Let
(
mc

1,m
d
1

)
and

(
mc

2,m
d
2

)
be the LBSs associated with two nondogmatic BBAs

m1 and m2. Then
(
mc

1 ∩©m
c
2,m

d
1 ∩©m

d
2

)
is a LBS associated with m1 ∩©m2. This lead

Smets to de�ne the conjunctive combination of two LBSs as follows.

De�nition C.3. The conjunctive combination of two LBSs L1 and L2 is a LBS
noted L1 ∩©2. It is de�ned by the weight functions (C.1) and (C.2):

wc
1 ∩©2 (A) = wc

1 (A) · wc
2 (A) , (C.1)

wd
1 ∩©2 (A) = wd

1 (A) · wd
2 (A) . (C.2)

This rule is commutative and associative. Furthermore, the LBS associated with
the vacuous BBA mΩ, which we note LΩ, is a neutral element for ∩©, i.e. L ∩©LΩ = L
for all LBSs L. The cautious rule of combination [18] can also be expressed in terms
of LBSs.

De�nition C.4. ([18, Proposition 6]) The cautious combination of two LBSs L1

and L2 is a LBS noted L1 ∧©2. It is de�ned by the following weight functions:

wc
1 ∧©2 (A) = wc

1 (A) ∧ wc
2 (A) , (C.3)

wd
1 ∧©2 (A) = wd

1 (A) ∨ wd
2 (A) . (C.4)

This rule is commutative, associative and idempotent.

C.2.1 Informational comparison of LBSs

It is clear that the TBM conjunctive and cautious rules belong to di�erent families
of combination rules. Indeed, we have

mc
1 ∩©2 vw m

c
i ,

md
1 ∩©2 vw m

d
i ,

and

mc
1 ∧©2 vw m

c
i ,

md
1 ∧©2 ww m

d
i ,

where i ∈ {1, 2}. In other words, the ∩© rule produces a LBS L1 ∩©2 which is both w-
more committed in con�dence and in di�dence than the LBSs L1 and L2, whereas
the ∧© rule produces a LBS L1 ∧©2 which is w-more committed in con�dence and
w-less committed in di�dence than the LBSs L1 and L2.

The behaviors of the TBM conjunctive and cautious rules suggest two partial
orderings for LBSs, which are formally de�ned in De�nitions C.5 and C.6 below.
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De�nition C.5. A LBS L which is both w-more committed in con�dence and in
di�dence than a LBS L

′
is said to be l-more committed than L

′
(l stands for latent),

which is noted L vl L
′
.

De�nition C.6. A LBS L which is w-more committed in con�dence and w-less
committed in di�dence than a LBS L′ is said to be a-more committed than L

′
(a

stands for apparent), which is noted L va L
′
.

We may remark that the va ordering implies the order of the apparent belief
structures, i.e., if the ABS of L is a BBA m and the ABS of L′ is a BBA m′ and
if L va L

′
, then m vw m′. In this respect, the a-ordering seems reasonable. The

l-ordering does not verify such a property. However, this latter ordering does seem
to make sense if one reasons in terms of the semantics of the LBSs. Indeed, the
l-ordering considers that a LBS is more committed than another one if it has more
positive evidence and more negative evidence.

C.2.2 Cautious merging technique applied to LBSs

Equipped with these two partial orderings for LBSs, we may study what the cautious
merging technique (see Section 2.5.1) applied to LBSs yields.

Suppose that an agent receives two LBSs L1 and L2. Upon receiving those two
pieces of information, the agent's state of belief should be represented by a LBS
L12 more informative than L1 and L2. Let Sx (L) be the set of LBSs L′ such that
L′ vx L, with x ∈ {a, l}. Hence L12 ∈ Sx (L1) and L12 ∈ Sx (L2) or, equivalently,
L12 ∈ Sx (L1)∩Sx (L2), with x ∈ {a, l}. According to the LCP, the x-least committed
LBS should be chosen in Sx (L1) ∩ Sx (L2). This de�nes a combination rule if the
x-least committed LBS exists and is unique. Interestingly, this is the case for both
orderings @a and @l. Indeed, the a-least committed element in Sa (L1) ∩ Sa (L2) is
clearly given by the cautious rule. The l-least committed element in Sl (L1)∩Sl (L2)
is given by Proposition C.1.

Proposition C.1. Let L1 and L2 be two LBSs. The l-least committed element in
Sl (L1) ∩ Sl (L2) exists and is unique. It is de�ned by the following con�dence and
di�dence weight functions:

wc
1∧∧©2 (A) = wc

1 (A) ∧ wc
2 (A) , A ∈ 2Ω\ {Ω} , (C.5)

wd
1∧∧©2 (A) = wd

1 (A) ∧ wd
2 (A) , A ∈ 2Ω\ {Ω} . (C.6)

Proof. Direct using Proposition 4 of [18].

Proposition C.1 allows us to de�ne a combination rule for LBSs as follows.

De�nition C.7 (Weak Rule). Let L1 and L2 be two LBSs. Their combination with
the weak rule is de�ned as the LBS, noted L1∧∧©2, which weight functions are given
by (C.5) and (C.6).
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This rule is commutative, associative and idempotent. In addition, ∩© is dis-
tributive with respect to ∧∧©. Those properties originate from the properties of the
∧© rule [18] since there is a connection between the partial orderings on which those
two rules are built. We can thus see that the combination by the ∧∧© rule consists in
combining the con�dence and di�dence components by the ∧© rule.

The ∧∧© rule exhibits other properties: LΩ is a neutral element and if L1 vl L2, the
result of the least committed combination of those LBSs is L1 ∧∧©L2 = L1. Further,
using the l-ordering in the derivation of the rule allows the construction of a 'weaker',
or l-less committed, version of the TBM conjunctive rule, i.e. L1 ∩©L2 vl L1 ∧∧©L2.

Note that the apparent form of a LBS L1∧∧©2, produced by the ∧∧© combination
of two LBSs L1 and L2 obtained from two nondogmatic BBAs m1 and m2, may
not be a BBA. However, if m1 and m2 are separable BBAs then the apparent form
of the LBS L1∧∧©2 is a BBA since a separable BBA yields a LBS whose di�dence
component is vacuous and the ∧∧© combination consists in combining the con�dence
component of L1 and L2 by the ∧© rule. Furthermore, it may easily be shown that
the ∧∧© rule applied to two LBSs obtained from two consonant BBAs will yield a LBS
whose apparent form is a separable BBA which is not necessarily consonant.

Example C.1. Table C.1 gives two LBS L1 = (mc
1,m

d
1) and L2 = (mc

2,m
d
2) together

with their associated weight functions. Tables C.2 shows the weight functions result-
ing from the weak (∧∧©), the TBM conjunctive ( ∩©), and the cautious ( ∧©) combinations
of the LBSs given by Table C.1.

Table C.1: Two LBS together with their associated weight functions.

A mc
1 (A) md

1 (A) wc
1 (A) wd

1 (A) mc
2 (A) md

2 (A) wc
2 (A) wd

2 (A)
∅ 0 0 1 1 0 0 1 1
{a} 0 0 1 1 0 0 1 1
{b} 4/9 4/9 1 5/9 0 0 1 1
{a, b} 2/9 0 1/3 1 0 0 1 1
{c} 0 0 1 1 4/9 4/9 1 5/9
{a, c} 0 0 1 1 2/9 0 1/3 1
{b, c} 2/9 0 1/3 1 2/9 0 1/3 1

Ω 1/9 5/9 1/9 5/9

Finally, we may remark that, in the same vein as Chapter 4, it is possible to de�ne
in�nite families of conjunctive combination rules for LBSs. The ∩© and ∧∧© rules are
then merely instances of these families. This extension is based on the observation
that the ∩© rule uses the product, whereas the ∧∧© rule uses the minimum of weights
belonging to the unit interval. These two operations on this interval are triangular
norms. Replacing them by any positive t-norm > yields operators, noted >>©, which
possess the following properties: commutativity, associativity, neutral element LΩ

and monotonicity with respect to vl, i.e. ∀L1, L2 and L3, L1 vl L2 ⇒ L1>>©L3 vl

L2>>©L3. Only the ∧∧© rule is idempotent.
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Table C.2: Weight functions obtained from di�erent combinations.

A wc
1∧∧©2 (A) wd

1∧∧©2 (A) wc
1 ∩©2 (A) wd

1 ∩©2 (A) wc
1 ∧©2 (A) wd

1 ∧©2 (A)

∅ 1 1 1 1 1 1
{a} 1 1 1 1 1 1
{b} 1 5/9 1 5/9 1 1
{a, b} 1/3 1 1/3 1 1/3 1
{c} 1 5/9 1 5/9 1 1
{a, c} 1/3 1 1/3 1 1/3 1
{b, c} 1/3 1 1/9 1 1/3 1

C.3 Transformation to a Probability Measure

This section provides a means to transform a LBS into a probability measure. The
plausibility transformation is of particular interest here due to one of its properties:
it is invariant with respect to the decombination by 6∩© (see Proposition 1.3, Section
1.5).

Using this property, a LBS L =
(
mc,md

)
can be transformed into a probability

measure as follows:
PlPL = PlPmc � PlPmd .

Example C.2. Table C.3 illustrates the computation of the plausibility transforma-
tion of the LBSs obtained from di�erent combinations in Example C.1.

Table C.3: Plausibility transformations of the LBSs obtained in Example C.1.

A PlP1∧∧©2 PlP1 ∩©2 PlP1 ∧©2

{a} 9/19 0.23 1/3
{b} 5/19 0.385 1/3
{c} 5/19 0.385 1/3

The plausibility transformation of a LBS has di�erent interesting properties.

Let
PlP∼ denote the equivalence relation between LBSs de�ned by L1

PlP∼ L2 i�
PlPL1 ({ωk}) = PlPL2 ({ωk}), ∀ωk ∈ Ω.

Proposition C.2. Āα PlP∼ A
1
α , for α ∈ (0, 1].

Proof. ∀ωk ∈ A,A ⊂ Ω,

PlPĀα ({ωk}) =
α∣∣Ā∣∣+ |A|α

, (C.7)

PlPA1/α ({ωk}) =
1

|A|+
∣∣Ā∣∣ 1

α

. (C.8)

(C.7) and (C.8) are equal.
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Proposition C.2 shows that two ways of modeling negative statements become
equivalent when PlP is used. Indeed, according to Smets's terminology [85], for
A ⊂ Ω, having good reasons to believe in not A is equivalent, in terms of probability
measure generated using PlP , to having good reasons not to believe in A.

Finally, let us note that Propositions 1.3 and C.2 allow us to de�ne equivalence
classes with respect to the plausibility transformation in which there is at least one

u-separable BBA; for instance we have:
(
Ā0.6, A0.5

) PlP∼
(
Ā0.3,Ω

)
. Note also that

the combination by ∩© of any two LBSs belonging to two di�erent equivalence classes

always falls in the same equivalence class, for instance if L1
PlP∼ L2 and L3

PlP∼ L4,

then, e.g., L1 ∩©L3
PlP∼ L2 ∩©L4. It can easily be shown that this is not true for the ∧©

and ∧∧© rules.

C.4 Conclusion

From the canonical decomposition of a belief function, Smets de�ned a construct
called a latent belief structure. As shown in this appendix, it is possible to extend
to LBSs some notions that apply to belief functions. Clearly, those extensions are
only sound at a mathematical level and further work on the interpretation and the
justi�cation of the LBSs and the operations de�ned is needed.

To conclude, we may note that Smets is not the only author to have been
interested in the idea of positive and negative information. Indeed, Dubois et
al. [32] and Labreuche et al. [54] have also investigated in belief function theory
the existence of positive and negative information, which is usually coined under
the term bipolarity. An in-depth comparison of those various models would be
interesting since it is not clear yet what their relationships are. It does not seem,
for instance, that the negative information as understood in [33] corresponds to
the negative information of Smets' LBS. Indeed, the negative information in the
former model is represented by a BBA, which may be canonically decomposed into
a con�dence and a di�dence component, i.e., into positive and negative information
as understood in Smets' model.



Appendix D

Reliability Versus Truthfulness

In this appendix, a short discussion on the implications of making the di�erence
between a reliable source and a truthful source, is provided. First, we follow in
Section D.1, a similar reasoning to the one of Section 6.3.2, placing the focus on the
reliability of a source rather than its truthfulness. Then, we show in Section D.2
that the exclusive disjunctive rule does not correspond to the situation where it is
known that exactly one of the sources is reliable, as wrongly stated by [41, Theorem
3.3]. We then conclude this appendix with some further comments related to the
reliability and the truthfulness of a source.

D.1 Reliability of a Source

Let ω be a variable, which takes its values in a frame Ω. Suppose an agent who does
not know anything about the actual value ω0 taken by ω. Suppose a source S1 that
tells the agent that the actual value ω0 is in A ⊆ Ω, i.e., ω0 ∈ A. If the source is
reliable, then the agent believes ω0 ∈ A. If the source is not reliable, then the agent
believes ω0 ∈ Ω.

Let ρ be a variable taking its values in a frame R = {r, r}. We use ρ to denote
the reliability of the source. The information ω0 ∈ A provided by S1 can be modeled
by a BBA mΩ

1 such that mΩ
1 (A) = 1. The information when the source is reliable, ω0

must be in A, and when the source is not reliable, ω0 must be in Ω, may be modeled
by a BBA noted mΩ×R

1′′ and de�ned on the product space Ω×R by

mΩ×R
1′′ (A× {r} ∪ Ω× {r}) = 1. (D.1)

Note that we use the index 1′′ in mΩ×R
1′′ , i.e., the source number followed by two

prime symbols, to highlight that the BBA mΩ×R
1′′ is obtained from the source S1, as

is the case of the BBA mΩ×T
1′ (see Equation (6.11)), but that it conveys a di�erent

information from the BBA mΩ×T
1′ .

One veri�es that the BBA mΩ×R
1′′ is appropriate to model the information avail-

able in this scenario since

• combining mΩ×R
1′′ with a BBA mR

r de�ned on R by mR
r (r) = 1, and then

marginalizing on Ω, yields a BBA mΩ
Ag such that mΩ

Ag(A) = 1, i.e., if the agent
believes that the source is reliable, then the agent believes ω0 ∈ A;

• combining mΩ×R
1′′ with a BBA mR

r de�ned on R by mR
r (r) = 1, and then

marginalizing on Ω, yields a BBA mΩ
Ag such that mΩ

Ag(Ω) = 1, i.e., if the agent
believes that the source is not reliable, then the agent believes ω0 ∈ Ω.
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We may further remark that

(mΩ×R
1′′ ∩©mR↑Ω×R

r )↓Ω = mΩ
1 (D.2)

and
(mΩ×R

1′′ ∩©mR↑Ω×R
r )↓Ω = mΩ

Ω, (D.3)

where mΩ
Ω is the vacuous BBA on Ω, which is sound since mΩ

Ω represents the BBA
that would be induced on Ω if the agent knows that the source providing a BBA
mΩ

1 is not reliable.
This reasoning may be generalized when the source produces an information in

the form of a BBA rather than a set, in which case the BBA mΩ×R
1′′ is such that

mΩ×R
1′′ (A× {r} ∪ Ω× {r}) = mΩ

1 (A), ∀A ⊆ Ω. (D.4)

Here again, Equations (D.2) and (D.3) are veri�ed, which means that, as expected,
the agent's beliefs are equated to what the source says if the source is reliable, and
the agent's beliefs are vacuous if the source is not reliable.

Note that the BBA mΩ×R
1′′ as de�ned by (D.4) is equal to the BBA obtained by

a combination by ∩© of the ballooning extensions on Ω× R of the BBAs mΩ[r] and
mΩ[r] de�ned by mΩ[r](A) = m1(A), for all A ⊆ Ω, and by mΩ[r] = mΩ, where mΩ

denotes the vacuous BBA � the BBA mΩ[r] represents the beliefs of the agent given
that the source is reliable, and the BBA mΩ[r] represents the beliefs of the agent
given that the source is not reliable. Furthermore, note that since the ballooning
extension of the BBA mΩ[r] on Ω× R is the vacuous BBA on Ω× R, we also have
that mΩ×R

1′′ is merely equal to the BBA obtained when performing the ballooning
extension on Ω×R of the BBA mΩ[r]. Hence, we may use interchangeably the BBA
mΩ×R

1′′ or the ballooning extension of mΩ[r]. This is important since BBAs of the
kind of mΩ[r], rather than mΩ×R

1′′ , are used in the next section.

D.2 Haenni's Exclusive Disjunction

Theorem 3.3 of [41] states without proof that the exclusive disjunctive rule corre-
sponds to the situation where exactly one of the sources is reliable, without knowing
which one. We show in this section that this theorem is wrong.

Let mΩ
1 and mΩ

2 be two BBAs provided by two sources of information S1 and
S2. Let R1 =

{
r1, r1

}
and R2 =

{
r2, r2

}
; these frames are used to represent the

reliability of S1 and S2, respectively.
Suppose we want to build a BBA mΩ

1�2 quantifying our belief on Ω based on the
BBAs mΩ

1 and mΩ
2 , and based on a piece of evidence stating that exactly one of the

sources is reliable, but we do not know which one. We have thus

mΩ
1�2 = (mΩ×R1↑Ω×R1×R2

1′′ ∩©mΩ×R2↑Ω×R1×R2
2′′ ∩©mR1×R2↑Ω×R1×R2

xor )↓Ω,

with

mΩ×Ri
i′′ (A× {ri} ∪ Ω×

{
ri
}
) = mΩ

i (A), ∀A ⊆ Ω, i = 1, 2,
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and

mR1×R2
xor

({(
r1, r2

)
,
(
r1, r2

)})
= 1. (D.5)

Or, equivalently,

mΩ
1�2 =

((
mΩ[r1]⇑R1×Ω

)↑R1×R2×Ω
∩©
(
mΩ[r2]⇑R2×Ω

)↑R1×R2×Ω
∩©mR1×R2↑R1×R2×Ω

xor

)↓Ω
,

(D.6)
where mΩ[r1](A) = mΩ

1 (A) and mΩ[r2](A) = mΩ
2 (A) for all A ⊆ Ω.

According to [41, Theorem 3.3], the BBA mΩ
1�2 de�ned by (D.6) is supposedly

equal to the BBA mΩ
1 ∪©2 obtained from the combination by the exclusive disjunctive

rule ∪© of the BBAs mΩ
1 and mΩ

2 . Example D.1 shows that one can �nd two BBAs
mΩ

1 and mΩ
2 such that mΩ

1�2 6= mΩ
1 ∪©2, i.e., Theorem 3.3 of [41] is wrong.

Example D.1. Let Ω = {a, b, c} and mΩ
1 ({a, b}) = 1 and mΩ

2 ({b, c}) = 1. Using
(6.5), we �nd

mΩ
1 ∪©2({a, c}) = 1. (D.7)

Let us now compute mΩ
1�2 using (D.6). We have mΩ[r1]({a, b}) = 1 and thus

mΩ[r1]⇑R1×Ω
({

(a, r1), (b, r1), (a, r1), (b, r1), (c, r1)
})

= 1.

Hence,
(
mΩ[r1]⇑R1×Ω

)↑R1×R2×Ω
(B) = 1 with

B = {(a, r1, r2), (a, r1, r2), (b, r1, r2), (b, r1, r2), (a, r1, r2), (a, r1, r2),

(b, r1, r2), (b, r1, r2), (c, r1, r2), (c, r1, r2)}.

Furthermore, we have mΩ[r2]({b, c}) = 1 and thus

mΩ[r2]⇑R2×Ω
({

(b, r2), (c, r2), (a, r2), (b, r2), (c, r2)
})

= 1.

Hence,
(
mΩ[r2]⇑R2×Ω

)↑R1×R2×Ω
(C) = 1 with

C = {(b, r1, r2), (b, r1, r2), (c, r1, r2), (c, r1, r2), (a, r1, r2), (a, r1, r2),

(b, r1, r2), (b, r1, r2), (c, r1, r2), (c, r1, r2)}.

We also have mR1×R2↑R1×R2×Ω
xor (D) = 1 with

D =
{(
a, r1, r2

)
,
(
a, r1, r2

)
,
(
b, r1, r2

)
,
(
b, r1, r2

)
,
(
c, r1, r2

)
,
(
c, r1, r2

)}
.

Combining
(
mΩ[r1]⇑R1×Ω

)↑R1×R2×Ω
and

(
mΩ[r2]⇑R2×Ω

)↑R1×R2×Ω
andmR1×R2↑R1×R2×Ω

xor

by the rule ∩© yields a BBA de�ned on R1× R2× Ω, which has only one focal set:
B ∩ C ∩D =

{
(a, r1, r2), (b, r1, r2), (b, r1, r2), (c, r1, r2)

}
. Marginalizing this latter

BBA on Ω yields mΩ
1�2({a, b, c}) = 1, which is di�erent from (D.7).
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D.3 Some Comments

As shown in the previous section, the BBA m1�2 computed using (D.6), is not
equal to the BBA mΩ

1 ∪©2. This means that the exclusive disjunctive rule does not
correspond to the situation where exactly one of the sources is known to be reliable,
without knowing which one. As a matter of fact, the following proposition holds.

Proposition D.1. Let mΩ
1 and mΩ

2 be two BBAs. We have

mΩ
1 ∪©2 =

((
mΩ[r1]⇑R1×Ω

)↑R1×R2×Ω
∩©
(
mΩ[r2]⇑R2×Ω

)↑R1×R2×Ω
∩©mR1×R2↑R1×R2×Ω

xor

)↓Ω
,

and

mΩ
1 ∪©2 =

((
mΩ[r1]⇑R1×Ω

)↑R1×R2×Ω
∩©
(
mΩ[r2]⇑R2×Ω

)↑R1×R2×Ω
∩©mR1×R2↑R1×R2×Ω

or

)↓Ω
,

where mΩ[r1](A) = mΩ
1 (A) and mΩ[r2](A) = mΩ

2 (A) for all A ⊆ Ω and

mR1×R2
xor

({(
r1, r2

)
,
(
r1, r2

)})
= 1,

and

mR1×R2
or

({
(r1, r2) ,

(
r1, r2

)
,
(
r1, r2

)})
= 1.

Proof. See Appendix F.7

This proposition means that the TBM disjunctive rule corresponds to the situa-
tion where at least one source is known to be reliable, but it also corresponds to the
situation where it is known that one and only one of the sources is reliable, without
knowing which one. Additionally, let us note that, as stated in [87] and as shown by
Proposition D.2 below, the TBM disjunctive rule �ts also with the situation where
it is known that at least one of the sources tells the truth, whereas the exclusive
disjunctive rule �ts with the situation where one and only one of the sources tells
the truth, without knowing which one.

Proposition D.2. Let mΩ
1 and mΩ

2 be two BBAs. We have

m1 ∪©m2 = (mΩ×T1↑Ω×T1×T2
1′ ∩©mΩ×T2↑Ω×T1×T2

2′ ∩©mT1×T2↑Ω×T1×T2
or )↓Ω

and

m1 ∪©m2 = (mΩ×T1↑Ω×T1×T2
1′ ∩©mΩ×T2↑Ω×T1×T2

2′ ∩©mT1×T2↑Ω×T1×T2
xor )↓Ω

with

mΩ×Ti
i′ (A× {ti} ∪ A× {fi}) = mΩ

i (A), ∀A ⊆ Ω, i = 1, 2,

and

mT1×T2
xor ({(t1, f2) , (f1, t2)}) = 1,

and

mT1×T2
or ({(t1, t2) , (t1, f2) , (f1, t2)}) = 1.
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Proof. See Appendix F.8.

In order to enhance the di�erence between a reliable source and a truthful source,
we may informally look at the reason why the BBA m1�2 computed using (D.6),
is equal to m1 ∪©2 and is thus di�erent from m1 ∪©2. Suppose two sources S1 and
S2. S1 states ω0 ∈ A and S2 states ω0 ∈ B. Suppose further that exactly one
of the sources is reliable, without knowing which one, i.e., either S1 is reliable and
S2 is not, or S1 is not reliable and S2 is. As explained in Section D.1, if a source
states ω0 ∈ C and the source is reliable, then the agent believes ω0 ∈ C, and if
the source is not reliable, then the agent believes ω0 ∈ Ω. Hence, we may conclude
ω0 ∈ (A ∩ Ω) when S1 is reliable and S2 is not, and we may deduce (Ω ∩ B) when
S1 is not reliable and S2 is. Since exactly one of the sources is reliable, without
knowing which one, i.e., either S1 is reliable and S2 is not, or S1 is not reliable and
S2 is, we must have ω0 ∈ (A ∩Ω) ∪ (Ω ∩B), hence ω0 ∈ A ∪B. Now, suppose that
exactly one of the sources tells the truth, without knowing which one. Then, based
on the fact that if a source states ω0 ∈ C, then the agent believes ω0 ∈ C when
the source tells the truth, and the agent believes ω0 ∈ C when the source does not
tell the truth, we conclude that ω0 ∈ (A ∩ B) ∪ (A ∩ B) when exactly one of the
sources tells the truth, which is in general di�erent from A∪B. One may verify that
ω0 ∈ (A∩B)∪ (A∩B) is the conclusion reached, when combining by the exclusive
disjunctive rule, the categorical BBAs (the sets A and B) provided by the sources
S1 and S2. Finally, we may note that if it is known that at least one of the sources
tells the truth, then we must have ω0 ∈ (A∩B)∪ (A∩B)∪ (A∩B)1, which, as we
know from Remark 6.2, is equivalent to ω0 ∈ A ∪B.

As a �nal comment, we may add that it would be interesting to study the
behavior of a discounting-like operation, based on the truthfulness of a source
rather than its reliability. Such an operation might be useful when dealing with
an automatic deceiving agent, tampering with messages sent between a sensor and
a coordination center [94].

1We have ω0 ∈ (A ∩ B) ∪ (A ∩ B) ∪ (A ∩ B) because either S1 is telling the truth and S2 is
not and thus we believe ω0 ∈ A ∩ B, or S1 is not telling the truth and S2 is and thus we believe
ω0 ∈ A ∩B, or S1 and S2 are telling the truth and thus we believe ω0 ∈ A ∩B.





Appendix E

Weight-Based Combination Rules:

Proofs

E.1 Proof of Theorem 3.1

The proof of Theorem 3.1 requires the two following technical lemmas (Lemmas E.1
and E.2).

Lemma E.1. Let m be a BBA. For B ⊂ Ω, the following equality holds:∑
A⊆B

(−1)|A| q (A) =
∑

A∩B=∅

m (A) .

Proof. Let mB denote a categorical BBA focused on B ⊂ Ω. Let m be a BBA and
m′ = m ∩©mB. We have

m′(∅) =
∑

A∩B=∅

m (A)

Let qB denote the commonality function associated to mB.

qB(A) =

{
1 if A ⊆ B,
0 otherwise.

Let q′ and q denote the commonality functions associated to m′ and m, respectively.
We have:

q′(A) = q(A) · qB(A) ∀A ⊆ Ω

Hence

q′(A) =

{
q(A) if A ⊆ B,
0 otherwise.

Consequently, using (1.2), we have

m′(∅) =
∑
C⊆Ω

(−1)|C| q′ (C)

=
∑
A⊆B

(−1)|A| q (A) ,

which completes the proof.
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Lemma E.2. Let m be a normal, nondogmatic BBA and such that m(C) > 0, for
a proper subset C ⊂ Ω. Let w be the conjunctive weight function associated to m.
Further, let m′ = m 6∩©Bw(B) ∩©Bw(B)+ε, with B ⊂ Ω, C ∩B = ∅ and ε > 0. m′ is not
a BBA.

Proof. The proof consists in showing that m′(∅) < 0. Let B be a strict subset of Ω
such that C ∩B = ∅. The following equality holds:

m′(∅) =
∑
A⊆Ω

(−1)|A|
q(A)

qB(A)
q′B(A),

where q, qB and q′B are the commonality functions associated to m, Bw(B) and
Bw(B)+ε, respectively. We have:

qB(A) =

{
1 if A ⊆ B,
w (B) otherwise,

(E.1)

q′B(A) =

{
1 if A ⊆ B,
w (B) + ε otherwise.

(E.2)

Using (E.1) and (E.2), one can obtain:

m′(∅) =
∑
A⊆B

(−1)|A|q(A) +
∑
A6⊆B

(−1)|A|q(A)
w (B) + ε

w (B)
.

As

m(∅) =
∑
A⊆Ω

(−1)|A|q(A)

=
∑
A⊆B

(−1)|A|q(A) +
∑
A6⊆B

(−1)|A|q(A),

then

m′(∅) = m(∅) +
ε

w (B)

∑
A6⊆B

(−1)|A|q(A).

We can thus remark that m′(∅) is equal to m(∅), which is itself equal to 0, plus
another term. Let us prove that this term is always strictly smaller than 0. We have

ε

w (B)

∑
A6⊆B

(−1)|A|q(A) =
ε

w (B)

(
m(∅)−

∑
A⊆B

(−1)|A|q(A)

)
= − ε

w (B)

∑
A⊆B

(−1)|A|q(A).

We thus have from Lemma E.1:

m′(∅) = − ε

w (B)

∑
A∩B=∅

m (A) . (E.3)

As m(C) > 0 for C such that C ∩ B = ∅, the sum in the right-hand side of
(E.3) is strictly greater than zero. Further we have ε > 0 and w (B) > 0. Hence
m′(∅) < 0, thus m′ is not a BBA.
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Theorem 3.1 can then be proved as follows.

Proof. Let x and y be any two numbers such that x ◦ y > xy. Obviously, as 1 is
assumed to be a neutral element of ◦, we have x 6= 1 and y 6= 1. Let ε = x◦y−xy >
0. The proof consists in choosing two logically consistent BBAs m1 and m2, i.e.,
m1 ∩©2(∅) = 0, such that:

• ∃B ∈ 2Ω\ {Ω} such that w1 (B) = x and w2 (B) = y;

• ∀A ∈ 2Ω\ {Ω, B}, w1 (A) = 1 or w2 (A) = 1;

• ∃C ∈ 2Ω such that m1 ∩©2(C) > 0 and C ∩B = ∅.

For those BBAs, we thus have:

w1 ∩©2(B) = w1(B) · w2(B),

w1 ∩©2(A) =

{
w1(A) if w2(A) = 1,
w2 (A) otherwise,

for all A 6= B, and

w1(B) ◦ w2(B) = w1 ∩©2(B) + ε,

w1(A) ◦ w2(A) = w1 ∩©2(A),

for all A 6= B.
Hence, we have:

∩©A⊂ΩA
w1(A)◦w2(A) = m1 ∩©2 6∩©Bw1 ∩©2(B) ∩©Bw1 ∩©2(B)+ε, (E.4)

and ∃C ∈ 2Ω such that m1 ∩©2(C) > 0 and C ∩B = ∅. By Lemma E.2, (E.4) is not a
BBA, hence w1 ◦w2 is not a conjunctive weight function of some nondogmatic BBA.

Let us now provide the BBAs m1 and m2 which verify the above scheme. Since
the considered numbers x and y take their values in (0,+∞)\ {1}, we consider in
the remainder of this proof the following cases:

• Case 1: x ∨ y < 1;

• Case 2: x ∧ y > 1;

• Case 3: x ∨ y > 1 and x ∧ y < 1.

We must thus provide a pair of BBAs m1 and m2 verifying the above scheme for
each of the three possible cases.

• Case 1:

Let Ω = {a, b, c} and let m1 and m2 be two BBAs de�ned on Ω as follows, for
α, β ∈ (0, 0.5):

m1(A) =


α if A = {a, b} or A = {b, c} ,
1− 2α if A = Ω,
0 otherwise.
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m2(A) =


β if A = {a, c} or A = {b, c} ,
1− 2β if A = Ω,
0 otherwise.

The conjunctive weight functions associated to those BBAs are:

w1(A) =


(1−2α)
(1−α)

if A = {a, b} or A = {b, c} ,
(1−α)2

(1−2α)
if A = {b} ,

1 otherwise.

w2(A) =


(1−2β)
(1−β)

if A = {a, c} or A = {b, c} ,
(1−β)2

(1−2β)
if A = {c} ,

1 otherwise.

For those two BBAs, we have:

� m1 ∩©2(∅) = 0,

� ∃B = {b, c} such that w1 (B) = x, x ∈ (0, 1) as w1 (B) = f(α) with f a
surjective function from (0, 0.5) to (0, 1), and w2 (B) = y, y ∈ (0, 1), as
w2 (B) = g(β) with g a surjective function from (0, 0.5) to (0, 1).

� ∀A ∈ 2Ω\ {B,Ω}, w1 (A) = 1 or w2 (A) = 1,

� ∃C = {a} such that m1 ∩©2(C) > 0 and C ∩B = ∅.

• Case 2:

Let Ω = {a, b, c, d, e} and let m1 and m2 be two BBAs de�ned on Ω as follows,
for α ∈ (0, 0.5) and β ∈ (0, 1/3):

m1(A) =


α if A = {a, b} or A = {b, c} ,
1− 2α if A = Ω,
0 otherwise.

m2(A) =


β if A ∈ {{a, b, c} , {a, c, e} , {b, d, e}} ,
1− 3β if A = Ω,
0 otherwise.

The conjunctive weight functions associated to those BBAs are:

w1(A) =


(1−2α)
(1−α)

if A = {a, b} or A = {b, c} ,
(1−α)2

(1−2α)
if A = {b} ,

1 otherwise.

w2(A) =


1−3β
1−2β

if A ∈ {{a, b, c} , {a, c, e} , {b, d, e}} ,
(1−β)3(1−3β)

(1−2β)3
if A = {∅} ,

(1−2β)2

(1−β)(1−3β)
if A ∈ {{b} , {e} , {a, c}} ,

1 otherwise.

For those two BBAs, we have:
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� m1 ∩©2(∅) = 0,

� ∃B = {b} such that w1 (B) = x, x ∈ (1,+∞) as w1 (B) = f(α) with f a
surjective function from (0, 0.5) to (1,+∞), and w2 (B) = y, y ∈ (1,+∞),
as w2 (B) = g(β) with g a surjective function from (0, 1/3) to (1,+∞).

� ∀A ∈ 2Ω\ {B,Ω}, w1 (A) = 1 or w2 (A) = 1,

� ∃C = {a} such that m1 ∩©2(C) > 0 and C ∩B = ∅.

• Case 3:

Let Ω = {a, b, c, d} and let m1 and m2 be two BBAs de�ned on Ω as follows,
for α ∈ (0, 0.5) and β ∈ (0, 1/3):

m1(A) =


α if A = {a, b} or A = {b, c} ,
1− 2α if A = Ω,
0 otherwise.

m2(A) =


β if A ∈ {{a, b, c} , {a, b, d} , {a, c, d}} ,
1− 3β if A = Ω,
0 otherwise.

The conjunctive weight functions associated to those BBAs are:

w1(A) =


(1−2α)
(1−α)

if A = {a, b} or A = {b, c} ,
(1−α)2

(1−2α)
if A = {b} ,

1 otherwise.

w2(A) =


1−3β
1−2β

if A ∈ {{a, b, c} , {a, b, d} , {a, c, d}} ,
(1−β)3(1−3β)

(1−2β)3
if A = {a} ,

(1−2β)2

(1−β)(1−3β)
if A ∈ {{a, b} , {a, c} , {a, d}} ,

1 otherwise.

For those two BBAs, we have:

� m1 ∩©2(∅) = 0,

� ∃B = {a, b} such that w1 (B) = x, x ∈ (0, 1) as w1 (B) = f(α) with f a
surjective function from (0, 0.5) to (0, 1), and w2 (B) = y, y ∈ (1,+∞),
as w2 (B) = g(β) with g a surjective function from (0, 1/3) to (1,+∞).

� ∀A ∈ 2Ω\ {B,Ω}, w1 (A) = 1 or w2 (A) = 1,

� ∃C = {c} such that m1 ∩©2(C) > 0 and C ∩B = ∅.
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E.2 Proof of Proposition 4.2

Proof. The notation is simpli�ed in this proof: the operator U(>,>′) de�ned by (4.3)
is simply noted U . The convention related to the use of the extended real line and
adopted in the proof of Proposition 4.1 is also used in this proof.

The proof consists in showing that U satis�es the following properties

1. x U y = y U x, for all x, y ∈ (0,+∞], i.e., U is commutative;

2. x U 1 = 1 U x = x, for all x ∈ (0,+∞], i.e., U has 1 as neutral element;

3. w U x ≥ y U z, for all w, x, y, z ∈ (0,+∞], such that w ≥ y and x ≥ z, i.e., U
is monotonic;

4. (x U y) U z = x U (y U z), for all x, y, z ∈ (0,+∞], i.e., U is associative;

5. x U y > 0 for all x, y ∈ (0,+∞].

The commutativity of U (Property 1) results from the commutativity of >, >′ and
∧. In order to show Property 2, we merely need to show x U 1 = x since U is
commutative. Suppose x ≤ 1, then x U 1 = x>1 = 1. Suppose x ≥ 1, then
x U 1 = ((1/x)>′1)−1 = 1.

Let us now prove the monotonicity of U (Property 3).

• Suppose w U x = w>x. We then necessarily have y U z = y>z since w ≥ y
and x ≥ z. By the monotonicity of >, we have w>x ≥ y>z.

• Suppose w U x = w∧x. We then necessarily have y U z = y>z or y U z = y∧z
since when w U x = w ∧ x, either w or x is strictly smaller than 1 and thus
either y or z is necessarily also strictly smaller than 1.

� Suppose y U z = y ∧ z. By the monotonicity of ∧, w ∧ x ≥ y ∧ z.
� Suppose y U z = y>z. Since ∧ is the largest t-norm on [0, 1], we have
y>z ≤ y ∧ z. Without loss of generality, assume w ∧ x = x.

∗ Suppose y ≤ z. Then, y ∧ z = y. We have x ≥ z, hence x ≥ y ∧ z,
and thus w ∧ x ≥ y ∧ z ≥ y>z.

∗ Suppose y > z. Then, y ∧ z = z ≥ y>z. Since x ≥ z, we have
x ≥ y ∧ z, and thus w ∧ x ≥ y ∧ z ≥ y>z.

• Suppose w U x = ((1/w)>′ (1/x))−1. In this case, we have w ∧ x ≥ 1, and
thus clearly w U x ≥ 1.

� Suppose y U z = ((1/y)>′ (1/z))−1. By the monotonicity of >′, we have

(1/w)>′ (1/x) ≤ (1/y)>′ (1/z)

((1/w)>′ (1/x))
−1 ≥ ((1/y)>′ (1/z))

−1
.

� Suppose y U z = y ∧ z. Hence, either y or z is strictly smaller than 1.
Thus, y ∧ z < 1. Hence, w U x ≥ y ∧ z, since w U x ≥ 1.
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� Suppose y U z = y>z. Hence, y ∨ z ≤ 1 and thus y>z ≤ 1. We then
have w U x ≥ y>z, since w U x ≥ 1.

We prove the associativity of U (Property 4) as follows. Without loss of gener-
ality, suppose x ≥ y ≥ z, and x, y, z ∈ (0,+∞].

• If x < 1, then

x U (y U z) = x U (y>z)
= x>(y>z)
= (x>y)>z
= (x U y) U z;

• If z > 1, then

x U (y U z) = x U ((1/y)>′ (1/z))
−1

=

(
1

x
>′ 1

((1/y)>′ (1/z))−1

)−1

= ((1/x)>′ (1/y)>′ (1/z))
−1

=

(
1

((1/x)>′ (1/y))−1>
′1

z

)−1

= ((1/x)>′ (1/y))
−1 U z

= (x U y) U z;

• If x > 1 > y ≥ z, then

x U (y U z) = x U (y>z) = x ∧ (y>z) = y>z,

and
(x U y) U z = (x ∧ y) U z = y U z = y>z;

• if x ≥ y > 1 > z, then

x U (y U z) = x U (y ∧ z) = x U z = x ∧ z = z,

and

(x U y) U z = ((1/x)>′ (1/y))
−1 U z = ((1/x)>′ (1/y))

−1 ∧ z = z;

• When either x, y or z equals 1, the proof of the associativity is easy since 1 is
a neutral element of U . For instance, let x = 1. Then, we have

x U (y U z) = 1 U (y U z) = y U z,

and
(x U y) U z = (1 U y) U z = y U z.

Eventually, Property 5 can be shown in a similar manner as it was shown that the
operator T(>,>′) de�ned by (4.1) is such that x T(>,>′) y > 0 for all x, y ∈ (0,+∞].
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E.3 Proof of Proposition 5.1

Proof. To make this proof easier to read, U©w will be simply noted U© and a BBA
mΩs de�ned on a frame Ωs will be simply noted ms. Accordingly, m↓Ωs and m↑Ωs

will be noted, respectively, m↓s and m↑s.
In order to show Proposition 5.1, we merely need to show that if the binary

operator U underlying the conjunctive u-rule U© is such that ∃x, y ∈ (0,+∞),
x U y 6= xy, then there exist two nondogmatic BBAs m1 de�ned on a frame of
discernment Ωs and m2 de�ned on a frame of discernment Ωt such that

(m1 U©m2)
↓z 6= m↓z∩s

1 U©m2,

for some z ∈ D such that t ⊆ z ⊆ t ∪ s.
Let x and y be two arbitrary numbers in (0,+∞) such that x U y 6= xy. Let

s and t be two sets of variables such that t ⊆ s and let z = t. Further, let m1 be
a BBA de�ned on the frame of discernment Ωs and m2 be a BBA de�ned on the
frame of discernment Ωt. From the fact that the ∩© rule satis�es axiom 5, we have:

(m1 ∩©m2)
↓z = m↓z∩s

1 ∩©m2,

and thus

(m1 ∩©m2)
↓t = m↓t

1 ∩©m2. (E.5)

The proof consists in choosing the BBAsm1 andm2 such that we have (m1 U©m2)
↓t =

(m1 ∩©m2)
↓t and m↓t

1 U©m2 6= m↓t
1 ∩©m2. Hence, we have

(m1 U©m2)
↓t = (m1 ∩©m2)

↓t

= m↓t
1 ∩©m2 (from (E.5))

6= m↓t
1 U©m2,

and thus

(m1 U©m2)
↓z 6= m↓z∩s

1 U©m2.

We get m↓t
1 U©m2 6= m↓t

1 ∩©m2 by choosing the BBAs ms
1 and mt

2 such that:

• ∃B ∈ 2Ωt\ {Ωt} such that ws↓t
1 (B) = x and wt

2 (B) = y, with ws↓t
1 the weight

function associated to ms↓t
1 ,

• ∀A ∈ 2Ωt\ {Ωt, B}, ws↓t
1 (A) = 1 or wt

2 (A) = 1.

The weight functions wt
1 U©2 and w

t
1 ∩©2 associated respectively tom

↓t
1 U©m2 andm

↓t
1 ∩©m2

are thus as follows:

wt
1 U©2(B) 6= wt

1 ∩©2(B),

wt
1 U©2(A) = wt

1 ∩©2(A), for A 6= B.

Consequently

m↓t
1 U©m2 6= m↓t

1 ∩©m2.

We get (m1 U©m2)
↓t = (m1 ∩©m2)

↓t by choosing the BBAs ms
1 and mt

2 such that:
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• ∀A ∈ 2Ωs\ {Ωs} , ws
1 (A) = 1 or wt↑s

2 (A) = 1, with wt↑s
2 the weight function

associated to mt↑s
2 .

The weight functions ws
1 U©2 and w

s
1 ∩©2 associated respectively tom1 U©m2 andm1 ∩©m2

are thus as follows:
ws

1 U©2(A) = ws
1 ∩©2(A),∀A ∈ 2Ωs\Ωs.

Consequently we have m1 U©m2 = m1 ∩©m2 and thus (m1 U©m2)
↓t = (m1 ∩©m2)

↓t.
Let us now provide the BBAs m1 and m2, which verify the above scheme.
The operator U is such that ∃x, y, x U y 6= xy, this implies that x, y ∈ (0,+∞)\ {1}

as 1 is the neutral element of U . In the remainder of this proof, we consider thus
the cases where:

• Case 1: x ∨ y < 1,

• Case 2: x ∧ y > 1,

• Case 3: x ∨ y > 1 and x ∧ y < 1.

We must thus provide a pair of BBAs m1 and m2 verifying the above scheme for
each of those three cases. Let us �rst provide two frames of discernment Ωs and
Ωt on which we are going to de�ne our three pairs of BBA. Let X and Z be two
binary variables whose frames are ΩX = {x1, x2} and ΩZ = {z1, z2}, and let Y be
a ternary variable whose frame is ΩY = {y1, y2, y3}. Let t denote the set composed
of the variables Y and Z and let s denote the set composed of the variables X, Y
and Z. Tables E.1 and E.2 give explicit names to the con�gurations of the frames
Ωt and Ωs.

Table E.1: The frame Ωs

con�gurations
s1 (x1, y1, z1)
s2 (x1, y1, z2)
s3 (x1, y2, z1)
s4 (x1, y2, z2)
s5 (x1, y3, z1)
s6 (x1, y3, z2)
s7 (x2, y1, z1)
s8 (x2, y1, z2)
s9 (x2, y2, z1)
s10 (x2, y2, z2)
s11 (x2, y3, z1)
s12 (x2, y3, z2)

Let us now provide the pairs of BBAs m1 and m2 satisfying the scheme described
at the beginning of the proof, for each of the three possible cases. Case 1 is rather
simple; the other cases are more tedious but nonetheless similar.
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Table E.2: The frame Ωt

con�gurations
t1 (y1, z1)
t2 (y1, z2)
t3 (y2, z1)
t4 (y2, z2)
t5 (y3, z1)
t6 (y3, z2)

• Case 1:

Let m1 be a BBA de�ned on Ωs as follows, for x ∈ (0, 1):

ms
1({s9, s10}) = 1− x,

ms
1(Ωs) = x.

Marginalizing ms
1 on Ωt yields:

ms↓t
1 ({t3, t4}) = 1− x,

ms↓t
1 (Ωt) = x.

The weight functions associated respectively to ms
1 and m

s↓t
1 are the following:

ws
1({s9, s10}) = x,

ws
1(A) = 1,

for all A ∈ 2Ωs\ {Ωs, {s9, s10}}, and

ws↓t
1 ({t3, t4}) = x,

ws↓t
1 (A) = 1,

for all A ∈ 2Ωt\ {Ωt, {t3, t4}}.
Now, let m2 be a BBA de�ned on Ωt as follows, for y ∈ (0, 1):

mt
2({t3, t4}) = 1− y,

mt
2(Ωt) = y.

Vacuously extending mt
2 on Ωs yields:

mt↑s
2 ({s3, s4, s9, s10}) = 1− y,

mt↑s
2 (Ωs) = y.

The weight functions associated respectively to mt
2 and m

t↑s
2 are the following:

wt
2({t3, t4}) = y,

wt
2(A) = 1,
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for all A ∈ 2Ωt\ {Ωt, {t3, t4}}, and

wt↑s
2 ({s3, s4, s9, s10}) = y,

wt↑s
2 (A) = 1,

for all A ∈ 2Ωs\ {Ωs, {s3, s4, s9, s10}}.

For those two BBAs m1 and m2, we thus have:

� ∃B = {t3, t4} such that ws↓t
1 (B) = x, and wt

2 (B) = y, with x, y ∈ (0, 1);

� ∀A ∈ 2Ωt\ {Ωt, B}, ws↓t
1 (A) = 1 or wt

2 (A) = 1;

� ∀A ∈ 2Ωs\ {Ωs} , ws
1 (A) = 1 or wt↑s

2 (A) = 1.

• Case 2: Let m1 be a BBA de�ned on Ωs as follows:

ms
1({s1, s2, s3}) = ms

1({s1, s3, s5})
= ms

1({s2, s4, s5})
= α,

ms
1(Ωs) = 1− 3α,

for α ∈ (0, 1/3).

Marginalizing ms
1 on Ωt yields:

ms↓t
1 ({t1, t2, t3}) = ms↓t

1 ({t1, t3, t5})
= ms↓t

1 ({t2, t4, t5})
= α,

ms↓t
1 (Ωt) = 1− 3α.

The weight functions associated respectively to ms
1 and m

s↓t
1 are the following:

ws
1({s1, s2, s3}) = ws

1({s1, s3, s5})
= ws

1({s2, s4, s5})

=
1− 3α

1− 2α
,

ws
1(∅) =

(1− α)3 (1− 3α)

(1− 2α)3 ,

ws
1({s2}) = ws

1({s5})
= ws

1({s1, s3})

=
(1− 2α)2

(1− α)(1− 3α)
,

ws
1(A) = 1,

for allA ∈ 2Ωs\ {Ωs, {s1, s2, s3} , {s1, s3, s5} , {s2, s4, s5} , ∅, {s2} , {s5} , {s1, s3}},
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and

ws↓t
1 ({t1, t2, t3}) = ws↓t

1 ({t1, t3, t5})
= ws↓t

1 ({t2, t4, t5})

=
1− 3α

1− 2α
,

ws↓t
1 (∅) =

(1− α)3 (1− 3α)

(1− 2α)3 ,

ws↓t
1 ({t2}) = ws↓t

1 ({t5})
= ws↓t

1 ({t1, t3})

=
(1− 2α)2

(1− α)(1− 3α)
,

ws↓t
1 (A) = 1,

for all A ∈ 2Ωt\ {Ωt, {t1, t2, t3} , {t1, t3, t5} , {t2, t4, t5} , ∅, {t2} , {t5} , {t1, t3}}.
Let m2 be a BBA de�ned on Ωt as follows:

mt
2({t1, t2}) = mt

2({t2, t3}) = β,

mt
2(Ωt) = 1− 2β,

for β ∈ (0, 0.5).

Vacuously extending mt
2 on Ωs yields:

mt↑s
2 ({s1, s2, s7, s8}) = mt↑s

2 ({s2, s3, s8, s9})
= β,

mt↑s
2 (Ωs) = 1− 2β.

The weight functions associated respectively to mt
2 and m

t↑s
2 are the following:

wt
2({t1, t2}) = wt

2({t2, t3}) =
1− 2β

1− β
,

wt
2({t2}) =

(1− β)2

1− 2β
,

wt
2(A) = 1,

for all A ∈ 2Ωt\ {Ωt, {t1, t2} , {t2, t3} , {t2}}, and

wt↑s
2 ({s1, s2, s7, s8}) = wt↑s

2 ({s2, s3, s8, s9})

=
1− 2β

1− β
,

wt↑s
2 ({s2, s8}) =

(1− β)2

1− 2β
,

wt↑s
2 (A) = 1,

for all A ∈ 2Ωs\ {Ωs, {s1, s2, s7, s8} , {s2, s3, s8, s9} , {s2, s8}}.
For those two BBAs m1 and m2, we have
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� ∃B = {t2} such that ws↓t
1 (B) = x, x ∈ (1,+∞) as ws↓t

1 (B) = f(α) with
f a surjective function from (0, 1/3) to (1,+∞), and wt

2 (B) = y, y ∈
(1,+∞) as wt

2 (B) = g(β) with g a surjective function from (0, 0.5) to
(1,+∞);

� ∀A ∈ 2Ωt\ {Ωt, B}, ws↓t
1 (A) = 1 or wt

2 (A) = 1;

� ∀A ∈ 2Ωs\ {Ωs} , ws
1 (A) = 1 or wt↑s

2 (A) = 1.

• Case 3:

Let m1 be a BBA de�ned on Ωs as follows:

ms
1({s1, s2, s3}) = ms

1({s1, s2, s4})
= ms

1({s1, s3, s4})
= α,

ms
1(Ωs) = 1− 3α

for α ∈ (0, 1/3).

Marginalizing ms
1 on Ωt yields:

ms↓t
1 ({t1, t2, t3}) = ms↓t

1 ({t1, t2, t4})
= ms↓t

1 ({t1, t3, t4})
= α,

ms↓t
1 (Ωt) = 1− 3α.

The weight functions associated respectively to ms
1 and m

s↓t
1 are the following:

ws
1({s1, s2, s3}) = ws

1({s1, s2, s4})
= ws

1({s1, s3, s4})

=
1− 3α

1− 2α
,

ws
1({s1, s2}) = ws

1({s1, s3})
= ws

1({s1, s4})

=
(1− 2α)2

(1− α) (1− 3α)
,

ws
1({s1}) =

(1− α)3 (1− 3α)

(1− 2α)3 ,

ws
1(A) = 1,

for allA ∈ 2Ωs\ {Ωs, {s1, s2, s3} , {s1, s2, s4} , {s1, s3, s4} , {s1, s2} , {s1, s3} , {s1, s4} , {s1}},
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and

ws↓t
1 ({t1, t2, t3}) = ws↓t

1 ({t1, t2, t4})
= ws↓t

1 ({t1, t3, t4})

=
1− 3α

1− 2α
,

ws↓t
1 ({t1, t2}) = ws↓t

1 ({t1, t3})
= ws↓t

1 ({t1, t4})

=
(1− 2α)2

(1− α) (1− 3α)
,

ws↓t
1 ({t1}) =

(1− α)3 (1− 3α)

(1− 2α)3 ,

ws↓t
1 (A) = 1,

for allA ∈ 2Ωt\ {Ωt, {t1, t2, t3} , {t1, t2, t4} , {t1, t3, t4} , {t1, t2} , {t1, t3} , {t1, t4} , {t1}}.
Let m2 be a BBA de�ned on Ωt as follows:

mt
2({t1, t2}) = 1− y,

mt
2(Ωt) = y

for y ∈ (0, 1).

Vacuously extending mt
2 on Ωs yields:

mt↑s
2 ({s1, s2, s7, s8}) = 1− β,

mt↑s
2 (Ωs) = β.

The weight functions associated respectively to mt
2 and m

t↑s
2 are the following:

wt
2({t1, t2}) = β,

wt
2(A) = 1,

for all A ∈ 2Ωt\ {Ωt, {t1, t2}}, and

wt↑s
2 ({s1, s2, s7, s8}) = β,

wt↑s
2 (A) = 1,

for all A ∈ 2Ωs\ {Ωs, {s1, s2, s7, s8}}.
For those two BBAs m1 and m2, we have

� ∃B = {t1, t2} such that ws↓t
1 (B) = x, x ∈ (1,+∞) as ws↓t

1 (B) = f(α)
with f a surjective function from (0, 1/3) to (1,+∞), and wt

2 (B) = y, y ∈
(0, 1);

� ∀A ∈ 2Ωt\ {Ωt, B}, ws↓t
1 (A) = 1 or wt

2 (A) = 1;

� ∀A ∈ 2Ωs\ {Ωs} , ws
1 (A) = 1 or wt↑s

2 (A) = 1.



Appendix F

α-Junctions: Proofs

F.1 Proof of Proposition 6.2

In order to show this proposition, �ve technical lemmas are needed. First, two
lemmas related to the BBA mα,∩ appearing in Proposition 6.2, are given. Then,
three lemmas related to the α-conditioning operation, are provided.

Let us �rst show that the BBA mα,∩ of Proposition 6.2 is indeed a BBA.

Lemma F.1. Let m be a set function de�ned on Ω such that m (A) = α|A|α|A|, for
all A ⊆ Ω, with α ∈ [0, 1] and α = 1− α. We have

m = ∩©x∈Ω {Ω\x}
α ,

where {Ω\x}α denotes a simple BBA mx such that mx({Ω\x}) = 1−α and mx(Ω) =
α.

Proof. Let m be a set function de�ned on Ω such that m (A) = α|A|α|A|, for all
A ⊆ Ω, with α ∈ [0, 1] and α = 1− α. Let f be a set function de�ned on Ω by

f (A) =
∑
B⊇A

m (B) .

Let A ⊆ Ω. The set A has

(
|Ω| − |A|

k

)
supersets of cardinality |A| + k, with

0 ≤ k ≤ |Ω| − |A|. Hence, for all A ⊆ Ω, we have

f (A) =
∑
B⊇A

m (B)

=

(
|Ω| − |A|

0

)
α|Ω|−(|A|+0)α|A|+0 +

(
|Ω| − |A|

1

)
α|Ω|−(|A|+1)α|A|+1

+...+

(
|Ω| − |A|
|Ω| − |A|

)
α|Ω|−(|A|+|Ω|−|A|)α|A|+|Ω|−|A|

=

|Ω|−|A|∑
k=0

(
|Ω| − |A|

k

)
α|Ω|−|A|−kα|A|+k

= α|A|
|Ω|−|A|∑

k=0

(
|Ω| − |A|

k

)
α|Ω|−|A|−kαk.

177
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The binomial theorem shows the following equality:

(a+ b)n =
n∑

k=0

(
n
k

)
akbn−k.

Hence,

α|A|
|Ω|−|A|∑

k=0

(
|Ω| − |A|

k

)
α|Ω|−|A|−kαk = α|A|(α+ α)|Ω|−|A|

= α|A|,

and thus f (A) = α|A|, for all A ⊆ Ω.
The commonality function qx associated to a simple BBA {Ω\x}α, with x ∈ Ω,

is such that

qx(A) =

{
1 if A ⊆ Ω\x,
α if A ⊇ x.

(F.1)

Let m′ be a BBA de�ned by m′ = ∩©x∈Ω {Ω\x}
α. The commonality function q′

associated to m′ is such that, for all A ⊆ Ω

q′(A) =
∏
x∈Ω

qx(A)

= α|A|,

from (F.1) and the fact that a given set A ⊆ Ω is the superset of |A| singletons of
Ω. Identifying q′ to f , we conclude that m is a BBA.

From Lemma F.1, mα,∩ of Proposition 6.2 is thus indeed a BBA, since it can be
obtained by a combination by the TBM conjunctive rule of simple BBAs.

Lemma F.2. Let m be a BBA such that m (A) = α|A|α|A|, for all A ⊆ Ω, with
α ∈ [0, 1] and α = 1− α. Let x ∈ Ω. We have∑

A⊆x

m (A) = α,

and ∑
A⊇x

m (A) = α.

Proof. Let x ∈ Ω. Furthermore, let |x| = n, hence |Ω| = n + 1. Let m be a BBA

such that m (A) = α|A|α|A|, for all A ⊆ Ω. We clearly have m (A) = αn+1−|A|α|A|.
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The set x has

(
n
k

)
subsets with cardinality k ≤ n. Hence, we have

∑
A⊆x

m (A) =

(
n
0

)
αn+1−0α0 +

(
n
1

)
αn+1−nα1 + ...+

(
n
1

)
αn+1−nαn

=
n∑

k=0

(
n
k

)
αn+1−kαk

= α
n∑

k=0

(
n
k

)
αn−kαk

= α,

by the binomial theorem.
Furthermore, we have

1 =
∑
A⊆Ω

m (A)

=
∑
A⊇x

m (A) +
∑
A6⊇x

m (A)

=
∑
A⊇x

m (A) +
∑
A⊆x

m (A)

=
∑
A⊇x

m (A) + α,

and thus
∑

A⊇xm (A) = 1− α.

The next lemma is useful in the proof of Lemma F.4, which is itself directly
related to the α-conditioning operation.

Lemma F.3. Let m1 be a BBA such that m1(A) = 0 for all A ⊂ Ω, |A| < |Ω| − 1.
We have:

m1 ∩©α m2 = α ·m1 ∩©m2 + (1− α) ·m1 ∩©m2, ∀m2. (F.2)

Proof. We need to introduce some notations to show this lemma. The matrix K{x}
(Equation (6.2)) and the quantity kx(A,B) (Equation (6.3)) are noted, respectively,
Kα
{x} and k

α
x (A,B), to depict the fact that they depend on the value of α. Accord-

ingly, we will write K1
{x} and k1

x(A,B) when α = 1, and K0
{x} and k0

x(A,B) when
α = 0.

The proof is based on the following remark. Let α = 1 − α. For all α ∈ [0, 1]
and for all x ∈ Ω, we have:

kα
x (A,B) = α · k1

x(A,B) + α · k0
x(A,B), ∀A,B ⊆ Ω.

Hence, the following equation clearly holds, for all α ∈ [0, 1] and for all x ∈ Ω

Kα
{x} = α ·K1

{x} + α ·K0
{x}. (F.3)
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For all BBAs m1 and m2, we have then

m1 ∩©α m2 = Kα
m1
·m2

= (
∑
X⊆Ω

m1(X) ·Kα
X) ·m2

= (
∑
X⊂Ω

m1(X) ·Kα
X +m1(Ω)) ·m2

= (
∑
X⊂Ω

m1(X) ·
∏
x 6∈X

Kα
{x} +m1(Ω)) ·m2,

which from (F.3) is equal to

m1 ∩©α m2 = (
∑
X⊂Ω

m1(X) ·
∏
x 6∈X

(α ·K1
{x} + α ·K0

{x}) +m1(Ω)) ·m2. (F.4)

Now, suppose m1 is such that m1(A) = 0 for all A ⊂ Ω, |A| < |Ω| − 1. From (F.4),
we obtain

m1 ∩©α m2 = (
∑
X⊂Ω

|X|=|Ω|−1

m1(X) ·
∏
x 6∈X

(α ·K1
{x} + α ·K0

{x}) +m1(Ω)) ·m2

= (
∑
X⊂Ω

|X|=|Ω|−1

m1(X) · (α ·K1{
X

} + α ·K0{
X

}) +m1(Ω)) ·m2,

since for all X ⊂ Ω such that |X| = |Ω| − 1, there is only one element x ∈ Ω, such
that x 6∈ X: this element is x = X.

Furthermore, we have

α ·m1 ∩©m2 + α ·m1 ∩©m2 = α ·K1
m1
·m2 + α ·K0

m1
·m2

= (α ·K1
m1

+ α ·K0
m1

) ·m2

= (α ·
∑
X⊆Ω

m1(X) ·K1
X + α ·

∑
X⊆Ω

m1(X) ·K0
X) ·m2

= (
∑
X⊆Ω

m1(X) · (α ·K1
X + α ·K0

X)) ·m2

= (
∑
X⊆Ω

m1(X) · (α ·
∏
x 6∈X

K1
{x} + α ·

∏
x 6∈X

K0
{x})) ·m2

= (
∑
X⊂Ω

|X|=|Ω|−1

m1(X) · (α ·K1{
X

} + α ·K0{
X

}) +m1(Ω)) ·m2,

which completes the proof.

Lemma F.4. Let mB be a categorical BBA focused on B ⊆ Ω, |B| = |Ω| − 1. Let
m be a BBA. We have

(mB ∩©α m)(X) =
∑

(A∩B)∪(A∩B∩C)=X

m (A)mα (C) , ∀X ⊆ Ω, (F.5)

where mα is a BBA such that mα (A) = α|A|α|A|, for all A ⊆ Ω.
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Proof. Let B ⊆ Ω, |B| = |Ω| − 1. Let mB be a categorical BBA focused on B. Let

m be a BBA and let mα be a BBA such that mα (A) = α|A|α|A|, for all A ⊆ Ω.
Let X ⊆ Ω. We have∑

(A∩B)∪(A∩B∩C)=X

m (A)mα (C)

=
∑
C⊇B

(A∩B)∪(A∩B∩C)=X

m (A)mα (C) +
∑
C 6⊇B

(A∩B)∪(A∩B∩C)=X

m (A)mα (C)

=
∑
C⊇B

(A∩B)∪(A∩B)=X

m (A)mα (C) +
∑
C 6⊇B

(A∩B)=X

m (A)mα (C)

= (
∑
C⊇B

mα (C)) ·
∑

(A∩B)∪(A∩B)=X

m (A) + (
∑
C⊆B

mα (C)) ·
∑

(A∩B)=X

m (A)

= α ·m ∩©mB(X) + α ·m ∩©mB(X) (from Lemma F.2 and Equations (6.4) and (1.4))

= m ∩©α mB(X),

using Lemma F.3.

Lemma F.5. Let mB be a categorical BBA focused on B ⊆ Ω. We have

mB ∩©α m =
(
∩©α

x 6∈Bmx

)
∩©α m, ∀m, (F.6)

where, for all x ∈ Ω, mx denotes a categorical BBA focused on x.

Proof. The case B = Ω clearly holds. The case where B is such that |B| = |Ω| − 1
also clearly holds. In order to show that (F.6) holds whenB is such that |B| < |Ω|−1,
we need to show �rst that

mx ∩©α m = K{x} ·m (F.7)

holds, for all x ∈ Ω. We have, for all x ∈ Ω

mx ∩©α m = K∩,α
mx
·m

=

(∑
X⊆Ω

mx(X) ·KX

)
·m

= mx(x) ·Kx ·m
= Kx ·m
= K{x} ·m.

The last line comes from the fact that if we let X = x in

KX =
∏
x 6∈X

K{x},

we obtain

Kx = K{x},
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since the only element of Ω that does not belong to X = x is x.
Equation (F.7) being proved, we can proceed with the rest of the proof. Let mB

be a categorical BBA focused on B ⊂ Ω. We have

mB ∩©α m = K∩,α
mB
·m

=

(∑
X⊆Ω

mB(X) ·KX

)
·m

= mB(B) ·KB ·m
= KB ·m
=

∏
x 6∈B

K{x} ·m

=
∏

x 6∈B∪y

K{x} ·K{y} ·m,

assuming that there exists y ∈ Ω such that y 6∈ B. Using (F.7), the last equation
becomes

mB ∩©α m =
∏

x 6∈B∪y

K{x} ·my ∩©α m,

where my is a categorical BBA focused on y. Assuming that there exists also z ∈ Ω
such that z 6∈ B, we have

mB ∩©α m =
∏

x 6∈B∪y∪z

K{x} ·K{z} ·my ∩©α m

=
∏

x 6∈B∪y∪z

K{x} ·mz ∩©α my ∩©α m.

More generally, we have

mB ∩©α m =
(
∩©α

x 6∈Bmx

)
∩©α m, ∀B ⊂ Ω, ∀m.

Proposition 6.2 may then be showed as follows.

Proof. Let m be a BBA and let mα be a BBA such that mα (A) = α|A|α|A|, for all
A ⊆ Ω. Lemma F.4 has shown that we have

m[B]α(X) =
∑

(A∩B)∪(A∩B∩C)=X

m (A)mα (C) , ∀X ⊆ Ω, (F.8)

for all B ⊆ Ω, |B| = |Ω| − 1. Here, we are �rst going to show by induction that
(F.8) holds for all B such that |B| = |Ω| − n, 1 ≤ n ≤ Ω, i.e., all B ⊂ Ω. We will
show that (F.8) holds for B = Ω at the end of this proof.

The base case of this proof by induction, i.e., (F.8) holds for all B such that
|B| = |Ω| − n with n = 1, has been shown by Lemma F.4. We now show the
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inductive step, i.e., if (F.8) holds for all B such that |B| = |Ω|−n, then it also holds
for all B such that |B| = |Ω| − (n+ 1).

Let B ⊆ Ω such that |B| = |Ω| − (n+ 1). Let mB be a categorical BBA focused
on B. Let y ∈ Ω such that y 6∈ B. Let B′ ⊆ Ω such that B′ = B ∪ y, thus
|B′| = |Ω| − n. Furthermore, let mA denote a categorical BBA focused on some
subset A ⊆ Ω. We have, for all BBA m and all X ⊆ Ω

(mB ∩©α m)(X) =
((

∩©α
x6∈Bmx

)
∩©α m

)
(X) (from Lemma F.5)

=
(
my ∩©α

(
∩©α

x 6∈B∪ymx

)
∩©α m

)
(X)

= (my ∩©α mB′ ∩©α m) (X) (from Lemma F.5)

= (my ∩©α m[B′]α) (X)

=
∑

(A∩y)∪(A∩y∩C)=X

mα (C)m[B′]α (A) (from Lemma F.4)

=
∑

(A∩y)∪(A∩y∩C)=X

mα (C)

 ∑
(E∩B′)∪(E∩B′∩D)=A

m (E)mα (D)

 ,

(F.9)

assuming that the inductive step holds, i.e., assuming that (F.8) holds if the cardi-
nality of the conditioning set is |Ω| − n. From (F.9), we obtain

(mB ∩©αm)(X) =
∑

(((E∩B′)∪(E∩B′∩D))∩y)∪
(
((E∩B′)∪(E∩B′∩D))∩y∩C

)
=X

mα (C)m (E)mα (D) .

(F.10)
We are now going to modify the expression under the sum sign in the right side of
(F.10). To achieve this modi�cation, we will make use of the following simple facts
about the sets B and B′:

B′ ∩ y = (B ∪ y) ∩ y
= B ∩ y
= B, (F.11)

since y 6∈ B and thus B ⊆ y.

B′ ∩ y = (B ∪ y) ∩ y
= B ∩ y ∩ y
= ∅. (F.12)

B′ ∩ y = (B ∪ y) ∩ y
= B ∩ y ∩ y
= B ∩ y. (F.13)
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B′ ∩ y = (B ∪ y) ∩ y
= y. (F.14)

y 6∈ B, hence y ∈ B, and thus

B ∪ y = B. (F.15)

We can now work with the expression under the sum sign in (F.10). We have

X =
((

(E ∩B′) ∪ (E ∩B′ ∩D)
)
∩ y
)
∪
((

(E ∩B′) ∪ (E ∩B′ ∩D)
)
∩ y ∩ C

)
= (E ∩B′ ∩ y) ∪ (E ∩B′ ∩D ∩ y) ∪ ((E ∩B′) ∩ (E ∩B′ ∩D) ∩ y ∩ C)

= (E ∩B) ∪ (E ∩B ∩D ∩ y) ∪ ((E ∪B′) ∩ (E ∪B′ ∪D) ∩ y ∩ C)

(using (F.11) and (F.13))

= (E ∩B) ∪ (E ∩B ∩D ∩ y) ∪ (((E ∩ y) ∪ (B′ ∩ y)) ∩ (E ∪B′ ∪D) ∩ C)

= (E ∩B) ∪ (E ∩B ∩D ∩ y) ∪ (E ∩ y ∩ (E ∪B′ ∪D) ∩ C)

(using (F.12))

= (E ∩B) ∪ (E ∩B ∩D ∩ y) ∪ (((E ∩ E) ∪ (E ∩B′) ∪ (E ∩D)) ∩ y ∩ C)

= (E ∩B) ∪ (E ∩B ∩D ∩ y) ∪ (((E ∩B′) ∪ (E ∩D)) ∩ y ∩ C)

= (E ∩B) ∪ (E ∩B ∩D ∩ y) ∪ (E ∩B′ ∩ y ∩ C) ∪ (E ∩D ∩ y ∩ C)

= (E ∩B) ∪ (E ∩B ∩D ∩ y) ∪ (E ∩ y ∩ C) ∪ (E ∩ y ∩ C ∩D)

(using (F.14))

= (E ∩B) ∪ (E ∩B ∩D ∩ y) ∪ ((E ∩ y ∩ C) ∩ (Ω ∪D))

= (E ∩B) ∪ (E ∩B ∩D ∩ y) ∪ (E ∩ y ∩ C)

= (E ∩B) ∪ (E ∩ ((B ∩D ∩ y) ∪ (y ∩ C)))

= (E ∩B) ∪ (E ∩ ((y ∩ C) ∪B) ∩ ((y ∩ C) ∪D) ∩ ((y ∩ C) ∪ y))
= (E ∩B) ∪ (E ∩ (y ∪B) ∩ (C ∪B) ∩ (y ∪D) ∩ (C ∪D) ∩ (y ∪ y) ∩ (C ∪ y))
= (E ∩B) ∪ (E ∩B ∩ (C ∪B) ∩ (y ∪D) ∩ (C ∪D) ∩ (C ∪ y)) (using (F.15))

= (E ∩B) ∪ (E ∩B ∩ (y ∪D) ∩ (C ∪ y) ∩ (C ∪D))

= (E ∩B) ∪ (E ∩B ∩ (((y ∪D) ∩ C) ∪ ((y ∪D) ∩ y)) ∩ (C ∪D))

= (E ∩B) ∪ (E ∩B ∩ ((y ∩ C) ∪ (D ∩ C) ∪ (D ∩ y)) ∩ (C ∪D)). (F.16)

Using (F.16), Equation (F.10) can be rewritten

(mB ∩©α m)(X) =
∑

(E∩B)∪(E∩B∩((y∩C)∪(D∩C)∪(D∩y))∩(C∪D))=X

mα (C)m (E)mα (D)

=
∑
C⊇y

(E∩B)∪(E∩B∩((y∩C)∪(D∩C)∪(D∩y))∩(C∪D))=X

mα (C)m (E)mα (D)

+
∑
C 6⊇y

(E∩B)∪(E∩B∩((y∩C)∪(D∩C)∪(D∩y))∩(C∪D))=X

mα (C)m (E)mα (D) .

(F.17)
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Note that for all C ⊆ Ω such that C ⊇ y, we have y ∩ C = y. Furthermore, for
all C ⊆ Ω such that C 6⊇ y or, equivalently, such that C ⊆ y, we have y ∩ C = ∅.
Hence, (F.17) reduces to

(mB ∩©α m)(X) =
∑
C⊇y

(E∩B)∪(E∩B∩(y∪(D∩C)∪(D∩y))∩(C∪D))=X

mα (C)m (E)mα (D)

+
∑
C 6⊇y

(E∩B)∪(E∩B∩((D∩C)∪(D∩y))∩(C∪D))=X

mα (C)m (E)mα (D)

=
∑
C⊇y

(E∩B)∪(E∩B∩(((y∪D)∩(y∪y))∪(D∩C))∩(C∪D))=X

mα (C)m (E)mα (D)

+
∑
C 6⊇y

(E∩B)∪(E∩B∩(((D∩C)∩(C∪D))∪((D∩y)∩(C∪D))))=X

mα (C)m (E)mα (D)

=
∑
C⊇y

(E∩B)∪(E∩B∩(y∪D∪(D∩C))∩(C∪D))=X

mα (C)m (E)mα (D)

+
∑
C 6⊇y

(E∩B)∪(E∩B∩((D∩C)∪(D∩y)))=X

mα (C)m (E)mα (D)

=
∑
C⊇y

(E∩B)∪(E∩B∩(y∪D)∩(C∪D))=X

mα (C)m (E)mα (D)

+
∑
C 6⊇y

(E∩B)∪(E∩B∩D∩(C∪y))=X

mα (C)m (E)mα (D)

=
∑
C⊇y

(E∩B)∪(E∩B∩(D∪y))=X

mα (C)m (E)mα (D)

+
∑
C 6⊇y

(E∩B)∪(E∩B∩D∩y)=X

mα (C)m (E)mα (D)

=

(∑
C⊇y

mα (C)

)
·

∑
(E∩B)∪(E∩B∩(D∪y))=X

m (E)mα (D)

+

(∑
C 6⊇y

mα (C)

)
·

∑
(E∩B)∪(E∩B∩D∩y)=X

m (E)mα (D)

= α ·
∑

(E∩B)∪(E∩B∩(D∪y))=X

m (E)mα (D)

+α ·
∑

(E∩B)∪(E∩B∩D∩y)=X

m (E)mα (D) (from Lemma F.2)
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=
∑
F⊇y

(E∩B)∪(E∩B∩F )=X

m (E)m′ (F ) +
∑
F 6⊇y

(E∩B)∪(E∩B∩F )=X

m (E)m′ (F ) ,

(F.18)

with

m′(F ) =

{
α(mα (F ∩ y) +mα (F )), ∀F ⊇ y,
α(mα (F ∪ y) +mα (F )), ∀F 6⊇ y,

since, for all F ⊇ y, we have

(F ∩ y) ∪ y = F ∪ y
= F,

and, for all F 6⊇ y, we have

(F ∪ y) ∩ y = F ∩ y
= F.

From (F.18), we �nd

(mB ∩©α m)(X) =
∑

(E∩B)∪(E∩B∩F )=X

m (E)m′ (F ) .

Let us now show that m′(A) = mα(A) or, equivalently, m′(A) = α|A|α|A|, for all
A ⊆ Ω.

If A ⊇ y, then

m′(A) = α
(
α|A∩y|α|A∩y| + α|A|α|A|

)
= α

(
α|A∪y|α|A∩y| + α|A|α|A|

)
= α

(
α|A|+1α|A|−1 + α|A|α|A|

)
= α|A|

(
αα|A| + α|A|+1

)
= α|A|α|A|,

since αn+1 + αnα = αn.
If A 6⊇ y, then

m′(A) = α
(
α|A∪y|α|A∪y| + α|A|α|A|

)
= α

(
α|A∩y|α|A|+1 + α|A|α|A|

)
= α

(
α|A|−1α|A|+1 + α|A|α|A|

)
= α|A|

(
α|A|+1 + αα|A|

)
= α|A|α|A|.
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We have thus shown that (F.8) holds for all B such that |B| = |Ω|−n, 1 ≤ n ≤ Ω,
i.e., all B ⊂ Ω. We now show that (F.8) holds for B = Ω. For all BBA m, we have
m[Ω]α = m ∩©α mΩ = m, and thus m[Ω]α(X) = m(X) for all X ⊆ Ω. Furthermore,
we have, for all X ⊆ Ω

∑
(A∩Ω)∪(A∩Ω∩C)=X

m (A)mα (C) =

(∑
C⊆Ω

mα (C)

)
·
∑
A=X

m(A)

= m(X). (F.19)

Hence, we have

m[Ω]α(X) =
∑

(A∩Ω)∪(A∩Ω∩C)=X

m (A)mα (C) , ∀X ⊆ Ω. (F.20)

F.2 Proof of Proposition 6.4

Proof. Let m1 and m2 be two BBAs. We have, for all X ⊆ Ω,

(m1 ∪©α m2)(X) = (m1 ∩©α m2)(X)

= (m1 ∩©α m2)(X)

=
∑

(A∩B)∪(A∩B∩C)=X

m1 (A)m2 (B)mα,∩ (C) , (F.21)

using Proposition 6.3, where mα,∩ (A) = α|A|α|A|, for all A ⊆ Ω. From (F.21), we
obtain

(m1 ∪©α m2)(X) =
∑

(A∩B)∪(A∩B∩C)=X

m1

(
A
)
m2

(
B
)
mα,∩ (C)

=
∑

(A∩B)∪(A∩B∩C)=X

m1 (A)m2 (B)mα,∩ (C)

=
∑

(A∩B)∪(A∩B∩C)=X

m1 (A)m2 (B)mα,∩ (C)

=
∑

(A∪B)∩(A∪B∪C)=X

m1 (A)m2 (B)mα,∩ (C)

=
∑

(A∪B)∩(A∪B∪C)=X

m1 (A)m2 (B)mα,∩
(
C
)

=
∑

(A∪B)∩(A∪B∪C)=X

m1 (A)m2 (B)mα,∩ (C)

=
∑

(A∪B)∩(A∪B∪C)=X

m1 (A)m2 (B)mα,∪ (C) , (F.22)
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with, for all A ⊆ Ω,

mα,∪ (A) = mα,∩ (A)

= mα,∩
(
A
)

= α

∣∣∣A∣∣∣
α|A|

= α|A|α|A|.

Let us now work with the expression under the sum sign in (F.22). We have

X = (A ∪B) ∩ (A ∪B ∪ C)

= (A ∩ (A ∪B ∪ C)) ∪ (B ∩ (A ∪B ∪ C))

= (A ∩B) ∪ (A ∩ C) ∪ (A ∩B) ∪ (B ∩ C)

= (A ∩B) ∪ (A ∩ C ∩ (B ∪B)) ∪ (A ∩B) ∪ (B ∩ C ∩ (A ∪ A))

= (A ∩B) ∪ (A ∩ C ∩B) ∪ (A ∩ C ∩B) ∪ (A ∩B) ∪ (B ∩ C ∩ A) ∪ (B ∩ C ∩ A)

= (A ∩B ∩ C) ∪ (A ∩B ∩ Ω) ∪ (A ∩B ∩ C) ∪ (A ∩B ∩ Ω) ∪ (A ∩B ∩ C)

= (A ∩B ∩ C) ∪ (A ∩B ∩ (Ω ∪ C)) ∪ (A ∩B ∩ (Ω ∪ C))

= (A ∩B) ∪ (A ∩B) ∪ (A ∩B ∩ C).

Hence, we have, for all X ⊆ Ω

(m1 ∪©α m2)(X) =
∑

(A∩B)∪(A∩B)∪(A∩B∩C)=X

m1 (A)m2 (B)mα,∪ (C) .

F.3 Proof of Theorem 6.1

In order to show Theorem 6.1, the following technical lemma is needed.

Lemma F.6. Let T1 = {t1, f1} and T2 = {t2, f2}. Let Ω be a frame of discern-
ment. Let mxand be a BBA on T1× T2 de�ned by

mT1×T2
xand ({(t1, t2) , (f1, f2)}) = 1. (F.23)

Let mT1×T2[x] denote a BBA such that

mT1×T2[x] = {(t1, t2) , (f1, t2) , (t1, f2)}α ,

for some x ∈ Ω.
We have

mT1×T2↑Ω×T1×T2
xand ∩©( ∩©x∈Ωm

T1×T2[x]⇑Ω×T1×T2) = m,

with m a BBA de�ned on Ω× T1× T2 by

m((A× (f1, f2)) ∪ (Ω× (t1, t2))) = α|A|α|A|, ∀A ⊆ Ω.
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Proof. We have

mT1×T2↑Ω×T1×T2
xand ((Ω× (f1, f2)) ∪ (Ω× (t1, t2))) = 1

and

mT1×T2[x]⇑Ω×T1×T2

= {({Ω\x} × (f1, f2)) ∪ (Ω× (t1, t2)) ∪ (Ω× (f1, t2)) ∪ (Ω× (t1, f2))}α .

From Lemma F.1, it is clear that the BBA m′ de�ned on Ω× T1× T2 by

m′ = ∩©x∈Ωm
T1×T2[x]⇑Ω×T1×T2,

is such that

m′({(A× (f1, f2)) ∪ (Ω× (t1, t2)) ∪ (Ω× (f1, t2)) ∪ (Ω× (t1, f2))}) = α|A|α|A|, ∀A ⊆ Ω.

Let m = mT1×T2↑Ω×T1×T2
xand ∩©m′Ω×T1×T2. It is direct to show that

m((A× (f1, f2)) ∪ (Ω× (t1, t2))) = α|A|α|A|, ∀A ⊆ Ω

holds.

We may now show Theorem 6.1 as follows.

Proof. From Lemma F.6, Equation (6.17) may be rewritten

m1 ∩©α m2 = (mΩ×T1↑Ω×T1×T2
1′ ∩©mΩ×T2↑Ω×T1×T2

2′ ∩©m)↓Ω,

with m a BBA de�ned on Ω× T1× T2 by

m((A× (f1, f2)) ∪ (Ω× (t1, t2))) = α|A|α|A|, ∀A ⊆ Ω.

We have for all A ⊆ Ω,

mΩ×T1↑Ω×T1×T2
1′ (D) = mΩ

1 (A),

where

D =
{
(A× (t1, t2)) ∪ (A× (t1, f2)) ∪ (A× (f1, t2)) ∪ (A× (f1, f2))

}
and for all B ⊆ Ω,

mΩ×T2↑Ω×T1×T2
2′ (E) = mΩ

2 (B),

where

E =
{
(B × (t1, t2)) ∪ (B × (t1, f2)) ∪ (B × (f1, t2)) ∪ (B × (f1, f2))

}
.

Let

D =
{
(A× (t1, t2)) ∪ (A× (t1, f2)) ∪ (A× (f1, t2)) ∪ (A× (f1, f2))

}
,
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for some A ⊆ Ω. Let

E =
{
(B × (t1, t2)) ∪ (B × (t1, f2)) ∪ (B × (f1, t2)) ∪ (B × (f1, f2))

}
,

for some B ⊆ Ω. Let

F = {(C × (f1, f2)) ∪ (Ω× (t1, t2))} ,

for some C ⊆ Ω. We have

(D ∩ E ∩ F ) ↓ Ω = (A ∩B) ∪ (A ∩B ∩ C).

Furthermore, we have

(mΩ×T1↑Ω×T1×T2
1′ ∩©mΩ×T2↑Ω×T1×T2

2′ ∩©m)↓Ω(X)

=
∑

D,E,F⊆Ω×T1×T2
(D∩E∩F )↓Ω=X

m1′(D)m2′(E)m(F )

=
∑

A,B,C⊆Ω,

D={(A×(t1,t2))∪(A×(t1,f2))∪(A×(f1,t2))∪(A×(f1,f2))},

E={(B×(t1,t2))∪(B×(t1,f2))∪(B×(f1,t2))∪(B×(f1,f2))},

F={(C×(f1,f2))∪(Ω×(t1,t2))},
(A∩B)∪(A∩B∩C)=X

m1′(D)m2′(E)m(F )

(since m1′ ,m2′ and m are non null only for the sets D,E and F

described under the sum sign)

=
∑

(A∩B)∪(A∩B∩C)=X

m1(A)m2(B)mα(C) (from the de�nitions of m1′ ,m2′ and m),

(F.24)

with mα a BBA de�ned on Ω such that mα (A) = α|A|α|A|, for all A ⊆ Ω. The
theorem is then proved with Proposition 6.3.

F.4 Proof of Theorem 6.3

Proof.

Notations

This proof requires that we introduce a few notations. Let Ωn denote the set Ω
with n elements, i.e., Ωn = {x1, ..., xn}. Further, let Ωn+1 denote the set de�ned by
Ωn+1 = {x1, ..., xn, xn+1}. Let Gn and Vn

X denote, respectively, the 2n×2n matrices
G∩,α and V∩,α

X when the frame is Ωn. Let Gn(·, X) denote the X column of Gn

(note that Gn(·, X) is a column vector). Let Mn denote the 2n× 2n matrix de�ned,
for all n ≥ 1, by:

Mn = Kron

([
1 1

α− 1 1

]
,Mn−1

)
, M0 = 1. (F.25)
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Let x be a column vector of size n and let ix denote a column vector of size 2i ·n (i
is a nonnegative integer), whose elements are x, e.g., let x = [2 3]′, 2x denotes then
a column vector of size 22 · 2, whose elements are x, i.e., we have

2x =


x
x
x
x


= [2 3 2 3 2 3 2 3]′.

Proof by induction

The aim of this proof is to show that Mn = Gn for all n ≥ 2, or, equivalently that
the X column of Mn, noted Mn(·, X), is equal to Vn

X · n1 (since the X column of
the matrix Gn is such that Gn(·, X) = Vn

X · n1) for all n ≥ 2 and all X ⊆ Ωn. In
other words, we must prove that the following equation holds, for all X ⊆ Ωn and
all n ≥ 2:

Mn(·, X) = Vn
X · n1. (F.26)

We show (F.26) by induction.
First, we must show the base case, i.e., that (F.26) holds for n = 2. This can be

done by comparing the matrix G∩,α when |Ω| = 2 (i.e., �G2�) with M2. Using the
de�nition of G∩,α given in Section 6.4.1, we �nd:

G2 =


1 1 1 1

α− 1 1 α− 1 1
α− 1 α− 1 1 1

(α− 1)2 α− 1 α− 1 1

 .
From the de�nition (F.25) of Mn, we have

M2 =

[
M1 M1

(α− 1)M1 M1

]

=


1 1 1 1

α− 1 1 α− 1 1
α− 1 α− 1 1 1

(α− 1)2 α− 1 α− 1 1

 ,
hence G2 = M2.

Now, we must show the inductive step, i.e., if Mn(·, X) = Vn
X · n1 holds for all

X ⊆ Ωn, then
Mn+1(·, X) = Vn+1

X · n+11 (F.27)

holds for all X ⊆ Ωn+1.
Let us �rst work with the left side of (F.27). From (F.25), we have:

Mn+1 =

[
Mn Mn

(α− 1)Mn Mn

]
. (F.28)
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As a consequence of the matrix notation and (F.28), it may be shown that we have:

Mn+1(·, X) =


[

Mn(·, X)
(α− 1)Mn(·, X)

]
if X ⊆ Ωn,[

Mn(·, X\xn+1)
Mn(·, X\xn+1)

]
otherwise,

(F.29)

where \ denotes set di�erence, e.g., if X = {x1, x3} and n = 2 (hence Ωn = Ω2 =
{x1, x2} and Ωn+1 = Ω3 = {x1, x2, x3}), then X\xn+1 = {x1}.

If Mn(·, X) = Vn
X · n1 holds for all X ⊆ Ωn, then we have from (F.29):

Mn+1(·, X) =


[

Vn
X · n1

(α− 1) (Vn
X · n1)

]
if X ⊆ Ωn,[

Vn
X\xn+1

· n1

Vn
X\xn+1

· n1

]
otherwise.

(F.30)

Let us now work with the right side of (F.27).
First, we can remark that Vn+1

X is necessarily a diagonal matrix since it is a
product of matrices Vn+1

{x} that are themselves diagonal (see the de�nition (6.21) of

V∩,α
{x} in Section 6.4.1). We can further note that those matrices Vn+1

{x} have some
kind of structure, which we present below.

Considering a frame Ω1 that has one element denoted by x1, we have

V1
{x1} = Diag(v{x1}),

where

v{x1} =

[
01

0(α− 1)

]
=

[
1

(α− 1)

]
.

Now, if we consider a frame Ω2 with two elements x1 and x2, we have

V2
{x1} = Diag(

[
v{x1}
v{x1}

]
),

and
V2
{x2} = Diag(v{x2}),

with

v{x2} =

[
11

1(α− 1)

]
=


1
1

(α− 1)
(α− 1)

 .
Now, if we consider a frame Ω3 with three elements x1, x2 and x3, we have

V3
{x1} = Diag(


v{x1}
v{x1}
v{x1}
v{x1}

),
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and

V3
{x2} = Diag(

[
v{x2}
v{x2}

]
),

and
V3
{x3} = Diag(v{x3}),

with

v{x3} =

[
21

2(α− 1)

]
=



1
1
1
1

(α− 1)
(α− 1)
(α− 1)
(α− 1)


.

More generally, it may be shown that we have, for a frame Ωi with i elements
x1, ..., xi and with j ≤ i:

Vi
{xj} = Diag(i−jv{xj}),

(remember that i−jv{xj} designates the column vector whose elements are the column
vector v{xj}, and that the size of i−jv{xj} is equal to 2i−j times the size of the vector
v{xj}) or, equivalently:

Vi
{xj} ·

i1 = i−jv{xj}, (F.31)

with

v{xj} =

[
j−11

j−1(α− 1)

]
.

Let us now consider two cases.

1. For j < n+ 1, we have from (F.31):

Vn+1
{xj} ·

n+11 = n+1−jv{xj}

=

[
n−jv{xj}
n−jv{xj}

]
=

[
Vn
{xj} ·

n1

Vn
{xj} ·

n1

]
. (F.32)

2. If n+ 1 = j, then we have

Vn+1
{xj} ·

n+11 = 0v{xj}

=

[
(n+1)−11

(n+1)−1(α− 1)

]
=

[
n1

n(α− 1)

]
. (F.33)
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Now, for all X ⊆ Ωn+1, we have by de�nition:

Vn+1
X =

∏
x 6∈X

Vn+1
{x}

Since the matrices Vn+1
{x} are diagonal, we have:

Vn+1
X · n+11 =

(∏
x 6∈X

Vn+1
{x}

)
· n+11

= ⊗x 6∈X

(
Vn+1
{x} ·

n+11
)
, (F.34)

where ⊗ denotes the pointwise product of column vectors.
We may now consider two cases.

1. Let X ⊆ Ωn (thus xn+1 6∈ X). We have

Vn+1
X · n+11 = ⊗x 6∈X

(
Vn+1
{x} ·

n+11
)

(from (F.34))

=
(
Vn+1
{xn+1} ·

n+11
)
⊗

⊗ x 6∈ X,
x 6= xn+1

(
Vn+1
{x} ·

n+11
) (since xn+1 6∈ X)

=

[
n1

n(α− 1)

]
⊗

⊗ x 6∈ X,
x 6= xn+1

(
Vn+1
{x} ·

n+11
) (using (F.33))

=

[
n1

n(α− 1)

]
⊗

⊗ x 6∈ X,
x 6= xn+1

([
Vn
{x} · n1

Vn
{x} · n1

]) (using (F.32))

=

[
n1

n(α− 1)

]
⊗


⊗
x 6∈ X,
x 6= xn+1

(
Vn
{x} · n1

)
⊗
x 6∈ X,
x 6= xn+1

(
Vn
{x} · n1

)


=

[
n1

n(α− 1)

]
⊗
[

Vn
X · n1

Vn
X · n1

]
=

[
Vn

X · n1
(α− 1) (Vn

X · n1)

]
= Mn+1(·, X). (using (F.30))

2. Let X 6⊆ Ωn and X ⊆ Ωn+1 (thus xn+1 ∈ X). Thus x 6∈ X is equivalent to
x ∈ Ωn\ (X\xn+1). From (F.34) and (F.32), we have

Vn+1
X · n+11 = ⊗x∈Ωn\(X\xn+1)

(
Vn+1
{x} ·

n+11
)

= ⊗x∈Ωn\(X\xn+1)

([
Vn
{x} · n1

Vn
{x} · n1

])
. (F.35)



F.5. PROOFS 195

For all X 6⊆ Ωn and X ⊆ Ωn+1 we also have:

Vn
X\xn+1

=
∏

x 6∈X\xn+1

Vn
{x}

=
∏

x∈Ωn\(X\xn+1)

Vn
{x}. (F.36)

Hence, using (F.35) and (F.36), we obtain

Vn+1
X · n+11 =

[
Vn

X\xn+1
· n1

Vn
X\xn+1

· n1

]
= Mn+1(·, X). (using (F.30))

F.5 Proof of Proposition 6.6

This proof requires the following technical lemma.

Lemma F.7. Let M be a 2n × 2n matrix de�ned by

M =

[
A B
C D

]
,

where A,B,C,D are 2n−1 × 2n−1 matrices. Let Jn and Jn−1 denote, respectively,
the 2n × 2n and 2n−1 × 2n−1 matrices which elements are zeros except those on the
secondary diagonal. We have

Jn ·M = Jn ·
[

A B
C D

]
=

[
Jn−1 ·C Jn−1 ·D
Jn−1 ·A Jn−1 ·B

]
,

and

M · Jn =

[
A B
C D

]
· Jn

=

[
B · Jn−1 A · Jn−1

D · Jn−1 C · Jn−1

]
,

Proof. The proof is direct when one remarks that if J is placed before a matrix, it
inverses the rows of this matrix, and if J is placed behind a matrix, it inverses the
columns of this matrix.

We may then show Proposition 6.6 as follows.
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Proof. Let us �rst show that G∪,α
new is a matrix of left eigenvectors of K∪,α

m : this
follows from the fact that premultiplying a matrix (here the matrix G∪,α

smets) by the
matrix J performs a permutation of the rows of this matrix.

Let us now show that G∪,α
new generalizes B. For that we merely need to show that

the matrix G∪,α
new is based on a building block that generalizes the building block of

the matrix B.
In order to demonstrate this, let us �rst remark that the matrix G∪,α

Smets is based
on the following building block (this can be shown in a similar manner as Theorem
6.3 was shown): [

1 1
1 α− 1

]
(F.37)

In the remainder of this proof, let Gn
smets and Gn

new denote, respectively, the
2n × 2n matrices G∪,α

Smets and G∪,α
new when the frame Ω has cardinality n. From the

fact that the matrix G∪,α
Smets is based on the building block given by (F.37), we may

obtain

Gn+1
Smets =

[
Gn

Smets Gn
Smets

Gn
Smets (α− 1)Gn

Smets

]
.

Hence, we have:

Gn+1
new = Jn+1 ·Gn+1

Smets

= Jn+1 ·
[

Gn
Smets Gn

Smets

Gn
Smets (α− 1)Gn

Smets

]
=

[
Jn ·Gn

Smets (α− 1)Jn ·Gn
Smets

Jn ·Gn
Smets Jn ·Gn

Smets

]
(By Lemma F.7)

= Kron

([
1 α− 1
1 1

]
,Jn ·Gn

Smets

)
= Kron

([
1 α− 1
1 1

]
,Gn

new

)
(F.38)

The matrix G∪,α
new is thus a matrix based on a building block that generalizes the

building block of the matrix B.

F.6 Proof of Theorem 7.1

The proof of Theorem 7.1 requires the following technical lemma.

Lemma F.8. (Inspired from [77, Lemma 5.2])
Suppose Ω is a �nite set and sq : 2Ω → (−∞,+∞)\ {0} and sw : 2Ω\ {Ω} →

(−∞,+∞)\ {0} are two functions such that sq(∅) = 1. Then

sq(A) =
∏

B 6⊇A,B 6=Ω

sw(B) (F.39)

for all A ⊆ Ω if and only if

sw(A) =
∏
B⊇A

sq(B)(−1)|B|−|A|+1

(F.40)
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for all A ⊂ Ω.

Proof.

1. Suppose (F.40) holds. Then, for a given A ⊆ Ω, we have (the following
equation is inspired by an equation in the proof of [39, Theorem 1]):

∏
B 6⊇A,B 6=Ω

sw(B) =
∏

B 6⊇A,B 6=Ω

sw(B) ·

( ∏
B⊇A,B 6=Ω

sw(B)

)
/

( ∏
B⊇A,B 6=Ω

sw(B)

)

=

(∏
B⊂Ω

sw(B)

)
/

( ∏
B⊇A,B 6=Ω

sw(B)

)
(F.41)

Let us study the term
∏

B⊂Ω sw(B) of (F.41). We have, using (F.40):

∏
B⊂Ω

sw(B) =
∏
B⊂Ω

(∏
C⊇B

sq(C)(−1)|C|−|B|+1

)
(F.42)

A given C ∈ 2Ω\ {∅} with cardinality |C| = n has

(
n
0

)
subsets with

cardinality 0,

(
n
1

)
subsets with cardinality 1, and more generally

(
n
k

)
subsets with cardinality k ≤ n. The binomial theorem shows the following
equality:

(a+ b)n =
n∑

k=0

(
n
k

)
akbn−k. (F.43)

Let b = 1 and a = −1. From (F.43), we have:

(1− 1)n =
n∑

k=0

(−1)k

(
n
k

)
=

(
n
0

)
−
(
n
1

)
+

(
n
2

)
−
(
n
3

)
+ ...+ (−1)n

(
n
n

)
= 0

It follows from this last equation that a given set C ∈ 2Ω\ {∅} has as many
subsets of even cardinality as subsets of odd cardinality. Let us remark that
it may also be shown that a given set C ∈ 2Ω\ {Ω} has as many supersets of
even cardinality as supersets of odd cardinality.

Let B and C be two subsets of Ω such that C ⊇ B, and x be a non null real
number.

(i) If C has odd cardinality and B has even cardinality, or if C has even
cardinality and B has odd cardinality, then x(−1)|C|−|B|+1

= x;

(ii) If C has odd cardinality and B has odd cardinality, or if C has even
cardinality and B has even cardinality, then x(−1)|C|−|B|+1

= 1/x
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Now, let us consider the right term of (F.42). For a given set C ∈ 2Ω\ {Ω, ∅},
the term sq(C)(−1)|C|−|B|+1

appears in (F.42) as many times as there are sets
B such that B ⊆ C. Suppose the cardinality of C is even. Since there are
as many B ⊆ C of even cardinality and of odd cardinality and because of
(i) and (ii), the term sq(C) appears as many times as the term 1/sq(C) in
(F.42). The same can be said if the cardinality of C is odd. Hence the term
sq(C)(−1)|C|−|B|+1

vanishes from (F.42) for all C ∈ 2Ω\ {Ω, ∅}.

When C = ∅, there is a unique set B such that B ⊆ C, i.e., B = ∅. Thus the
term sq(∅)(−1)|∅|−|∅|+1

= 1/sq(∅) appears once in (F.42).

When C = Ω, the term sq(Ω)(−1)|Ω|−|B|+1
appears in (F.42) as many times as

there are sets B such that B ⊂ Ω. Since B 6= Ω, there will be one missing
sq(Ω)(−1)|Ω|−|Ω|+1

= 1/sq(Ω) to cancel a term sq(Ω). This implies that the term
sq(Ω) appears once in (F.42).

We thus have

∏
B⊂Ω

sw(B) =
∏
B⊂Ω

(∏
C⊇B

sq(C)(−1)|C|−|B|+1

)

=
sq(Ω)

sq(∅)
= sq(Ω), (F.44)

since sq(∅) = 1.

Using a similar reasoning, it may be shown that the term
∏

B⊇A,B 6=Ω sw(B)

of (F.41) is equal to sq(Ω)
sq(A)

. This is easily seen when one rewrites
∏

B⊂Ω sw(B)

into
∏

B⊇∅,B 6=Ω sw(B) and compares this last term with
∏

B⊇A,B 6=Ω sw(B).

Consequently, we have

∏
B 6⊇A,B 6=Ω

sw(B) = sq(Ω)/ (sq(Ω)/sq(A))

= sq(A)
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2. Suppose (F.39) holds. Then, for a given A ⊂ Ω, we have∏
B⊇A

sq(B)(−1)|B|−|A|+1

=
∏
B⊇A

( ∏
C 6⊇B,C 6=Ω

sw(C)

)(−1)|B|−|A|+1

=
∏
B⊇A

( ∏
C 6⊇B,C 6=Ω

sw(C) ·
∏

C⊇B,C 6=Ω sw(C)∏
C⊇B,C 6=Ω sw(C)

)(−1)|B|−|A|+1

=
∏
B⊇A

( ∏
C⊂Ω sw(C)∏

C⊇B,C 6=Ω sw(C)

)(−1)|B|−|A|+1

=
∏
B⊇A

(∏
C⊂Ω

sw(C)

)(−1)|B|−|A|+1

· 1(∏
C⊇B,C 6=Ω sw(C)

)(−1)|B|−|A|+1


=

∏
B⊇A

(∏
C⊂Ω

sw(C)

)(−1)|B|−|A|+1

·
∏
B⊇A

 1(∏
C⊇B,C 6=Ω sw(C)

)(−1)|B|−|A|+1


=

∏
B⊇A

(∏
C⊂Ω

sw(C)

)(−1)|B|−|A|+1

·
∏
B⊇A

(
1∏

C⊇B,C 6=Ω sw(C)(−1)|B|−|A|+1

)
(F.45)

Let us study the term
∏

B⊇A

(∏
C⊂Ω sw(C)

)(−1)|B|−|A|+1

of (F.45). It can be

equivalently written
∏

B⊇A x
(−1)|B|−|A|+1

, with x =
∏

C⊂Ω sw(C). Since A ⊂ Ω
has as many supersets with even cardinality as supersets with odd cardinality
and because of (i) and (ii), it is clear that the term

∏
B⊇A x

(−1)|B|−|A|+1
vanishes.

We thus have

∏
B⊇A

sq(B)(−1)|B|−|A|+1

=
∏
B⊇A

(
1∏

C⊇B,C 6=Ω sw(C)(−1)|B|−|A|+1

)
(F.46)

For a given set C 6= Ω and C ⊇ A, the term 1

sw(C)(−1)|B|−|A|+1 appears as many

times in (F.46) as there are sets B such that A ⊆ B and B ⊆ C.

Suppose the cardinality of A is even and C ⊃ A. Since there are as many sets
B, A ⊆ B and B ⊆ C, that are of even cardinality and of odd cardinality1 and
because of (i) and (ii), there are as many terms sw(C) as terms 1/sw(C) in

1The conditions A ⊆ B and B ⊆ C that B must respect can be transformed into a condition
E ⊆ D to be respected by a set E with E = B−A and D = C−A, because A−A = ∅ ⊆ B−A = E
and B − A = E ⊆ C − A = D. From the �rst part of this proof, we know that D, which is 6= ∅
(because C ⊃ A), has as many subsets E of even cardinality as subsets E of odd cardinality.
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(F.46). The same can be said if the cardinality of A is odd. Hence, the term
1

sw(C)(−1)|B|−|A|+1 vanishes from (F.46), for all C 6= Ω and C ⊃ A.

When C = A, there is only one set B such that A ⊆ B ⊆ C, i.e. B = A.
Hence ∏

B⊇A

(
1∏

C⊇B,C 6=Ω sw(C)(−1)|B|−|A|+1

)
=

1
1

sw(A)

= sw(A).

Theorem 7.1 can then be proved as follows.

Proof. (Inspired from the proof of [85, Theorem 1])
Since sm is sq-invertible, sq satis�es sq(A) 6= 0 for all A ⊆ Ω. Besides, it also

veri�es sq(∅) = 1, since sm is regular. From Lemma F.8, there exists a function
sw : 2Ω\ {Ω} → (−∞,+∞)\ {0} de�ned by (F.40) such that

sq(A) =
∏
B 6⊇A

sw(B)

=
∏
B⊂Ω

sqB(A), (F.47)

where sqB is the signed commonality function of a simple BSMA Bsw(B), i.e., such
that:

sqB(A) =

{
1 if A ⊆ B,
sw(B) otherwise.

(F.48)

From (F.47), one obtains (7.5).

F.7 Proof of Proposition D.1

Proof. We have((
mΩ[r1]⇑R1×Ω

)↑R1×R2×Ω
)

(D) = mΩ
1 (A), ∀A ⊆ Ω,

where

D =
{
(A× (r1, r2)) ∪ (A× (r1, r2)) ∪ (Ω× (r1, r2)) ∪ (Ω× (r1, r2))

}
,

and ((
mΩ[r2]⇑R2×Ω

)↑R1×R2×Ω
)

(E) = mΩ
1 (B), ∀B ⊆ Ω,

where

E =
{
(B × (r1, r2)) ∪ (B × (r1, r2)) ∪ (Ω× (r1, r2)) ∪ (Ω× (r1, r2))

}
,
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and

(mR1×R2↑R1×R2×Ω
xor )(F ) = 1

where

F =
{
(Ω× (r1, r2)) ∪ (Ω× (r1, r2))

}
,

and

(mR1×R2↑R1×R2×Ω
or )(F ) = 1

where

G =
{
(Ω× (r1, r2)) ∪ (Ω× (r1, r2)) ∪ (Ω× (r1, r2))

}
.

Let

D =
{
(A× (r1, r2)) ∪ (A× (r1, r2)) ∪ (Ω× (r1, r2)) ∪ (Ω× (r1, r2))

}
,

for some A ⊆ Ω.
Let

E =
{
(B × (r1, r2)) ∪ (B × (r1, r2)) ∪ (Ω× (r1, r2)) ∪ (Ω× (r1, r2))

}
,

for some B ⊆ Ω.
Let

F =
{
(Ω× (r1, r2)) ∪ (Ω× (r1, r2))

}
.

Let

G =
{
(Ω× (r1, r2)) ∪ (Ω× (r1, r2)) ∪ (Ω× (r1, r2))

}
.

We have

(D ∩ E ∩ F ) ↓ Ω = (A ∩ Ω) ∪ (Ω ∩B)

= A ∪B,

and

(D ∩ E ∩G) ↓ Ω = (A ∩ Ω) ∪ (Ω ∩B) ∪ (A ∩B)

= A ∪B.

Following a similar reasoning to the one at the end of the proof of Theorem 6.1
(see Appendix F.3), we obtain, for all X ⊆ Ω((

mΩ[r1]⇑R1×Ω
)↑R1×R2×Ω

∩©
(
mΩ[r2]⇑R2×Ω

)↑R1×R2×Ω
∩©mR1×R2↑R1×R2×Ω

xor

)↓Ω
(X)

=
∑

A∪B=X

m1(A)m2(B)

= (m1 ∪©m2)(X)
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and ((
mΩ[r1]⇑R1×Ω

)↑R1×R2×Ω
∩©
(
mΩ[r2]⇑R2×Ω

)↑R1×R2×Ω
∩©mR1×R2↑R1×R2×Ω

or

)↓Ω
(X)

=
∑

A∪B=X

m1(A)m2(B)

= (m1 ∪©m2)(X).

F.8 Proof of Proposition D.2

Proof. This proposition can be proved rapidly using two degenerate cases of Theo-
rem 6.2. However, it is perhaps more instructive to demonstrate it in the style of the
proof of Proposition D.1, in order to enhance the di�erences between the approach
based on the reliability of the sources and the approach based on the truthfulness
of the sources.

We have for all A ⊆ Ω,

mΩ×T1↑Ω×T1×T2
1′ (D) = mΩ

1 (A),

where

D =
{
(A× (t1, t2)) ∪ (A× (t1, f2)) ∪ (A× (f1, t2)) ∪ (A× (f1, f2))

}
and for all B ⊆ Ω,

mΩ×T2↑Ω×T1×T2
2′ (E) = mΩ

2 (B),

where

E =
{
(B × (t1, t2)) ∪ (B × (t1, f2)) ∪ (B × (f1, t2)) ∪ (B × (f1, f2))

}
,

and

(mT1×T2↑T1×T2×Ω
xor )(F ) = 1

where

F = {(Ω× (f1, t2)) ∪ (Ω× (t1, f2))} ,

and

(mT1×T2↑T1×T2×Ω
or )(G) = 1

where

G = {(Ω× (f1, t2)) ∪ (Ω× (t1, f2)) ∪ (Ω× (t1, t2))} .
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Let

D =
{
(A× (t1, t2)) ∪ (A× (t1, f2)) ∪ (A× (f1, t2)) ∪ (A× (f1, f2))

}
,

for some A ⊆ Ω. Let

E =
{
(B × (t1, t2)) ∪ (B × (t1, f2)) ∪ (B × (f1, t2)) ∪ (B × (f1, f2))

}
,

for some B ⊆ Ω. Let

F = {(Ω× (f1, t2)) ∪ (Ω× (t1, f2))} .

Let

G = {(Ω× (f1, t2)) ∪ (Ω× (t1, f2)) ∪ (Ω× (t1, t2))} .

We have

(D ∩ E ∩ F ) ↓ Ω = (A ∩B) ∪ (A ∩B)

and

(D ∩ E ∩G) ↓ Ω = (A ∩B) ∪ (A ∩B) ∪ (A ∩B)

= A ∪B. (from Remark 6.2)

Following a similar reasoning to the one at the end of the proof of Theorem 6.1
(see Appendix F.3), we obtain, for all X ⊆ Ω

(mΩ×T1↑Ω×T1×T2
1′ ∩©mΩ×T2↑Ω×T1×T2

2′ ∩©mT1×T2↑Ω×T1×T2
xor )↓Ω(X)

=
∑

(A∩B)∪(A∩B)=X

m1(A)m2(B)

= (m1 ∪©m2)(X)

and

(mΩ×T1↑Ω×T1×T2
1′ ∩©mΩ×T2↑Ω×T1×T2

2′ ∩©mT1×T2↑Ω×T1×T2
or )↓Ω(X)

=
∑

A∪B=X

m1(A)m2(B)

= (m1 ∪©m2)(X).
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